ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page
Using Decompression Traction Therapy For Pinched Cervical Nerves

Using Decompression Traction Therapy For Pinched Cervical Nerves

Introduction

The neck allows the head to turn up, down, left, right, and side to side while supporting it. The neck is also part of the cervical spine as ligaments, muscles, and spinal discs surround it. However, just like the lower back, the neck is sustainable to suffer from neck-related injuries or pulled muscles that can cause many individuals to suffer from neck pain. Luckily there are ways to treat neck pain like gentle stretches, chiropractic adjustments, massages, and decompression therapy. Today’s article will discuss the cervical nerves, what happens to the neck when these nerves are pinched, and how cervical decompression therapy can help alleviate the pinched cervical nerves from the neck. By referring patients to qualified and skilled providers specializing in spinal decompression therapy. To that end, and when appropriate, we advise our patients to refer to our associated medical providers based on their examination. We find that education is the key to asking valuable questions to our providers. Dr. Alex Jimenez DC provides this information as an educational service only. Disclaimer

 

Can my insurance cover it? Yes, it may. If you are uncertain, here is the link to all the insurance providers we cover. If you have any questions, please call Dr. Jimenez at 915-850-0900.

The Cervical Nerves

The cervical nerve’s function is to conduct information on the motor and sensory skills that the neck is allowed to do. Since the neck’s primary function is to keep the head upright, research studies have found that the cervical regions of the spinal cord are where the cervical nerves lie. The cervical nerves branched out all over the neck muscles as the central nervous system allows the neuron signals to send the information to the cervical nerves. These nerve functions help control the head, neck, shoulders, and upper limbs to move in any direction without feeling pain. However, just like the lower back, the neck can also suffer from injuries, pulled muscles, or chronic conditions that can cause a person to be in pain.

 

What Happens When The Cervical Nerves Are Pinched?

Have you ever felt your back, neck, arms, or legs stiff? How about the sensations of feeling tingles on your shoulders, lower back, or even your arms? This might be due to pinched nerves if you suffer from these conditions. When the neck suffers from an injury or the muscles have become tense, this is due to a pinched cervical nerve. Research studies have found that a pinched nerve in the cervical area of the spine is mostly a compressed nerve due to a herniated disc. This causes pressure on the cervical nerve roots and causes radiating pain from the neck to the shoulders and down to the arms.

 

The cervical nerves send out radiating pain signals to the upper body and neck due to being compressed, causing the individual to be miserable. Other research studies have found that when the cervical nerve roots are being pinched, it can cause a condition known as cervical radiculopathy. This causes symptoms of pain, sensory and motor deficits, and even diminishes reflexes from the neck to the arms. When this happens to the neck, it can cause many problems for the individual. Research studies have stated that mechanical and degenerative factors are presented for many suffering from chronic neck pain. In contrast, those suffering from cervical spondylosis complain about neck stiffness, degenerative changes, and neurological complications to the body and neck.


Treating Pinched Nerves With Decompression Therapy-Video

Has your neck been feeling stiff lately? Does it hurt when you are turning your head from side to side? You could be experiencing a pinched nerve in the cervical area of the spine, and decompression therapy could be the answer. Cervical decompression allows a person to lay on a motorized traction table, and the machine gently pulls on the cervical spine and takes the pressure off the cervical nerve root. When the cervical decompression machine gently pulls the cervical spine, it allows the necessary nutrients to rehydrate the herniated disc and reduce the pain that the neck muscles were suffering from, causing them to relax. In case you want to learn more about cervical decompression therapy, this link will explain its benefits and how it can alleviate pinched cervical nerves.


Cervical Decompression Helps Alleviate Cervical Pinched Nerves

 

As stated earlier, many treatments can help many dealing with neck pain and compressed cervical pinch nerves. One of these treatments is cervical traction decompression therapy, and it can help alleviate not only neck pain but also reduce it. Research studies have found that many individuals suffering from cervical radiculopathy utilize cervical traction to increase the intervertebral disc gap while also relieving the pressure off the cervical root. This allows the neck muscles to relax and pull the herniated cervical disc back to the spine. When people utilize cervical decompression to alleviate their neck pain, they can feel relief after a few sessions. 

 

Conclusion

Overall, cervical decompression therapy allows the individual to feel relief through gentle stretching on the cervical spinal discs and takes the pressure off the cervical roots. When the cervical roots are compressed, it causes a wide variety of symptoms that causes problems from the neck down to the arms. Some of these symptoms can even affect a person’s quality of life and make them miserable if not treated right away. Utilizing decompression therapy and other non-surgical treatments allows the person to be pain-free and continue their wellness journey.

 

References

Binder, Allan I. “Cervical Spondylosis and Neck Pain.” BMJ (Clinical Research Ed.), BMJ Publishing Group Ltd., 10 Mar. 2007, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1819511/.

Iyer, Sravisht, and Han Jo Kim. “Cervical Radiculopathy.” Current Reviews in Musculoskeletal Medicine, Springer US, Sept. 2016, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958381/.

Khan, Rehan Ramzan, et al. “A Randomized Controlled Trial of Intermittent Cervical Traction in Sitting vs. Supine Position for the Management of Cervical Radiculopathy.” Pakistan Journal of Medical Sciences, Professional Medical Publications, 2017, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768820/.

Medical Professionals, Cleveland Clinic. “Pinched Nerves: Causes, Symptoms & Treatment.” Cleveland Clinic, 7 Apr. 2020, https://my.clevelandclinic.org/health/diseases/6481-pinched-nerves.

Waxenbaum, Joshua A, et al. “Anatomy, Head and Neck, Cervical Nerves.” StatPearls [Internet]. Treasure Island (FL), StatPearls Publishing, 26 July 2021, https://www.ncbi.nlm.nih.gov/books/NBK538136/.

Disclaimer

Neck Pain & Decompression Therapy

Neck Pain & Decompression Therapy

Introduction

Do you ever get that stiff feeling just by turning your head, or do your shoulders start to feel tense after a stressful day at work? How about feeling a headache coming on for no apparent reason? This is due to neck pain, and many factors can cause a person to have neck pain. Even though neck pain can be a nuisance to many individuals, there are therapeutic ways to alleviate neck pain: one of them is cervical decompression therapy. This article will look at what neck pain is, its symptoms, and how decompression therapy can help alleviate neck pain for many individuals. By referring patients to qualified and skilled providers specializing in spinal decompression therapy. To that end, and when appropriate, we advise our patients to refer to our associated medical providers based on their examination. We find that education is the key to asking valuable questions to our providers. Dr. Alex Jimenez DC provides this information as an educational service only. Disclaimer

 

Can my insurance cover it? Yes, it may. If you are uncertain, here is the link to all the insurance providers we cover. If you have any questions, please call Dr. Jimenez at 915-850-0900.

What Is Neck Pain?

 

As part of the cervical spine, the neck supports the head while surrounding and protecting the spinal cord and allows a wide range of motion. Research studies have found that the neck has a coordinated network of nerves, bones, joints, and muscles that have an essential job but have several problems that can cause pain. Neck pain is a common complaint among many individuals, as the neck muscles are strained for long periods due to poor posture. Other research studies have found any injuries or conditions affecting the neck, causing a restricted range of motion. This can be scary for many individuals due to being hunched over by looking at their phones, being on the computer, even minor things like reading a book or suffering from an auto accident, and having rheumatoid arthritis can affect the neck.

 

The Symptoms For Dealing With Neck Pain

Pain can come in two types of forms, which are acute and chronic. Acute pain can become a dull, mild ache that can last from a few hours to a few days, depending on where the person is injured. Chronic pain, however, can become a nuisance as it can send constant radiating pain that can cause a hindrance to any part of the body. As research has shown, the pain can vary for neck pain as it can become mild and uncomfortable to excruciating, where excess movement can make it worst. Some of the most common neck pain symptoms usually involve:

Even though neck pain can become a nuisance for many individuals, there are ways to alleviate the symptoms of neck pain and provide relief.


Cervical Decompression Therapy-Video

Research studies have found that manipulation, stretching, and strengthening of the neck muscle can reduce the chronic pain symptoms that it has caused. The video above shows what cervical decompression does for many individuals suffering from cervical pain and neck pain. Cervical decompression therapy lets individuals lay their heads on the traction table and are strapped in. The traction machine gently stretches the cervical spine to release the compressed spinal disc. Cervical decompression therapy allows the compressed spinal nerve roots to be alleviated from the cervical spine. It will enable the beneficial oxygen to come back into the spinal disc and increase the disc height for the neck. If you want to learn more about spinal decompression therapy, this link will explain the benefits of spinal decompression and how it can alleviate low back pain symptoms.


How Can Decompression Therapy Help With Neck Pain

 

As stated earlier in the article, feeling stiffness when turning your head, feeling the tension in the shoulders, and having headaches pop up out of nowhere is scary when you don’t know how they happened. When these symptoms start to turn into chronic issues, it can be hard to find relief to get rid of the pain. Luckily there is a solution for alleviating neck pain, and cervical decompression therapy could help get rid of the pain. Cervical decompression therapy allows individuals to lay their heads on the traction table and be strapped in, causing the traction machine to stretch the neck to alleviate the painful symptoms gently. Research studies have found that cervical decompression therapy can relieve tension headaches and improve the range of motion. This will cause the spinal disc to be stretched and alleviate symptoms caused by cervical herniated discs. Combined with light stretching, cervical decompression therapy can also improve cervical disc herniation symptoms. Research shows that this combination of treatments promotes neuromuscular tissue edema and inflammatory absorption from the cervical herniated disc. This will allow the restoration of the curvature of the cervical vertebrae and reduce disc pressure by improving it.

