ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page
Lumbar Disc Nomenclature: Version 2.0

Lumbar Disc Nomenclature: Version 2.0

What is a Herniated Disc?

The spine is made up of 24 bones, called vertebrae, which are stacked on top of one another. These spinal bones are ultimately connected, creating a canal to protect the spinal cord. In between each vertebra are fluid-filled intervertebral discs which act as shock absorbers for the spine. Over time, however, these flexible, jelly donut-like discs can begin to herniate, where the nucleus of the intervertebral disc pushes against its outer ring, causing low back pain. Below, we will demonstrate the various types of herniated discs and discuss their causes, symptoms and treatment options.

Abstract

Background Context

The paper ��Nomenclature and classification of lumbar disc pathology, recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology,�� was published in 2001 in Spine (� Lippincott, Williams & Wilkins). It was authored by David Fardon, MD, and Pierre Milette, MD, and formally endorsed by the American Society of Spine Radiology (ASSR), American Society of Neuroradiology (ASNR), and North American Spine Society (NASS). Its purpose was to promote greater clarity and consistency of usage of spinal terminology, and it has served this purpose well for over a decade. Since 2001, there has been sufficient evolution in our understanding of the lumbar disc to suggest the need for revision and updating of the original document. The revised document is presented here, and it represents the consensus recommendations of contemporary combined task forces of the ASSR, ASNR, and NASS. This article reflects changes consistent with current concepts in radiologic and clinical care.

Purpose

To provide a resource that promotes a clear understanding of lumbar disc terminology amongst clinicians, radiologists, and researchers. All the concerned need standard terms for the normal and pathologic conditions of lumbar discs that can be used accurately and consistently and thus best serve patients with disc disorders.

Study Design

This article comprises a review of the literature.

Methods

A PubMed search was performed for literature pertaining to the lumbar disc. The task force members individually and collectively reviewed the literature and revised the 2001 document. The revised document was then submitted for review to the governing boards of the ASSR, ASNR, and NASS. After further revision based on the feedback from the governing boards, the article was approved for publication by the governing boards of the three societies, as representative of the consensus recommendations of the societies.

Results

The article provides a discussion of the recommended diagnostic categories pertaining to the lumbar disc: normal; congenital/developmental variation; degeneration; trauma; infection/inflammation; neoplasia; and/or morphologic variant of uncertain significance. The article provides a glossary of terms pertaining to the lumbar disc, a detailed discussion of these terms, and their recommended usage. Terms are described as preferred, nonpreferred, nonstandard, and colloquial. Updated illustrations pictorially portray certain key terms. Literature references that provided the basis for the task force recommendations are included.

Conclusions

We have revised and updated a document that, since 2001, has provided a widely acceptable nomenclature that helps maintain consistency and accuracy in the description of the anatomic and physiologic properties of the normal and abnormal lumbar disc and that serves as a system for classification and reporting built upon that nomenclature.

Keywords

Annular fissure, Annular tear, Disc bulge (bulging disc), Disc degeneration, Disc extrusion, Disc herniation, Disc nomenclature, Disc protrusion, High-intensity zone, Lumbar intervertebral disc

Preface

The nomenclature and classification of lumbar disc pathology consensus, published in 2001, by the collaborative efforts of the North American Spine Society (NASS), the American Society of Spine Radiology (ASSR) and the American Society of Neuroradiology (ASNR), has guided radiologists, clinicians, and interested public for over a decade [1]. This document has passed the test of time. Responding to an initiative from the ASSR, a task force of spine physicians from the ASSR, ASNR, and NASS has reviewed and modified the document. This revised document preserves the format and most of the language of the original, with changes consistent with current concepts in radiologic and clinical care. The modifications deal primarily with the following: updating and expansion of Text, Glossary, and References to meet contemporary needs; revision of Figures to provide greater clarity; emphasis of the term ��annular fissure�� in place of ��annular tear��; refinement of the definitions of ��acute�� and ��chronic�� disc herniations; revision of the distinction between disc herniation and asymmetrically bulging disc; elimination of the Tables in favor of greater clarity from the revised Text and Figures; and deletion of the section of Reporting and Coding because of frequent changes in those practices, which are best addressed by other publications. Several other minor amendments have been made. This revision will update a workable standard nomenclature, accepted and used universally by imaging and clinical physicians.

Introduction and History

Physicians need standard terms for normal and pathologic conditions of lumbar discs [2, 3, 4, 5]. Terms that can be interpreted accurately, consistently, and with reasonable precision are particularly important for communicating impressions gained from imaging for clinical diagnostic and therapeutic decision-making. Although clear understanding of the disc terminology between radiologists and clinicians is the focus of this work, such understanding can be critical, also to patients, families, employers, insurers, jurists, social planners, and researchers.

In 1995, a multidisciplinary task force from the NASS addressed the deficiencies in commonly used terms defining the conditions of the lumbar disc. It cited several documentations of the problem [6, 7, 8, 9, 10, 11] and made detailed recommendations for standardization. Its work was published in a copublication of the NASS and the American Academy of Orthopaedic Surgeons [9]. The work had not been otherwise endorsed by major organizations and had not been recognized as authoritative by radiology organizations. Many previous [3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and some subsequent [20, 21, 22, 23, 24, 25] efforts addressed the issues, but were of more limited scope and none had gained a widespread acceptance.

Although the NASS 1995 effort was the most comprehensive at the time, it remained deficient in clarifying some controversial topics, lacking in its treatment of some issues, and did not provide recommendations for standardization of classification and reporting. To address the remaining needs, and in hopes of securing endorsement sufficient to result in universal standardizations, joint task forces (Co-Chairs David Fardon, MD, and Pierre Milette, MD) were formed by the NASS, ASNR, and ASSR, resulting in the first version of the document ��Nomenclature and classification of lumbar disc pathology�� [1]. Since then, time and experience suggested the need for revisions and updating of the original document. The revised document is presented here.

The general principles that guided the original document remain unchanged in this revision. The definitions are based on the anatomy and pathology, primarily as visualized on imaging studies. Recognizing that some criteria, under some circumstances, may be unknowable to the observer, the definitions of the terms are not dependent on or imply the value of specific tests. The definitions of diagnoses are not intended to imply external etiologic events such as trauma, they do not imply relationship to symptoms, and they do not define or imply the need for specific treatment.

The task forces, both current and former, worked from a model that could be expanded from a primary purpose of providing understanding of reports of imaging studies. The result provides a simple classification of diagnostic terms, which can be expanded, without contradiction, into more precise subclassifications. When reporting pathology, degrees of uncertainty would be labeled as such rather than compromising the definitions of the terms.

All terms used in the classifications and subclassifications are defined and those definitions are adhered to throughout the model. For a practical purpose, some existing English terms are given meanings different from those found in some contemporary dictionaries. The task forces provide a list and classification of the recommended terms, but, recognizing the nature of language practices, discuss and include in the Glossary, commonly used and misused nonrecommended terms and nonstandard definitions.

Although the principles and most of the definitions of this document can be easily extrapolated to the cervical and dorsal spine, the focus is on the lumbar spine. Although clarification of terms related to posterior elements, dimensions of the spinal canal, and status of neural tissues is needed, this work is limited to the discussion of the disc. While it is not always possible to discuss fully the definition of anatomical and pathologic terms without some reference to symptoms and etiology, the definitions themselves stand the test of independence from etiology, symptoms, or treatment. Because of the focus on anatomy and pathology, this work does not define certain clinical syndromes that may be related to lumbar disc pathology [26].

Guided by those principles, we have revised and updated a document that, since 2001, has provided a widely acceptable nomenclature that is workable for all forms of observation, that addresses contour, content, integrity, organization, and spatial relationships of the lumbar disc; and that serves a system of classification and reporting built upon that nomenclature.

Diagnostic Category & Subcategory Recommendations

These recommendations present diagnostic categories and subcategories intended for classification and reporting of imaging studies. The terminology used throughout these recommended categories and subcategories remains consistent with detailed explanations given in the Discussion and with the preferred definitions presented in the Glossary.

The diagnostic categories are based on pathology. Each lumbar disc can be classified in terms of one, and occasionally more than one, of the following diagnostic categories: normal; congenital/developmental variation; degeneration; trauma; infection/inflammation; neoplasia; and/or morphologic variant of uncertain significance. Each diagnostic category can be subcategorized to various degrees of specificity according to the information available and purpose to be served. The data available for categorization may lead the reporter to characterize the interpretation as ��possible,�� ��probable,�� or ��definite.��

Note that some terms and definitions discussed below are not recommended as preferred terminology, but are included to facilitate the interpretation of vernacular and, in some cases, improper use. Terms may be defined as preferred, nonpreferred, or nonstandard. Nonstandard terms by consensus of the organizational task forces should not be used in the manner described.

Normal

Normal defines discs that are morphologically normal, without the consideration of the clinical context and not inclusive of degenerative, developmental, or adaptive changes that could, in some contexts (eg, normal aging, scoliosis, spondylolisthesis), be considered clinically normal (Fig. 1).

Figure 1: Normal lumbar disc. (Top Left) Axial, (Top Right) sagittal, and (Bottom) coronal images demonstrate that the normal disc, composed of central NP and peripheral AF, is wholly within the boundaries of the disc space, as defined, craniad and caudad by the vertebral body end plates and peripherally by the planes of the outer edges of the vertebral apophyses, exclusive of osteophytes. NP, nucleus pulposus; AF, annulus fibrosus.

Congenital/Developmental Variation

The congenital/developmental variation category includes discs that are congenitally abnormal or that have undergone changes in their morphology as an adaptation of abnormal growth of the spine, such as from scoliosis or spondylolisthesis.

Degeneration

Degenerative changes in the discs are included in a broad category that includes the subcategories annular fissure, degeneration, and herniation.

Annular fissures are separations between the annular fibers or separations of annular fibers from their attachments to the vertebral bone. Fissures are sometimes classified by their orientation. A ��concentric fissure�� is a separation or delamination of annular fibers parallel to the peripheral contour of the disc (Fig. 2). A ��radial fissure�� is a vertically, horizontally, or obliquely oriented separation of (or rent in) annular fibers that extends from the nucleus peripherally to or through the annulus. A ��transverse fissure�� is a horizontally oriented radial fissure, but the term is sometimes used in a narrower sense to refer to a horizontally oriented fissure limited to the peripheral annulus that may include separation of annular fibers from the apophyseal bone. Relatively wide annular fissures, with stretch of the residual annular margin, at times including avulsion of an annular fragment, have sometimes been called ��annular gaps,�� a term that is relatively new and not accepted as standard [27]. The term ��fissures�� describes the spectrum of these lesions and does not imply that the lesion is a consequence of injury.

Figure 2: Fissures of the annulus fibrosus. Fissures of the annulus fibrosus occur as radial (R), transverse (T), and/or concentric (C) separations of fibers of the annulus. The transverse fissure depicted is a fully developed, horizontally oriented radial fissure; the term ��transverse fissure�� is often applied to a less extensive separation limited to the peripheral annulus and its bony attachments.

Use of the term ��tear�� can be misunderstood because the analogy to other tears has a connotation of injury, which is inappropriate in this context. The term ��fissure�� is the correct term. Use of the term ��tear�� should be discouraged and, when it appears, should be recognized that it is usually meant to be synonymous with ��fissure�� and not reflective of the result of injury. The original version of this document stated preference for the term ��fissure�� but regarded the two terms as almost synonymous. However, in this revision, we regard the term ��tear�� as nonstandard usage.

Degeneration may include any or all of the following: desiccation, fibrosis, narrowing of the disc space, diffuse bulging of the annulus beyond the disc space, fissuring (ie, annular fissures), mucinous degeneration of the annulus, intradiscal gas [28], osteophytes of the vertebral apophyses, defects, inflammatory changes, and sclerosis of the end plates [15, 29, 30, 31, 32, 33, 34].

Herniation is broadly defined as a localized or focal displacement of disc material beyond the limits of the intervertebral disc space. The disc material may be nucleus, cartilage, fragmented apophyseal bone, annular tissue, or any combination thereof. The disc space is defined craniad and caudad by the vertebral body end plates and, peripherally, by the outer edges of the vertebral ring apophyses, exclusive of osteophytes. The term ��localized�� or ��focal�� refers to the extension of the disc material less than 25% (90�) of the periphery of the disc as viewed in the axial plane.

The presence of disc tissue extending beyond the edges of the ring apophyses, throughout the circumference of the disc, is called ��bulging�� and is not considered a form of herniation (Fig. 3, Top Right). Asymmetric bulging of disc tissue greater than 25% of the disc circumference (Fig. 3, Bottom), often seen as an adaptation to adjacent deformity, is, also, not a form of herniation. In evaluating the shape of the disc for a herniation in an axial plane, the shape of the two adjacent vertebrae must be considered [15, 35].

Figure 3: Bulging disc. (Top Left) Normal disc (for comparison); no disc material extends beyond the periphery of the disc space, depicted here by the broken line. (Top Right) Symmetric bulging disc; annular tissue extends, usually by less than 3 mm, beyond the edges of the vertebral apophyses symmetrically throughout the circumference of the disc. (Bottom) Asymmetric bulging disc; annular tissue extends beyond the edges of the vertebral apophysis, asymmetrically greater than 25% of the circumference of the disc.

Herniated discs may be classified as protrusion or extrusion, based on the shape of the displaced material.

Protrusion is present if the greatest distance between the edges of the disc material presenting outside the disc space is less than the distance between the edges of the base of that disc material extending outside the disc space. The base is defined as the width of disc material at the outer margin of the disc space of origin, where disc material displaced beyond the disc space is continuous with the disc material within the disc space (Fig. 4). Extrusion is present when, in at least one plane, any one distance between the edges of the disc material beyond the disc space is greater than the distance between the edges of the base of the disc material beyond the disc space or when no continuity exists between the disc material beyond the disc space and that within the disc space (Fig. 5). The latter form of extrusion is best further specified or subclassified as sequestration if the displaced disc material has lost continuity completely with the parent disc (Fig. 6). The term migration may be used to signify displacement of disc material away from the site of extrusion. Herniated discs in the craniocaudad (vertical) direction through a gap in the vertebral body end plate are referred to as intravertebral herniations (Schmorl nodes) (Fig. 7).

