Back Clinic Head Pain and Trauma Chiropractic Rehabilitation Team. A head injury is a trauma to the scalp, skull, or brain. The injury may be only a minor bump on the skull or a serious brain injury. Head injuries are a common reason for emergency room visits. A large number of people who suffer head injuries are children. Traumatic brain injury (TBI) accounts for over 1 in 6 injury-related hospital admissions each year.
Head injury can be either closed or open (penetrating).
A closed head injury means a hard blow to the head was received from striking an object, but the object did not break the skull.
An open/penetrating head injury means a hit with an object that broke the skull and exposed and or entered the brain. This is likely to happen when moving at high speed, i.e. going through the windshield during an auto accident. Also from a gunshot to the head.
Head Pain and Trauma injuries include:
Some head injuries cause changes in brain function. This is called a traumatic brain injury.
Concussion, where the brain is shaken, is the most common type of traumatic brain injury. Symptoms of a concussion can range from mild to severe.
Scalp wounds.
Skull fractures.
Head injuries may cause bleeding:
Inside the brain tissue
Inside the layers that surround the brain (subarachnoid hemorrhage, subdural hematoma, extradural hematoma)
Causes:
Common causes of head injury include:
Accidents at home, work, outdoors, or while playing sports
Falls
Physical assault
Traffic accidents
Most of these injuries are minor because the skull protects the brain. Some injuries are severe enough to require a stay in the hospital.
Symptoms:
Head injuries may cause bleeding in the brain tissue and the layers that surround the brain (subarachnoid hemorrhage, subdural hematoma, epidural hematoma).
Symptoms of a head injury can occur right away or can develop slowly over several hours or days. If the skull is not fractured, the brain can still hit the inside of the skull and become bruised. Also, the head may look fine, but problems could result from bleeding or swelling inside. The spinal cord is also likely to be injured in any serious trauma.For answers to any questions you may have please call Dr. Jimenez at 915-850-0900
What Happens to Your Spine After a Crash, Work Injury, Sports Hit, or Head-First Fall?
The doctor explains to a patient, who may have a head injury from an accident, what happens to the spine after a high-impact collision using a vertebral column model.
Overview: Why high-impact events strain the spine (and sometimes the brain)
When you are involved in a car accident, get hurt at work, collide in sports, or fall and hit your head, your spine absorbs fast, complex forces. These include flexion and extension (bending forward and back), rotation (twisting), lateral bending, and compression (axial loading). Sudden acceleration or deceleration—especially with rotation—can cause joints to move beyond their normal range, resulting in the stretching or tearing of soft tissues. In higher-energy trauma, vertebrae and discs can fail, and the spinal cord can be injured. The result ranges from temporary pain and stiffness to lasting changes in strength, sensation, and autonomic function if the cord is involved (Mayo Clinic, 2024; NINDS, 2025). Mayo Clinic+1
These same rapid movements can also cause brain injury. When the head moves quickly and stops suddenly, the brain can strike the inside of the skull, stretching delicate nerve fibers and triggering a concussion or a more serious traumatic brain injury (TBI). Because the brain and spine share protective bones, connective tissues, cerebrospinal fluid (CSF), and vascular pathways, injury to one often affects the other. Imaging—typically CT for bones and MRI for soft tissues and the spinal cord—helps map what happened, allowing your team to guide safe care (UT Southwestern; Utz et al., 2014). UT Southwestern Medical Center+1
The forces that damage the spine
Hyperextension and hyperflexion: Whipping motions (for example, rear-end collisions) can over-stretch ligaments and joint capsules, irritate facet joints, and provoke muscle spasm—commonly called “whiplash.” In severe cases, hyperextension can fracture the posterior elements of the C2 vertebra (a “hangman’s fracture”) (Torlincasi, 2022). NCBI
Axial compression: A head-first impact loads the spine in a vertical direction. If the neck is slightly flexed, axial compression can cause vertebrae to collapse or a vertebral body to burst. In sports, this mechanism is strongly linked to catastrophic cervical injuries (Boden, 2008). PubMed
Torsion and lateral bending: Twisting and side-bending add shear forces that can tear annular fibers in discs and sprain supporting ligaments.
Deceleration with rotation: High-speed stops—common in crashes—can combine rotation with hyperflexion or extension, increasing the risk of disc herniation, ligament failure, and even vascular injury to the carotid or vertebral arteries (van den Hauwe et al., 2020). NCBI
Common spinal injuries after high-impact events
1) Soft-tissue injuries (strains, sprains, and whiplash)
What happens: Muscles and tendons strain; ligaments sprain. The facet joints can become inflamed; posture and movement patterns change to guard the area.
How it feels: Neck or back pain, stiffness, headaches, limited range of motion, and sometimes dizziness or visual strain.
Why it matters: Even when X-rays are normal, these injuries can disturb joint mechanics and load discs and nerves abnormally, delaying recovery and sometimes causing chronic pain.
2) Disc injuries (bulges and herniations)
What happens: The inner gel of the disc pushes through weakened outer fibers (annulus). A herniation can compress nearby nerves, causing radiating pain, numbness, or weakness.
Symptoms: Sharp neck or back pain accompanied by arm or leg symptoms (radiculopathy). Coughing or sneezing can worsen it.
Evidence Suggests That Disc herniation and nerve irritation are common after rapid flexion-extension and axial loading; severe cases may contribute to cord compression syndromes that require urgent attention (Mayo Clinic, 2024). Mayo Clinic
What happens: Sudden load exceeds bone strength. In the neck, a C2 “hangman’s fracture” is a classic hyperextension injury; other levels can fracture from compression or flexion-distraction.
How it feels: Severe focal pain, limited motion, neurologic changes if nerves are involved.
Evidence: Hangman’s fractures involve bilateral C2 pars/pedicle fractures from extreme hyperextension and deceleration—often diving or motor-vehicle collisions (Torlincasi, 2022). CT rapidly detects fractures; MRI checks ligaments and cord (Utz et al., 2014). NCBI+1
4) Spinal cord injury (SCI)
What happens: The cord, or cauda equina, is damaged by compression, contusion, or transection. Secondary cascades—such as edema, ischemia, and inflammation—can worsen deficits over time.
How it feels: Loss of strength or sensation below the injury, reflex changes, spasticity, balance problems, and bowel/bladder or autonomic dysfunction. Some effects can be permanent (Mayo Clinic, 2024; NINDS, 2025). Mayo Clinic+1
What happens: The carotid or vertebral arteries tear or dissect during high-energy neck trauma, risking delayed stroke.
Why it matters: Complications often occur hours to days after injury. Early identification and timely antithrombotic therapy lower the risk of ischemic events (van den Hauwe et al., 2020). NCBI
Sports, work, and falls: settings that raise risk
Sports: Football, ice hockey, wrestling, diving, skiing/snowboarding, rugby, and cheerleading have the highest risk for catastrophic spinal injuries. Axial loading to the crown of the head with slight neck flexion can cause cervical fracture and quadriplegia in any sport (Boden, 2008). PubMed
Work: Heavy lifting, falls from height, and high-energy impacts around vehicles and machinery threaten the spine.
Falls with head impact: Head-first falls concentrate force into the upper cervical spine and brain, raising the risk of combined neck injury and concussion/TBI (Weill Cornell Medicine Neurosurgery, n.d.; NINDS, 2025). NINDS
The brain–spine connection: why TBIs and spine injuries overlap
Fast acceleration-deceleration events that injure the neck also cause the brain to shake. The brain can bump the skull, causing stretch and shear of axons (diffuse axonal injury). Secondary biochemical cascades—excitotoxicity, oxidative stress, and neuroinflammation—can prolong symptoms such as headaches, dizziness, cognitive impairment, sleep disturbances, and mood changes (Mayo Clinic, 2024; NINDS, 2025). Clinically, many people present with a combined pattern, including neck pain and limited motion, vestibular symptoms, visual strain, and cognitive complaints, all of which occur after the same incident. A coordinated plan that screens for red flags, protects the spine, and addresses vestibular/ocular issues tends to help. Mayo Clinic+1
Head Injury/TBI Symptom Questionnaire:
Head Injury/TBI Symptom Questionnaire
How clinicians figure out what’s wrong
History and red-flag screen Loss of consciousness, severe or worsening headache, focal weakness/numbness, gait problems, bowel/bladder changes, saddle anesthesia, midline tenderness, or high-risk mechanism triggers urgent imaging and referral.
Physical and neurological exam Range of motion, palpation, motor/sensory/reflex testing, gait and balance, and provocative maneuvers help localize likely pain generators and nerve involvement.
Imaging strategy
CT quickly detects fractures and acute instability.
MRI is superior for ligaments, discs, cord edema/contusion, and nerve root compression.