 

Conclusion

Having any neck pain is a nuisance, and if it is not treated right away, it can become an issue over time. Neck pain can cause stiffness to the neck muscles and disrupt the range of motion, making it unbearable for the individual to turn their heads from left to right and up and down. Luckily treatments like cervical decompression therapy allow individuals to feel relief from neck pain. Cervical decompression therapy provides traction to the individual by stretching the neck ligament gently to release the compressed cervical spinal discs and will enable the reduction of pain that is causing discomfort to the neck. When this happens, many individuals suffering from neck pain will feel instant relief and an improvement in their range of motion from their necks.

 

References

Binder, Allan I. “Neck Pain.” BMJ Clinical Evidence, BMJ Publishing Group, 4 Aug. 2008, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907992/.

Curtis, Scott. “All about Neck Pain.” Spine, Spine-Health, 9 Dec. 2019, https://www.spine-health.com/conditions/neck-pain/all-about-neck-pain.

Curtis, Scott. “Neck Pain Symptoms.” Spine, Spine-Health, 9 Dec. 2019, https://www.spine-health.com/conditions/neck-pain/neck-pain-symptoms.

Landers, Merrill R, et al. “Anterior Cervical Decompression and Fusion on Neck Range of Motion, Pain, and Function: A Prospective Analysis.” The Spine Journal: Official Journal of the North American Spine Society, U.S. National Library of Medicine, Nov. 2013, https://pubmed.ncbi.nlm.nih.gov/24041918/.

Staff, Mayo Clinic. “Neck Pain.” Mayo Clinic, Mayo Foundation for Medical Education and Research, 31 July 2020, https://www.mayoclinic.org/diseases-conditions/neck-pain/symptoms-causes/syc-20375581.

Xu, Qing, et al. “Nonsurgical Spinal Decompression System Traction Combined with Electroacupuncture in the Treatment of Multi-Segmental Cervical Disc Herniation: A Case Report.” Medicine, Lippincott Williams & Wilkins, 21 Jan. 2022, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772752/.

Disclaimer

Rheumatoid Arthritis of the Cervical Spine

Rheumatoid Arthritis of the Cervical Spine

Rheumatoid arthritis, or RA, is a chronic health issue which affects approximately 1 percent of the population in the United States. RA is an autoimmune disorder that causes the inflammation and degeneration of the synovial tissue, specific cells and tissue which form the lining of the joints within the human body. Rheumatoid arthritis may and generally does affect every joint in the body, especially as people get older. RA commonly develops in the joints of the hands and feet, severely restricting an individual’s ability to move, however, those with significant disease in the spine are at risk of damage like paraplegia. Rheumatoid arthritis of the spine is frequent in three areas, causing different clinical problems.

The first is basilar invagination, also referred to as cranial settling or superior migration of the odontoid, a health issue where degeneration from rheumatoid arthritis at the base of the skull causes the it to “settle” into the spinal column, causing the compression or impingement of the spinal cord between the skull and the 1st cervical nerves. The second health issue, and also the most frequent, is atlanto-axial instability. A synovitis and erosion of the ligaments and joints connecting the 1st (atlas) and the 2nd (axis) cervical vertebrae causes instability of the joint, which may ultimately result in dislocation and spinal cord compression. In addition, a pannus, or localized mass/swelling of rheumatoid synovial tissue, can also form in this region, causing further spinal cord compression. The third health issues is a subaxial subluxation which causes the degeneration of the cervical vertebrae (C3-C7) and often results in other problems like spinal stenosis.

Imaging studies are crucial to properly diagnose patients with rheumatoid arthritis of the cervical spine. X-rays will demonstrate the alignment of the spine, and if there is obvious cranial settling or instability. It can also be difficult to demonstrate the anatomy at the bottom of the skull, therefore, computed tomography scanning, or CT scan, with an injection of dye within the thecal sac is arranged. Magnetic resonance imaging, or MRI, is beneficial to assess the severity of nerve compression or spinal cord injury, and allows visualization of structures, including the nerves, muscles, and soft tissues. Flexion/extension x-rays of the cervical spine are usually obtained to evaluate for signs of ligamentous instability. These imaging studies entails a plain lateral x-ray being taken with the patient bending forward and the other lateral x-ray being taken with the individual extending the neck backwards.�The scope of our information is limited to chiropractic, spinal injuries, and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

Curated by Dr. Alex Jimenez

Green Call Now Button H .png

Additional Topics: Neck Pain and Auto Injury

Whiplash is one of the most common causes of neck pain after an automobile accident. A whiplash-associated disorder occurs when a person’s head and neck moves abruptly back-and-forth, in any direction, due to the force of an impact. Although whiplash most commonly occurs following a rear-end car crash, it can also result from sports injuries. During an auto accident, the sudden motion of the human body can cause the muscles, ligaments, and other soft tissues of the neck to extend beyond their natural range of motion, causing damage or injury to the complex structures surrounding the cervical spine. While whiplash-associated disorders are considered to be relatively mild health issues, these can cause long-term pain and discomfort if left untreated. Diagnosis is essential.

blog picture of cartoon paper boy

EXTRA EXTRA | IMPORTANT TOPIC: Neck Pain Chiropractic Treatment

Cervical Spine Radiographs in the Trauma Patient

Cervical Spine Radiographs in the Trauma Patient

While computed tomography scanning, or CT scans, of the cervical spine are frequently utilized to help diagnose neck injuries, simple radiographs are still commonly performed for patients who have experienced minor cervical spine injuries with moderate neck pain, such as those who have suffered a slip-and-fall accident. Imaging diagnostic assessments may reveal underlying injuries and/or aggravated conditions to be more severe than the nature of the trauma. The purpose of the article is to demonstrate the significance of cervical spine radiographs in the trauma patient.�

Abstract

Significant cervical spine injury is very unlikely in a case of trauma if the patient has normal mental status (including no drug or alcohol use) and no neck pain, no tenderness on neck palpation, no neurologic signs or symptoms referable to the neck (such as numbness or weakness in the extremities), no other distracting injury and no history of loss of consciousness. Views required to radiographically exclude a cervical spine fracture include a posteroanterior view, a lateral view and an odontoid view. The lateral view must include all seven cervical vertebrae as well as the C7-T1 interspace, allowing visualization of the alignment of C7 and T1. The most common reason for a missed cervical spine injury is a cervical spine radiographic series that is technically inadequate. The �SCIWORA� syndrome (spinal cord injury without radiographic abnormality) is common in children. Once an injury to the spinal cord is diagnosed, methylprednisolone should be administered as soon as possible in an attempt to limit neurologic injury.

Dr-Jimenez_White-Coat_01.png

Radiographs continue to be used as a first-line imaging diagnostic assessment modality in the evaluation of patients with suspected cervical spine injuries. The aim of cervical spine radiographs is to confirm the presence of a health issue in the complex structures of the neck and define its extent, particularly with respect to instability. Multiple views may generally be necessary to provide optimal visualization.

Dr. Alex Jimenez D.C., C.C.S.T.

Introduction

Although cervical spine radiographs are almost routine in many emergency departments, not all trauma patients with a significant injury must have radiographs, even if they arrive at the emergency department on a backboard and wearing a cervical collar. This article reviews the proper use of cervical spine radiographs in the trauma patient.

Low-risk criteria have been defined that can be used to exclude cervical spine fractures, based on the patient’s history and physical examination.1�6 Patients who meet these criteria (Table 1) do not require radiographs to rule out cervical fractures. However, the criteria apply only to adults and to patients without mental status changes, including drug or alcohol intoxication. Although studies suggest that these criteria may also be used in the management of verbal children,7�9 caution is in order, since the study series are small, and the ability of children to complain about pain or sensory changes is variable. An 18-year-old patient can give a more reliable history than a five-year-old child.

Some concern has been expressed about case reports suggesting that �occult� cervical spine fractures will be missed if asymptomatic trauma patients do not undergo radiography of the cervical spine.10 On review, however, most of the reported cases did not meet the low-risk criteria in Table 1. Attention to these criteria can substantially reduce the use of cervical spine radiographs.

Cervical Spine Series and Computed Tomography

Once the decision is made to proceed with a radiographic evaluation, the proper views must be obtained. The single portable cross-table lateral radiograph, which is sometimes obtained in the trauma room, should be abandoned. This view is insufficient to exclude a cervical spine fracture and frequently must be repeated in the radiographic department.11,12 The patient’s neck should remain immobilized until a full cervical spine series can be obtained in the radiographic department. Initial films may be taken through the cervical collar, which is generally radiolucent. An adequate cervical spine series includes three views: a true lateral view, which must include all seven cervical vertebrae as well as the C7-T1 junction, an anteroposterior view and an open-mouth odontoid view.13

If no arm injury is present, traction on the arms may facilitate visualization of all seven cervical vertebrae on the lateral film. If all seven vertebrae and the C7-T1 junction are not visible, a swimmer’s view, taken with one arm extended over the head, may allow adequate visualization of the cervical spine. Any film series that does not include these three views and that does not visualize all seven cervical vertebrae and the junction of C7-T1 is inadequate. The patient should be maintained in cervical immobilization, and plain films should be repeated or computed tomographic (CT) scans obtained until all vertebrae are clearly visible. The importance of obtaining all of these views and visualizing all of the vertebrae cannot be overemphasized. While some missed cervical fractures, subluxations and dislocations are the result of film misinterpretation, the most frequent cause of overlooked injury is an inadequate film series.14,15

In addition to the views listed above, some authors suggest adding two lateral oblique views.16,17 Others would obtain these views only if there is a question of a fracture on the other three films or if the films are inadequate because the cervicothoracic junction is not visualized.18 The decision to take oblique views is best made by the clinician and the radiologist who will be reviewing the films.