Figure 4: Herniated disc: protrusion. (Left) Axial and (Right) sagittal images demonstrate displaced disc material extending beyond less than 25% of the disc space, with the greatest measure, in any plane, of the displaced disc material being less than the measure of the base of displaced disc material at the disc space of origin, measured in the same plane.
Figure 5: Herniated disc: extrusion. (Left) Axial and (Right) sagittal images demonstrate that the greatest measure of the displaced disc material is greater than the base of the displaced disc material at the disc space of origin, when measured in the same plane.
Figure 6: Herniated disc: sequestration. (Left) Axial and (Right) sagittal images show that a sequestrated disc is an extruded disc in which the displaced disc material has lost all connection with the disc of origin.
Figure 7:�Intravertebral herniation (Schmorl node). Disc material is displaced beyond the disc space through the vertebral end plate into the vertebral body, as shown here in sagittal projection

Disc herniations may be further specifically categorized as contained, if the displaced portion is covered by outer annulus fibers and/or the posterior longitudinal ligament, or uncontained when absent of any such covering. If the margins of the disc protrusion are smooth on axial computed tomography (CT) or magnetic resonance imaging (MRI), then the displaced disc material is likely contained by the posterior longitudinal ligament and perhaps a few superficial posterior annular fibers [21, 35, 36, 37]. If the posterior margin of the disc protrusion is irregular, the herniation is likely uncontained. Displaced disc tissue is typically described by location, volume, and content, as discussed later in this document.

An alternative scheme of distinguishing protrusion from extrusion is discussed in the Discussion section.

Trauma

The category of trauma includes disruption of the disc associated with physical and/or imaging evidence of violent fracture and/or dislocation and does not include repetitive injury, contribution of less than violent trauma to the degenerative process, fragmentation of the ring apophysis in conjunction with disc herniation, or disc abnormalities in association with degenerative subluxations. Whether or not a ��less than violent�� injury has contributed to or been superimposed on a degenerative change is a clinical judgment that cannot be made based on images alone; therefore, from the standpoint of description of images, such discs, in the absence of significant imaging evidence of associated violent injury, should be classified as degeneration rather than trauma.

Inflammation/Infection

The category of inflammation/infection includes infection, infection-like inflammatory discitis, and inflammatory response to spondyloarthropathy. It also includes inflammatory spondylitis of the subchondral end plate and bone marrow manifested by Modic Type I MRI changes [29, 30, 38] and usually associated with degenerative pathologic changes in the disc. To simplify the classification scheme, the category is inclusive of disparate conditions; therefore, when data permit, the diagnosis should be subcategorized for appropriate specificity.

Neoplasia

Primary or metastatic morphologic changes of disc tissues caused by malignancy are categorized as neoplasia, with subcategorization for appropriate specificity.

Miscellaneous Paradiscal Masses of Uncertain Origin

Although most intraspinal cysts are of meningeal or synovial origin, a minority arise from the disc and create a paradiscal mass that does not contain nuclear material. Epidural bleeding and/or edema, unrelated to trauma or other known origin may create a paradiscal mass or may increase the size of herniated disc material. Such cysts and hematomas may be seen acutely and unaccompanied by other pathology or may be a component of chronic disc pathology.

Morphologic�Variant of Unknown Significance

Instances in which data suggest abnormal morphology of the disc, but in which data are not complete enough to support a diagnostic categorization can be categorized as a morphologic variant of unknown significance.

Discussion of Nomenclature in Detail

This document provides a nomenclature that facilitates the description of surgical, endoscopic, or cadaveric findings as well as imaging findings; and also, with the caveat that it addresses only the morphology of the disc, it facilitates communication for patients, families, employers, insurers, and legal and social authorities and permits accumulation of more reliable data for research.

Normal Disc

Categorization of a disc as ��normal�� means the disc is fully and normally developed and free of any changes of disease, trauma, or aging. Only the morphology, and not the clinical context, is considered. Clinically ��normal�� (asymptomatic) people may have a variety of harmless imaging findings, including congenital or developmental variations of discs, minor bulging of the annuli, age-related desiccation, anterior and lateral marginal vertebral body osteophytes, prominence of disc material beyond one end plate as a result of luxation of one vertebral body relative to the adjacent vertebral body (especially common at L5�S1), and so on [39]. By this article�s morphology-based nomenclature and classification, however, such individual discs are not considered ��normal,�� but rather are described by their morphologic characteristics, independent of their clinical import unless otherwise specified.

Disc with Fissures of the Annulus

There is a general agreement about the various forms of loss of integrity of the annulus, such as radial, transverse, and concentric fissures. Yu et al. [40] have shown that annular fissures, including radial, concentric, and transverse types, are present in nearly all degenerated discs [41]. If the disc is dehydrated on an MRI scan, it is likely that there is at least one or more small fissures in the annulus. Relatively wide, radially directed annular fissures, with stretch of the residual annular margin, at times involving avulsion of an annular fragment, have sometimes been called ��annular gaps,�� although the term is relatively new and not accepted as a standard [27].

The terms ��annular fissure�� and ��annular tear�� have been applied to the findings on T2-weighted MRI scans of localized high intensity zones (HIZ) within the annulus [30, 42, 43, 44]. High intensity zones represent fluid and/or granulation tissue and may enhance with gadolinium. Fissures occur in all degenerative discs but are not all visualized as HIZs. Discography reveals some fissures not seen by the MRI, but not all fissures are visualized by discography. Description of the imaging findings is most accurate when limited to the observation of an HIZ or discographically demonstrated fissure, with the understood caveat that there is an incomplete concordance with the HIZs, discogram images, and anatomically observed fissures.

As far back as the 1995 NASS document, authors have recommended that such lesions be termed ��fissures�� rather than ��tears,�� primarily out of concern that the word ��tear�� could be misconstrued as implying a traumatic etiology [9, 30, 45, 46]. Because of potential misunderstanding of the term ��annular tear,�� and consequent presumption that the finding of an annular fissure indicates that there has been an injury, the term ��annular tear�� should be considered nonstandard and ��annular fissure�� be the preferred term. Imaging observation of an annular fissure does not imply an injury or related symptoms, but simply defines the morphologic change in the annulus.

Degenerated Disc

Because there is a confusion in the differentiation of changes of pathologic degenerative processes in the disc from those of normal aging [17, 31, 47, 48, 49], the classification ��degenerated disc�� includes all such changes, thus does not compel the observer to differentiate the pathologic from the normal consequence of aging.

Perceptions of what constitutes the normal aging process of the spine have been greatly influenced by postmortem anatomic studies involving a limited number of specimens, harvested from cadavers from different age groups, with unknown past medical histories and the presumption of absence of lumbar symptoms [23, 50, 51, 52, 53, 54, 55, 56, 57]. With such methods, pathologic change is easily confused with consequences of normal aging. Resnick and Niwayama [31] emphasized the differentiating features of two degenerative processes involving the intervertebral disc that had been previously described by Schmorl and Junghanns [58]; ��spondylosis deformans,�� which affects essentially the annulus fibrosus and adjacent apophyses (Fig. 8, Left) and ��intervertebral osteochondrosis,�� which affects mainly the nucleus pulposus and the vertebral body end plates and may include extensive fissuring of the annulus fibrosus that may be followed by atrophy (Fig. 8, Right). Although Resnick and Niwayama stated that the cause of the two entities was unknown, other studies suggest that spondylosis deformans is the consequence of normal aging, whereas intervertebral osteochondrosis, sometimes also called ��deteriorated disc,�� results from a clearly pathologic, although not necessarily symptomatic, process [29, 31, 42, 59, 60].

Figure 8:�Types of disc degeneration by radiographic criteria. (Left) Spondylosis deformans is manifested by apophyseal osteophytes, with relative preservation of the disc space. (Right) Intervertebral osteochondrosis is typified by disc space narrowing, severe fissuring, and end plate cartilage erosion.

Degrees of disc degeneration have been graded based on gross morphology of midsagittal sections of the lumbar spine (Thompson scheme) [19]; postdiscography CT observations of integrity of the interior of the disc (Dallas classification) (Fig. 9) [42]; MRI observations of vertebral body marrow changes adjacent to the disc (Modic classification) [30], (Fig. 10); and MRI-revealed changes in the nucleus (Pfirrmann classification) [61]. Various modifications of these schemes have been proposed to suit specific clinical and research needs [17, 35, 62, 63].

Figure 9:�Internal disc integrity. The extent of radial fissuring, as visualized on postdiscography CT, graded 0 to 5 by the Modified Dallas Discogram classification, as depicted.
Figure 10:�Reactive vertebral body marrow changes. These bone marrow signal changes adjacent to a degenerated disc on magnetic resonance imaging. T1- and T2-weighted sequences are frequently classified as (Top Left) Modic I, (Top Right) Modic II, or (Bottom) Modic III.

Herniated Disc

The needs of common practices make necessary a diagnostic term that describes disc material beyond the intervertebral disc space. Herniated disc, herniated nucleus pulposus (HNP), ruptured disc, prolapsed disc (used nonspecifically), protruded disc (used nonspecifically), and bulging disc (used nonspecifically) have all been used in the literature in various ways to denote imprecisely defined displacement of disc material beyond the interspace. The absence of clear understanding of the meaning of these terms and the lack of definition of limits that should be placed on an ideal general term have created a great deal of confusion in clinical practice and in attempts to make meaningful comparisons of research studies.

For the general diagnosis of displacement of disc material, the single term that is most commonly used and creates least confusion is ��herniated disc.�� ��Herniated nucleus pulposus�� is inaccurate because materials other than nucleus (cartilage, fragmented apophyseal bone, and fragmented annulus) are common components of displaced disc material [64]. ��Rupture�� casts an image of tearing apart and therefore carries more implication of traumatic etiology than ��herniation,�� which conveys an image of displacement rather than disruption.

Though ��protrusion�� has been used by some authors in a nonspecific general sense to signify any displacement, the term has a more commonly used specific meaning for which it is best reserved. ��Prolapse,�� which has been used as a general term, as synonymous with the specific meaning of protrusion, or to denote inferior migration of extruded disc material, is not frequently used in a way to provide specific meaning and is best regarded as nonstandard, in deference to the more specific terms ��protrusion�� and ��extrusion.��

By exclusion of other terms, and by reasons of simplicity and common usage, ��herniated disc�� is the best general term to denote displacement of disc material. The term is appropriate to denote the general diagnostic category when referring to a specific disc and to be inclusive of various types of displacements when speaking of groups of discs. The term includes discs that may properly be characterized by more specific terms, such as ��protruded disc�� or ��extruded disc.�� The term ��herniated disc,�� as defined in this work, refers to localized displacement of nucleus, cartilage, fragmented apophyseal bone, or fragmented annular tissue beyond the intervertebral disc space. ��Localized�� is defined as less than 25% of the disc circumference. The disc space is defined, craniad and caudad, by the vertebral body end plates and, peripherally, by the edges of the vertebral ring apophyses, exclusive of the osteophyte formation. This definition was deemed more practical, especially for the interpretation of imaging studies, than a pathologic definition requiring identification of disc material forced out of normal position through an annular defect. Displacement of disc material, either through a fracture or defect in the bony end plate or in conjunction with displaced fragments of fractured walls of the vertebral body, may be described as ��herniated�� disc, although such description should accompany description of the fracture so as to avoid confusion with primary herniation of disc material. Displacement of disc materials from one location to another within the interspace, as with intraannular migration of nucleus without displacement beyond the interspace, is not considered herniation.

To be considered ��herniated,�� disc material must be displaced from its normal location and not simply represent an acquired growth beyond the edges of the apophyses, as is the case when connective tissues develop in gaps between osteophytes or when annular tissue is displaced behind one vertebra as an adaptation to subluxation. Herniation, therefore, can only occur in association with disruption of the normal annulus or, as in the case of intravertebral herniation (Schmorl node), a defect in the vertebral body end plate.

Details of the internal architecture of the annulus are most often not visualized by even the best quality MRIs [21]. The distinction of herniation is made by the observation of displacement of disc material beyond the edges of the ring apophysis that is ��focal�� or ��localized,�� meaning less than 25% of the circumference of the disc. The 25% cutoff line is established by way of convention to lend precision to terminology and does not designate etiology, relation to symptoms, or treatment indications.

The terms ��bulge�� or ��bulging�� refer to a generalized extension of disc tissue beyond the edges of the apophyses [65]. Such bulging involves greater than 25% of the circumference of the disc and typically extends a relatively short distance, usually less than 3 mm, beyond the edges of the apophyses (Fig. 3). ��Bulge�� or ��bulging�� describes a morphologic characteristic of various possible causes. Bulging is sometimes a normal variant (usually at L5�S1), can result from an advanced disc degeneration or from a vertebral body remodeling (as consequent to osteoporosis, trauma, or adjacent structure deformity), can occur with ligamentous laxity in response to loading or angular motion, can be an illusion caused by posterior central subligamentous disc protrusion, or can be an illusion from volume averaging (particularly with CT axial images).

Bulging, by definition, is not a herniation. Application of the term ��bulging�� to a disc does not imply any knowledge of etiology, prognosis, or need for treatment or imply the presence of symptoms.

A disc may have, simultaneously, more than one herniation. A disc herniation may be present along with other degenerative changes, fractures, or abnormalities of the disc. The term ��herniated disc�� does not imply any knowledge of etiology, relation to symptoms, prognosis, or need for treatment.

When data are sufficient to make the distinction, a herniated disc may be more specifically characterized as ��protruded�� or ��extruded.�� These distinctions are based on the shape of the displaced material. They do not imply knowledge of the mechanism by which the changes occurred.

Protruded Discs

Disc protrusions are focal or localized abnormalities of the disc margin that involve less than 25% of the disc circumference. A disc is ��protruded�� if the greatest dimension between the edges of the disc material presenting beyond the disc space is less than the distance between the edges of the base of that disc material that extends outside the disc space. The base is defined as the width of the disc material at the outer margin of the disc space of origin, where disc material displaced beyond the disc space is continuous with the disc material within the disc space (Fig. 4). The term ��protrusion�� is only appropriate in describing herniated disc material, as discussed previously.

Extruded Discs

The term ��extruded�� is consistent with the lay language meaning of material forced from one domain to another through an aperture [37, 64]. With reference to a disc, the test of extrusion is the judgment that, in at least one plane, any one distance between the edges of the disc material beyond the disc space is greater than the distance between the edges of the base measured in the same plane or when no continuity exists between the disc material beyond the disc space and that within the disc space (Fig. 5). Extruded disc material that has no continuity with the disc of origin may be characterized as ��sequestrated�� [53, 66] (Fig. 6). A sequestrated disc is a subtype of ��extruded disc�� but, by definition, can never be a ��protruded disc.�� Extruded disc material that is displaced away from the site of extrusion, regardless of continuity with the disc, may be called ��migrated,�� a term that is useful for the interpretation of imaging studies because it is often impossible from images to know if continuity exists.