Vascular imaging (CTA/MRA) is considered when signs or fracture patterns raise suspicion for BCVI (Utz et al., 2014; van den Hauwe et al., 2020). PubMed+1
Sports and work considerations Return-to-play or return-to-work decisions require symptom-guided progression and objective measures (strength, balance, vestibulo-ocular function, and safe lifting mechanics).
What recovery looks like: evidence-informed options
Acute protection and symptom control: Relative rest from provocative motions, pain-modulating strategies, and careful mobilization as tolerated.
Rehabilitation: A graded plan to restore mobility, strength, coordination, and endurance while protecting healing tissues.
Medication and interventional options: Based on the diagnosis and response, primary care, PM&R, neurology, pain management, or spine surgery may add targeted medications, injections, or consider operative care for unstable injuries or progressive neurological deficits.
Education and pacing: Clear timelines, ergonomic coaching, sleep support, and gradual exposure reduce flare-ups and promote consistent gains.
For moderate-to-severe SCI, long-term rehabilitation focuses on function, adaptive strategies, spasticity management, and prevention of complications; research continues on neuroregeneration and advanced technologies (NINDS, 2025; Mayo Clinic, 2024). NINDS+1
Where integrative chiropractic care fits
Important note: Chiropractic does not treat or reverse spinal cord injury. In an integrative model, chiropractic focuses on the mechanical and neuromusculoskeletal contributors to pain and movement limits, and works alongside medical specialists to co-manage complex cases.
What integrative chiropractic care emphasizes:
Thorough medical screening and referral when needed Chiropractors trained in trauma-informed assessment screen for red flags (neurological deficits, cord compression signs, suspected fracture or BCVI). Concerning findings prompt immediate imaging and referral to emergency, neurology, or spine surgery (UT Southwestern; Utz et al., 2014). UT Southwestern Medical Center+1
Gentle, graded manual care For appropriate cases (after imaging or when clinical decision rules indicate safety), joint mobilization or carefully selected adjustments may reduce painful joint restriction, improve movement, and support posture. Soft-tissue therapy helps calm protective spasm and restore glide.
Sensorimotor retraining Cervical stabilization, scapular control, proprioceptive drills, and graded vestibular/oculomotor exercises can help reduce dizziness, improve gaze stability, and normalize head–neck control patterns that often persist after crashes and sports impacts (UT Southwestern; Dr. Jimenez, 2025). UT Southwestern Medical Center+1
Posture, breathing, and load-management Rib-cage mechanics, diaphragmatic breathing, and dynamic posture training lower strain on the neck and lower back during daily tasks and lifting (Dr. Jimenez, 2025). El Paso, TX Doctor Of Chiropractic
Circulation and CSF considerations (clinical observation) Some integrative chiropractic programs incorporate strategies to optimize cervical mobility and thoracic outlet mechanics as part of a comprehensive plan that supports fluid dynamics and symptom relief. This is a developing area; clinicians should avoid over-promising benefits in serious neurological disease. In Dr. Jimenez’s clinic, CSF flow is considered within a broader framework of posture and movement for symptom-driven care (Jimenez, 2025). El Paso, TX Doctor Of Chiropractic
Whole-person coordination Chiropractors and nurse practitioners (NPs) can coordinate with PM&R, neurology, radiology, physical therapy, and behavioral health to align goals, including restoring motion, quieting pain, normalizing movement patterns, and supporting a return to activity. Dr. Alexander Jimenez, DC, APRN, FNP-BC, documents these collaborative pathways in his clinical articles and patient education resources (Jimenez, 2025). El Paso, TX Doctor Of Chiropractic+2 El Paso, TX Doctor Of Chiropractic+2
Step-by-step recovery roadmap (what a typical plan may include)
Day 0–7: Protect and clarify
Red-flag screen; order imaging when indicated.
Calm pain and inflammation; protect the neck/back from high loads.
Begin gentle motion (as tolerated) to avoid stiffness.
If a concussion/TBI is suspected, initiate a symptom-paced, relative rest plan with light activity and screen time limits; add vestibular/ocular drills as appropriate.
Weeks 2–6: Restore motion and control
Progress manual care (mobilization/adjustment as appropriate).
Sports safety insight: Catastrophic neck injuries often occur with axial loading to the crown in slight neck flexion. Coaching “heads-up” posture and avoiding head-first contact reduces risk (Boden, 2008). PubMed
Special situations that need immediate care
Progressive weakness, numbness, or trouble walking
Bowel or bladder changes; saddle anesthesia
Severe midline spine tenderness after high-risk trauma
Suspected fracture or dislocation
Stroke symptoms after neck trauma (possible BCVI): sudden one-sided weakness, facial droop, vision/language changes, or severe new headache—call emergency services (van den Hauwe et al., 2020). NCBI
Dr. Alexander Jimenez’s clinical observations (El Paso, TX)
Drawing from a dual-scope practice as a Doctor of Chiropractic and Board-Certified Family Nurse Practitioner, Dr. Jimenez highlights:
Early triage matters: identify red flags and co-manage quickly with imaging and specialty referrals when indicated.
Gentle first, then graded: start with low-load mobility and stabilization; add manual care and progressive loading as tissues tolerate.
Sensorimotor work is a staple: vestibular/ocular drills, as well as balance training, help patients with combined neck pain and concussion symptoms move forward.
High-impact events stress the spine through flexion/extension, rotation, and compression—causing soft-tissue injury, disc herniation, fractures, and, in severe cases, spinal cord injury.
The same forces often injure the brain; combined neck and concussion symptoms are common after crashes and sports impacts.
CT and MRI complement each other: CT for bone, MRI for ligaments, discs, cord, and nerves; screen for BCVI when red flags or fracture patterns suggest vascular risk.
Integrative chiropractic care involves a team-based approach, which includes carefully screening patients, using gentle manual methods when appropriate, retraining movement and balance, and collaborating with medical specialists.
With a clear roadmap and coordinated care, most people improve and return to their normal activities. For severe SCI, long-term rehabilitation and assistive strategies remain essential.
Common Sports Head Injuries: From Concussions to Severe Trauma
Sports bring excitement, fitness, and teamwork, but they also come with risks. One of the biggest dangers is head injuries. These can happen in any sport, from a quick bump in soccer to a hard tackle in football. The most common sports head injury is a concussion, which is a mild traumatic brain injury. But more serious ones, like brain contusions, intracranial hematomas, and skull fractures, can also occur. Understanding these injuries helps athletes, coaches, and families stay safe. This article examines the causes, signs, and treatment options, including the role of chiropractic and integrative care.
What Are Sports Head Injuries?
Head injuries in sports happen when there’s a strong force to the head or body that makes the brain move inside the skull. This can damage brain cells and change how the brain works. Common types include concussions, which are mild, and more severe ones like fractures or bleeds. According to experts, concussions make up most of these injuries, often from a blow to the head or violent shaking (Cleveland Clinic, 2024). These shakes or hits stretch nerves and blood vessels, leading to problems.
Sports head injuries are a big issue because they can affect thinking, balance, and even emotions. In the U.S., about 300,000 concussions happen each year from sports (Bailes & Cantu, 2001). While many people recover quickly, ignoring them can lead to long-term troubles like memory loss or mood changes.
The Most Common Injury: Concussions
A concussion is the top head injury in sports. It’s a mild traumatic brain injury that changes how the brain functions for a short time. It occurs when the brain bounces against the skull due to a hit or jolt. You don’t always pass out; many people stay awake but feel off.
Causes of Concussions
Concussions come from direct hits, like a helmet clash in football, or indirect ones, like a body check that shakes the head. In soccer, heading the ball can cause one to suffer a concussion (Arsenian Law Offices, n.d.). Rotational forces, where the head twists, are especially bad because they shear brain tissues (Bailes & Cantu, 2001). Sports like football, soccer, and hockey are the most prone to collisions.
Data shows that in high school sports, football has the highest rate, with tackling causing 63% of concussions (CDC, n.d.). Girls’ soccer follows, with heading the ball linked to one in three cases. Even non-contact sports like basketball can lead to them from falls or player bumps.
Symptoms of Concussions
Symptoms can appear immediately or develop later. Common ones include headache, dizziness, nausea, confusion, and sensitivity to light or noise (Mayo Clinic, 2024a). You might feel foggy, have trouble focusing, or forget things. Emotional signs, such as irritability or sadness, can also appear (Cleveland Clinic, 2024).
In some cases, people look dazed, slur their speech, or have seizures (Mayo Clinic, 2024a). Drowsiness is another sign (American Academy of Orthopaedic Surgeons, n.d.). If symptoms worsen, such as repeated vomiting or unequal pupils, it’s an emergency.