Besides identifying fractures, plain radiographs can also be useful in identifying ligamentous injuries. These injuries frequently present as a malalignment of the cervical vertebrae on lateral views. Unfortunately, not all ligamentous injuries are obvious. If there is a question of ligamentous injury (focal neck pain and minimal malalignment of the lateral cervical x-ray [meeting the criteria in Table 2]) and the cervical films show no evidence of instability or fracture, flexion-extension views should be obtained.17,19 These radiographs should only be obtained in conscious patients who are able to cooperate. Only active motion should be allowed, with the patient limiting the motion of the neck based on the occurrence of pain. Under no circumstance should cervical spine flexion and extension be forced, since force may result in cord injury.

Although they may be considered adequate to rule out a fracture, cervical spine radiographs have limitations. Up to 20 percent11,20,21 of fractures are missed on plain radiographs. If there is any question of an abnormality on the plain radiograph or if the patient has neck pain that seems to be disproportionate to the findings on plain films, a CT scan of the area in question should be obtained. The CT is excellent for identifying fractures, but its ability to show ligamentous injuries is limited.22 Occasionally, plain film tomography may be in order if there is a concern about a type II dens fracture (Figure 1).

While some studies have used magnetic resonance imaging (MRI) as an adjunct to plain films and CT scanning,23,24 the lack of wide availability and the relatively prolonged time required for MRI scanning limits its usefulness in the acute setting. Another constraint is that resuscitation equipment with metal parts may not be able to function properly within the magnetic field generated by the MRI.

Cervical Spine Radiography

Figure 2 summarizes the approach to reading cervical spine radiographs.

Lateral View

Alignment of the vertebrae on the lateral film is the first aspect to note (Figure 3). The anterior margin of the vertebral bodies, the posterior margin of the vertebral bodies, the spinolaminar line and the tips of the spinous processes (C2-C7) should all be aligned. Any malalignment (Figures 4 and 5) should be considered evidence of ligamentous injury or occult fracture, and cervical spine immobilization should be maintained until a definitive diagnosis is made.

Confusion can sometimes result from pseudosubluxation, a physiologic misalignment that is due to ligamentous laxity, which can occur at the C2-C3 level and, less commonly, at the C3-C4 level. While pseudosubluxation usually occurs in children, it also may occur in adults. If the degree of subluxation is within the normal limits listed in Table 2 and the neck is not tender at that level, flexion-extension views may clarify the situation. Pseudosubluxation should disappear with an extension view. However, flexion-extension views should not be obtained until the entire cervical spine is otherwise cleared radiographically.

After ensuring that the alignment is correct, the spinous processes are examined to be sure that there is no widening of the space between them. If widening is present, a ligamentous injury or fracture should be considered. In addition, if angulation is more than 11 degrees at any level of the cervical spine, a ligamentous injury or fracture should be assumed. The spinal canal (Figure 2) should be more than 13 mm wide on the lateral view. Anything less than this suggests that spinal cord compromise may be impending.

Next, the predental space�the space between the odontoid process and the anterior portion of the ring of C1 (Figure 2)�is examined. This space should be less than 3 mm in adults and less than 4 mm in children (Table 2). An increase in this space is presumptive evidence of a fracture of C1 or of the odontoid process, although it may also represent ligamentous injury at this level. If a fracture is not found on plain radiographs, a CT scan should be obtained for further investigation. The bony structures of the neck should be examined, with particular attention to the vertebral bodies and spinous processes.

The retropharyngeal space (Figure 2) is now examined. The classic advice is that an enlarged retropharyngeal space (Table 2) indicates a spinous fracture. However, the normal and abnormal ranges overlap significantly.25 Retropharyngeal soft tissue swelling (more than 6 mm at C2, more than 22 mm at C6) is highly specific for a fracture but is not very sensitive.26 Soft tissue swelling in symptomatic patients should be considered an indication for further radiographic evaluation. Finally, the craniocervical relationship is checked.

Odontoid View

The dens is next examined for fractures. Artifacts may give the appearance of a fracture (either longitudinal or horizontal) through the dens. These artifacts are often radiographic lines caused by the teeth overlying the dens. However, fractures of the dens are unlikely to be longitudinally oriented. If there is any question of a fracture, the view should be repeated to try to get the teeth out of the field. If it is not possible to exclude a fracture of the dens, thin-section CT scans or plain film tomography is indicated.

Next, the lateral aspects of C1 are examined. These aspects should be symmetric, with an equal amount of space on each side of the dens. Any asymmetry is suggestive of a fracture. Finally, the lateral aspects of C1 should line up with the lateral aspects of C2. If they do not line up, there may be a fracture of C1. Figure 6 demonstrates asymmetry in the space between the dens and C1, as well as displacement of the lateral aspects of C1 laterally.

Anteroposterior View

The height of the cervical spines should be approximately equal on the anteroposterior view. The spinous processes should be in midline and in good alignment. If one of the spinous processes is off to one side, a facet dislocation may be present.

Common Cervical Abnormalities

The most common types of cervical abnormalities and their radiographic findings are listed in Table 3. Except for the clay shoveler’s fracture, they should be assumed to be unstable and warrant continued immobilization until definitive therapy can be arranged. Any patient found to have one spinal fracture should have an entire spine series, including views of the cervical spine, the thoracic spine and the lumbosacral spine. The incidence of noncontiguous spine fractures ranges up to 17 percent.27,28 Figures 7 through 9 demonstrate aspects of common cervical spine fractures.

Initial Treatment of Cervical Spine and Cord

If a cervical fracture or dislocation is found, orthopedic or neurosurgical consultation should be obtained immediately. Any patient with a spinal cord injury should begin therapy with methylprednisolone within the first eight hours after the injury, with continued administration for up to 24 hours. Patients should receive methylprednisolone in a dosage of 30 mg per kg given intravenously over one hour. Over the next 23 hours, intravenous methylprednisolone in a dosage of 5.4 mg per kg per hour should be administered. This therapy has been shown to improve outcomes and minimize cord injury,29 although it is not without its problems. The incidence of pneumonia is increased in patients treated with high dosages of methylprednisolone.30

�Sciwora� Syndrome: Unique in Children

A special situation involving children deserves mention. In children, it is not uncommon for a spinal cord injury to show no radiographic abnormalities. This situation has been named �SCIWORA� (spinal cord injury without radiographic abnormality) syndrome. SCIWORA syndrome occurs when the elastic ligaments of a child’s neck stretch during trauma. As a result, the spinal cord also undergoes stretching, leading to neuronal injury or, in some cases, complete severing of the cord.31 This situation may account for up to 70 percent of spinal cord injuries in children and is most common in children younger than eight years. Paralysis may be present on the patient’s arrival in the emergency department. However, up to 30 percent of patients have a delayed onset of neurologic abnormalities, which may not occur until up to four or five days after the injury. In patients with delayed symptoms, many have neurologic symptoms at the time of the injury, such as paresthesias or weakness, that have subsequently resolved.32

It is important to inform the parents of young patients with neck trauma about this possibility so that they will be alert for any developing symptoms or signs. Fortunately, most children with SCIWORA syndrome have a complete recovery, especially if the onset is delayed.33 It is possible to evaluate these injuries with MRI, which will show the abnormality and help determine the prognosis: a patient with complete cord transection is unlikely to recover.3

The treatment of SCIWORA syndrome has not been well studied. However, the general consensus is that steroid therapy should be used.34 In addition, any child who has sustained a significant degree of trauma but has recovered completely should be restricted from physical activities for several weeks.34

Dr Jimenez White Coat

Cervical spine radiographs include three standard views, such as the coned odontoid peg view, the anteroposterior view of the entire cervical spine, and the lateral view of the entire cervical spine. Most qualified and experienced healthcare professionals, including chiropractors, offer additional views to visualize the cervicothoracic junction as well as to evaluate the proper alignment of the spine in all patients.�

Dr. Alex Jimenez D.C., C.C.S.T.

About the Authors

MARK A. GRABER, M.D., is associate professor of clinical family medicine and surgery (emergency medicine) at the University of Iowa Hospitals and Clinics, Iowa City. He received his medical degree from Eastern Virginia Medical School, Norfolk, and served a residency in family medicine at the University of Iowa College of Medicine, Iowa City.

MARY KATHOL, M.D., is associate professor of radiology at the University of Iowa Hospitals and Clinics. She is also head of the musculoskeletal radiology section. She received her medical degree from the University of Kansas School of Medicine, Kansas City, Kan., and served a residency in radiology at the University of Iowa College of Medicine.