The aforementioned distinctions between protrusion and extrusion and between contained and uncontained are based on common practice and wide acceptance of the definitions in the original version of this document. Another set of criteria, espoused by some respected practitioners, defines extrusion as uncontained and protrusion as a persistence of containment, regardless of the relative dimensions of the base to displaced portion of disc material. Per these criteria, a disc extrusion can be identified by the presence of a continuous line of low signal intensity surrounding the disc herniation. They state that current advanced imaging permits this basis of distinction and that the presence or absence of containment has more clinical relevance than the morphology of the displaced material [35].

Whether their method will prove superior to the currently recommended method will be determined by future study. The use of the distinction between ��protrusion�� and ��extrusion�� is optional and some observers may prefer to use, in all cases, the more general term ��herniation.�� Further distinctions can often be made regarding containment, continuity, volume, composition, and location of the displaced disc material.

Containment, Continuity, and Migration

Herniated disc material can be ��contained�� or ��uncontained.�� The test of containment is whether the displaced disc tissues are wholly held within intact outer annulus and/or posterior longitudinal ligament fibers. Fluid or any contrast that has been injected into a disc with a ��contained�� herniation would not be expected to leak into the vertebral canal. Although the posterior longitudinal ligament and/or peridural membrane may partially cover the extruded disc tissues, such discs are not considered ��contained�� unless the posterior longitudinal ligament is intact. The technical limitations of currently available noninvasive imaging modalities (CT and MRI) often preclude the distinction of a contained from an uncontained disc herniation. CT-discography does not always allow one to distinguish whether the herniated components of a disc are contained, but only whether there is a communication between the disc space and the vertebral canal.

Displaced disc fragments are sometimes characterized as ��free.�� A ��free fragment�� is synonymous with a ��sequestrated fragment,�� but not synonymous with ��uncontained.�� A disc fragment should be considered ��free�� or ��sequestrated�� only if there is no remaining continuity of the disc material between it and the disc of origin. A disc can be ��uncontained,�� with the loss of integrity of the posterior longitudinal ligament and the outer annulus, but still have continuity between the herniated/displaced disc material and the disc of origin.

The term ��migrated�� disc or fragment refers to the displacement of most of the displaced disc material away from the opening in the annulus through which the material has extruded. Some migrated fragments will be sequestrated, but the term ��migrated�� refers only to position and not to continuity.

The terms ��capsule�� and ��subcapsular�� have been used to refer to containment by an unspecified combination of annulus and ligament. These terms are nonpreferred.

Referring specifically to the posterior longitudinal ligament, some authors have distinguished displaced disc material as ��subligamentous,�� ��extraligamentous,�� ��transligamentous,�� or ��perforated.�� The term ��subligamentous�� is favored as an equivalent to ��contained.��

Volume and Composition of Displaced Material

A scheme to define the degree of canal compromise produced by disc displacement should be practical, objective, reasonably precise, and clinically relevant. A simple scheme that fulfills the criteria uses two-dimensional measurements taken from an axial section at the site of the most severe compromise. Canal compromise of less than one third of the canal at that section is ��mild,�� between one and two-thirds is ��moderate,�� and greater than two-thirds is ��severe.�� The same grading can be applied for foraminal involvement.

Such characterizations of volume describe only the cross-sectional area at one section and do not account for the total volume of displaced material; proximity to, compression, and distortion of neural structures; or other potentially significant features, which the observer may further detail by narrative description.

Composition of the displaced material may be characterized by terms such as nuclear, cartilaginous, bony, calcified, ossified, collagenous, scarred, desiccated, gaseous, or liquefied.

Clinical significance related to the observation of volume and composition depends on the correlation with clinical data and cannot be inferred from morphologic data alone.

Location

Bonneville proposed a useful and simple alphanumeric system to classify, according to location, the position of disc fragments that have migrated in the horizontal or sagittal plane [6, 13]. Using anatomic boundaries familiar to surgeons, Wiltse proposed another system [14, 67]. Anatomic ��zones�� and ��levels�� are defined using the following landmarks: medial edge of the articular facets; medial, lateral, upper, and lower borders of the pedicles; and coronal and sagittal planes at the center of the disc. On the horizontal (axial) plane, these landmarks determine the boundaries of the central zone, the subarticular zone (lateral recess), the foraminal zone, the extraforaminal zone, and the anterior zone, respectively (Fig. 11). On the sagittal (craniocaudal) plane, they determine the boundaries of the disc level, the infrapedicular level, the pedicular level, and the suprapedicular level, respectively (Fig. 12). The method is not as precise as the drawings depict because borderlines such as the medial edges of facets and the walls of the pedicles are curved, but the method is simple, practical, and in common usage.

Figure 11:�Anatomic zones depicted in axial and coronal projections.
Figure 12: Anatomic levels depicted in sagittal and coronal projections.

Moving from the central to right lateral in the axial (horizontal) plane, location may be defined as central, right central, right subarticular, right foraminal, or right extraforaminal. The term ��paracentral�� is less precise than defining ��right central�� or ��left central,�� but is useful in describing groups of discs that include both, or when speaking informally, when the side is not significant. For reporting of image observations of a specific disc, ��right central�� or ��left central�� should supersede the use of the term ��paracentral.�� The term ��far lateral�� is sometimes used synonymously with ��extraforaminal.��

In the sagittal plane, location may be defined as discal, infrapedicular, suprapedicular, or pedicular. In the coronal plane, anterior, in relationship to the disc, means ventral to the midcoronal plane of the centrum.

Glossary

Note:�some terms and definitions included in this Glossary are not recommended as preferred terminology but are included to facilitate the interpretation of vernacular and, in some cases, improper use. Preferred definitions are listed first. Nonstandard definitions are placed in brackets, and by consensus of the organizational task forces, should not be used in the manner described. Some terms are also labeled as colloquial, with further designation as to whether they are considered nonpreferred or nonstandard.

Acute disc herniation:�disc herniation of a relatively recent occurrence. Note: paradiscal inflammatory reaction and relatively bright signal of the disc material on T2-weighted images suggest relative acuteness. Such changes may persist for months, however. Thus, absent clinical correlation and/or serial studies, it is not possible to date precisely by imaging when a herniation occurred. An acutely herniated disc material may have brighter signal on T2-weighted MRI sequences than the disc from which the disc material originates [46,�59,�64,�68]. Note that a relatively acute herniation can be superimposed on a previously existing herniation. An acute disc herniation may regress spontaneously without specific treatment. See: chronic disc herniation.

Aging disc:�disc demonstrating any of the various effects of aging on the disc. Loss of water content from the nucleus occurs before MRI changes, followed by the progression of MRI manifested changes consistent with the progressive loss of water content and increase in collagen and aggregating proteoglycans. See Pfirrmann classification.

Annular fissure:�separations between annular fibers, separations of fibers from their vertebral body insertions, or separations of fibers that extend radially, transversely, or concentrically, involving one or many layers of the annular lamellae. Note that the terms ��fissure�� and ��tear�� have often been used synonymously in the past. The term ��tear�� is inappropriate for use in describing imaging findings and should not be used (tear: nonstandard). Neither term suggests injury or implies any knowledge of etiology, neither term implies any relationship to symptoms or that the disc is a likely pain generator, and neither term implies any need for treatment. See also: annular gap, annular rupture, annular tear, concentric fissure, HIZ, radial fissure, transverse fissure.

Annular gap�(nonstandard): focal attenuation (CT) or signal (MRI) abnormality, often triangular in shape, in the posterior aspect of the disc, likely representing widening of a radially directed annular fissure, bilateral annular fissures with an avulsion of the intermediate annular fragment, or an avulsion of a focal zone of macerated annulus.

Annular rupture:�disruption of fibers of the annulus by sudden violent injury. This is a clinical diagnosis; use of the term is inappropriate for a pure imaging description, which instead should focus on a detailed description of the findings. Ruptured annulus is�not�synonymous with ��annular fissure,�� or ��ruptured disc.��

Annular tear,�torn annulus�(nonstandard): see fissure of the annulus and rupture of annulus.

Anterior displacement:�displacement of disc tissues beyond the disc space into the anterior zone.

Anterior zone:�peridiscal zone that is anterior to the midcoronal plane of the vertebral body.

Anulus, annulus (abbreviated form of annulus fibrosus):�multilaminated fibrous tissue forming the periphery of each disc space, attaching, craniad and caudad, to end plate cartilage and a ring apophyseal bone and blending centrally with the nucleus pulposus. Note: either anulus or annulus is correct spelling. Nomina Anatomica uses both forms, whereas Terminologia Anatomica states �� anulus fibrosus�� [22]. Fibrosus has no correct alternative spelling; fibrosis has a different meaning and is incorrect in this context.

Asymmetric bulge:�presence of more than 25% of the outer annulus beyond the perimeter of the adjacent vertebrae, more evident in one section of the periphery of the disc than another, but not sufficiently focal to be characterized as a protrusion. Note: asymmetric disc bulging is a morphologic observation that may have various causes and does not imply etiology or association with symptoms. See bulge.

Balloon disc (colloquial, nonstandard):�diffuse apparent enlargement of the disc in superior-inferior extent because of bowing of the vertebral end plates due to weakening of the bone as in severe osteoporosis.

Base (of displaced disc):�the cross-sectional area of the disc material at the outer margin of the disc space of origin, where disc material beyond the disc space is continuous with disc material within the disc space. In the craniocaudal direction, the length of the base cannot exceed, by definition, the height of the intervertebral space. On axial imaging, base refers to the width at the outer margin of the disc space, of the origin of any disc material extending beyond the disc space.

Black disc�(colloquial, nonstandard): see dark disc.

Bulging disc, bulge (noun [n]), bulge (verb [v])

  1. A disc in which the contour of the outer annulus extends, or appears to extend, in the horizontal (axial) plane beyond the edges of the disc space, usually greater than 25% (90�) of the circumference of the disc and usually less than 3 mm beyond the edges of the vertebral body apophysis.
  2. (Nonstandard) A disc in which the outer margin extends over a broad base beyond the edges of the disc space.
  3. (Nonstandard) Mild, diffuse, smooth displacement of disc.
  4. (Nonstandard) Any disc displacement at the discal level.

Note:�bulging is an observation of the contour of the outer disc and is not a specific diagnosis. Bulging has been variously ascribed to redundancy of the annulus, secondary to the loss of disc space height, ligamentous laxity, response to loading or angular motion, remodeling in response to adjacent pathology, unrecognized and atypical herniation, and illusion from volume averaging on CT axial images. Mild symmetric posterior disc bulging may be a normal finding at L5�S1. Bulging may or may not represent pathologic change, physiologic variant, or normalcy. Bulging is not a form of herniation; discs known to be herniated should be diagnosed as herniation or, when appropriate, as specific types of herniation. See: herniated disc, protruded disc, extruded disc.

Calcified disc:�calcification within the disc space, not inclusive of osteophytes at the periphery of the disc space.

Cavitation:�spaces, cysts, clefts, or cavities formed within the nucleus and inner annulus from disc degeneration.

See vacuum disc.

Central zone:�zone within the vertebral canal between sagittal planes through the medial edges of each facet. Note: the center of the central zone is a sagittal plane through the center of the vertebral body. The zones to either side of the center plane are�right central�and�left central, which are preferred terms when the side is known, as when reporting imaging results of a specific disc. When the side is unspecified, or grouped with both right and left represented, the term�paracentral�is appropriate.

Chronic disc herniation:�a clinical distinction that a disc herniation is of long duration. There are no universally accepted definitions of the intervals that distinguish between acute, subacute, and chronic disc herniations. Serial MRIs revealing disc herniations that are unchanged in appearance over time may be characterized as chronic. Disc herniations associated with calcification or gas on CT may be suggested as being chronic. Even so, the presence of calcification or gas does not rule out an acutely herniated disc. Note that an acute disc herniation may be superimposed on a chronic disc herniation. Magnetic resonance imaging signal characteristics may, on rare occasion, allow differentiation of acute and chronic disc herniations [16,�59,�64]. In such cases, acutely herniated disc material may appear brighter than the disc of origin on T2-weighted sequences [46,�59,�61]. Also, see disc-osteophyte complex.

Claw osteophyte:�bony outgrowth arising very close to the disc margin, from the vertebral body apophysis, directed, with a sweeping configuration, toward the corresponding part of the vertebral body opposite the disc.

Collagenized disc or nucleus:�a disc in which the mucopolysaccharide of the nucleus has been replaced by fibrous tissue.

Communicating disc, communication (n), communicate (v)�(nonstandard): communication refers to interruption in the periphery of the disc annulus, permitting free passage of fluid injected within the disc to the exterior of the disc, as may be observed during discography. Not synonymous with ��uncontained.�� See ��contained disc�� and ��uncontained disc.��

Concentric fissure:�fissure of the annulus characterized by separation of annular fibers in a plane roughly parallel to the curve of the periphery of the disc, creating fluid-filled spaces between adjacent annular lamellae. See: radial fissures, transverse fissures, HIZ.

Contained herniation, containment (n), contain (v)

  1. Displaced disc tissue existing wholly within an outer perimeter of uninterrupted outer annulus or posterior longitudinal ligament.
  2. (Nonstandard) A disc with its contents mostly, but not wholly, within annulus or capsule.
  3. (Nonstandard) A disc with displaced elements contained within any investiture of the vertebral canal.

A disc that is less than wholly contained by annulus, but under a distinct posterior longitudinal ligament, is contained. Designation as ��contained�� or ��uncontained�� defines the integrity of the ligamentous structures surrounding the disc, a distinction that is often but not always possible by advanced imaging. On CT and MRI scans, contained herniations typically have a smooth margin, whereas uncontained herniations most often have irregular margins because the outer annulus and the posterior longitudinal ligament have been penetrated by the disc material [35,�37]. CT-discography also does not always allow one to distinguish whether the herniated components of a disc are contained, but only whether there is communication between the disc space and the vertebral canal.

Continuity:�connection of displaced disc tissue by a bridge of disc tissue, however thin, to tissue within the disc of origin.

Dallas classification�(of postdiscography imaging): commonly used grading system for the degree of annular fissuring seen on CT imaging of discs after discography. Dallas Grade 0 is normal; Grade 1: leakage of contrast into the inner one-third of the annulus; Grade 2: leakage of contrast into the inner two-thirds of the annulus; Grade 3: leakage through the entire thickness of the annulus; Grade 4: contrast extends circumferentially; Grade 5: contrast extravasates into the epidural space (See discogram, discography).

Dark disc�(colloquial, nonstandard): disc with nucleus showing decreased signal intensity on T2-weighted images (dark), usually because of desiccation of the nucleus secondary to degeneration. Also: black disc (colloquial, nonstandard). See: disc degeneration, Pfirrmann classification.