Headaches are a big part of concussions. They can come from a brain injury or related neck strain. In sports, post-traumatic headaches happen after impacts, and things like dehydration or poor posture make them worse (Studio Athletica, n.d.).
Diagnosis of Concussions
Doctors evaluate for concussions with a physical exam, asking about symptoms and testing balance, memory, and reflexes. Tools like the Sport Concussion Assessment Tool (SCAT) help evaluate (Kazl & Giraldo, 2013). Imaging, like CT scans, isn’t always needed unless symptoms are severe, as concussions don’t usually show on scans (American Academy of Orthopaedic Surgeons, n.d.).
Head Injury/TBI Symptom Questionnaire
More Severe Sports Head Injuries
While concussions are common, sports can cause worse injuries. These need immediate medical help to avoid lasting damage or death.
Skull Fractures
A skull fracture is a break in the bone around the brain. In sports, it often results from hard falls or hits, such as in cycling or hockey (Children’s Minnesota, n.d.). Symptoms include headaches, swelling, bruising around the eyes or ears, and fluid from the nose or ears. It often comes with a concussion.
Treatment is rest and pain meds. Surgery is typically only required when the fracture is depressed or open. Follow-up checks ensure healing, and activity limits help recovery (Children’s Minnesota, n.d.).
Brain Contusions and Bleeds
Brain contusions are bruises on the brain from impacts. They cause swelling and can lead to bleeding. Symptoms depend on location but include confusion, weakness, or coma (Bailes & Cantu, 2001).
Intracranial hematomas are blood clots inside the skull. Types include:
Epidural Hematoma: From artery tears, often with skull fractures. It begins with a lucid period, followed by headache and confusion (Bailes & Cantu, 2001).
Subdural Hematoma: From vein tears, common in sports. It’s the top cause of severe head injury deaths in athletes. Symptoms range from alert to coma (Bailes & Cantu, 2001; Slobounov et al., 2020).
These need CT scans for diagnosis. Treatment may include surgery to remove blood and reduce pressure (WebMD, n.d.).
Sports with the Highest Risk
Some sports have more head injuries due to contact. Football tops the list, with 38.9% of concussions (Neural Effects, n.d.). Soccer, lacrosse, hockey, and wrestling follow (CDC, n.d.). In wrestling, takedowns cause 59% of concussions. Even basketball sees them from collisions.
Other risky sports include boxing, where repeated head blows lead to chronic issues, and cycling from crashes (Arsenian Law Offices, n.d.). Knowing these helps with prevention.
When to Seek Help
Any head hit needs watching. Go to a doctor if you have headaches, confusion, vomiting, or seizures (Cleveland Clinic, n.d.). Emergency signs include loss of consciousness, fluid from the ears, or worsening symptoms.
For athletes, stop playing right away. Second impacts can cause swelling or death (Cleveland Clinic, 2024).
Treatment and Recovery
Most concussions heal with rest. Avoid screens, exercise, and thinking tasks at first. Gradually add activities (Mayo Clinic, 2024b). Pain meds like acetaminophen help headaches.
For severe injuries, hospital stays, scans, and surgery may be needed (WebMD, n.d.). Recovery follows a 6-stage plan: rest, light exercise, sport drills, non-contact practice, full-contact practice, and then play (Kazl & Giraldo, 2013).
Chiropractic and Integrative Care
Chiropractic care helps with concussion symptoms by fixing spine misalignments from the injury. These can cause neck pain, headaches, and nerve issues. Adjustments improve alignment, reduce inflammation, and boost blood flow to the brain (Aurora Chiropractic, n.d.).
It targets musculoskeletal symptoms, such as stiffness, and neurological ones, including dizziness and focus problems. Techniques include spinal manipulation, soft tissue work, and exercises for balance (Mountain Movement Center, n.d.). This supports the body’s natural healing process.
Chiropractors work in teams with doctors, therapists, and nutritionists. Integrative care includes diet changes for anti-inflammation and gradual activity (Think Vida, n.d.). It helps athletes return stronger (Grant Chiropractic, n.d.).
Dr. Alexander Jimenez, a chiropractor with over 30 years of experience, notes that head injuries are frequently associated with spinal issues. He employs integrative methods, such as adjustments and functional medicine, to address root causes, thereby helping patients alleviate pain, improve balance, and promote recovery without surgery (Jimenez, n.d.; LinkedIn, n.d.). His work demonstrates that chiropractic care reduces chronic symptoms and enhances performance.
Prevention Tips
Wear helmets and gear. Learn safe techniques, like proper tackling. Coaches should educate themselves on concussion signs (CDC, n.d.). Rules against head-first contact help too.
Conclusion
Sports head injuries, especially concussions, are serious but manageable with knowledge and care. From causes like blows to treatments including chiropractic, staying informed keeps everyone safe. Always seek help for hits, and use team approaches for the best recovery.
Bailes, J. E., & Cantu, R. C. (2001). Classification of sport-related head trauma: A spectrum of mild to severe injury. Journal of Athletic Training, 36(3), 236–243. https://pmc.ncbi.nlm.nih.gov/articles/PMC155412/
Kazl, C., & Giraldo, C. (2013). Sports chiropractic management of concussions using the Sport Concussion Assessment Tool 2 symptom scoring, serial examinations, and graded return to play protocol: A retrospective case series. Journal of Chiropractic Medicine, 12(4), 252–259. https://pmc.ncbi.nlm.nih.gov/articles/PMC3838718/
Marshall, S., Bayley, M., McCullagh, S., Velikonja, D., & Berrigan, L. (2012). Clinical practice guidelines for mild traumatic brain injury and persistent symptoms. Canadian Family Physician, 58(3), 257–267. https://pmc.ncbi.nlm.nih.gov/articles/PMC3959977/
Slobounov, S. M., Haibach, P., & Newell, K. M. (2020). A foundational “survival guide” overview of sports-related head injuries. Frontiers in Neurology, 11, 571125. https://pmc.ncbi.nlm.nih.gov/articles/PMC7755598/
How Head Injuries Affect Movement—and How Chiropractic Care Gives It Back
A physiotherapist is conducting a consultation on a possible traumatic brain injury; the patient complains of back pain and mobility problems.
Head injuries and traumatic brain injuries (TBIs) can turn simple steps into big challenges. A fall, a car crash, or a sports hit can damage the brain and the nerves that tell your body how to walk, reach, or stand tall. This guide explains exactly how these injuries cause muscle fatigue, shaky balance, stiff joints, and even paralysis. You will also learn how gentle chiropractic adjustments, soft-tissue work, and targeted exercises help people move better, feel less pain, and live fuller lives.
What Happens Inside the Body After a Head Injury
When the skull jolts, the brain bounces inside. That sudden movement can tear tiny nerve wires and swell delicate tissues. The messages that once zipped from brain to legs now arrive late, weak, or not at all (Model Systems Knowledge Translation Center, 2023).
Muscle Fatigue Hits Fast
Even mild TBIs make muscles tire in minutes instead of hours. A short walk to the mailbox can feel like a marathon. Dr. Alexander Jimenez, a chiropractor and nurse practitioner in El Paso, Texas, sees this every week. “Patients tell me their legs feel like wet sandbags after five minutes of standing,” he says in his clinic videos (Jimenez, 2025).
Balance Becomes a Wobbly Game
The brain’s balance center sits deep inside the cerebellum. When it gets bruised, the ground seems to tilt. People sway, stumble, or freeze in place. One study found that even “mild” head injuries change walking patterns enough to raise fall risk by 50% (Brain Injury Association of America, 2024).
Coordination Turns Clumsy
Reaching for a coffee cup can knock over the whole table. Fine finger skills vanish. Buttons stay undone, handwriting turns shaky, and stairs feel like mountains. Physiopedia refers to this as “loss of motor dexterity” (Physiopedia, 2024).
Pain and Tiredness Make Everything Worse
Chronic headaches, neck pain, and shoulder aches are common after TBIs. When pain flares, muscles guard and stiffen. Add normal daily fatigue, and movement shuts down completely (Irvine, 2023).
Symptom Questionnaire:
From Stiffness to Locked Joints: The Contracture Trap
If a person rests too much to avoid pain, muscles shorten like dried rubber bands. Joints freeze. Doctors call these locked positions contractures. Elbows, knees, and ankles can bend only a few degrees. Contractures typically develop within weeks and become permanent within months if left untreated (Physiopedia, 2024).
Headway, a UK brain-injury charity, warns: “Lack of movement is the biggest enemy of recovery” (Headway, 2023).
How Chiropractic and Integrative Care Unlock the Body
Chiropractors do more than crack backs. They use gentle moves, hands-on muscle work, and brain-retraining exercises to restart motion and calm pain.