Address correspondence to Mark A. Graber, M.D., Department of Family Medicine, Steindler Bldg., University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242. Reprints are not available from the authors.

In conclusion,�it is essential to evaluate all views of the cervical spine through imaging diagnostic assessments. While cervical spine radiographs can reveal injuries and conditions, not all neck injuries are detected through radiography. Computed tomography, or CT, scans of the cervical spine are highly accurate in the diagnosis of neck fractures which can help with treatment. The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

Curated by Dr. Alex Jimenez

Green Call Now Button H .png

Additional Topics: Acute Back Pain

Back pain�is one of the most prevalent causes of disability and missed days at work worldwide. Back pain attributes to the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments, and muscles, among other soft tissues. Because of this, injuries and/or aggravated conditions, such as�herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief.

 

blog picture of cartoon paper boy

EXTRA EXTRA | IMPORTANT TOPIC: Chiropractic Neck Pain Treatment

Blank
References

1.�Kreipke DL, Gillespie KR, McCarthy MC, Mail JT, Lappas JC, Broadie TA. Reliability of indications for cervical spine films in trauma patients.�J Trauma. 1989;29:1438�9.

2.�Ringenberg BJ, Fisher AK, Urdaneta LF, Midthun MA. Rational ordering of cervical spine radiographs following trauma.�Ann Emerg Med. 1988;17:792�6.

3.�Bachulis BL, Long WB, Hynes GD, Johnson MC. Clinical indications for cervical spine radiographs in the traumatized patient.�Am J Surg. 1987;153:473�8.

4.�Hoffman JR, Schriger DL, Mower W, Luo JS, Zucker M. Low-risk criteria for cervical-spine radiography in blunt trauma: a prospective study.�Ann Emerg Med. 1992;21:1454�60.

5.�Saddison D, Vanek VW, Racanelli JL. Clinical indications for cervical spine radiographs in alert trauma patients.�Am Surg. 1991;57:366�9.

6.�Kathol MH, El-Khoury GY. Diagnostic imaging of cervical spine injuries.�Seminars in Spine Surgery. 1996;8(1):2�18.

7.�Lally KP, Senac M, Hardin WD Jr, Haftel A, Kaehler M, Mahour GH. Utility of the cervical spine radiograph in pediatric trauma.�Am J Surg. 1989;158:540�1.

8.�Rachesky I, Boyce WT, Duncan B, Bjelland J, Sibley B. Clinical prediction of cervical spine injuries in children. Radiographic abnormalities.�Am J Dis Child. 1987;141:199�201.

9.�Laham JL, Cotcamp DH, Gibbons PA, Kahana MD, Crone KR. Isolated head injuries versus multiple trauma in pediatric patients: do the same indications for cervical spine evaluation apply?�Pediatr Neurosurg. 1994;21:221�6.

10.�McKee TR, Tinkoff G, Rhodes M. Asymptomatic occult cervical spine fracture: case report and review of the literature.�J Trauma. 1990;30:623�6.

11.�Woodring JH, Lee C. Limitations of cervical radiography in the evaluation of acute cervical trauma.�J Trauma. 1993;34:32�9.

12.�Spain DA, Trooskin SZ, Flancbaum L, Boyarsky AH, Nosher JL. The adequacy and cost effectiveness of routine resuscitation-area cervical-spine radiographs.�Ann Emerg Med. 1990;19:276�8.

13.�Tintinalli JE, Ruiz E, Krome RL, ed. Emergency medicine: a comprehensive study guide. 4th ed. New York: McGraw-Hill, 1996.

14.�Gerrelts BD, Petersen EU, Mabry J, Petersen SR. Delayed diagnosis of cervical spine injuries.�J Trauma. 1991;31:1622�6.

15.�Davis JW, Phreaner DL, Hoyt DB, Mackersie RC. The etiology of missed cervical spine injuries.�J Trauma. 1993;34:342�6.

16.�Apple JS, Kirks DR, Merten DF, Martinez S. Cervical spine fractures and dislocations in children.�Pediatr Radiol. 1987;17:45�9.

17.�Turetsky DB, Vines FS, Clayman DA, Northup HM. Technique and use of supine oblique views in acute cervical spine trauma.�Ann Emerg Med. 1993;22:685�9.

18.�Freemyer B, Knopp R, Piche J, Wales L, Williams J. Comparison of five-view and three-view cervical spine series in the evaluation of patients with cervical trauma.�Ann Emerg Med. 1989;18:818�21.

19.�Lewis LM, Docherty M, Ruoff BE, Fortney JP, Keltner RA Jr, Britton P. Flexion-extension views in the evaluation of cervical-spine injuries.�Ann Emerg Med. 1991;20:117�21.

20.�Mace SE. Emergency evaluation of cervical spine injuries: CT versus plain radiographs.�Ann Emerg Med. 1985;14:973�5.

21.�Kirshenbaum KJ, Nadimpalli SR, Fantus R, Cavallino RP. Unsuspected upper cervical spine fractures associated with significant head trauma: role of CT.�J Emerg Med. 1990;8:183�98.

22.�Woodring JH, Lee C. The role and limitations of computed tomographic scanning in the evaluation of cervical trauma.�J Trauma. 1992;33:698�708.

23.�Schaefer DM, Flanders A, Northrup BE, Doan HT, Osterholm JL. Magnetic resonance imaging of acute cervical spine trauma. Correlation with severity of neurologic injury.�Spine. 1989;14:1090�5.

24.�Levitt MA, Flanders AE. Diagnostic capabilities of magnetic resonance imaging and computed tomography in acute cervical spinal column injury.�Am J Emerg Med. 1991;9:131�5.

25.�Templeton PA, Young JW, Mirvis SE, Buddemeyer EU. The value of retropharyngeal soft tissue measurements in trauma of the adult cervical spine. Cervical spine soft tissue measurements.�Skeletal Radiol. 1987;16:98�104.

26.�DeBehnke DJ, Havel CJ. Utility of prevertebral soft tissue measurements in identifying patients with cervical spine fractures.�Ann Emerg Med. 1994;24:1119�24.

27.�Powell JN, Waddell JP, Tucker WS, Transfeldt EE. Multiple-level noncontiguous spinal fractures.�J Trauma. 1989;29:1146�50.

28.�Keenen TL, Antony J, Benson DR. Non-contiguous spinal fractures.�J Trauma. 1990;30:489�91.

29.�Bracken MB, Shepard MJ, Collins WF Jr, Holford TR, Baskin DS, Eisenberg HM, et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study.�J Neurosurg. 1992;76:23�31.

30.�Galandiuk S, Raque G, Appel S, Polk HC Jr. The two-edged sword of large-dose steroids for spinal cord trauma.�Ann Surg. 1993;218:419�25.

31.�Grabb PA, Pang D. Magnetic resonance imaging in the evaluation of spinal cord injury without radiographic abnormality in children.�Neurosurgery. 1994;35:406�14.

32.�Pang D, Pollack IF. Spinal cord injury without radiographic abnormality in children�the SCIWORA syndrome.�J Trauma. 1989;29:654�64.

33.�Hadley MN, Zabramski JM, Browner CM, Rekate H, Sonntag VK. Pediatric spinal trauma. Review of 122 cases of spinal cord and vertebral column injuries.�J Neurosurg. 1988;68:18�24.

34.�Kriss VM, Kriss TC. SCIWORA (spinal cord injury without radiographic abnormality) in infants and children.�Clin Pediatr. 1996;35:119�24.

The editors of AFP welcome the submission of manuscripts for the Radiologic Decision-Making series. Send submissions to Jay Siwek, M.D., following the guidelines provided in �Information for Authors.�

Coordinators of this series are Thomas J. Barloon, M.D., associate professor of radiology and George R. Bergus, M.D., assistant professor of family practice, both at the University of Iowa College of Medicine, Iowa City.

Close Accordion
Neck Pain Treatment Management

Neck Pain Treatment Management

I do recommend that you seek a specialist, in this case, it would be Dr. Alex Jimenez. His techniques to work on the cervical area or your neck are just amazing. He has been able to treat migraines, shoulder pain, when people didn’t know it was just a simple cause…spraining their neck.

Sandra Rubio

Have you ever woken up with a stiff neck, unable to turn it to one side or another? Does your child appear to have an abnormal head or neck posture? A variety of factors can cause injuries and/or conditions which may result in neck pain, such as�torticollis, a painful health issue that can result in the shortening of the complex structures of the neck.

The neck, known as the cervical spine, consists of vertebrae that start in the upper region of the spine and finish at the base of the skull. Each bony vertebrae connects with ligaments, comparable to thick rubber bands, muscles and other soft tissues like tendons, which provide stability to the backbone. These structures ultimately permit for movement and support.

The neck supports the weight of the head and provides significant motion. Because it is less protected than the rest of the spine, the neck may be vulnerable�to injury or conditions. For many individuals, neck pain is a temporary condition that vanishes with time. However, others need diagnosis and treatment to relieve their symptoms. Below, we will discuss some of the most common causes of neck pain, including torticollis.

Common Causes of Neck Pain

Neck pain may result from abnormalities in the soft tissues, such as the muscles, ligaments, tendons and even the nerves, as well as in the bones and intervertebral discs of the spine. The most frequent causes of neck pain are soft-tissue abnormalities due to trauma, known as a sprain or strain, or due to prolonged wear and tear or degeneration. In rare cases, infection or tumors can cause neck pain. In certain people, neck problems may be the origin of pain at the back, shoulders, or upper extremities.