Degenerated disc, degeneration (n), degenerate (v)

  1. Changes in a disc characterized to varying degrees by one or more of the following: desiccation, cleft formation, fibrosis, and gaseous degradation of the nucleus; mucinous degradation, fissuring, and loss of integrity of the annulus; defects in and/or sclerosis of the end plates; and osteophytes at the vertebral apophyses.
  2. Imaging manifestation of such changes, including [35]�standard roentgenographic findings, such as disc space narrowing and peridiscal osteophytes, MRI disc findings (see Pfirrmann classification [61]), CT disc findings (see discogram/discography and Dallas classification [42]), and/or MRI findings of vertebral end plate and marrow reactive changes adjacent to a disc (see Modic classification [38]).

Degenerative disc disease�(nonstandard term when used as an imaging description): a condition characterized by manifestations of disc degeneration and symptoms thought to be related to those of degenerative changes. Note: causal connections between degenerative changes and symptoms are often difficult clinical distinctions. The term ��degenerative disc disease�� carries implications of illness that may not be appropriate if the only or primary indicators of illness are from imaging studies, and thus this term should not be used when describing imaging findings. The preferred term for description of imaging manifestations is ��degenerated disc�� or ��disc degeneration,�� rather than ��degenerative disc disease.��

Delamination:�separation of circumferential annular fibers along the planes parallel to the periphery of the disc, characterizing a concentric fissure of the annulus.

Desiccated disc

  1. Disc with reduced water content, usually primarily of nuclear tissues.
  2. Imaging manifestations of reduced water content of the disc, such as decreased (dark) signal intensity on T2-weighted images, or of apparent reduced water content, as from alterations in the concentration of hydrophilic glycosaminoglycans. See also: dark disc (colloquial, nonstandard).

Disc (disk):�complex structure composed of nucleus pulposus, annulus fibrosus, cartilaginous end plates, and vertebral body ring apophyseal attachments of annulus. Note: most English language publications use the spelling ��disc�� more often than ��disk�� [1,�20,�22,�69,�70]. Nomina Anatomica designates the structures as ��disci intervertebrales�� and Terminologia Anatomica as ��discus intervertebralis/intervertebral disc�� [22,�70]. (See ��disc level�� for naming and numbering of a particular disc).

Disc height:�The distance between the planes of the end plates of the vertebral bodies craniad and caudad to the disc. Disc height should be measured at the center of the disc, not at the periphery. If measured at the posterior or anterior margin of the disc on a sagittal image of the spine, this should be clearly specified as such.

Disc level:�Level of the disc and vertebral canal between axial planes through the bony end plates of the vertebrae craniad and caudad to the disc being described.

  1. A particular disc is best named by naming the region of the spine and the vertebra above and below it; for example, the disc between the fourth and fifth lumbar vertebral bodies is named ��lumbar 4�5,�� commonly abbreviated as L4�L5, and the disc between the fifth lumbar vertebral body and the first sacral vertebral body is called ��lumbosacral disc�� or ��L5�S1.�� Common anomalies include patients with six lumbar vertebrae or transitional vertebrae at the lumbosacral junction that require, for clarity, narrative explanation of the naming of the discs.
  2. (Nonstandard) A disc is sometimes labeled by the vertebral body above it; for example, the disc between L4 and L5 may be labeled ��the L4 disc��.
  3. Note: ��a motion segment,�� numbered in the same way, is a functional unit of the spine, comprising the vertebral body above and below, the disc, the facet joints, and the connecting soft tissues and is most often referenced with regard to the stability of the spine.

Disc of origin:�disc from which a displaced fragment originated. Synonym: parent disc. Note: since displaced fragments often contain tissues other than nucleus, disc of origin is preferred to nucleus of origin. Parent disc is synonymous, but more colloquial and nonpreferred.

Disc space:�space limited, craniad and caudad, by the end plates of the vertebrae and peripherally by the edges of the vertebral body ring apophyses, exclusive of osteophytes. Synonym: intervertebral disc space. See ��disc�� level for naming and numbering of discs.

Discogenic vertebral sclerosis:�increased bone density and calcification adjacent to the end plates of the vertebrae, craniad and caudad, to a degenerated disc, sometimes associated with intervertebral osteochondrosis. Manifested on MRI as Modic Type�III.

Discogram, discography:�a diagnostic procedure in which contrast material is injected into the nucleus of the disc with radiographic guidance and observation, often followed by CT/discogram. The procedure is often accompanied by pressure measurements and assessment of pain response (provocative discography). The degree of annular fissuring identified by discography may be defined by the Dallas classification and its modifications (See Dallas classification).

Disc-osteophyte complex:�intervertebral disc displacement, whether bulge, protrusion, or extrusion, associated with calcific ridges or ossification. Sometimes called a hard disc or chronic disc herniation (nonpreferred). Distinction should be made between ��spondylotic disc herniation,�� or ��calcified disc herniation�� (nonpreferred), the remnants of an old disc herniation; and ��spondylotic bulging disc,�� a broad-based bony ridge presumably related to chronic bulging disc.

Displaced disc�(nonstandard): a disc in which disc material is beyond the outer edges of the vertebral body ring apophyses (exclusive of osteophytes) of the craniad and caudad vertebrae, or, as in the case of intravertebral herniation, has penetrated through the vertebral body end plate.

Note: displaced disc is a general term that does not imply knowledge of the underlying pathology, cause, relationship to symptoms, or need for treatment. The term includes, but is not limited to, disc herniation and disc migration. See: herniated disc, migrated disc.

Epidural membrane:�See peridural membrane.

Extraforaminal zone:�the peridiscal zone beyond the sagittal plane of the lateral edges of the pedicles, having no well-defined lateral border, but definitely posterior to the anterior zone. Synonym: ��far lateral zone,�� also ��far-out zone�� (nonstandard).

Extraligamentous:�posterior or lateral to the posterior longitudinal ligament. Note: extraligamentous disc refers to displaced disc tissue that is located posterior or lateral to the posterior longitudinal ligament. If the disc has extruded through the posterior longitudinal ligament, it is sometimes called ��transligamentous�� or ��perforated�� and if through the peridural membrane, it is sometimes refined to ��transmembranous.��

Extruded disc, extrusion (n), extrude (v):�a herniated disc in which, in at least one plane, any one distance between the edges of the disc material beyond the disc space is greater than the distance between the edges of the base of the disc material beyond the disc space in the same plane or when no continuity exists between the disc material beyond the disc space and that within the disc space. Note: the preferred definition is consistent with the common image of extrusion, as an expulsion of material from a container through and beyond an aperture. Displacement beyond the outer annulus of the disc material with any distance between its edges greater than the distance between the edges of the base distinguishes extrusion from protrusion. Distinguishing extrusion from protrusion by imaging is best done by measuring the edges of the displaced material and the remaining continuity with the disc of origin, whereas relationship of the displaced portion to the aperture through which it has passed is more readily observed surgically. Characteristics of protrusion and extrusion may coexist, in which case the disc should be subcategorized as extruded. Extruded discs in which all continuity with the disc of origin is lost may be further characterized as ��sequestrated.�� Disc material displaced away from the site of extrusion may be characterized as ��migrated.�� See: herniated disc, migrated disc, protruded disc.

Note: An alternative scheme is espoused by some respected radiologists who believe it has better clinical application. This scheme defines extruded disc as synonymous with �uncontained disc� and does not use comparative measurements of the base versus the displaced material. Per this definition, a disc extrusion can be identified by the presence of a continuous line of low signal intensity surrounding the disc herniation. Future study will further determine the validity of this alternative definition. See: contained disc.

Far lateral zone:�the peridiscal zone beyond the sagittal plane of the lateral edge of the pedicle, having no well defined lateral border, but definitely posterior to the anterior zone. Synonym: ��extraforaminal zone.��

Fissure of annulus:�see annular fissure.

Foraminal zone:�the zone between planes passing through the medial and lateral edges of the pedicles. Note: the foraminal zone is sometimes called the ��pedicle zone�� (nonstandard), which can be confusing because pedicle zone might also refer to measurements in the sagittal plane between the upper and lower surfaces of a given pedicle that is properly called the ��pedicle level.�� The foraminal zone is also sometimes called the ��lateral zone�� (nonstandard), which can be confusing because the ��lateral zone�� can be confused with ��lateral recess�� (subarticular zone) and can also mean extraforaminal zone or an area including both the foraminal and extraforaminal zones.

Free fragment

  1. A fragment of disc that has separated from the disc of origin and has no continuous bridge of disc tissue with disc tissue within the disc of origin. Synonym: sequestrated disc.
  2. (Nonstandard) A fragment that is not contained within the outer perimeter of the annulus.
  3. (Nonstandard) A fragment that is not contained within the annulus, posterior longitudinal ligament, or peridural membrane.

Note: ��sequestrated disc�� and ��free fragment�� are virtually synonymous. When referring to the condition of the disc, categorization as extruded with subcategorization as sequestrated is preferred, whereas when referring specifically to the fragment, free fragment is preferred.

Gap of annulus:�see annular gap.

Hard disc (colloquial):�disc displacement in which the displaced portion has undergone calcification or ossification and may be intimately associated with apophyseal osteophytes. Note: the term ��hard disc�� is most often used in reference to the cervical spine to distinguish chronic hypertrophic and reactive changes at the periphery of the disc from the more acute extrusion of soft, predominantly nuclear tissue. See: chronic disc herniation, disc-osteophyte complex.

Herniated disc, herniation (n), herniated (v):�localized or focal displacement of disc material beyond the normal margin of the intervertebral disc space. Note: ��localized�� or ��focal�� means, by way of convention, less than 25% (90�) of the circumference of the disc.

Herniated disc material may include nucleus pulposus, cartilage, fragmented apophyseal bone, or annulus fibrosus tissue. The normal margins of the intervertebral disc space are defined, craniad and caudad, by the vertebral body end plates and peripherally by the edges of the vertebral body ring apophyses, exclusive of osteophytic formations. Herniated disc generally refers to displacement of disc tissues through a disruption in the annulus, the exception being intravertebral herniations (Schmorl nodes) in which the displacement is through the vertebral end plate. Herniated discs may be further subcategorized as protruded or extruded. Herniated disc is sometimes referred to as HNP, but the term ��herniated disc�� is preferred because displaced disc tissues often include cartilage, bone fragments, or annular tissues. The terms ��prolapse�� and ��rupture�� when referring to disc herniations are nonstandard and their use should be discontinued. Note: ��herniated disc�� is a term that does not imply knowledge of the underlying pathology, cause, relationship to symptoms, or need for treatment.

Herniated nucleus pulposus�(HNP, nonpreferred): see herniated disc.

High intensity zone (HIZ):�area of high intensity on T2-weighted MRIs of the disc, located commonly in the outer annulus. Note: HIZs within the posterior annular substance may indicate the presence of an annular fissure within the annulus, but these terms are not synonymous. An HIZ itself may represent the actual annular fissure or alternatively, may represent vascularized fibrous tissue (granulation tissue) within the substance of the disc in an area adjacent to a fissure. The visualization of an HIZ does not imply a traumatic etiology or that the disc is a source of pain.

Infrapedicular level:�the level between the axial planes of the inferior edges of the pedicles craniad to the disc in question and the inferior end plate of the vertebral body above the disc in question. Synonym: superior vertebral notch.

Internal disc disruption:�disorganization of structures within the disc. See intraannular displacement

Interspace:�see disc space.

Intervertebral chondrosis:�see intervertebral osteochondrosis.

Intervertebral disc:�see disc.

Intervertebral disc space:�see disc space.

Intervertebral osteochondrosis:�degenerative process of the disc and vertebral body end plates that is characterized by disc space narrowing, vacuum phenomenon, and vertebral body reactive changes. Synonym: osteochondrosis (nonstandard).

Intraannular displacement:�displacement of central, predominantly nuclear, tissue to a more peripheral site within the disc space, usually into a fissure in the annulus. Synonym: (nonstandard) intraannular herniation, intradiscal herniation. Note: intraannular displacement is distinguished from disc herniation, that is, herniation of disc refers to displacement of disc tissues beyond the disc space. Intraannular displacement is a form of internal disruption. When referring to intraannular displacement, it is best not to use the term ��herniation�� to avoid confusion with disc herniation.

Intraannular herniation (nonstandard):�see intraannular displacement.

Intradiscal herniation (nonstandard):�see intraannular displacement.

Intradural herniation:�disc material that has penetrated the dura so that it lies in an intradural extramedullary location.

Intravertebral herniation:�a disc displacement in which a portion of the disc projects through the vertebral end plate into the centrum of the vertebral body. Synonym: Schmorl node.

Lateral recess:�that portion of the subarticular zone that is medial to the medial border of the pedicle. It refers to the entire cephalad-caudad region that exists medial to the pedicle, where the same numbered thoracic or lumbar nerve root travels caudally before exiting the nerve root foramen under the caudal margin of the pedicle. It does not refer to the nerve root foramen itself. See also subarticular zone.

Lateral zone�(nonstandard): see foraminal zone.

Leaking disc�(nonstandard): see communicating disc.

Limbus vertebra:�separation of a segment of vertebral ring apophysis. Note: limbus vertebra may be a developmental abnormality caused by failure of integration of the ossifying apophysis to the vertebral body; a chronic herniation (extrusion) of the disc into the vertebral body at the junction of the fusing apophyseal ring, with separation of a portion of the ring with bony displacement; or a fracture through the apophyseal ring associated with intrabody disc herniation. This occurs in children before the apophyseal ring fuses to the vertebral body. In adults, a limbus vertebra should not be confused with an acute fracture. A limbus vertebra does not imply that there has been an injury to the disc or the adjacent apophyseal end plate.

Marginal osteophyte:�osteophyte that protrudes from and beyond the outer perimeter of the vertebral end plate apophysis.

Marrow changes (of vertebral body):�see Modic classification.

Migrated disc, migration (n), migrate (v)

  • 1.Herniated disc in which a portion of the extruded disc material is displaced away from the fissure in the outer annulus through which it has extruded in either sagittal or axial plane.
  • 2.(Nonstandard) A herniated disc with a free fragment or sequestrum beyond the disc level.

Note: migration refers to the position of the displaced disc material, rather than to its continuity with disc tissue within the disc of origin; therefore, it is not synonymous with sequestration.

Modic classification (Type I, II, and III)�[30]: a classification of degenerative changes involving the vertebral end plates and adjacent vertebral bodies associated with disc inflammation and degenerative disc disease, as seen on MRIs. Type I refers to decreased signal intensity on T1-weighted spin echo images and increased signal intensity on T2-weighted images, representing penetration of the end plate by fibrovascular tissue, inflammatory changes, and perhaps edema. Type I changes may be chronic or acute. Type II refers to increased signal intensity on T1-weighted images and isointense or increased signal intensity on T2-weighted images, indicating replacement of normal bone marrow by fat. Type III refers to decreased signal intensity on both T1-and T2-weighted images, indicating reactive osteosclerosis (See: discogenic vertebral sclerosis).