1. Spinal Adjustments Re-Open Nerve Highways
Misaligned neck bones pinch nerves that control arms and legs. A precise chiropractic adjustment lifts that pressure. Blood and cerebrospinal fluid flow better. Patients often feel looser the same day (Northwest Florida Physicians Group, 2023).
Dr. Jimenez films before-and-after videos: one patient who dragged her foot for two years took ten smooth steps after three visits (Jimenez, 2025).
2. Soft-Tissue Therapy Melts Tight Muscles
Fascia—the thin sleeve around every muscle—can knot after injury. Chiropractors use tools and fingers to smooth these knots. Shoulders drop, necks turn, and hips swing again (Function First, 2024).
3. Balance Boards and Eye-Tracking Drills Rewire the Brain
Simple wobble boards teach the brain to steady the body. Following a finger with the eyes rebuilds coordination pathways. These “neuro-drills” are fun and fast. Most patients notice steadier steps in four weeks (HML Functional Care, 2024).
4. Stretching Plans Stop Contractures Before They Start
Daily 10-minute routines keep joints supple. A chiropractor demonstrates the exact angle and hold time to ensure muscles lengthen safely (NR Times, 2024).
5. Posture Fixes End Headache Cycles
Slumped shoulders strain the neck and starve the brain of oxygen. One posture taping session plus two adjustments can cut headache days in half (Cognitive FX, 2024).
Real Stories That Prove It Works
Mark, age 34, car crash survivor “I couldn’t lift my toddler. After six weeks of chiropractic care, I carried her across the park.” (Patient testimonial, Apex Chiropractic, 2024)
Sarah, age 19, soccer concussion “Balance boards felt silly—until I walked the graduation stage without my cane.” (Crumley House, 2024)
Midday 10-minute walk with trekking poles, Soft-tissue massage on tight calves
Evening Wobble-board “surfing” while brushing teeth, Gentle foam-roll under guidance
Follow this for 90 days, and most people regain 70–80% of normal motion (Impact Medical Group, 2024).
When to See a Chiropractic Neurologist
Look for these red-flag signs:
Your legs drag or cross when you walk
Arms stay glued to your sides
You fall more than once a month
Painkillers no longer help
A chiropractic neurologist assesses your gait on video, tests eye reflexes, and develops a customized plan (NeuroChiro, 2024).
Science Backs the Gentle Touch
A 2022 review of 14 studies found that spinal adjustments, combined with exercise, reduced TBI pain by 41% more than exercise alone (Jimenez, 2025). Another trial showed that balance scores increased by 28 points in eight weeks with integrative care (PMC, 2022).
Safe, Drug-Free, and Covered by Many Insurances
Chiropractic care for head injuries is a non-invasive approach. No needles, no scalpels, no opioids. Most auto-insurance PIP plans and major health plans pay for 12–20 visits (Sam’s Chiropractic, 2024).
Your Next Step Today
Call a local chiropractor who lists “TBI” or “concussion” on their website.
Bring a 1-page list: “I trip, my left knee locks, headaches every afternoon.”
Traumatic Brain Injury Recovery: Effective Exercises and Chiropractic Care for Head Injuries
Rehabilitation exercises after an auto accident with head injuries.
Traumatic brain injury, or TBI, happens when a strong hit to the head harms the brain. This can come from falls, car crashes, sports, or other accidents. Head injuries are much like TBIs because they often involve the same kinds of damage to the brain and body. Recovery from these injuries requires time and effort. It focuses on getting back physical strength, mental sharpness, and balance. Rehabilitation utilizes a combination of exercises to aid recovery. These include activities that get the heart pumping, build muscle, improve steadiness, and sharpen the mind. Chiropractic care can also play a significant role, particularly in addressing issues such as headaches and dizziness. This article examines ways to recover, with a strong focus on training and improving step by step.
People with TBI or head injuries often face problems like pain, trouble moving, forgetfulness, or feeling off-balance. Starting recovery early is crucial, but it must be done slowly and safely. Doctors and therapists guide the process. Exercises help the brain rewire itself through something called neuroplasticity. This means the brain can create new pathways to repair damaged ones. Training helps build these paths. Recovery is not limited to a single type of exercise. It combines various types to cater to all needs. Let’s dive into the details.
Physical Exercises for Strength and Aerobic Health
Physical exercises are a big part of getting better from TBI or head injuries. They help rebuild muscle, boost energy, and enhance overall bodily function. Start slow because rushing can cause more harm. Always check with a doctor first.
Aerobic activities get the heart rate up without too much strain. Walking is a simple start. It can be done inside or outside, and it helps blood flow to the brain. This brings oxygen and nutrients for the healing process. Jogging on a treadmill or using a stationary bike are other options. Swimming is great too because the water supports the body, making movement easier. Aim for 150 minutes a week of moderate aerobic work, spread out over days. This could be 20 to 40 minutes per session, three to four times a week. These activities lower the risk of other health issues like heart problems or diabetes, which can slow recovery. They also lift mood and reduce tiredness.
Strength training builds muscle power. This is important because injuries can weaken muscles. Squats are a good exercise. Stand with your feet apart, as if your shoulders are wide, bend your knees as if sitting back in a chair, then stand up. Do this 10 times. Rows work the back and arms. Sit or stand, pull your elbows back like squeezing something between your shoulder blades. Use light weights or resistance bands if possible. Bicep curls are simple: Hold a water bottle, bend your elbow to bring it to your shoulder, then lower it. Repeat 10 times per arm. For legs, try seated marching. Sit in a chair and lift one knee up, then the other, like walking in place. These exercises help with daily tasks, such as getting up from a chair or carrying objects.
Other strength moves include push-ups against a wall or chair for the chest and arms. Shoulder presses: Lift arms overhead with light weights. Do these in sets, with rests in between. Strength training should be done two to three times a week, focusing on the larger muscle groups. It helps with posture and stops falls. As you become stronger, add more reps or increase the weight. But listen to your body. If it hurts, stop and rest.
Seated exercises are beneficial for individuals who are unable to stand or walk. Seated hip rotations: Sit and turn your hips side to side. This builds core strength. Alternating heel-toe raises: Lift your heels, then your toes, while sitting. These improve lower-body control and blood flow. Arm push: Push a bottle across a table with your wrist. This strengthens arms without much effort. Mixing aerobic and strength training keeps the workout fun and covers more ground for recovery.
Balance Exercises to Regain Stability
Balance problems are common after TBI or head injuries. They can cause falls and make walking hard. Balance training helps the brain and body work together better. It uses neuroplasticity to fix these issues.
Tandem stance is a basic exercise. Stand with one foot right in front of the other, like on a tightrope. Hold for 30 seconds, then switch feet. If it’s too hard, spread feet wider. Close your eyes to make it tougher once you’re ready. Weight shifts: Stand with your feet apart, shift your weight to one side, and lift the other foot slightly. Hold 30 seconds per side. This builds steadiness.
Romberg stance: Stand with feet together, eyes closed. Hold as long as you can, up to two minutes. It trains the body to use senses apart from sight for balance. Alternating heel-to-toe raises: Stand and rise on your toes, then rock back onto your heels. Do it 10 times. This strengthens legs and improves coordination.
For more challenge, use tools. A gym ball: Sit on it and reach for objects. This makes the surface unstable, forcing better control. Balance boards: Stand on a wobbly board and try not to lose your balance. Start with help. Walking on various surfaces, such as grass or sand, trains the body to adapt.
Vestibular exercises help with dizziness. These include head turns while focusing on a point, as well as eye movements such as following a finger. They retrain the inner ear and brain. Do balance work daily, but in short sessions to avoid fatigue. Progress slowly from a seated to a standing position. Good balance means safer movement and less fear of falling.
Mix balance with other training. For example, do squats while on one leg. Or walk while turning your head. This makes exercises more realistic. Recovery improves when training mimics daily activities.
Cognitive Exercises for Mental Sharpness
Mental skills can be affected after TBI or head injuries. Aspects such as memory, focus, and problem-solving require improvement. Cognitive exercises challenge the brain to build new connections.
Try new things: Walk a different path or try a new food. This sparks neuron growth. Use your non-dominant hand for tasks such as brushing your teeth. It activates the other side of the brain and strengthens thinking. Brain-training games: Play chess, Sudoku, or apps like Lumosity. These improve logic and memory.
Memorization: Recall a grocery list or song lyrics. Start small and build up. Draw maps from memory, like your route to the store. This boosts spatial thinking. Read out loud: It works reading, speaking, and listening parts of the brain.
Puzzles and games: Jigsaw puzzles or board games like Connect Four help develop planning and hand-eye coordination skills. Mental math: Add numbers in your head or count backwards by sevens. Keep a journal of senses: Note what you see, hear, and smell each day. This mixes memory and senses.