Cervical Disk Degeneration (Spondylosis)

The intervertebral discs act as shock absorbers between the bones in the neck. In cervical disk degeneration, which generally occurs in people over the age of 40, the gel-like center of the disc degenerates and the distance between the vertebrae narrows. When�the disc space becomes narrower, stress accumulates in the joints of the spine, resulting in degenerative diseases, such as cervical disk degeneration or spondylosis. Once the outer layer of the disc weakens, stress may also protrude and place pressure on the spinal cord or nerve roots. This is known as a herniated disc.

Neck Injury

Since the primary function of the neck is to support the head and provide movement, it’s very flexible, however, because of this, it’s incredibly vulnerable to�injury. Automobile accidents, slip-and-fall incidents, and sports injuries may commonly cause neck pain. The regular use of safety belts in motor vehicles can help prevent neck injury. A “rear end” car crash may result in whiplash, a common neck injury characterized by�a sudden, back-and-forth jerk of the neck and head from�a sheer force. Most neck injuries involve the soft tissues. Severe neck injuries with dislocation or a fracture of the neck may damage the spinal cord and cause paralysis.

Torticollis

Torticollis is a medical health issue characterized by a “twisted neck”. There are two kinds of the condition, congenital, meaning present at birth, and acquired, involving damage or trauma from an injury or condition. For many infants, torticollis develops in the womb several weeks before their birth at which neck and the head are positioned in an angle.

Children have also been born with the health issue due�to difficulties during delivery, diminished blood supply to the neck muscles, muscular fibrosis or congenital spine anomalies. According to research studies, torticollis sometimes develops in children that spend too much time sitting in strollers, swings, bouncers, car seats, laying on their back, or putting them on mats if a child is born with abnormal head and neck positioning.

While nearly all people who experience torticollis are babies or children, anyone can experience neck pain and restricted range of motion connected with that. A musculoskeletal or nervous system injury can make it difficult to position your head or to straighten your neck. This kind of damage may be associated with prolonged ailments, car accidents or other injuries.

When to Seek Treatment for Neck Pain?

If severe neck pain occurs after a neck injury due to an automobile accident, diving injury,�or slip-and-fall incident, a trained professional, such as a paramedic, should trap the patient to prevent the risk of further harm and possible paralysis. Immediate medical assistance should be considered. Healthcare professionals, like chiropractors, can also treat neck injuries.

Immediate medical care must also be sought when an injury causes pain in the neck which radiates down the arms and legs. Radiating pain or tingling sensations in your arms and legs resulting in weakness and numbness without especially neck pain should also be assessed as soon as possible. If there is no injury, you should seek medical attention when neck pain is:

  • Constant and persistent
  • Severe
  • Accompanied by pain which radiates down the arms or legs
  • Accompanied by headaches, tingling, weakness or numbness

Many patients seek treatment for neck pain with healthcare professionals that are specially trained to diagnose, treat, and prevent problems between the muscles, bones, joints, ligaments, tendons, and nerves. Many treat a wide variety of injuries and conditions. Chiropractic care is a popular, alternative treatment option which can help treat neck pain.

Torticollis Treatment

For most adults, torticollis will solve itself on its own in a couple of days. However, it is essential to seek treatment on behalf of babies or children who are currently experiencing this kind of neck or head positioning. Infants may suffer permanent disability because of shortening neck muscles if left without treatment for torticollis.

One of the first treatments doctors advocate stretching exercises designed to lengthen and strengthen the neck muscles holding the head in the position. About 80 percent of all children respond well to this kind of treatment program and don’t experience any effects. Once completed, the infant might require�other treatment modalities to prevent the problem from recurring and to strengthen their neck muscles.

Dr-Jimenez_White-Coat_01.png

Neck pain is one of the most common health issues treated with chiropractic care. According to the National Institute of Health Statistics, neck pain is the second most prevalent form of pain in the United States, following back pain associated with migraine and headaches. Chiropractic care can help treat a variety of injuries and conditions which may be causing neck pain, including torticollis.

Dr. Alex Jimenez D.C., C.C.S.T.

Chiropractic Care for Torticollis

Chiropractic care is a well-known, alternative treatment approach designed to increase range of motion, decrease muscle stiffness and improve fine and gross motor abilities needed for neck and head placement. A chiropractor will first conduct an assessment to test the patient’s range of motion and evaluate any other problems associated with neck pain.

In the case of torticollis, by way of instance, complications may include plagiocephaly, abnormal head shape, or a misalignment of the hip joint, known as hip dysplasia. When the evaluation is done, the healthcare professional will discuss a potential treatment plan and their findings.

Chiropractic care utilizes spinal adjustments and manual manipulations as well as exercises to increase range of motion and strengthen the patient’s neck muscles. These can consist of passive stretches designed to strengthen muscles which are used to maintain the�posture of the neck. In infants who do not appear to be strong enough to hold their head, stretching exercises may correct the problem. Early intervention is recommended.

If you or your child are experiencing debilitating neck pain or incorrect positioning of the head and neck, contact a healthcare professional immediately.�The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

Curated by Dr. Alex Jimenez

Green Call Now Button H .png

Additional Topics: Acute Back Pain

Back pain�is one of the most prevalent causes of disability and missed days at work worldwide. Back pain attributes to the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments, and muscles, among other soft tissues. Because of this, injuries and/or aggravated conditions, such as�herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief.

 

blog picture of cartoon paper boy

EXTRA IMPORTANT TOPIC: Neck Pain Chiropractic Treatment

Understanding Neck Pain and Headaches

Understanding Neck Pain and Headaches

My treatment with Dr. Alex Jimenez has been helping me by simply making me less tired. I’m not experiencing as many headaches. The headaches are going down dramatically and my back feels much better. I would highly recommend Dr. Alex Jimenez. He’s very friendly, his staff is very friendly and everybody goes well beyond what they can do to help you. –Shane Scott

 

Neck pain can develop due to a variety of reasons, and it can vary tremendously from mild to severe. Most of the population has suffered from this well-known nagging health issue; however, did you know that headaches can sometimes be caused by neck pain? While these headaches are commonly referred to as cervicogenic headaches, other types, such as cluster headaches and migraines, have also been determined to be caused by neck pain.

 

Therefore, it’s fundamental to seek a proper diagnosis if you’ve experienced headaches or neck pain to determine the root cause of your symptoms and decide which treatment option will be best for your specific health issue. Healthcare professionals will assess your upper back, or the cervical spine, including your neck, the base of the skull and cranium, and all the surrounding muscles and nerves to find the source of your symptoms. Before seeking help from a doctor, it’s essential to understand how neck pain can cause headaches. Below, we will discuss the anatomy of the cervical spine or neck and demonstrate how neck pain is connected to headaches.

 

How Neck Pain Causes Headaches

 

The muscles between the shoulder blades, the upper portion of the shoulders, and those surrounding the neck, or cervical spine, may all cause neck pain if they become too tight or stiff. This can generally occur due to trauma or damage from an injury, as well as in consequence of bad posture or poor sitting, lifting, or work habits. The tight muscles will make your neck joints feel stiff or compressed, and it can even radiate pain toward your shoulders. Over time, the balance of the neck muscles changes, and those specific muscles that support the neck become weak. They can ultimately begin to make the head feel heavy, increasing the risk of experiencing neck pain as well as headaches.

 

The trigeminal nerve is the primary sensory nerve that carries messages from the face to your brain. Furthermore, the roots of the upper three cervical spinal nerves, found at C1, C2, and C3, share a pain nucleus, which routes pain signals to the brain and the trigeminal nerve. Because of the shared nerve tracts, pain is misunderstood and thus “felt” by the brain as being located in the head. Fortunately, many healthcare professionals are experienced in assessing and correcting muscular imbalances, which may lead to neck pain and headaches. Moreover, they can help to relieve muscle tension, enhance muscle length and joint mobility, and retrain correct posture.

 

What Causes Neck Pain and Headaches?

 

Cervicogenic headaches, otherwise known as “neck headaches,” are caused by painful neck joints, tendons, or other structures surrounding the neck, or cervical spine, which may refer to pain to the bottom of the skull, to your face or head. Researchers believe that neck headaches, or cervicogenic headaches, account for approximately 20 percent of all headaches diagnosed clinically. Cervicogenic headaches and neck pain are closely associated, although other types of headaches can also cause neck pain.

 

This type of head pain generally starts because of an injury, stiffness, or lack of proper functioning of the joints found at the top of your neck, as well as tight neck muscles or swollen nerves, which could trigger pain signals that the brain then interprets as neck pain. The usual cause of neck headaches is dysfunction in the upper three neck joints, or 0/C1, C1/C2, C2/C3, including added tension in the sub-occipital muscles. Other causes for cervicogenic headaches and neck pain can include:

 

  • Cranial tension or trauma
  • TMJ (JAW) tension or altered bite
  • Stress
  • Migraine headaches
  • Eye strain

 

The Link Between Migraines and Neck Pain

Neck pain and migraines also have an intricate connection with each other. While in some cases, severe trauma, damage, or injury to the neck can lead to severe headaches like migraines; neck pain might result from a migraine headache in different situations. However, it’s never a good idea to assume that one results from the other. Seeking treatment for neck pain when the reason for your concern is a migraine often will not lead to effective pain management or pain relief. The best thing you can do if you’re experiencing neck pain and headaches is to seek immediate medical attention from specialized healthcare professional to determine your pain’s cause and the symptoms’ root cause.