Motion segment:�the functional unit of the spine. See disc level.

Nonmarginal osteophyte:�an osteophyte that occurs at sites other than the vertebral end plate apophysis. See: marginal osteophyte.

Normal disc:�a fully and normally developed disc with no changes attributable to trauma, disease, degeneration, or aging. Note: many congenital and developmental variations may be clinically normal; that is, they are not associated with symptoms, and certain adaptive changes in the disc may be normal considering adjacent pathology; however, classification and reporting for medical purposes is best served if such discs are not considered normal. Note, however, that a disc finding considered not normal does not necessarily imply a cause for clinical signs or symtomatology; the description of any variation of the disc is independent of clinical judgment regarding what is normal for a given patient.

Nucleus of origin (nonpreferred):�the central, nuclear portion of the disc of reference, usually used to reference the disc from which the tissue has been displaced. Note: since displaced fragments often contain tissues other than the nucleus, disc of origin is preferred to nucleus of origin. Synonym: disc of origin (preferred), parent nucleus (nonpreferred).

Osteochondrosis:�see intervertebral osteochondrosis.

Osteophyte:�focal hypertrophy of the bone surface and/or ossification of the soft tissue attachment to the bone.

Paracentral:�in the right or left central zone of the vertebral canal. See central zone. Note: the terms ��right central�� or ��left central�� are preferable when speaking of a single site when the side can be specified, as when reporting the findings of imaging procedures. ��Paracentral�� is appropriate if the side is not significant or when speaking of mixed sites.

Parent disc�(nonpreferred): see disc of origin.

Parent nucleus�(nonpreferred): see nucleus of origin, disc of origin.

Pedicular level:�the space between the axial planes through the upper and lower edges of the pedicle. Note: the pedicular level may be further designated with reference to the disc in question as ��pedicular level above�� or ��pedicular level below�� the disc in question.

Perforated (nonstandard):�see transligamentous.

Peridural membrane:�a delicate, translucent membrane that attaches to the undersurface of the deep layer of the posterior longitudinal ligament, and extends laterally and posteriorly, encircling the bony spinal canal outside the dura. The veins of Batson plexus lie on the dorsal surface of the peridural membrane and pierce it ventrally. Synonym: lateral membrane, epidural membrane.

Pfirrmann classification:�a grading system for the severity of degenerative changes within the nucleus of the intervertebral disc. A Pfirrmann Grade I disc has a uniform high signal in the nucleus on T2-weighted MRI; Grade II shows a central horizontal line of low signal intensity on sagittal images; Grade III shows high intensity in the central part of the nucleus with lower intensity in the peripheral regions of the nucleus; Grade IV shows low signal intensity centrally and blurring of the distinction between nucleus and annulus; and Grade V shows homogeneous low signal with no distinction between nucleus and annulus.[61]

Prolapsed disc, prolapse (n, v)�(nonstandard): the term is variously used to refer to herniated discs. Its use is not standardized and the term does not add to the precision of disc description, so is regarded as nonstandard in deference to ��protrusion�� or ��extrusion.��

Protruded disc, protrusion (n), protrude (v):�1. One of the two subcategories of a ��herniated disc�� (the other being an ��extruded disc��) in which disc tissue extends beyond the margin of the disc space, involving less than 25% of the circumference of the disc margin as viewed in the axial plane. The test of protrusion is that there must be localized (less than 25% of the circumference of the disc) displacement of disc tissue and the distance between the corresponding edges of the displaced portion must not be greater than the distance between the edges of the base of the displaced disc material at the disc space of origin (See base of displaced disc). While sometimes used as a general term in the way herniation is defined, the use of the term ��protrusion�� is best reserved for subcategorization of herniation meeting the above criteria. 2. (nonstandard) Any or unspecified type of disc herniation.

Radial fissure:�disruption of annular fibers extending from the nucleus outward toward the periphery of the annulus, usually in the craniad-caudad (vertical) plane, although, at times, with axial horizontal (transverse) components. ��Fissure�� is the preferred term to the nonstandard term ��tear.�� Neither term implies knowledge of injury or other etiology. Note: Occasionally, a radial fissure extends in the transverse plane to include an avulsion of the outer layers of annulus from the apophyseal ring. See concentric fissures, transverse fissures.

Rim lesion (nonstandard): See limbus vertebra.

Rupture of annulus, ruptured annulus:�see annular rupture.

Ruptured disc, rupture�(nonstandard): a herniated disc. The term ��ruptured disc�� is an improper synonym for herniated disc, not to be confused with violent disruption of the annulus related to injury. Its use should be discontinued.

Schmorl node:�see intravertebral herniation.

Sequestrated disc, sequestration (n), sequestrate (v); (variant: sequestered disc):�an extruded disc in which a portion of the disc tissue is displaced beyond the outer annulus and maintains no connection by disc tissue with the disc of origin. Note: an extruded disc may be subcategorized as ��sequestrated�� if no disc tissue bridges the displaced portion and the tissues of the disc of origin. If even a tenuous connection by disc tissue remains between a displaced fragment and disc of origin, the disc is not sequestrated. If a displaced fragment has no connection with the disc of origin, but is contained within peridural membrane or under a portion of posterior longitudinal ligament that is not intimately bound with the annulus of origin, the disc is considered sequestrated. Sequestrated and sequestered are used interchangeably. Note: ��sequestrated disc�� and ��free fragment�� are virtually synonymous. See: free fragment. When referring to the condition of the disc, categorization as extruded with subcategorization as sequestered is preferred, whereas when referring specifically to the fragment, free fragment is preferred. See sequestrum.

Sequestrum (nonpreferred):�refers to disc tissue that has displaced from the disc space of origin and lacks any continuity with disc material within the disc space of origin. Synonym: free fragment (preferred). See sequestrated disc. Note: ��sequestrum�� (nonpreferred) refers to the isolated free fragment itself, whereas sequestrated disc defines the condition of the disc.

Spondylitis:�inflammatory disease of the spine, other than degenerative disease. Note: spondylitis usually refers to noninfectious inflammatory spondyloarthropathies.

Spondylosis:�1. Common nonspecific term used to describe effects generally ascribed to degenerative changes in the spine, particularly those involving hypertrophic changes to the apophyseal end plates and zygapophyseal joints. 2. (nonstandard) Spondylosis deformans, for which spondylosis is a shortened form.

Spondylosis deformans:�degenerative process of the spine involving the annulus fibrosus and vertebral body apophysis, characterized by anterior and lateral marginal osteophytes arising from the vertebral body apophyses, while the intervertebral disc height is normal or only slightly decreased. See degeneration, spondylosis.

Subarticular zone:�the zone, within the vertebral canal, sagittally between the plane of the medial edges of the pedicles and the plane of the medial edges of the facets and coronally between the planes of the posterior surfaces of the vertebral bodies and the anterior surfaces of the superior facets. Note: the subarticular zone cannot be precisely delineated in two-dimensional depictions because the structures that define the planes of the zone are irregular. The lateral recess is that portion of the subarticular zone defined by the medial wall of the pedicle, where the same numbered nerve root traverses before turning under the inferior wall of the pedicle into the foramen.

Subligamentous:�beneath the posterior longitudinal ligament. Note: although the distinction between outer annulus and posterior longitudinal ligament may not always be identifiable, subligamentous has meaning distinct from subannular when the distinction can be made. When the distinction cannot be made, subligamentous is appropriate. Subligamentous contrasts to extraligamentous, transligamentous, or perforated. See extraligamentous, transligamentous.

Submembranous:�enclosed within the peridural membrane. Note: with reference to the displaced disc material, characterization of a herniation as submembranous usually infers that the displaced portion is extruded beyond annulus and posterior longitudinal ligament so that only the peridural membrane invests it.

Suprapedicular level:�the level within the vertebral canal between the axial planes of the superior end plate of the vertebra caudad to the disc space in question and the superior margin of the pedicle of that vertebra. Synonym: inferior vertebral notch.

Syndesmophytes:�thin and vertically oriented bony outgrowths extending from one vertebral body to the next and representing ossification within the outer portion of the annulus fibrosus.

Tear of annulus, torn annulus�(nonstandard): see annular tear.

Thompson classification:�a five-point grading scale of degenerative changes in the human intervertebral disc, from 0 (normal) to 5 (severe degeneration), based on gross pathologic morphology of midsagittal sections of the lumbar spine.

Traction osteophytes:�bony outgrowth arising from the vertebral body apophysis, 2 to 3 mm above or below the edge of the intervertebral disc, projecting in a horizontal direction.

Transligamentous:�displacement, usually extrusion, of disc material through the posterior longitudinal ligament. Synonym: (nonstandard) (perforated). See also extraligamentous, transmembranous.

Transmembranous:�displacement of extruded disc material through the peridural membrane.

Transverse fissure:�fissure of the annulus in the axial (horizontal) plane. When referring to a large fissure in the axial plane, the term is synonymous with a horizontally oriented radial fissure. Often ��transverse fissure�� refers to a more limited, peripheral separation of annular fibers including attachments to the apophysis. These more narrowly defined peripheral fissures may contain gas visible on radiographs or CT images and may represent early manifestations of spondylosis deformans. See annular fissure, concentric fissure, radial fissure.

Uncontained disc:�displaced disc material that is not contained by the outer annulus and/or posterior longitudinal ligament. See discussion under contained disc.

Vacuum disc:�a disc with imaging findings characteristic of gas (predominantly nitrogen) in the disc space, usually a manifestation of disc degeneration.

Vertebral body marrow changes:�reactive vertebral body signal changes associated with disc inflammation and disc degeneration, as seen on MRIs. See Modic classification.

Vertebral notch (inferior):�incisura of the upper surface of the pedicle corresponding to the lower part of the foramen (suprapedicular level).

Vertebral notch (superior):�incisura of the under surface of the pedicle corresponding to the upper part of the foramen (infrapedicular level).

Supplementary Appendix

Appendix

A herniated disc most commonly develops as a result of age-related wear and tear or degeneration on the spine. In children and young adults, the intervertebral discs have a much higher water content. As we age, however, the water content of the intervertebral discs decreases and these begin to shrink while the spaces between the vertebra gets narrower, ultimately turning less flexible and becoming more prone to disc herniation. Proper diagnosis and treatment are essential to avoid further symptoms of low back pain. The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