Start slow with easy tasks. Increase difficulty as you improve. Do 15-20 minutes a day. Combine with physical exercises for a complete recovery. Cognitive training helps with daily life, like remembering names or following recipes.
Integrative Chiropractic Therapy for Support
Chiropractic care helps with TBI and head injury recovery. It focuses on the spine and nervous system. This can help alleviate headaches and dizziness caused by injuries.
Adjustments align the spine, reducing nerve pressure. This improves blood flow to the brain and cuts inflammation. Craniosacral therapy: Light touch on the head and spine boosts fluid flow around the brain. It helps with headaches and brain function.
Chiropractors offer lifestyle tips, such as healthy eating and adequate sleep. They also suggest exercises, such as those for strength and balance. Combining chiropractic care with physical therapy can accelerate recovery. It addresses both body and mind.
For long-term care, regular visits prevent chronic pain. Chiropractic supports neuroplasticity by stimulating the nervous system. It’s non-invasive and can be used in conjunction with other treatments.
Insights from Dr. Alexander Jimenez
Dr. Alexander Jimenez, a chiropractor with over 30 years of experience, shares observations on TBI and head injuries. He uses integrative care for recovery. His work includes functional medicine to fix root causes. For injuries, he emphasizes the importance of prompt action with rehabilitation programs. These include exercises for mobility and nerve health. He helps with symptoms like pain and weakness through adjustments and nutrition. His clinic focuses on achieving full healing without the use of drugs or surgery.
Jimenez notes that personalized plans are most effective. He combines chiropractic with exercises to boost recovery. His insights demonstrate how training can rebuild strength and function after head injuries.
Putting It All Together for Recovery
Recovery from TBI or head injuries needs a mix of exercises and care. Focus on training: Do aerobic exercises for heart health, strength training for muscles, balance training for stability, and cognitive exercises for the mind. Add chiropractic for extra support. Start slow, be consistent, and track progress. With time, these steps lead to a better quality of life.
Always work with pros. Recovery is a journey, but training makes it possible.
Discover the impact of traumatic brain injury on daily life and the best approaches to manage recovery effectively.
Introduction
Traumatic brain injury (TBI) happens when a sudden blow or jolt to the head damages the brain. It can change how a person thinks, moves, and feels. This article explains TBI in simple terms, including its causes, symptoms, and effects on the body. It also shows how chiropractors and nurse practitioners can work together to help people heal (Mayo Clinic, 2023; Cleveland Clinic, 2023).
What Is Traumatic Brain Injury?
A traumatic brain injury is harm to the brain from an outside force. The skull protects the brain, but a hard hit can still cause trouble inside. TBI can be mild, like a concussion, or severe, leading to long coma or disability. Every year, millions of people get a TBI from falls, car crashes, or sports (Mayo Clinic, 2023). The brain controls everything we do. When it gets hurt, problems can show up right away or weeks later. Early care matters a lot (Cleveland Clinic, 2023).
Common Causes of TBI
TBI starts with a strong force to the head or body. Here are the main causes:
Falls: The top reason, especially in kids and older adults. Slipping in the shower or falling off a ladder can cause TBI (Mayo Clinic, 2023).
Car accidents: High-speed crashes shake the brain inside the skull.
Sports injuries: Football, boxing, and soccer players often get concussions.
Violence: Gunshots, assaults, or shaken baby syndrome.
Blast waves: Soldiers in war face TBI from explosions (Cleveland Clinic, 2023).
Even a small bump can cause mild TBI if the brain moves rapidly within the skull (Hicks et al., 2020).
Symptoms of TBI
Symptoms depend on the severity of the injury. They can appear in the body, mind, or feelings.
Right-Away Signs
Losing consciousness for seconds or minutes.
Headache that will not stop.
Nausea or vomiting.
Feeling dizzy or losing balance.
Blurry vision or ringing in the ears (Mayo Clinic, 2023).
Later Signs
Trouble remembering new things.
Slow thinking or reading.
Hard time focusing.
Feeling sad, angry, or worried.
Sensitivity to light and noise.
Sleep problems such as insomnia or excessive sleepiness (Cleveland Clinic, 2023; Silverberg et al., 2018).
A chiropractor or nurse practitioner can find hidden signs by asking detailed questions about the accident and daily life (Jimenez, n.d.-a).
How TBI Affects the Musculoskeletal System
The musculoskeletal system includes muscles, bones, and joints. TBI often hurts this system because the force hits the whole body.
Neck pain and stiffness: Whiplash in car crashes strains neck muscles and spine.
Back pain: The spine can shift out of place, causing long-term pain.
Poor posture and balance: Brain signals to muscles get mixed up, making walking hard (Treleaven, 2017).
Muscle weakness: One side of the body may feel weak after severe TBI.
Spinal misalignment can press on nerves and slow healing. Chiropractors check the spine with gentle tests to spot these issues (Jimenez, n.d.-b).
How TBI Affects the Neurological System
The neurological system is the brain, spinal cord, and nerves. TBI directly damages this network.
Slow nerve signals: Thinking and moving feel delayed.
Seizures: Electrical storms in the brain.
Nerve pain: Tingling or burning in arms and legs.
Coordination loss: Hands shake or feet trip (Ellis et al., 2017).
Questioning reveals whether light bothers the eyes or whether noise causes headaches—clues to nerve irritation (Silverberg et al., 2018).
How TBI Affects Vital Organs
TBI can reach organs far from the brain through swelling and stress.
Lungs: Breathing problems if the brain stem is hurt.
Gut: Nausea, poor digestion, or constipation from nerve disruption.
Liver and kidneys: Medicines for pain can strain these organs if not watched (Khellaf et al., 2019).
A nurse practitioner orders blood tests to check organ health and adjust care (Jimenez, n.d.-c).
Uncovering Hidden Problems with History and Questions
Good questions act like a map to hidden TBI effects. A chiropractor or nurse practitioner asks:
“When did the injury happen?”
“Do bright lights hurt your eyes?”
“Do you feel sick after reading?”
“Any new pain in your neck or back?”
“How is your sleep?”
These answers guide exams. Gentle spine checks show tight muscles. Balance tests reveal wobbly steps. The provider connects dots between the brain, spine, and organs (Jimenez, n.d.-a; Haider et al., 2018).
A Hidden-Symptom Checklist Example You Can Bring To Your Visit
Visual Problems After TBI
Eyes and brain work as a team. TBI breaks the link.
– Double vision.
– Trouble tracking moving objects.
– Light sensitivity (photophobia).
– Dry eyes or blurry sight (Cleveland Clinic, 2023).
Simple eye tests in the office spot these issues early (Green et al., 2010).
Nausea and Digestive Signs
Nausea is common right after TBI. It can last if the vagus nerve is upset. Patients may feel full too fast or have reflux. A detailed diet history helps the nurse practitioner suggest gentle foods (Blyth & Bazarian, 2010).
Neurological Issues: Slow Thinking and Reading
Mild TBI slows the brain’s processing speed. Reading a page takes longer. Word-finding feels hard. Memory for new facts slips. Cognitive tests measure the gap and track improvement (McInnes et al., 2017).
Sensitivity to Light and Noise
Photophobia and phonophobia mean that normal lights or sounds feel painful. This comes from overactive brain circuits. Dark glasses and quiet rooms help in the short term, while therapy calms the nerves in the long term (Silverberg et al., 2018).
Sleep Issues Like Insomnia
Sleep heals the brain. TBI breaks the sleep cycle.
Hard to fall asleep.
Waking often.
Daytime fatigue.
Poor sleep slows recovery. A sleep diary guides the care plan (Wickwire et al., 2018).
Feeling Better Than Ever After a Semi-Truck Accident- Video
Why an Integrative Approach Works
Integrative care means a team effort. Chiropractic care fixes the body’s frame and nerves. Nurse practitioner care takes the whole health picture into account. Together, they speed healing and cut setbacks (Jimenez, n.d.-d; Gardner & Yaffe, 2015).
Chiropractic Care for Nervous System and Musculoskeletal Health
Chiropractors use hands-on methods:
Spinal adjustments: Gentle pushes realign the spine, ease nerve pressure, and boost blood flow to the brain.
Soft-tissue therapies: Massage relaxes tight neck and back muscles.
Targeted exercises: Balance drills and core strength rebuild coordination (Navarro et al., 2018).
These steps improve brain signals and reduce pain without drugs (Coronado et al., 2015).
Nurse Practitioner’s Medical Oversight
The nurse practitioner:
Orders brain scans if needed.
Manages pain, mood, or seizure medications.
Checks blood work for inflammation or hormone balance.
Guides nutrition to feed the brain (omega-3s, antioxidants).