 

Unfortunately, neck pain, as well as a variety of headaches, are commonly misdiagnosed or even sometimes go undiagnosed for an extended period. One of the top reasons neck pain may be so challenging to treat primarily because it takes a long time for people to take this health issue seriously and seek a proper diagnosis. When a patient seeks a diagnosis for neck pain, it may already have been a persistent problem. Waiting an extended amount of time to take care of your neck pain, especially after an injury, may lead to acute pain and even make the symptoms more difficult to control, turning them into chronic pain. Also, the most frequent reasons people seek treatment for neck pain, and headaches include the following:

 

  • Chronic migraines and headaches
  • Restricted neck function, including difficulties moving the head
  • Soreness in the neck, upper back, and shoulders
  • Stabbing pain and other symptoms, particularly in the neck
  • Pain radiating from the neck and shoulders to the fingertips

 

Aside from the symptoms mentioned above, individuals with neck pain and headaches can also experience additional symptoms, including nausea, diminished eyesight, difficulty concentrating, severe fatigue, and even difficulty sleeping. While there are circumstances in which the cause of your headaches or neck pain may be apparent, such as being in a recent automobile accident or suffering from sport-related trauma, damage, or injuries, in several instances, the cause may not be quite as obvious.

 

Because neck pain and headaches can also develop as a result of bad posture or even nutritional problems, it’s fundamental to find the origin of the pain to increase the success of treatment, in addition to enabling you to prevent the health issue from happening again in the future. It’s common for healthcare professionals to devote their time working with you to ascertain what could have caused the pain in the first place.

 

A Health Issue You Can’t Ignore

 

Neck pain is typically not a problem that should be ignored. You may think that you’re only experiencing minor neck discomfort and that it’s irrelevant to any other health issues you may be having. Still, you can’t know for sure more frequently than not until you receive a proper diagnosis for your symptoms. Patients seeking immediate medical attention and treatment for their neck-centered problems are surprised to learn that some of the other health issues they may be experiencing may be correlated, such as neck pain and headaches. Thus, even if you think you can “live with” not being able to turn your neck completely, other health issues can develop, and these problems might be more challenging to deal with.

 

There are circumstances in which a pinched nerve in the neck is the main reason for chronic tension headaches, where a previous sports injury that was not adequately addressed before is now the cause of the individual’s limited neck mobility and in which a bruised vertebrae at the base of the neck induces throbbing sensations throughout the spine, which radiates through the shoulders into the arms, hands, and fingers. You might also blame your chronic migraines on a hectic schedule and stressful conditions. However, it might be a consequence of poor posture and the hours you spend hunched over a computer screen. Untreated neck pain might lead to problems you never expect, such as balance problems or trouble gripping objects. This is because all the neural roots located on the upper ligaments of the cervical spine or neck are connected to other parts of the human body, from your biceps to each of your tiny fingers.

 

Working with a healthcare professional to relieve the root cause of your neck pain and headaches may significantly enhance your quality of life. It may be able to eliminate other symptoms from turning into a significant problems. While another health issue or nutritional deficiency generally causes the most common causes of chronic migraines, you might also be amazed to learn how often the outcome may be resolved with concentrated exercises and stretches recommended by a healthcare professional, such as a chiropractor. Additionally, you may understand that the health issues you’ve been having often develop from compressed, pinched, irritated, or inflamed nerves in your upper cervical nerves.

El Paso Chiropractor Dr. Alex Jimenez

 

Dr. Alex Jimenez’s Insight

Although it may be difficult to distinguish the various types of headaches, neck pain is generally considered to be a common symptom associated with head pain. Cervicogenic headaches are very similar to migraines, however, the primary difference between these two types of head pain is that a migraine occurs in the brain while a cervicogenic headache occurs in the base of the skull or in the cervical spine, or neck. Furthermore, some headaches may be caused by stress, tiredness, eyestrain and/or trauma or injury along the complex structures of the cervical spine, or neck. If you are experiencing neck pain and headaches, it’s important to seek help from a healthcare professional in order to determine the true cause of your symptoms.

 

Treatment for Neck Pain and Headaches

 

Foremost, a healthcare professional must determine the cause of an individual’s symptoms through the use of appropriate diagnostic tools as well as to make sure they have the utmost success in relieving the headache and neck pain without prolonging the duration of the symptoms and extra cost of incorrect therapy. Once an individual’s source of neck pain and headaches has been diagnosed, the kind of treatment a patient receives should depend on the type of headache. As a rule of thumb, treatment starts once the diagnosis has been made. A healthcare professional will work with you to create a treatment plan appropriate for your specific health issues. You’ll be taken through procedures that help build flexibility and strength in your sessions.

 

Chiropractic care is a well-known alternative treatment option focusing on diagnosing, treating, and preventing various musculoskeletal and nervous system injuries and conditions. A chiropractic doctor or chiropractor can help treat neck pain and headache symptoms by carefully correcting any spinal misalignments, or subluxations, in the cervical spine or neck, through spinal adjustments and manual manipulations, among other therapeutic techniques. Chiropractors and physical therapists may also utilize a combination of gentle Muscle Energy Techniques, muscle building, joint slides, Cranio-sacral therapy, and specific posture and muscle re-education to lower the strain being placed on the structures surrounding the cervical spine. The staff will also help you understand how to better position yourself during your daily life to prevent relapses, like ergonomic and posture tips. Contact a healthcare professional for them to be able to assist you immediately.

 

In cases where alternative treatment options have been utilized without any results or sometimes used together with other complementary treatment approaches, pain drugs and medications may be contemplated, such as non-steroidal anti-inflammatory drugs (NSAIDs) and anti-seizure agents such as gabapentin, tricyclic anti-depressants, or migraine prescriptions. If pain medications prove ineffective, injections may be contemplated, including peripheral nerve blocks, atlantoaxial joint blocks administered at C1-C2, or aspect joint blocks administered in C2-C3. Surgical interventions may also be other treatment options. However, healthcare professionals suggest attempting all other treatment options before considering surgery. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please ask Dr. Jimenez or contact us at 915-850-0900.

 

Curated by Dr. Alex Jimenez

Green-Call-Now-Button-24H-150x150-2-3.png

Additional Topics: Back Pain

 

Back pain is one of the most prevalent causes of disability and missed days at work worldwide. Back pain has been attributed as the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once. The spine is a complex structure of bones, joints, ligaments, and muscles, among other soft tissues. Because of this, injuries and aggravated conditions, such as herniated discs, eventually lead to back pain symptoms. Sports or automobile accident injuries are often the most frequent cause of back pain; however, sometimes, the simplest movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through spinal adjustments and manual manipulations, ultimately improving pain relief.

 

 

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC: Chiropractic Neck Pain Treatment 

 

 

Active Release Technique (A.R.T.) for Chronic Neck Pain in El Paso, TX

Active Release Technique (A.R.T.) for Chronic Neck Pain in El Paso, TX

Active Release Technique (A.R.T) is a hands on soft tissue treatment for ligaments, tendons muscles and nerves. It is the leading soft tissue treatment utilized widely in the treatment of soft tissue injuries and conditions among professional athletes and the general population alike. In the instance of chronic neck pain, along with shoulder and subscapularis pain, ART involves guided pressure being applied to a shortened muscle in the top region of the neck or cervical spine. Most commonly, a healthcare professional will move the patient’s head in a direction that lengthens the muscle. During the motion the doctor maintains a strain on the muscle, as it slides out from beneath the doctor’s fingers.

 

The active release technique hurts a bit (many patients describe it as a”good hurt”), and it feels like a stretch that you need but can’t do yourself. When a muscle is tight the procedure operates by increasing the nervous system’s tolerance to extend the muscle. ART is utilized to take care of repetitive strain injuries, and it is often used in a variety of other medical practices. This is because it can offer quick results in treating ailments like: tennis elbow, frozen shoulder, shoulder rotator cuff injuries and plantar fasciitis. ART permits the physician to isolate treatment to each individual small muscle of the neck, and treat it through its full selection of movement. The neck muscles are layered, and also to isolate them during therapy demands careful attention.

 

Effects of the Active Release Technique on Pain and Range of Motion in Patients with Chronic Neck Pain

 

Abstract

 

  • Purpose: To compare the influences of the active release technique (ART) and joint mobilization (JM) on the visual analog scale (VAS) pain score, pressure pain threshold (PPT), and neck range of motion (ROM) of patients with chronic neck pain.
  • Subjects: Twenty-four individuals with chronic neck pain were randomly and equally assigned to 3 groups: an ART group, a joint mobilization (JM) group, and a control group. Before and after the intervention, the degree of pain, PPT, and ROM of the neck were measured using a VAS, algometer, and goniometer, respectively.
  • Results: The ART group and JM group demonstrated significant changes in VAS and ROM between pre and post-intervention, while no significant change was observed in the control group. Significant differences in the PPT of all muscles were found in the ART group, while significant differences in all muscles other than the trapezius were found in the JM group. No significant difference in PPT was observed in any muscle of the control group. The posthoc test indicated no statistically significant difference between the ART and JM group, but the differences of variation in VAS, PPT, and ROM were greater in the ART group than in the JM and control groups.
  • Conclusion: ART for the treatment of chronic neck pain may be beneficial for neck pain and movement.
  • Key words: Active release technique, Soft tissue, Chronic neck pain

 

Introduction

 

People have a 70% likelihood of developing neck pain during their lives; thus, neck pain is an important issue affecting economic productivity in modern society[1]. Neck pain is a work-related musculoskeletal disorder that can occur when a person works for a long time or at a high intensity. An increasing number of patients also visit hospitals complaining of pain occurring not only in the neck but also in the upper extremities and head as a result of sustained excessive tension[2]. Although the issue of neck pain is becoming increasingly common and important, research into optimal treatmentslacking[3].