Curated by Dr. Alex Jimenez

References

  1. Fardon, D.F. and Milette, P.C.�Nomenclature and classification of lumbar disc pathology: recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology.�Spine.�2001;�26:�E93�E113
  2. Stadnik, T.W., Lee, R.R., Coen, H.L. et al.�Annular tear and disk herniation: prevalence and contrast enhancement on MR images in the absence of low back pain or sciatica.�Radiology.�1998;�206:�49�55
  3. Mink, J.H.�Terminology of lumbar spine disorders, the problem… and a solution.�California Managed Imaging Medical Group Publication,�Burlingame, CA;�1993
  4. Murtagh, F.R.�The importance of being Earnest-about disk nomenclature.�Am J Neuroradiol.�2007;28:�1�2
  5. in:�E.J. Nordby, M.D. Brown, E.D. Dawson, (Eds.)�A glossary on spinal terminology.�American Academy of Orthopaedic Surgeons,�Chicago;�1985:�31�32
  6. Bonneville, J.F. and Dietemann, J.L.�L�imagerie dans les sciatiques.�Rev Prat (Paris).�1992;�42:�554�566
  7. Brant-Zawadzki, M.N. and Jensen, M.C.�Imaging corner: spinal nomenclature. Inter- and intra-observer variability in interpretation of lumbar disc abnormalities: a comparison of two nomenclatures.�Spine.�1995;�20:�388�390
  8. Breton, G.�Is that a bulging disc, a small herniation, or a moderate protrusion?.�Can Assoc Radiol J.�1991;�42:�318
  9. Fardon, D.F., Herzog, R.J., and Mink, J.H.�Nomenclature of lumbar disc disorders.�in:�S.R. Garfin, A.R. Vaccaro (Eds.)�Orthopaedic knowledge update: spine.�American Academy of Orthopaedic Surgeons,Rosemont, IL;�1997:�A3�A14
  10. Milette, P.C.�The proper terminology for reporting lumbar intervertebral disc disorders.�Am J Neuroradiol.�1997;�18:�1859�1866
  11. Fardon DF, White AH, Wiesel S. Diagnostic terms and conservative treatments favored for lumbar disorders by spine surgeons in North America. Presented at the first annual meeting, North American Spine Society, Lake George, New York,�1986.
  12. Arana, E., Royuela, A., Kovacs, F.M. et al.�Lumbar spine: agreement in�the interpretation of 1.5T MR images by using the Nordic Modic�consensus group classification form.�Radiology.�2010;�254:�809�817
  13. Bonneville, J.F.�Plaidoyer pour une classification par l�image des hernies discales lombaires: la carte-image.�Rev Im Med.�1990;�2:�557�560
  14. Fardon, D.F., Pinkerton, S., Balderston, R. et al.�Terms used for diagnosis by English speaking spine surgeons.�Spine.�1993;�18:�1�4
  15. Farfan, H.F., Huberdeau, R.M., and Dubow, H.I.�Lumbar intervertebral disc degeneration: the influence of geometrical features on the pattern of disc degeneration: a post-mortem study.�J Bone Joint Surg [Am].�1972;�54:�492�510
  16. Milette, P.C., Fontaine, S., Lepanto, L. et al.�Differentiating lumbar disc protrusions, disc bulges, and discs with normal contour but abnormal signal intensity.�Spine.�1999;�24:�44�53
  17. Milette, P.C., Melancon, D., Dupuis, P. et al.�A simplified terminology for abnormalities of the lumbar disc.�Can Assoc Radiol J.�1991;�42:�319�325
  18. Taveras, J.M.�Herniated intervertebral disk. A plea for a more uniform terminology.�Am J Neuroradiol.�1989;�10:�1283�1284
  19. Thompson, J.P., Pearce, R.H., Schechter, M.T. et al.�Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc.�Spine.�1990;�15:�411�415
  20. Fardon, D.F., Balderston, R.A., Garfin, S.R. et al.�Disorders of the spine, a coding system for diagnoses.�Hanley and Belfus,�Philadelphia;�1991:�20�22
  21. Herzog, R.J.�The radiologic assessment for a lumbar disc herniation.�Spine.�1996;�21:�19S�38S
  22. International anatomical nomenclature committee approved by Eleventh International Congress of anatomists. Nomina anatomica.�5th ed.�Waverly Press,�Baltimore, MD;�1983:�A23
  23. Jarvik, J.G., Haynor, D.R., Koepsell, T.D. et al.�Interreader reliability for a new classification of lumbar disc abnormalities.�Acad Radiol.�1996;�3:�537�544
  24. Ketler, A. and Wilke, H.J.�Review of existing grading systems for cervical or lumbar disc and facet joint degeneration.�(with Erratum note in Eur Spine J 15(6); 729)Eur Spine J.�2006;�15:�705�718
  25. Kieffer, S.A., Stadlan, E.M., Mohandas, A., and Peterson, H.O.�Discographic-anatomical correlation of developmental changes with age in the intervertebral disc.�Acta Radiol [Diagn] (Stockholm).�1969;�9:�733�739
  26. Bundschuh, C.V.�Imaging of the postoperative lumbosacral spine.�Neuroimaging Clin N Am.�1993;�3:�499�516
  27. Bartynski, W.S., Rothfus, W.E., and Kurs-Lasky, M.�Post-diskogram CT features of lidocaine-sensitive and lidocaine-insensitive severely painful disks at provocation lumbar diskography.�AJNR.�2008;�29:�1455�1460
  28. Ford, L.T., Gilula, L.A., Murphy, W.A., and Gado, M.�Analysis of gas in vacuum lumbar disc.�AJR.�1977;�128:�1056�1057
  29. Modic, M.T. and Herfkens, R.J.�Intervertebral disc: normal age-related changes in MR signal intensity.�Radiology.�1990;�177:�332�334
  30. Modic, M.T., Masaryk, T.J., Ross, J.S., and Carter, J.R.�Imaging of degenerative disc disease.Radiology.�1988;�168:�177�186
  31. Resnick, D. and Niwayama, G.�Degenerative disease of the spine.�in:�D. Resnick (Ed.)�Diagnosis of bone and joint disorders.�3rd ed.�WB Saunders,�Philadelphia;�1995:�1372�1462
  32. Eckert, C. and Decker, A.�Pathological studies of intervertebral discs.�J Bone Joint Surg.�1947;�29:�447�454
  33. Marinelli, N.L., Haughton, V.M., and Anderson, P.A.�T2 relaxation times correlated with stage of lumbar disc degeneration and patient age.�AJNR.�2010;�31:�1278�1282
  34. Yasuma, T., Koh, S., Okamura, T. et al.�Histologic changes in aging lumbar intervertebral discs.�J Bone Joint Surg [Am].�1990;�72:�220�229
  35. Oh, K.-J., Lee, J.W., Kwon, E.T. et al.�Comparison of MR imaging findings between extraligamentous and subligamentous disk herniations in the lumbar spine.�AJNR.�2013;�34:�683�687
  36. United States Department of Health and Human Services. Publication no (PHS) 91-1260, International Classification of Diseases Ninth Revision, clinical modification fifth edition, Washington, DC, 1998; Adapted and published by Practice Management Information Corporation, Los Angeles, and by St. Anthony�s Publishing Company, Alexandria, Virginia,�1999.
  37. Williams, A.L., Haughton, V.M., Daniels, D.L., and Grogan, J.P.�Differential CT diagnosis of extruded nucleus pulposus.�Radiology.�1983;�148:�141�148
  38. Modic, M.T.�Degenerative disorders of the spine.�in:�Magnetic resonance imaging of the spine.�Yearbook Medical,�New York;�1989:�83�95
  39. Boden, S.D., Davis, D.O., Dina, T.S. et al.�Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation.�J Bone Joint Surg.�1990;�72:�403�408
  40. Yu, S., Haughton, V.M., Sether, L.A., and Wagner, M.�Anulus fibrosus in bulging intervertebral disks.Radiology.�1988;�169:�761�763
  41. Yasuma, T., Makino, E., Saito, S., and Inui, M.�Histologic development of intervertebral disc herniation.�J Bone Joint Surg.�1986;�68A:�1066�1073
  42. Sachs, B.L., Vanharanta, H., Spivey, M.A. et al.�Dallas discogram description. A new classification of CT/discography in low-back disorders.�Spine.�1987;�12:�287�294
  43. Carragee, E.J., Paragioudakis, S.J., and Khurana, S.�Lumbar high-intensity zone and discography in subject without low back problems.�Spine.�2000;�25:�2987�2992
  44. Schellhas, K.P., Pollei, S.R., Gundry, C.R. et al.�Lumbar disc high intensity zone. Correlation of magnetic resonance imaging and discography.�Spine.�1996;�21:�79�86
  45. Munter, F.M., Wasserman, B.A., Wu, H.M., and Yousem, D.M.�Serial MR imaging of annular tears in lumbar intervertebral disks.�Am J Neuroradiol.�2002;�23:�1105�1109
  46. Quencer, R.M.�The abnormal annulus fibrosus: can we infer the acuteness of an annular injury?.Am J Neuroradiol.�2002;�23:�1069
  47. Czervionke, L.F.�Lumbar intervertebral disc disease.�Neuroimaging Clin N Am.�1993;�:�465�485
  48. Rothman, S.L.G. and Chafetz, N.I.�An anatomic explanation for overreading disc herniations on MRI imaging studies of the lumbar spine: poster presentation.�American Society of Neuroradiology,Chicago, Illinois;�1995
  49. Twomey, L.T. and Taylor, J.R.�Age changes in lumbar vertebrae and intervertebral discs.�Clin Orthop.�1987;�224:�97�104
  50. Coventry, M.B., Ghormley, R.K., and Kernohan, J.W.�The intervertebral disc: its microscopic anatomy and pathology.�(233�7)J Bone Joint Surg.�1945;�27:�105�112
  51. Farfan, H.F.�Mechanical disorders of the low back.�Lea & Febiger,�;�1973:�141
  52. Hirsch, C. and Schajowicz, F.�Studies in structural changes in the lumbar annulus fibrosus.�Acta Orthop Scand.�1952;�22:�184�231
  53. Ito, T., Yamada, M., Ikuta, F. et al.�Histologic evidence of absorption of sequestration-type herniated disc.�Spine.�1996;�21:�230�234
  54. Liebscher, T., Haefeli, M., Wuertz, K. et al.�Age-related variation in cell density of human lumbar intervertebral disc.�Spine.�2011;�36:�153�159
  55. Nathan, H.�Osteophytes of the vertebral column. An anatomical study of their development according to age, race, and sex, with consideration as to their etiology and significance.�J Bone Joint Surg Am.�1962;�44:�243�268
  56. Sether, L.A., Yu, S., Haughton, V.M., and Fischer, M.E.�Intervertebral disk: normal age-related changes in MR signal intensity.�Radiology.�1990;�177:�385�388
  57. Twomey, L.T. and Taylor, J.R.�Age changes in lumbar intervertebral discs.�Acta Orthop Scand.�1985;56:�496�499
  58. Schmorl, G. and Junghanns, H.�(American Ed, 1971. Transl. by EF Besemann) (186�98)in:�The human spine in health and disease.�2nd.�Grune and Stratton,�New York;�1971:�141�148
  59. Pritzker, K.P.H.�Aging and degeneration in the lumbar intervertebral disk.�Orthop Clin North Am.�1977;�8:�65�77
  60. Ross, J.S.�Babel 2.0.�Radiology.�2010;�254:�640�641
  61. Pfirrmann, C.W., Metzdorf, A., Zanetti, M. et al.�Magnetic resonance classification of lumbar intervertebral disc degeneration.�Spine.�2001;�26:�1873�1878
  62. Griffith, J.F., Wang, W.X., and Antonio, G.E.�Modified Pfirrmann grading system for lumbar intervertebral disc degeneration.�Spine.�2007;�32:�E708�E712
  63. Yu, S., Haughton, V.M., Sether, L.A. et al.�Criteria for classifying normal and degenerated lumbar intervertebral disks.�Radiology.�1989;�170:�323�326
  64. Brock, M., Patt, S., and Mayer, H.M.�The form and structure of the extruded disc.�Spine.�1992;�17:�1457�1461
  65. Williams, A.L.�CT diagnosis of degenerative disc disease. The bulging annulus.�Radiol Clin North Am.�1983;�21:�289�300
  66. Masaryk, T.J., Ross, J.S., Modic, M.T. et al.�High-resolution MR imaging of sequestered lumbar intervertebral discs.�Am J Neuroradiol.�1988;�9:�351�358
  67. Wiltse, L.L., Berger, P.E., and McCulloch, J.A.�A system for reporting the size and location of lesions in the spine.�Spine.�1997;�22:�1534�1537
  68. Saal, J.A., Saal, J.S., and Herzog, R.J.�The natural history of lumbar intervertebral disc extrusions treated nonoperatively.�Spine.�1990;�15:�683�686
  69. Fardon DF. Disc nomenclature: current journal practices. Poster presentation, American Orthopaedic Association 110th annual meeting, Boca Raton, FL,�1997.
  70. Federative Committee on Anatomic Terminology.�Terminologia anatomica.�George Thieme Verlag,Struttgart;�1998:�27
Green Call Now Button H .png

Additional Topics: Acute Back Pain

Back pain�is one of the most prevalent causes of disability and missed days at work worldwide. Back pain attributes to the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments, and muscles, among other soft tissues. Because of this, injuries and/or aggravated conditions, such as�herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief.

blog picture of cartoon paper boy

EXTRA IMPORTANT TOPIC: Sciatica Pain Chiropractic Therapy

Effectiveness of Mindfulness on Herniated Discs & Sciatica in El Paso, TX

Effectiveness of Mindfulness on Herniated Discs & Sciatica in El Paso, TX

Chronic low back pain is the second most common cause of disability in the United States. Approximately 80 percent of the population will experience back pain at least once throughout their lifetime. The most prevalent causes of chronic low back pain include: herniated discs, sciatica, injuries from lifting heavy objects or any other non-specific spine injury. However, people will often react differently to their symptoms. These differing responses are due to people’s psychological attitudes and outlooks.

 

Chronic Low Back Pain and the Mind

 

Stress has been associated with increased pain but your own personal health beliefs and coping strategies can influence your own perception of pain as well. That’s because psychological vulnerabilities can alter your brain and intensify the pain. Additionally, the pain itself can rewire the brain.�When pain first occurs, it impacts the pain-sensitivity brain circuits. When pain becomes persistent, the associated brain activity switches from the pain circuits to circuits that process emotions. That’s why it’s believed that stress, anxiety and depression can cause as well as worsen chronic low back pain.

 

Managing the Scourge of Chronic Low Back Pain

 

Fortunately, several stress management methods and techniques can help improve chronic low back pain. Mindfulness is the most common treatment with the best supporting evidence towards improving and managing chronic pain.�A recent study demonstrated that mindfulness-based stress reduction, or MBSR, including mindfulness meditation and other mindfulness interventions, can help reduce back pain and enhance psychological control by increasing brain blood flow to the frontal lobe. Practicing mindfulness involves activating a brain relaxation pathway by intentionally ignoring mental “chatter” and focusing on your breathing.�Cognitive behavioral therapy, or CBT can also be helpful for chronic low back pain. Cognitive behavioral therapy can prevent an acute injury from progressing to chronic low back pain. Hypnosis may also help relieve chronic low back pain. However, CBT and hypnosis have weaker evidence to support their effectiveness on back pain.

 

Mind Over Matter

 

So while it may seem that chronic low back pain is all “in your head”, research studies have demonstrated that stress can influence painful symptoms.��Mind� includes �matter,� especially when you consider that the physical �matter� of the brain plays a major role in mindset changes. This is especially true when it comes to the brain-based changes related to low back pain. The purpose of the article below is to demonstrate the effectiveness of mindfulness meditation on chronic low back pain.

 

Effectiveness of Mindfulness Meditation on Pain and Quality of Life of Patients with Chronic Low Back Pain

 

Abstract

 

  • Background and aim: Recovery of patients with chronic low back pain (LBP) is depended on several physical and psychological factors. Therefore, the authors aimed to examine the efficacy of mindfulness based stress reduction (MBSR) as a mind-body intervention on quality of life and pain severity of female patients with nonspecific chronic LBP (NSCLBP).
  • Methods: Eighty-eight patients diagnosed as NSCLBP by physician and randomly assigned to experimental (MBSR+ usual medical care) and the control group (usual medical care only). The subjects assessed in 3 times frames; before, after and 4 weeks after intervention by Mac Gil pain and standard brief quality of life scales. Data obtained from the final sample analyzed by ANCOVA using SPSS software.
  • Results: The findings showed MBSR was effective in reduction of pain severity and the patients who practiced 8 sessions meditation reported significantly lower pain than patients who only received usual medical care. There was a significant effect of the between subject factor group (F [1, 45] = 16.45, P < 0.001) and (F [1, 45] = 21.51, P < 0.001) for physical quality of life and (F [1, 45] = 13.80, P < 0.001) and (F [1, 45] = 25.07, P < 0.001) mental quality of life respectively.
  • Conclusion: MBSR as a mind-body therapy including body scan, sitting and walking meditation was effective intervention on reduction of pain severity and improvement of physical and mental quality of life of female patients with NSCLBP.
  • Keywords: Chronic low back pain, mindfulness based stress reduction, pain, quality of life, SF-12

 

Introduction

 

In nonspecific low back pain (NSLBP) the pain is not related to conditions such as fractures, spondylitis, direct trauma, or neoplastic, infectious, vascular, metabolic, or endocrine-related although it is a cause of limitation in daily activities due to actual pain or fear of pain.[1] Unfortunately, the majority of LBP patients (80�90%) suffers from nonspecific LBP which leads to considerable pain-related disability and limitation in daily activities.[1,2] Chronic LBP is not only prevalent, but is also a source of great physical disability, role impairment, and diminished psychological well-being and quality of life.[1]

 

Prior to the current accepted biopsychosocial model, the biomedical model dominated all illness conceptualizations for almost 300 years and still dominates in the popular imagination. First proposed by Engel (1977) the biopsychosocial model acknowledges biological processes but also highlights the importance of experiential and psychological factors in pain. The famous gate control theory of pain[3] also proposed that the brain plays a dynamic role in pain perception as opposed to being a passive recipient of pain signals. They suggested psychological factors can inhibit or enhance sensory flow of pain signals and thus influence the way brain ultimately responds to painful stimulation.[4] If mind processes can change the way the brain processes pain then this holds tremendous potential for psychological intervention to produce reduced pain signals from the brain.