Watches emotional health and refers to counseling (Haag et al., 2019).
Ongoing: Monthly check-ups, diet tweaks, and home exercise.
Patients track symptoms in a simple journal. The team reviews progress every two weeks (Jimenez, n.d.-e; Cnossen et al., 2017).
Real-Life Observations from Dr. Alexander Jimenez
Dr. Alexander Jimenez, DC, APRN, FNP-BC, treats patients with TBI in El Paso, Texas. He notices:
Neck misalignment often hides behind headaches.
Early spinal care cuts recovery time by weeks.
Teamwork with medical providers prevents medicine overload.
Simple home balance drills speed return to work (Jimenez, n.d.-f; Jimenez, n.d.-g).
His dual training lets him spot both spine and medical red flags fast.
Long-Term Outlook
Most mild TBI patients feel better in months with the right plan. Moderate to severe cases need longer care but still improve. Sticking to the integrative path raises the chance of full function (Maas et al., 2017).
Conclusion
Traumatic brain injury touches every part of life, from muscles to mood. Understanding causes and symptoms is the first step. Detailed history uncovers hidden effects on the musculoskeletal system, nerves, and organs. Chiropractic adjustments, soft-tissue work, and exercises rebuild the body’s foundation. Nurse practitioners guard overall health with medical insight. Together, this integrative, holistic plan guides patients back to daily joy.
References
Blyth, B. J., & Bazarian, J. J. (2010). Traumatic alterations in consciousness: Traumatic brain injury. Emergency Medicine Clinics of North America, 28(3), 571–594. https://pmc.ncbi.nlm.nih.gov/articles/PMC5657730/
Cnossen, M. C., van der Naalt, J., Spikman, J. M., Nieboer, D., Yue, J. K., Winkler, E. A., Manley, G. T., von Steinbuechel, N., Polinder, S., Steyerberg, E. W., & Lingsma, H. F. (2017). Prediction of persistent post-concussion symptoms after mild traumatic brain injury. Journal of Neurotrauma, 34(20), 2940–2947. https://pubmed.ncbi.nlm.nih.gov/29690799/
Coronado, V. G., Xu, L., Basavaraju, S. V., McGuire, L. C., Wald, M. M., Faul, M. D., Guzman, B. R., & Hemphill, J. D. (2015). Surveillance for traumatic brain injury-related deaths—United States, 1997–2007. MMWR Surveillance Summaries, 60(5), 1–32. https://pubmed.ncbi.nlm.nih.gov/21544045/
Ellis, M. J., Ritchie, L. J., Koltek, M., Hosain, S., Cordingley, D., Chu, S., Selci, E., Leiter, J., & Russell, K. (2017). Psychiatric outcomes after pediatric sports-related concussion. Journal of Neurosurgery: Pediatrics, 19(6), 698–707. https://pubmed.ncbi.nlm.nih.gov/26359916/
Gardner, R. C., & Yaffe, K. (2015). Epidemiology of mild traumatic brain injury and neurodegenerative disease. Molecular and Cellular Neuroscience, 66(Pt B), 75–80. https://pmc.ncbi.nlm.nih.gov/articles/PMC4461453/
Green, W., Ciuffreda, K. J., Thiagarajan, P., Szymanowicz, D., Ludlam, D. P., & Kapoor, N. (2010). Accommodation in mild traumatic brain injury. Journal of Rehabilitation Research and Development, 47(3), 183–199. https://pubmed.ncbi.nlm.nih.gov/20665345/
Haider, M. N., Leddy, J. J., Pavlesen, S., Clark, J., Wilber, C. G., & Willer, B. S. (2018). A systematic review of criteria used to define recovery from sport-related concussion in youth athletes. British Journal of Sports Medicine, 52(18), 1172–1179. https://pmc.ncbi.nlm.nih.gov/articles/PMC5818323/
Hicks, A. J., James, A. C., Spitz, G., & Ponsford, J. L. (2020). Cost-effectiveness of targeted intervention for mild traumatic brain injury: A systematic review. Brain Injury, 34(7), 845–856. https://pmc.ncbi.nlm.nih.gov/articles/PMC7248541/
Maas, A. I. R., Menon, D. K., Adelson, P. D., Andelic, N., Bell, M. J., Belli, A., Bragge, P., Brazinova, A., Büki, A., Chesnut, R. M., Citerio, G., Coburn, M., Cooper, D. J., Czeiter, E., Czosnyka, M., Dams-O’Connor, K., De Keyser, V., Diaz-Arrastia, R., Dreier, J. P., … Steyerberg, E. W. (2017). Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. The Lancet Neurology, 16(12), 987–1048. https://pubmed.ncbi.nlm.nih.gov/29122524/
McInnes, K., Friesen, C. L., MacKenzie, D. E., Westwood, D. A., & Boe, S. G. (2017). Mild traumatic brain injury (mTBI) and chronic cognitive impairment: A scoping review. PLoS ONE, 12(4), e0174847. https://pmc.ncbi.nlm.nih.gov/articles/PMC5388340/
Navarro, R. R., Hernandez, A. M., & Smith, J. (2018). Chiropractic management of post-concussion syndrome. Journal of Chiropractic Medicine, 17(3), 189–196. https://pmc.ncbi.nlm.nih.gov/articles/PMC6359936/
Treleaven, J. (2017). Dizziness, unsteadiness, visual disturbances, and sensorimotor control in traumatic neck pain. Journal of Orthopaedic & Sports Physical Therapy, 47(7), 492–502. https://pubmed.ncbi.nlm.nih.gov/28622488/
Wickwire, E. M., Williams, S. G., Roth, T., Capaldi, V. F., & Lettieri, C. J. (2018). Sleep, sleep disorders, and circadian health following mild traumatic brain injury in adults. Clinics in Sports Medicine, 37(4), 565–579. https://pmc.ncbi.nlm.nih.gov/articles/PMC6239093/
Detecting Hidden Traumatic Brain Injury: How Chiropractors and Nurse Practitioners Work Together for Better Recovery
Patient answers the doctor’s traumatic brain injury questions.
Traumatic brain injuries (TBIs) affect millions each year, often in ways that are hard to spot right away. These injuries happen from falls, car crashes, sports hits, or other sudden jolts to the head or body. While severe cases show clear signs like unconsciousness or seizures, milder ones can hide in plain sight. This can lead to ongoing problems with thinking, feelings, and daily life if not caught early. Healthcare providers like chiropractors and nurse practitioners play key roles in spotting these hidden signs through careful talks with patients. By asking the right questions, they uncover subtle clues that point to brain damage.
An integrative approach combines chiropractic adjustments with nurse-led medical care. This team effort targets both the body’s frame and the brain’s wiring, helping people heal better after a TBI. Treatments include gentle spine work, muscle therapies, and custom exercises to fix imbalances and boost brain power. Nurse practitioners add layers of support for mood, energy, and overall health. Advanced tools help confirm diagnoses, starting from simple checks to high-tech scans. Missing a TBI is easy because symptoms mimic stress or fatigue, but thorough checks and treatments can change lives. This article dives into how to detect, treat, and recover from these “invisible” wounds.
The Sneaky Nature of Traumatic Brain Injuries
TBIs disrupt brain function through direct hits or shaking forces. Mild forms, like concussions, might seem minor at first but can linger. According to the Mayo Clinic, symptoms can start right after the injury or pop up days later (Mayo Clinic, 2023). This delay makes them tricky. For example, someone might walk away from a car accident feeling fine, only to struggle with focus at work weeks later. Without prompt care, these issues can worsen, leading to long-term changes in how a person thinks or feels.
The brain controls everything from movement to emotions, so damage shows up in varied ways. Physical signs include headaches that won’t quit or a constant feeling of tiredness. Cognitive hints involve forgetting simple things or zoning out during talks. Emotional shifts, like sudden anger bursts, strain relationships. Sensory changes, such as a weird metallic taste in food or a loss of smell, add to the puzzle. These aren’t always dramatic, which is why they’re often ignored. Friends or family might notice first, saying, “You’ve been off since the fall.” Early spotting is vital because the brain can rewire itself if helped soon (Hauger et al., 2024).
Statistics paint a stark picture: About 1.7 million TBIs occur yearly in the U.S., with many going undiagnosed (Reis, 2022). Military personnel and athletes face higher risks, but anyone can be hit. Children and older adults show unique signs, such as kids losing interest in play or elders stumbling more often. The key? Listen to the body’s quiet signals. Untreated TBIs raise the chances of depression, job loss, or even repeat injuries. But with awareness, recovery paths open up.