 

A common cause of neck pain is mechanical dysfunction, which causes abnormal joint movement, as abnormal cervical joint mobility inside the joint capsule can limit neck movement[4, 5]. Additionally, unbalanced soft tissue around the head and neck structure can place limits on the range of motion (ROM) of the head and cause neck pain[6]. Therefore, many treatments are performed with the aim of restoring soft tissue function or mobility to the joints in patients with chronic neck pain. Joint mobilization (JM) and joint manipulation are the most widely used methods to increase mobility inside the joint capsule. These methods have been reported to increase the ROM and relieve pain[7, 8]. However, JM and joint manipulation performed at the end range of the ROM directly on the joints of the cervical vertebrae can cause tension in the patient�s neck muscles, because the cervical vertebrae are the most sensitive part of the spine and this tension protects the nerves and blood vessels[9].

 

The active release technique (ART) is a manual therapy for the recovery of soft tissue function that involves the removal of scar tissue, which can cause pain, stiffness, muscle weakness, and abnormal sensations including mechanical dysfunction in the muscles, myofascia, and soft tissue[10]. The effectiveness of ART has been reported for carpal tunnel syndrome, Achilles tendonitis, and tennis elbow, all of which involve soft tissue near joints in the distal parts of the body[11]. ART is also effective at reducing pain and increasing ROM in patients with a partial tear of the supraspinatus tendon[12]. Most patients with chronic neck pain experience pain and movement limitation as a result of soft tissue impairment in the neck[13]. Accordingly, more research on ART for the treatment of the soft tissues of the neck is warranted. However, no previous studies have assessed how ART can improve ROM in patients with neck pain.

 

Therefore, the purpose of this study was to compare the influence of ART and JM on the visual analog scale (VAS) score, pressure pain threshold (PPT), and neck ROM of patients with chronic neck pain, with the aim of elucidating additional information on their effects and identifying more efficient treatments that can be used in clinical settings.

 

Subjects and Methods

 

The study subjects were 24 patients admitted to Hospital A in Gangnamgu who had a 3-month or longer history of neck pain and had mild disability based on the Neck Disability Index (NDI; 5�14 points). The sample size of this study was based on that of Hyun[14], while considering the subject dropout rate, and accounting for significance level (5%), power of the test (0.8), and the effect size (f=0.7). Patients with structural abnormalities involving bone fracture or nerves those who had undergone surgery for hernia or had high blood pressure, spondyloarthritis, lumbar spinal stenosis, or scoliosis were excluded from the study. The participating patients understood the study purpose and associated information and provided their written consent to participation. This study was conducted using a procedure ethically suitable for human research in accordance with the Declaration of Helsinki.

 

We used the VAS to evaluate the degree of neck pain. The VAS is a subjective scoring method for recording the degree of present pain from 0 (no pain) to 10 (the most severe pain ever experienced) on a 10-cm scale. The VAS is difficult to compare among patients because of the subjective nature of the pain, but its reproducibility has been recognized in individual patients (ICC=0.97)[15].

 

The PPT measurement was performed by one investigator using an algometer. The right and left upper trapezius and sternocleidomastoideus (SCM) were pressed at a constant speed. The subject was asked to respond immediately when the pressure changed to pain, and the mechanical pressure was recorded. The mean value of two measurements was used; increasing PPT values indicate a higher-pressure pain threshold. An algometer is particularly useful for measuring the trigger point in myofacial pain syndrome, because it can determine the precise location of the source pain and quantify the pressure sensitivity of muscles (ICC=0.78�0.93)[16, 17].

 

Passive ROM was measured by fixing the subject�s shoulder so that it was not affected by the other parts of the trunk. Then, neck flexion, extension, right side bending, left side bending, right rotation, and left rotation were measured. The range of the angle was measured with a therapist passively assessing the patient�s pain-free neck-joint ROM[18].

 

The 24 subjects with chronic neck pain included in the study were randomly assigned to one of three groups following an equivalent control group pre-test/post-test design. For 3 weeks, the ART and JM groups received treatment twice per week for 20 minutes. After all the interventions were completed, the VAS score, PPT, and ROM were measured again. In the ART group, ART was used to treat the muscles demonstrating scar tissue, among the muscles involved in neck movement. After shortening based on fiber texture in the longitudinal direction, soft tissue mobilization was performed with active or passive stretching to lengthen the tissue that had been shortened[12].

 

JM was performed using Kaltenborn�s techniques of traction and gliding. In order to relieve pain with physiological movements including flexion, extension, side bending, and rotation, traction at Grade I or II was performed for 10 seconds. Additionally, in order to recover hypomobility, traction and gliding were performed at level 3 and maintained for 7 seconds. Both treatments included 2�3 seconds of rest and were repeated 10 times[19]. Subjects in the control group did not receive any treatment for chronic neck pain.

 

SPSS 18.0 for Windows was used to analyze the results. In order to confirm the homogeneity of subjects� general characteristics and dependent variables, descriptive statistics and the Kruskal-Wallis test were used. The Wilcoxon rank test was performed to assess the difference between pre- and post-treatment values in each group, and the Mann-Whitney U test was used to identify significant differences among the groups. The threshold for statistical significance was chosen as 0.05.

 

Results

 

The extent of change in VAS score, PPT, and ROM was compared between patients with chronic neck pain who underwent ART or JM. Twenty-four patients with a 3-month or longer history of chronic neck pain participated in this study. The three groups demonstrated no significant differences in NDI scores, ages, heights, or weights (p>0.05) (Table 1).

 

ART Table 1 | El Paso, TX Chiropractor

 

The ART and JM groups both demonstrated significant improvements in VAS pain scores (p<0.05), but no significant change was observed in the control group (p>0.05). The PPT significantly increased (p<0.05), in every muscle measured in the ART group, and in all muscles other than the right upper trapezius in the JM group. Muscle PPT demonstrated no significant change in the control group (p>0.05) (Table 2).

 

ART Table 2 | El Paso, TX Chiropractor

 

After treatment, the ART and JM groups both demonstrated significant increases (p<0.05) in every neck joint ROM parameter, while no significant changes were observed in the control group (p>0.05) (Table 2).

 

The extent of change in the VAS pain score and PPT between pre- and post-treatment significantly differed across the three groups (p<0.05). The posthoc test indicated that changes in the VAS scores significantly differed between the ART and control groups, and between the JM and control groups (p<0.05), but not between the ART and JM groups (p>0.05). The changes in PPTs of the right upper trapezius and left SCM significantly differed to between the ART and JM groups (p<0.05); however no significant differences were observed in the other muscles (p>0.05). Between the JM and control groups, the change in right SCM PPT demonstrated a significant difference (p<0.05); however, no difference was observed in other muscles (p>0.05). Between the ART and control group, the change in PPT significantly differed for all the measured muscles (p<0.05). The changes in VAS score and PPT were greater in the ART group than in the JM group, but these differences were not statistically significant (Table 3).

 

ART Table 3 | El Paso, TX Chiropractor

 

The extent of change in ROM after the treatments significantly differed across the three groups (p<0.05). The posthoc test indicated that the change in ROM significantly differed between the ART and JM groups only in neck flexion (p<0.05), but not in other ROM measurements (p>0.05). There was no significant difference in neck flexion ROM between the JM and control groups (p>0.05), but all other ROM parameters significantly differed between these groups (p<0.05). The ART and control groups significantly differed in terms of the change in ROM for all the parameters measured (p<0.05). The change in ROM was greater in the ART group than in the JM group, but this difference was not reach statistically significant (Table 3).

 

Dr-Jimenez_White-Coat_01.png

Dr. Alex Jimenez’s Insight

The following study compared the use of the active release technique (A.R.T.) to the use of joint mobilization to determine the best method for treating chronic neck pain symptoms. As it will be properly described below, the research study concluded that ART and joint mobilizations are both effective as treatment for patients with chronic neck pain, however, the active release technique demonstrated a greater effectiveness for neck pain associated with soft tissue injury. A.R.T. is believed to be a better treatment option for chronic neck pain mainly because soft tissue injuries are believed to be the cause of painful symptoms in 87.5 percent of cases, where ART is performed directly on the area of damage.

 

Discussion

 

Repetitive motions and the use of smart phones and tablets in abnormal head postures can stress the head, neck, and shoulder areas. Additionally, abnormal head posture can cause mechanical dysfunction of the cervical joint, which can lead to pain, fibrosis of soft tissue, adaptive shortening, loss of flexibility, and mechanical deformation reflecting the condition of hypomobility, where there is no movement inside the normal joint capsule[20, 21]. When mechanical dysfunction is present in a vertebra, manual therapy is typically performed, and it can be an effective method of relieving neck pain related to such dysfunction[22]. JM is used to treat joints with hypomobility or progressive limitation of mobility, by identifying a cervical segment with abnormal mobility and irritating the sensory receptors that sense pain, thus eliciting effects on the muscle, which in turn stimulate the muscles to apply force in the appropriate direction[8].