 

Kabat-Zinn’s et al. (1986) described the process of pain reduction in his paper on mindfulness and meditation. The process of pain reduction occurred by �an attitude of detached observation toward a sensation when it becomes prominent in the field of awareness and to observe with similar detachment the accompanying but independent cognitive processes which lead to evaluation and labeling of the sensation as painful, as hurt.� Thus, by �uncoupling� the physical sensation, from the emotional and cognitive experience of pain, the patient is able to reduce the pain.[5] The patients� descriptions of distraction from pain, identifying maladaptive coping strategies toward pain and heightened awareness of pain sensation leading to behavioral changes are examples of how pain is unassociated with emotion, cognition, and sensation [Figure 1]. Therefore recently these theories attracted several researchers who are working on pain.

 

Figure 1 Consort Diagram

Figure 1: Consort diagram.

 

Mindfulness meditation has roots in Buddhist Vipassana philosophy and practice and has been independently adopted within clinical psychology in Western societies.[6,7,8,9] Recently in Netherlands Veehof et al. conducted a systematic review of controlled and noncontrolled studies on effectiveness of acceptance-based interventions such as mindfulness-based stress reduction program, acceptance and commitment therapy for chronic pain. Primary outcomes measured were pain intensity and depression. Secondary outcomes measured were anxiety, physical well-being and quality of life.[10] Twenty-two studies randomized controlled studies clinical controlled studies without randomization and noncontrolled studies were included totaling 1235 patients with chronic pain. An effect size on pain of (0.37) was found in the controlled studies. The effect on depression was (0.32). The authors concluded that ACT and mindfulness interventions had similar effects to other cognitive-behavioral therapy interventions and that these types of interventions may be a useful alternative or adjunct to current therapies. Chiesa and Serretti also conducted another systematic review on 10 mindfulness interventions.[11] The main findings were that these interventions produced small nonspecific effects in terms of reducing chronic pain and symptoms of depression. When compared to active control groups (support and education) no additional significant effects were noted.

 

In summary, there is a need for further studies into the specific effects of mindfulness studies on chronic pain. Regarding as the researcher knowledge efficacy of mindfulness has not been explored on quality of life of chronic pain patients in Iran. The authors aimed to examine the impact of mindfulness based stress reduction (MBSR) protocol designed for pain management on quality of life and pain of a homogeneous sample of females with nonspecific chronic LBP (NSCLBP) in comparison of the usual medical care group.

 

Methods

 

Sampling

 

Out of initial female samples aged 30�45 (n = 155) who diagnosed as chronic NSLBP by physicians in physiotherapy centers of Ardebil-Iran at least 6 months before. Only 88 met inclusion criteria and gave consent to participate in the research program. Patients were randomly assigned in small groups to receive MBSR plus medical usual care (experimental group) and medical usual care (control group). Some patients dropped during and after the treatment. The final sample of the study comprised of 48 females.

 

Inclusion Criteria

 

  • Age 30�45 years
  • Being under medical treatments like physiotherapy and medicine
  • Medical problem-history of NSCLBP and persisting pain for at least 6 months
  • Language – Persian
  • Gender – female
  • Qualification – educated at least up to high school
  • Consent and willingness to alternative and complementary therapies for pain management.

 

Exclusion Criteria

 

  • History of spine surgery
  • Combination with other chronic disease
  • Psychotherapy in the last 2 years excluded
  • Unavailability in next 3 months.

 

The proposal of study approved by the scientific committee of �Panjab University,� psychology department and all patients signed consent to participate in the present study. The study approved in India (in the university which researcher done her PhD), but conducted in Iran because researcher is from Iran originally and there was language and culture difference problem. Approval from Institutional Ethics Committee of physiotherapy center of Ardebil was obtained in Iran also to carry out the research.

 

Design

 

The study made use of the pre-post quasi time series experimental design to assess the efficacy of MBSR in 3 times frames (before-after-4 weeks after the program). A MBSR program administered one session per week for explaining techniques, practice, and feedback and share their experience for 8 weeks beside 30�45 min� daily home practice [Table 1]. The intervention was conducted in three groups included 7�9 participants in each group. The process of framing the program was based on the quid lines provided by Kabat-Zinn, Morone (2008a, 2008b and 2007)[6,12,13,14] and some adaptation done for the patients involved in the study. The control group was not offered any type of intervention in the research project. Consequently, they underwent the normal routines in healthcare including physiotherapy and medicine.

 

Table 1 Content of MBSR Sessions

Table 1: Content of MBSR sessions.

 

Intervention

 

The sessions conducted in a private physiatrist clinic near to physiotherapy centers. Sessions took 8 weeks, and each session lasted for 90 min. Meditation transformed the patients� awareness through the techniques of breathing and mindfulness. The intervention was conducted in small groups included 7�9 participants in each group. Table 1 for details of session’s content which prepared according books and previous studies.[6,12,13,14]

 

Assessments

 

The questionnaire completed by patients before the intervention, after intervention and 4 weeks after the interventions. The receptor of physiotherapy centers conducted the assessment. The receptors trained before conducting the assessment, and they were blind for the hypothesis of the study. The following are used for assessment of participants:

 

McGill Pain Questionnaire

 

The main component of this scale consists of 15 descriptive adjectives, 11 sensory including: Throbbing, Shooting, Stabbing, Sharp, Cramping, Gnawing, Hot-burning, Aching, Heavy, Tender, Splitting, and four affective including: Tiring-exhausting, Sickening, Fearful, Punishing-cruel, which are rated by the patients according to their severity on a four point scale (0 = none, 1 = mild, 2 = moderate, 3 = severe), yielding three scores. The sensory and affective scores are calculated by adding sensory and affective item values separately, and the total score is the sum of the two above-mentioned scores. In this study, we just used pain rating index with total scores. Adelmanesh et al.,[15] translated and validated Iran version of this questionnaire.

 

Quality of Life (SF-12)

 

The quality of life assessed by the validated SF-12 Health Survey.[16] It was developed as a shorter, quicker-to-complete alternative to the SF-36v2 Health Survey and measures the same eight health constructs. The constructs are: Physical functioning; role physical; bodily pain; general health; vitality; social functioning; role emotional; and mental health. Items have five response choices (for example: All of the time, most of the time, some of the time, a little of the time, none of the time), apart from two questions for which there are three response choices (for the physical functioning domain). Four items are reverse scored. Summed raw scores in the eight domains are transformed to convert the lowest possible score to zero and the highest possible score to 100. Higher scores represent better health and well-being. The standard form SF-12 uses a time frame of the past 4 weeks.[16]

 

The Iranian version of SF-12 in Montazeri et al. (2011) study showed satisfactory internal consistency for both summary measures, that are the Physical Component Summary (PCS) and the Mental Component Summary (MCS); Cronbach’s ? for PCS-12 and MCS-12 was 0.73 and 0.72, respectively. The known – group comparison showed that the SF-12 discriminated well between men and women and those who differed in age and educational status (P < 0.001) 2.5.[17]

 

Statistical Analysis

 

The SPSS 20 (Armonk, NY: IBM Corp) was used to analysis of data. For descriptive analysis mean, standard deviation (SD) used. For performing ANCOVA, the pretest scores were used as covariates.

 

Results

 

The mean age was 40.3, SD = 8.2. 45% of females were working and the rest were a house wife. 38% had two children, 55% one child and the rest did have children. All were married and from middle-income families. 9.8% of patients reported very low physical quality of life, and the rest were low (54.8%) and moderate (36.4%). This was 12.4%, 40% and 47.6% very low, low and medium levels of mental quality of life in patients participated in our study (n = 48). The mean and SD of patients in MBSR and control group showed a decrease in pain and increase in mental and physical quality of life [Table 2].

 

Table 2 Mean and SD of Patients

Table 2: Mean and SD of patients in pain, mental and physical quality of life in baseline, after intervention and 4 weeks after intervention.

 

Comparative Results

 

Pain. The results indicated that after adjusting for pretest scores, there was a significant effect of the between subject factor group (F [1, 45] =110.4, P < 0.001) and (F [1, 45] =115.8, P < 0.001). Adjusted post-test scores suggest that the intervention had an effect on increasing the pain scores of the NSCLBP patients who received the MBSR as compared to those who were in the control group and did not receive any mind-body therapy [Table 3].

 

Table 3 The Result of Comparison of Pain and Quality of Life

Table 3: The result of comparison of pain and quality of life of MBSR and control group after intervention (time 1) and 4 weeks after intervention (time 2).

 

Quality of life. The results shows that after adjusting for pretest scores, there was a significant effect of the between subject factor group (F [1, 45] =16.45, P < 0.001) and (F [1, 45] =21.51, P < 0.001). Adjusted post-test scores suggest that the intervention had an effect on increasing the physical quality of life scores of the NSCLBP patients who received the MBSR as compared to those who were in the control group and did not receive any mind-body therapy [Table 3].

 

The results also showed that after adjusting for pretest scores, there was a significant effect of the between subject factor group (F [1, 45] =13.80, P < 0.001) and (F [1, 45] =25.07, P < 0.001). Adjusted post-test scores suggest that the intervention had an effect on increasing the mental quality of life scores of the NSCLBP patients who received the MBSR as compared to those who were in the control group and did not receive any psychological therapy [Table 3].

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

Mindfulness is the psychological process which involves�activating a brain relaxation pathway by intentionally ignoring mental “chatter”, bringing one’s attention to experiences occurring in the present moment and focusing on your breathing. Mindfulness can commonly be achieved through the practice of meditation and stress management methods and techniques. According to research studies, mindfulness is an effective treatment option which can help decrease chronic low back pain. Researchers have previously compared mindfulness-based stress reduction, or MBSR, with cognitive behavioral therapy to determine whether these mindfulness interventions could improve chronic low back pain. The following article was also conducted to determine if mindfulness meditation is an effective treatment option for chronic low back pain. The results of both research studies were promising, demonstrating that mindfulness can be more effective for chronic low back pain than traditional treatment options as well as the use of drugs and/or medication.

 

Discussion

 

The results showed that the experimental group who were subjected to the MBSR showed a significant improvement in their overall pain severity, physical and mental quality of life scores due to the training received as compared to the control group who received only usual medical care. The program reduced pain perception and enhanced both physical and mental quality of life and impacted on the experimental group clearly in comparison of the usual medical care. Baranoff et al., 2013,[18] Nykl�cek and Kuijpers, 2008,[19] and Morone (2) et al., 2008[20] reported the same results.

 

Kabat-Zinn et al. believed the process of pain reduction occurred by �uncoupling� the physical sensation, from the emotional and cognitive experience of pain, the patient is able to reduce the pain.[21] In the current study, the participants uncoupled the different components of the experience of pain. Breathing exercise distract their mind from pain to breathing and mindful living made them aware about maladaptive coping strategies.

 

In the first session, information given about the fundamentals of mindfulness, describing the mindfulness supporting attitudes included being nonjudgmental toward thought, emotions or sensations as they arise, patience, nonstriving, compassion, acceptance and curiosity gave them a wisdom and believe that they are suffering from painful thoughts more than the pain itself.

 

Furthermore, during body scan practice they learned to see their real body conditions, as it truly was, without trying to change the reality. Accepting their chronic illness condition helped them see the other possible abilities in their social and emotional roles. In fact the body scan practice helped them change the relationship with their body and pain. Through direct experience in body scan, one realizes the interconnection between the state of the mind and the body, and thereby increases patients� self-control over their life. Mindful living techniques also improved their quality of life by teaching them to pay more attention to their daily life necessities, which led to the experience of subtle positive emotions, like peace and joy, self-esteem and confidence. Furthermore, they appreciated positive things. Once they learned to see the persistent pain objectively and observe other sensations in their body, they applied the same principles through mindful living techniques in their everyday life. As a result, they learned how to manage their health and began to engage in their duties mindfully.

 

A number of research studies such as Plews-Ogan et al.,[22] Grossman et al.,[23] and Sephton et al., (2007)[24] showed effectiveness of mindfulness meditation program on quality of life of patients with chronic pain conditions.

 

Conclusion

 

All together the result of this study and previous studies highlighted the effectiveness of complementary and alternative treatment for patients with chronic LBP. Regarding the considerable role of quality of life in professional and personal life designing the effective psychotherapies especially for enhancement of quality of life of patients with chronic LBP strongly suggested by the authors.

 

This study involved with several limitations such as ununiformed usual care received by patients. The provided physiotherapy sessions or methods and medicine prescribed by different physicians in slightly different manner. Although some patients commonly dose not completed physiotherapy sessions. The sample size was small and it was only limited to three centers. This is suggested for future researchers to conduct study with considering physiologic variables such as MRI, NMR and neurologic signals to test the efficacy of MBSR to decrease pain sufferer.

 

In conclusion, more evidence-based larger scale researches with longer-term follow-up need to be done to increase the therapeutic weight and value of MBSR as a part of complementary alternative medicine being preventive and rehabilitation method among CLBP patients.

 

Acknowledgement

 

We are thankful from patients who were corporate with us. Dr. Afzalifard and staff of physiotherapy centers of Ardebil.

 

Footnotes

 

  • Source of support: Nil.
  • Conflict of interest: None declared.