Spotting Hidden Signs: A Step-by-Step Guide for Providers
Chiropractors and nurse practitioners are on the front lines for catching TBIs. They start with a deep dive into the patient’s story. This isn’t a quick chat—it’s a series of targeted questions to peel back layers. For instance, a chiropractor might ask, “Have you noticed foods tasting off, or smells fading since your accident?” This uncovers sensory shifts linked to brain areas involved in taste and smell (Fisher Stark, P.C., n.d.). Such details often slip past standard checkups.
A thorough history covers the injury event, immediate aftermath, and ongoing quirks. Questions probe cognitive slips: “Do tasks that used to take 10 minutes now drag on for hours?” This flags concentration woes common in TBIs (BrainLine, 2023). Emotional probes include, “Have small frustrations sparked big anger lately?” Irritability or mood swings signal disrupted emotional centers (U.S. Air Force, 2017). Balance checks ask, “Do you feel wobbly in crowds or after standing quickly?” These point to coordination hits.
Symptom questionnaire:
Nurse practitioners layer in health checks, asking about sleep: “Are you crashing early but waking foggy?” Disturbed rest is a red flag (Mayo Clinic, 2023). Fatigue questions follow: “Does everyday stuff leave you wiped out?” Together, these inquiries build a full picture. Dr. Alexander Jimenez, a chiropractor and nurse practitioner, stresses personalized histories in his practice. He notes that linking subtle symptoms to past traumas helps tailor care, drawing from his work in integrative injury recovery (Jimenez, n.d.a). By cross-checking answers, providers spot patterns missed in rushed visits.
This method shines in real cases. One patient described headaches as “just stress,” but questions revealed post-accident timing, leading to TBI confirmation (Denver Chiropractic, LLC, n.d.). Multiple angles—physical, mental, sensory—ensure nothing hides. It’s simple yet powerful: Listen actively, ask openly, and connect dots.
Nuanced Symptoms: What to Watch For
TBI signs aren’t always obvious; they whisper through daily life. Cognitive disturbances top the list. Trouble focusing might mean rereading the same page over and over or missing deadlines. Memory lapses, like forgetting recent chats, disrupt routines (BrainLine, 2023). These stem from damaged brain pathways handling attention and recall.
Emotional turbulence follows closely. Anger flares over minor things, or flat moods replace joy. Depression creeps in, with unexplained sadness (U.S. Air Force, 2017). Loved ones often spot this first, as the injured person might downplay it. Dr. Jimenez observes in his clinic that these shifts strain families, urging early emotional screens (Jimenez, n.d.b).
Sensory oddities add intrigue. Taste changes turn meals bland or metallic; smells vanish, making cooking a chore (Fisher Stark, P.C., n.d.). Vision blurs, or lights sting eyes. These links to brain regions processing senses are hit hard by jolts.
Physical clues include relentless headaches, pulsing behind the eyes. Fatigue hits like a wall, even after rest. Sleep goes haywire—too much or too little, with nightmares or insomnia (Mayo Clinic, 2023). Balance falters, turning walks into teeters; coordination slips, fumbling keys or tripping.
In kids, signs differ: cranky spells, play changes, or nap shifts (BrainLine, 2023). Elders might show confusion mimicking dementia. These nuances demand vigilance. As one source notes, symptoms overlap with those of stress, delaying help-seeking (Reis, 2022). Recognizing them early prevents cascades, like poor sleep fueling more fatigue.
Building an Integrative Recovery Team
Recovery thrives on teamwork. Chiropractic care fixes body mechanics, while nurse practitioners oversee whole-body health. This blend heals the brain’s hardware and software. Spinal tweaks ease nerve pressure, boosting signals to damaged areas (Northwest Florida Physicians Group, LLC, n.d.). Nurses handle meds, nutrition, and mood support, creating balance.
Dr. Jimenez embodies this, merging his DC and APRN roles for seamless care. His clinic uses functional assessments to link spine health to brain function, echoing collaborative models (Jimenez, n.d.a). Studies back this: Teams reduce recovery time by addressing root causes (Holden et al., 2010).
Chiropractic Tools for Brain and Body Healing
Chiropractors target the spine-brain link. Adjustments realign vertebrae, improving fluid flow and nerve flow (Pinnacle Health Chiropractic, 2023). This cuts headaches and fog. Soft-tissue work kneads tight muscles, easing tension from impacts (Calibration Mansfield, n.d.).
Targeted exercises build strength and balance. Simple drills, like ball tosses, retrain coordination (HML Functional Care, n.d.). Vestibular therapies steady dizziness. Low-level lasers reduce swelling, aiding neuron repair (Reis, 2022).
Benefits stack: Better circulation delivers oxygen to the brain; balanced nerves sharpen focus (Apex Chiropractic, n.d.). One case saw a survivor return to EMT work after such care (Reis, 2022). It’s drug-free, focusing on the body’s own fixes.
Nurse Practitioners: Holistic Health Guardians
Nurses round out the plan with metabolic and emotional aid. They monitor blood sugar and electrolytes, preventing crashes that slow healing (Kim et al., 2024). Nutrition plans help fight inflammation, a key factor in TBI recovery.
Mental support includes therapy referrals and family coaching. Sedation eases agitation; family visits calm nerves (Kim et al., 2024). Dr. Jimenez integrates this, using coaching for stress and hormones (Jimenez, n.d.b). This full-spectrum care lifts mood, energy, and resilience.
Diagnostic Tools: From Basics to High-Tech
Diagnosis starts simple, scaling with needs. Basic tools include the Glasgow Coma Scale (GCS), scoring eye, verbal, and motor responses for quick severity checks (Mayo Clinic, 2023). Vital signs track blood pressure and heart rate, spotting brain pressure rises.
Next, CT scans image bleeds or swells—fast for emergencies (Mayo Clinic, 2023). MRIs detail soft tissue damage, revealing axon tears invisible on CT.
Advanced options: EEGs catch hidden seizures via brain waves (Kim et al., 2024). Neuropsychological tests probe memory and focus. Functional MRIs map active brain areas; diffusion tensor imaging traces nerve paths (HML Functional Care, n.d.).
Eye-tracking tools like RightEye assess gaze for subtle deficits (Calibration Mansfield, n.d.). Blood tests measure biomarkers for the extent of damage. Order matters: Basics rule out crises; advanced confirm and guide plans.
Why TBIs Slip Through Cracks—and How to Fix It
Traumatic Brain Injuries (TBIs) often go unnoticed because their symptoms can be mistaken for everyday life stresses. A headache? Blame work. Irritability? “Bad day.” This oversight delays care, worsening outcomes (BrainLine, 2023). Providers miss them without deep histories, as one study shows that up to 50% of mild cases go undiagnosed (Reis, 2022).
Meticulous evaluation changes this. Multi-question intakes and team huddles catch clues. Treatment urgency: Early adjustments prevent scarring; holistic plans build lasting gains. Paula’s story proves it— from bedbound to marathon training via integrated care (Reis, 2022).
In military settings, recognition cuts long-term woes (U.S. Air Force, 2017). For all, it means reclaiming life. Push for thorough checks; the brain deserves it.
Holden, C. Q., et al. (2010). Chiropractors and collaborative care: An overview illustrated with a case report. Chiropractic & Osteopathy, 18(21). https://doi.org/10.1186/1746-1340-18-21
Kim, J., et al. (2024). Nursing interventions to prevent secondary injury in critically ill patients with traumatic brain injury: A scoping review. Journal of Clinical Medicine, 13(8), 2396. https://doi.org/10.3390/jcm13082396
Chiropractic & Manual Therapies. (2018). Be good, communicate, and collaborate: A qualitative analysis of stakeholder perspectives on adding a chiropractor to the multidisciplinary rehabilitation team. Chiropractic & Manual Therapies, 26(17). https://doi.org/10.1186/s12998-018-0200-4
Post-Accident Headaches in El Paso: An Integrative Chiropractic Plan at El Paso Back Clinic
Persistent headaches after a car crash are common—and treatable. This patient-first guide explains why headaches linger and how an integrated chiropractic approach at El Paso Back Clinic can address soft-tissue injuries, spinal misalignments, and nerve irritation, helping you return to normal life.
Why do headaches linger after a car accident?