 

After 3 weeks of JM, the VAS, ROM, and PPT values of muscles other than the right upper trapezius demonstrated significant improvements compared to their pre-test values. The PPT also increased in the right upper trapezius, but the difference was not statistically significant. The trapezius is particularly susceptible to damage by repetitive movements of the hand and arm while performing work such as using a computer[23]. Most of the study participants were right-handed and thus performed more movement of the right upper extremity than the left, which may explain why the improvement of the right upper trapezius PPT was not reach statistically significant.

 

ART is a method for treating the soft tissues such as the tendon, nerve, and myofascia, and is performed for repetitive strain injury, acute injury, and functional fixation damage due to abnormal posture maintained over the long term. Furthermore, ART is an effective at resolving adhesion of scar tissue and the soft tissue that causes pain, spasm, muscle weakness, tingling, and other symptoms[11].

 

Robb et al.[24] demonstrated immediate improvement of muscle PPT when ART was used to treat patients with adductor strain. Additionally, in a study by Tak et al.[10], ART treatment for 3 weeks on the gluteus medius of a patient with low back pain for 3 weeks resulted in improvement of the patient�s VAS score and PPT. Although our target area differed from the studies of Tak et al.[10] and Robb et al.[24], significant improvement was observed in the VAS score, PPT, and ROM after using ART to treat the neck muscles in the present study. It is our opinion that these improvements in VAS score and PPT after treatment is the result of decreases in muscle tone after removing scar tissue adherent to soft tissue.

 

In a study by James[25] involving 20 young men with no injury of the lower extremity, hamstring flexibility increased immediately after ART was applied. Similarly, in the present study, ROM significantly increased after ART was applied on the neck for 3 weeks. This finding indicates that scar tissue, which can limit the mobility of soft tissue, can be removed by ART and thus relieve limitations of movement[12].

 

Although no statistically significant difference was detected in many cases, the change in the VAS score, PPT, and ROM demonstrated a consistent trend toward being greater in the ART group than in the JM group. This greater effect may be related to the observation that soft tissue injury is the cause of pain in 87.5% of neck pain cases, and ART is performed directly on the injured soft tissue[13], whereas JM treats the limited area of the joint. This study compared the effect of treatment over a short period of 3 weeks, and thus, it remains unclear how long its effectiveness is maintained. Longerterm follow-up surveys are needed after the cessation of treatment. Additionally, it is difficult to generalize our findings, as the sample sizes were small. In order to reinforce these findings, more research is needed.

 

In conclusion, this study compared the VAS score, PPT, and ROM across 24 subjects with chronic neck pain receiving ART, JM, or no treatment. It revealed that ART and JM both positively affected the VAS score, PPT, and ROM, and that the two methods demonstrated few significant differences in their effects. Thus, ART and JM are both effective for the treatment of patients with chronic neck pain, but ART demonstrated a trend toward greater effectiveness for patients with neck pain involving soft tissue injury. Therefore, ART appears to be a better option for treating patients with chronic neck pain in the clinical setting. Follow-up research involving greater numbers and diversity of subjects with longer terms are needed to expand upon these findings.

 

The purpose of the article above is to present the effectiveness of the active release technique, or ART, towards the management and improvement of chronic neck pain in a clinical setting. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Sciatica

Sciatica is medically referred to as a collection of symptoms, rather than a single injury and/or condition. Symptoms of sciatic nerve pain, or sciatica, can vary in frequency and intensity, however, it is most commonly described as a sudden, sharp (knife-like) or electrical pain that radiates from the low back down the buttocks, hips, thighs and legs into the foot. Other symptoms of sciatica may include, tingling or burning sensations, numbness and weakness along the length of the sciatic nerve. Sciatica most frequently affects individuals between the ages of 30 and 50 years. It may often develop as a result of the degeneration of the spine due to age, however, the compression and irritation of the sciatic nerve caused by a bulging or herniated disc, among other spinal health issues, may also cause sciatic nerve pain.

 

 

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC: Chiropractor Sciatica Symptoms

 

 

MORE TOPICS: EXTRA EXTRA: El Paso Back Clinic | Back Pain Care & Treatments

Blank
References
1.�Chung SH, Her JG, Ko TS, et al. :�Effects of exercise on deep cervical flexors in patients with chronic neck pain.�J Phys Ther Sci, 2012,�24: 629�632.
2.�Hwangbo G:�Analysis of the change of the neck pressure pain threshold in long term computer users.�Int J Contents, 2008,�8: 151�158.
3.�Sarig-Bahat H:�Evidence for exercise therapy in mechanical neck disorders.�Man Ther, 2003,�8: 10�20.[PubMed]
4.�Hyung IH, Kim SS, Lee SY:�The effect of immediate pain and cervical ROM of cervical pain patients on stretching and manipulation.�J Korean Soc Phys Ther, 2009,�21: 1�7.
5.�Oh SG, Yu SH:�Biomechanical changes in lower quadrant after manipulation of low back pain patients with sacroiliac joint dysfunction.�J Korean Soc Phys Ther, 2001,�8: 167�180.
6.�Jull GA, Falla D, Vicenzino B, et al. :�The effect of therapeutic exercise on activation of the deep cervical flexor muscles in people with chronic neck pain.�Man Ther, 2009,�14: 696�701.�[PubMed]
7.�Ko TS, Jeong UC, Lee KW:�Effects of the inclusion thoracic mobilization into cranio-cervical flexor exercise in patients with chronic neck pain.�J Phys Ther Sci, 2010,�22: 87�91.
8.�Kim DD:�The effects of manipulation and mobilization on NDI and CROM in young adults with mild neck disability.�J Korean Acad Orthop Man Phys Ther, 2010,�16: 53�60.
9.�Jun YW: The effects of upper thoracic joint mobilization technique using Kaltenborn-Evjenth concept on cervicothoracic ROM and pain in patients with chronic neck pain. Graduate school Korea University Master�s Degree, 2012.
10.�Tak SJ, Lee YW, Choi W, et al. :�The effects of active release technique on the gluteus mediusfor pain relief in persons with chronic low back pain.�Physical Therapy Rehabilitation Science, 2013,�2: 27�30.
11.�Brian A, Kamali A, Michael Leahy P: Release Your Pain: Resolving Repetitive Strain Injuries with Active Release Techniques. Pub Group West, 2005, 15�29.
12.�Lee SJ, Park JH, Nam SH, et al. :�Two clinical cases of active release technique with Korean medicine treatment for supraspinatus tendon partial tear.�J CHUNA Man Med Spine Nerves, 2014,�9: 89�101.
13.�Dvord J, Valach L, Schmdt S:�Cervical spine injuries in Swizerland.�Man Med, 1989,�4: 7�16.
14.�Hyun SW: The effects of joint mobilization and conservative physical therapy on the range of motion and pain in patients with cervical pain. Graduate school Kookmin University Master�s Degree, 2003.
15.�Bijur PE, Silver W, Gallagher EJ:�Reliability of the visual analog scale for measurement of acute pain.�Acad Emerg Med, 2001,�8: 1153�1157.�[PubMed]
16.�Kim SH, Kwon BA, Lee WH:�Effects of cervical spinal stabilization training in private security on chronic neck pain and cervical function, neck pain, ROM.�Korean Secur Sci Rev, 2010,�25: 89�107.
17.�Cho SH: The effect of myofascial release technique and forward head posture correction exercise on chronic tension-type headache. Graduate school Catholic University of Pusan Doctor�s Degree, 2014.
18.�Jang HJ: Effects of combined exercise program on pain and function and range of motion and fatigability in chronic neck pain. Graduate school University Sahmyook Master�s Degree, 2011.
19.�Kim HJ, Bae SS, Jang C:�The effects of joint mobilization on neck pain.�J Korean Soc Phys Ther, 2003,15: 65�90.
20.�C�t� P, Cassidy JD, Carroll LJ, et al. :�The annual incidence and course of neck pain in the general population: a population-based cohort study.�Pain, 2004,�112: 267�273.�[PubMed]
21.�Lee JH, Lee YH, Kim HS, et al. :�The effects of cervical mobilization combined with thoracic mobilization on forward head posture of neck pain patients.�J Phys Ther Sci, 2013,�25: 7�9.
22.�Ferreira LA, Santos LC, Pereira WM, et al. :�Analysis of thoracic spine thrust manipulation for reducing neck pain.�J Phys Ther Sci, 2013,�25: 325�329.
23.�Seo HK: The effect of myofascial release, joint mobilization, and Mckenzine on the cervical muscle activity. Graduate school Daegu University Doctor�s Degree, 2008.
24.�Robb A, Pajaczkowski J:�Immediate effect on pain thresholds using active release technique on adductor strains: pilot study.�J Bodyw Mov Ther, 2011,�15: 57�62.�[PubMed]
25.�George JW, Tunstall AC, Tepe RE, et al. :�The effects of active release technique on hamstring flexibility: a pilot study.�J Manipulative Physiol Ther, 2006,�29: 224�227.�[PubMed]
Close Accordion
Mastodon