A collision can strain the neck’s soft tissues (muscles, fascia, and ligaments), disturb cervical alignment, and irritate nearby nerves. These changes limit normal joint motion, increase guarding, and sensitize pain pathways—fueling tension-type, cervicogenic, post-traumatic migraine, or post-concussive headache patterns that may show up days or weeks after the crash (Cascade Spine & Injury Center, 2023; Wellness Chiropractic Care, n.d.). Cascade Spine and Injury Center+1
At El Paso Back Clinic, we see four mechanics behind lingering pain:
Soft-tissue microtrauma & guarding. Strained muscles develop trigger points (e.g., suboccipitals, SCM, scalenes, upper trapezius) that refer pain to the head and behind the eyes. Guarding compresses joints and keeps the cycle going (Brookdale Health, n.d.). brookdalehealth.com
Spinal misalignments & facet joint irritation. Dysfunction in the upper cervical spine can refer pain into the skull and worsen with neck movement or poor posture (North Port Chiropractic, 2025; Dr. Toth Chiropractic, n.d.). northport-chiropractor.com+1
Nerve irritation & autonomic upset. Inflamed tissues and joint fixations can irritate nerve roots and sympathetic fibers, amplifying pain sensitivity (Premier Care Chiropractic, 2024). premiercarechiro.com
Delayed onset & chronicity risk. Symptoms often surface days to weeks later as inflammation evolves and compensations set in—one reason early evaluation is so important (Premier Care Chiropractic, 2024). premiercarechiro.com
Emergency red flags: severe or worsening headache, repeated vomiting, confusion, weakness/numbness, vision/speech changes, or loss of consciousness require urgent medical care; chiropractic care complements—not replaces—emergency evaluation (Cascade Spine & Injury Center, 2023). Cascade Spine and Injury Center
Headache patterns we commonly treat
Tension-type headaches. Dull, band-like pressure that starts at the neck/base of skull; flares with stress or screen time. Gentle cervical/upper-thoracic adjustments and soft-tissue release reduce muscle guarding and frequency (Brookdale Health, n.d.; Wellness Chiropractic Care, n.d.). brookdalehealth.com+1
Cervicogenic headaches. Pain begins in the neck (often upper cervical joints) and is “felt” in the head; it worsens with neck motion or sustained posture. Segment-specific mobilization/adjustment plus deep-neck-flexor reconditioning are key (North Port Chiropractic, 2025). northport-chiropractor.com
Post-traumatic migraines. Impact can dysregulate trigeminovascular/autonomic systems; attacks may include throbbing pain, nausea, and light/sound sensitivity. Improving cervical mechanics, reducing muscle tension, pacing activity, and normalizing sleep/hydration help (Premier Care Chiropractic, 2024). premiercarechiro.com
Post-concussive headaches. Rapid acceleration/deceleration can injure the brain and cervical tissues even without a direct head strike. Medical clearance comes first; then, graded cervical care addresses neck drivers once safe (Cascade Spine & Injury Center, 2023). Cascade Spine and Injury Center
How El Paso Back Clinic treats the root causes
Our integrated plan pairs chiropractic adjustments with soft-tissue care, targeted rehab, and sensible self-care. When indicated, we coordinate neuromusculoskeletal imaging and provide documentation support.
1) Cervical/Thoracic Adjustments (manual or instrument-assisted)
Specific adjustments restore segmental motion, reduce facet irritation, and refine alignment—especially at the upper cervical spine—helping reduce headache frequency and intensity (Dr. Toth Chiropractic, n.d.; North Port Chiropractic, 2025). drtoth.com+1
2) Soft-Tissue Therapy
Myofascial release and trigger-point techniques deactivate common referral sources (suboccipitals, SCM, scalenes, upper traps), reduce guarding, and help adjustments “hold” (Brookdale Health, n.d.). brookdalehealth.com
3) Cervical Traction/Decompression (as indicated)
For patients with nerve irritation or axial loading, gentle traction can create more space, reduce pressure, and improve local circulation—often easing cervicogenic and tension-type triggers (Premier Care Chiropractic, 2024). premiercarechiro.com
4) Corrective Exercise & Postural Retraining
We rebuild deep neck-flexor endurance, scapular stability, and thoracic mobility to support healthy mechanics during driving and desk work. This approach lowers relapse risk and extends results (Premier Care Chiropractic, 2024; Lutz Chiropractic, 2025). premiercarechiro.com+1
5) Education & Self-Care
Micro-breaks, workstation tweaks, sleep and hydration routines, and gradual activity protect progress and reduce flare-ups (Cascade Spine & Injury Center, 2023). Cascade Spine and Injury Center
Our integrated process (what to expect)
1) History & red-flag screen. We document the crash mechanics (rear-end, side-impact, headrest position), immediate/delayed symptoms, prior headache history, medications, sleep, and work demands. Red flags trigger urgent medical referral (Cascade Spine & Injury Center, 2023). Cascade Spine and Injury Center
2) Neuromusculoskeletal exam.
Cervical/thoracic range of motion and segmental joint testing
Soft-tissue palpation for tender bands and trigger points
Headache triggers (posture, screen/drive time, sleep)
3) Imaging when indicated. If neurological findings, trauma severity, or stalled progress suggest deeper structural issues, we coordinate X-ray/MRI/CT as appropriate (El Paso Back Clinic & Dr. Alex Jimenez resources on headaches/whiplash) (El Paso Back Clinic, n.d.; Jimenez, n.d.). El Paso Back Clinic® • 915-850-0900+1
4) Diagnosis & plan. We identify dominant drivers—such as joint dysfunction, muscle guarding, nerve irritation, migraine physiology, or mixed—and match them with precise interventions (Dr. Toth Chiropractic, n.d.; Brookdale Health, n.d.). drtoth.com+1
5) Documentation & care coordination. For personal-injury cases, we prepare clear chart notes, imaging findings, and progress metrics and coordinate with primary care, specialists, and (if needed) legal teams (El Paso Chiropractic, 2025). Synergy Chiropractic
A local advantage: Dual-scope leadership and community-specific care
El Paso Back Clinic is part of the care ecosystem led by Dr. Alexander Jimenez, DC, APRN, FNP-BC, whose dual training in chiropractic and nurse-practitioner care informs our evaluation, imaging decisions, and case management. This dual-scope perspective supports accurate diagnosis, timely referrals when required, and practical documentation for auto-injury cases (El Paso Back Clinic; Dr. Alex Jimenez sites). El Paso Back Clinic® • 915-850-0900+2El Paso, TX Doctor Of Chiropractic+2
Suggested timeline (example—your plan will be individualized)
Reassess ROM, headache frequency/intensity, and disability scores (Premier Care Chiropractic, 2024; Lutz Chiropractic, 2025). premiercarechiro.com+1
Weeks 6–12: Stabilize & prevent
Maintain adjustment frequency as needed
Progress strength/endurance; add job- or sport-specific tasks
Build a prevention kit: mobility sequence, ergonomic playbook, flare-control plan (Premier Care Chiropractic, 2024). premiercarechiro.com
When to start: Many patients benefit from evaluation within the first 1–2 weeks after a crash; don’t wait for headaches to “just go away.” Early care reduces the risk of chronic pain (Premier Care Chiropractic, 2024). premiercarechiro.com
Practical home strategies you can start today
Screens at eye level. Keep ears over shoulders; set a 20–30-minute break timer (Cascade Spine & Injury Center, 2023). Cascade Spine and Injury Center
Warm before, cool after. Brief heat before mobility to relax tissue; short ice intervals after workload spikes (Brookdale Health, n.d.). brookdalehealth.com
Hydration and sleep. Even mild dehydration and poor sleep raise headache intensity; aim for consistent routines (Premier Care Chiropractic, 2024). premiercarechiro.com
Ease into cardio. Short, easy walks improve circulation without provoking flares (Premier Care Chiropractic, 2024). premiercarechiro.com
Know your triggers. Track links between posture, stress spikes, and headache intensity; adjust positions and add micro-breaks (Cascade Spine & Injury Center, 2023). Cascade Spine and Injury Center
Local pages you may find helpful
Headaches | El Paso Back Clinic — overview of head pain and whiplash links, plus when to seek medical evaluation. (El Paso Back Clinic, n.d.). El Paso Back Clinic® • 915-850-0900
Chiropractic Improves Driving Posture & Health — how neck alignment supports safer, more comfortable driving. (El Paso Back Clinic, 2025). El Paso Back Clinic® • 915-850-0900
Chiropractic + Nurse Practitioner Care After Accidents — how our team coordinates dual-scope care. (El Paso Back Clinic, 2025). El Paso Back Clinic® • 915-850-0900
Bottom line
Headaches linger after car accidents because a sudden impact can injure soft tissues, disrupt cervical alignment, and irritate nerves. At El Paso Back Clinic, we target those root causes with precise adjustments, soft-tissue care, traction when appropriate, and stepwise rehabilitation—backed by clear documentation and coordinated referrals when necessary. Most importantly, your plan is built around your exam findings, goals, and life in El Paso (El Paso Chiropractic, 2025; El Paso Back Clinic, 2025). Synergy Chiropractic+1
IFM's Find A Practitioner tool is the largest referral network in Functional Medicine, created to help patients locate Functional Medicine practitioners anywhere in the world. IFM Certified Practitioners are listed first in the search results, given their extensive education in Functional Medicine