 

In conclusion,�mindfulness�is the most prevalent treatment with the best supporting evidence towards improving and managing chronic low back pain. Mindfulness interventions, such as mindfulness-based stress reduction and cognitive behavioral therapy, have demonstrated to be effective for chronic low back pain. Furthermore, mindfulness meditation was also demonstrated to effectively help improve as well as manage chronic low back pain caused by stress. However, further research studies are still required to determine a solid outcome measure for mindfulness interventions and chronic pain. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC: Managing Workplace Stress

 

 

MORE IMPORTANT TOPICS: EXTRA EXTRA: Choosing Chiropractic? | Familia Dominguez | Patients | El Paso, TX Chiropractor

 

Blank
References
1.�Waddell G. London, England: Churchill Livingstone; 1998. The Back Pain Revolution.
2.�Kovacs FM, Abraira V, Zamora J, Fern�ndez C. Spanish Back Pain Research Network. The transition from acute to subacute and chronic low back pain: A study based on determinants of quality of life and prediction of chronic disability.�Spine (Phila Pa 1976)�2005;30:1786�92.�[PubMed]
3.�Melzack R, Wall PD. Pain mechanisms: A new theory.�Science.�1965;150:971�9.�[PubMed]
4.�Beverly ET. USA: The Guilford Press; 2010. Cognitive Therapy for Chronic Pain: A Step-by-Step Guide.
5.�Kabat-Zinn J, Lipworth L, Burney R, Sellers W. Four-Year Follow-up of a meditation-based program for the self-regulation of chronic pain: Treatment outcomes and compliance.�Clin J Pain.�1986;2:159�73.
6.�Wetherell JL, Afari N, Rutledge T, Sorrell JT, Stoddard JA, Petkus AJ, et al. A randomized, controlled trial of acceptance and commitment therapy and cognitive-behavioral therapy for chronic pain.�Pain.�2011;152:2098�107.�[PubMed]
7.�Baer RA. Mindfulness training as a clinical intervention: A conceptual and empirical review.�Clin Psychol Sci Pract.�2003;10:125�43.
8.�Kabat-Zinn J. An outpatient program in behavioral medicine for chronic pain patients based on the practice of mindfulness meditation: Theoretical considerations and preliminary results.�Gen Hosp Psychiatry.�1982;4:33�47.�[PubMed]
9.�Glombiewski JA, Hartwich-Tersek J, Rief W. Two psychological interventions are effective in severely disabled, chronic back pain patients: A randomised controlled trial.�Int J Behav Med.�2010;17:97�107.[PubMed]
10.�Veehof MM, Oskam MJ, Schreurs KM, Bohlmeijer ET. Acceptance-based interventions for the treatment of chronic pain: A systematic review and meta-analysis.�Pain.�2011;152:533�42.�[PubMed]
11.�Chiesa A, Serretti A. Mindfulness-based interventions for chronic pain: A systematic review of the evidence.�J Altern Complement Med.�2011;17:83�93.�[PubMed]
12.�Morone NE, Greco CM, Weiner DK. Mindfulness meditation for the treatment of chronic low back pain in older adults: A randomized controlled pilot study.�Pain.�2008;134:310�9.�[PMC free article][PubMed]
13.�Kabat-Zinn J. New York: Dell Publishing; 1990. Full Catastrophe Living: Using the Wisdom of Your Body and Mind to Face Stress, Pain and Illness.
14.�Morone NE, Greco CM. Mind-body interventions for chronic pain in older adults: A structured review.�Pain Med.�2007;8:359�75.�[PubMed]
15.�Adelmanesh F, Arvantaj A, Rashki H, Ketabchi S, Montazeri A, Raissi G. Results from the translation and adaptation of the Iranian Short-Form McGill Pain Questionnaire (I-SF-MPQ): Preliminary evidence of its reliability, construct validity and sensitivity in an Iranian pain population.�Sports Med Arthrosc Rehabil Ther Technol.�2011;3:27.�[PMC free article][PubMed]
16.�Ware JE, Jr, Kosinski M, Turner-Bowker DM, Gandek B. Lincoln, RI: Quality Metric Incorporated; 2002. How to Score Version 2 of the SF-12� Health Survey (With a Supplement Documenting Version 1)
17.�Montazeri A, Vahdaninia M, Mousavi SJ, Omidvari S. The Iranian version of 12-item short form health survey (SF-12): A population-based validation study from Tehran, Iran.�Health Qual Life Outcomes.�2011;9:12.�[PMC free article][PubMed]
18.�Baranoff J, Hanrahan SJ, Kapur D, Connor JP. Acceptance as a process variable in relation to catastrophizing in multidisciplinary pain treatment.�Eur J Pain.�2013;17:101�10.�[PubMed]
19.�Nykl�cek I, Kuijpers KF. Effects of mindfulness-based stress reduction intervention on psychological well-being and quality of life: Is increased mindfulness indeed the mechanism?�Ann Behav Med.�2008;35:331�40.�[PMC free article][PubMed]
20.�Morone NE, Lynch CS, Greco CM, Tindle HA, Weiner DK. �I felt like a new person.� the effects of mindfulness meditation on older adults with chronic pain: Qualitative narrative analysis of diary entries.�J Pain.�2008;9:8 41�8.�[PMC free article][PubMed]
21.�Kabat-Zinn J, Lipworth L, Burney R. The clinical use of mindfulness meditation for the self-regulation of chronic pain.�J Behav Med.�1985;8:163�90.�[PubMed]
22.�Plews-Ogan M, Owens JE, Goodman M, Wolfe P, Schorling J. A pilot study evaluating mindfulness-based stress reduction and massage for the management of chronic pain.�J Gen Intern Med.�2005;20:1136�8.�[PMC free article][PubMed]
23.�Grossman P, Niemann L, Schmidt S, Walach H. Mindfulness-based stress reduction and health benefits. A meta-analysis.�J Psychosom Res.�2004;57:35�43.�[PubMed]
24.�Sephton SE, Salmon P, Weissbecker I, Ulmer C, Floyd A, Hoover K, et al. Mindfulness meditation alleviates depressive symptoms in women with fibromyalgia: Results of a randomized clinical trial.�Arthritis Rheum.�2007;57:77�85.�[PubMed]
Close Accordion

Rapid Pain Relief for Herniated Discs in El Paso, TX

Rapid Pain Relief for Herniated Discs in El Paso, TX

Herniated discs are a debilitating condition characterized by pain, numbness and weakness in one or more limbs. While some people may experience no pain at all, those that do may often wish for fast pain relief to avoid long periods of sick leave from their jobs. Many healthcare professionals recommend surgery for patients with persistent and/or worsening herniated disc symptoms but other non-operative treatment options can help treat disc herniations. The purpose of the following article is to demonstrate how a�structured physiotherapy treatment model can provide rapid relief to patients who qualify for lumbar disc surgery.

 

A Structured Physiotherapy Treatment Model Can Provide Rapid Relief to Patients Who Qualify for Lumbar Disc Surgery: A Prospective Cohort Study

 

Abstract

 

  • Objective: To evaluate a structured physiotherapy treatment model in patients who qualify for lumbar disc surgery.
  • Design: A prospective cohort study.
  • Patients: Forty-one patients with lumbar disc herniation, diagnosed by clinical assessments and magnetic resonance imaging.
  • Methods: Patients followed a structured physiotherapy treatment model, including Mechanical Diagnosis and Therapy (MDT), together with graded trunk stabilization training. Study outcome measures were the Oswestry Disability Index, a visual analogue scale for leg and back pain, the Tampa Scale for Kinesiophobia, the European Quality of Life in 5 Dimensions Questionnaires, the Zung Self-Rating Depression Scale, the Self-Efficacy Scale, work status, and patient satisfaction with treatment. Questionnaires were distributed before treatment and at 3-, 12- and 24-month follow-ups.
  • Results: The patients had already improved significantly (p<0.001) 3 months after the structured physiotherapy treatment model in all assessments: disability, leg and back pain, kinesiophobia, health-related quality of life, depression and self-efficacy. The improvement could still be seen at the 2-year follow-up.
  • Conclusion: This study recommends adopting the structured physiotherapy treatment model before considering surgery for patients with symptoms such as pain and disability due to lumbar disc herniation.
  • Keywords: intervertebral disc displacement; rehabilitation; physical therapy modalities.

 

Introduction

 

Symptoms of lumbar disc herniation are relatively common in the general population, although the prevalence rates vary widely between different studies (1). Symptom severity also varies and, in many patients, pain and loss of function may lead to disability and long periods of sick leave (2). Spontaneous resolution of symptoms after a lumbar disc herniation is regarded as common, which makes it difficult to evaluate the effects of treatment. Furthermore, in studies evaluating spontaneous healing, different physiotherapy treatments are often included, together with pain medication (3�5), which makes it difficult to determine the extent of natural healing. On the other hand, in patients with sciatica, but without confirmed disc herniation on magnetic resonance imaging (MRI), approximately one-third of subjects recover 2 weeks after the onset of sciatica and approximately three-quarters recover after 3 months (6).

 

In contrast to evaluating spontaneous healing, surgery for lumbar disc herniation has been investigated in numerous studies. Surgery has been compared with a variety of treatments, such as education, chiropractic, unspecified physiotherapy, acupuncture, injections and medication (7�10). The non-surgical treatments have, however, been described only in vague terms, and variations in treatments have been used. Previous studies have reported favourable short-term (after 1 year) outcomes for surgery, but no major differences between surgical and other treatments have been demonstrated in the long term (over 2 years) (7, 10, 11). The conclusions that are drawn from the comparison between surgery and non-systematic non-surgical treatments may thus be misleading. This has been confirmed in a systematic review, which concluded that there is conflicting evidence as to whether surgery is more beneficial than nonsurgical care for both short- and long-term follow-up (12).

 

Kinesiophobia has been evaluated in patients after lumbar disc surgery, and almost 50% of patients were classified as having kinesiophobia (13). To our knowledge kinesiophobia has not been evaluated in patients with lumbar disc herniation treated with a structured physiotherapy treatment.

 

There are many different non-surgical treatment methods for patients with low-back pain and sciatica. One common management method is Mechanical Diagnosis and Therapy (MDT), also known as the McKenzie method, which aims to eliminate or minimize pain (14). A systematic review from 2004 of the efficacy of MDT showed that patients with low-back pain treated�with MDT reported a greater, more rapid reduction in pain and disability compared with non-steroidal anti-inflammatory drugs (NSAIDs), educational booklets, back massage and back care advice, strength training, spinal mobilization and general exercises (15). In a randomized controlled trial with a 1-year follow-up from 2008, Paatelma and co-workers (16) found that the McKenzie method was only marginally more effective compared with only giving advice to patients with low-back pain. For patients with low-back pain, sciatica and a verified lumbar disc herniation, it has, however, been shown that a selected group of patients who responded to MDT after 5 days of treatment also reported that they were satisfied after 55 weeks (17). The patients started treatment just 12 days after the onset of symptoms and the effects of spontaneous healing cannot therefore be excluded. Taken together, the treatment effects of MDT for patients with a verified lumbar disc herniation appear to require further evaluation.

 

Trunk stabilization exercises, which aim to restore deep trunk muscle control, have been used for the prevention and rehabilitation of low-back pain (18). A randomized controlled trial revealed a reduction in the recurrence of low-back pain episodes after specific trunk stabilization exercises compared with a control group receiving advice and the use of medication (19). Dynamic lumbar stabilization exercises have been found to relieve pain and improve function in patients who have undergone microdiscectomy (20). The effects of trunk stabilization exercises combined with MDT have, however, not been studied in patients with non-operated lumbar disc herniation. MDT is seldom recommended for patients with MRI verified lumbar disc herniation with a broken outer annulus. At our hospital, however, we have several years of good clinical experience of a combination of MDT and trunk stabilization exercises for this category of patients. To our knowledge, no previous study has investigated whether patients with a lumbar disc herniation verified by MRI, symptoms for at least 6 weeks (minimizing effects of spontaneous healing) and who qualified for disc surgery could improve with a structured physiotherapy treatment model including MDT and gradually progressive trunk stabilization exercises. The aim of this study was therefore to�evaluate a structured physiotherapy treatment model in patients who qualified for lumbar disc surgery.

 

Material and Methods

 

During the study inclusion period, 150 patients, who were referred to the orthopaedic clinic at Sahlgrenska University Hospital, Gothenburg, from November 2003 to January 2008, were identified as potential participants since disc herniation was confirmed with MRI. Inclusion criteria were: 18�65 years of age; MRI confirming disc herniation explaining the clinical findings; symptoms for at least 6 weeks (minimizing the effects of spontaneous healing) and pain distribution with concomitant neurological disturbances correlated to the affected nerve root. Exclusion criteria were: cauda equina syndrome, previous spinal surgery, other spinal diseases, such as spinal stenosis and spondylolisthesis, and inadequate command of Swedish. However, 70 patients were excluded because of spontaneous resolution of pain and symptoms. The remaining 80 patients met the inclusion criteria and qualified for surgery. Orthopaedic surgeons determined whether the patients qualified for lumbar disc surgery after MRI and physical examination according to the recommendations of the American Academy of Orthopaedic Surgeons for patients with lumbar disc herniation (21).

 

Figure 1 Study Flowchart

Initially, the study was planned as a randomized controlled trial (RCT) between a structured physiotherapy treatment model and surgery, but the number of patients was not sufficient to obtain acceptable power. Eighteen of the 80 patients were initially randomized to physiotherapy, 17 patients were randomized to surgery and 45 patients did not agree to undergo randomization. Twenty-seven of the 45 patients who did not agree to randomization agreed to take part in the structured physiotherapy treatment and 18 patients agreed to undergo surgery. A decision was therefore made solely to present a cohort of 45 patients treated according to the structured physiotherapytreatment protocol (Fig. 1). Patients were given verbal and written information and informed consent was obtained. The study was approved by the Regional Ethical Review Board.

 

Before structured physiotherapy treatment began, 4 patients recovered to the extent that they could no longer be accepted as surgical candidates and they were therefore excluded from the study. The remaining 41 patients treated according to the structured physiotherapy model are presented in this paper.

 

A Structured Physiotherapy Treatment Model

 

Six physiotherapists with credentialed examinations in MDT, which is an examination within the MDT concept after completing 4 courses of 4 days each for evaluating and treating patients with spinal problems. Following completion of these courses, an extensive literature study and practice in evaluating and treating patients is required before the examination can be completed. The physiotherapists involved in the study had 5�20 years of clinical experience of treating patients with back problems and herniated lumbar disc. The inter-examiner reliability of the MDT assessment has been shown to be good if the examiner is trained in the MDT method (22). The physiotherapists examined and treated the patients during a 9-week period (Table I). For the first 2 weeks of treatment, an MDT protocol was followed, based on clinical examinations of individual mechanical and symptomatic responses to positions and movements, with the aim of minimizing pain and with the emphasis on self-management (14). During the third week of treatment, graded trunk stabilization exercises were added to the MDT protocol. The purpose of graded trunk stabilization exercises was to improve muscle control (23). The low-load muscular endurance exercises were gradually increased in intensity on an individual�basis with respect to the patients� reported leg pain and the observed movement control and quality. During treatment, the patients were encouraged to continue exercising on their own at a gym, or to perform some other type of physical training of their own choice after the structured physiotherapy treatment was concluded. Four weeks after the completion of the 9-week physiotherapy treatment period, the patients attended a follow-up visit with the physiotherapist who had treated them. The aim of this visit was to encourage a high level of compliance with respect to continued trunk stabilization exercises and MDT practice (Table I).

 

Table 1 Treatment Procedures

 

Study Outcome Measures

 

The patients were given a battery of questionnaires to complete. Independent examiners, who were not involved in the treatment, distributed the questionnaires before treatment (baseline) and at the 3-, 12- and 24-month follow-ups.

 

The primary outcome measures were pain intensity in the leg, rated using a visual analogue scale (VAS) 0�100 mm (24) and the Oswestry Disability Index (ODI) 0�100 % (25). A score of 0�10 mm on the VAS was defined as no pain according to �berg et al. (26). An ODI score of 0�20% was defined as minimal or no disability, and a score of over 40% was defined as severe disability (25). These primary outcome measures are commonly used in evaluations after surgery for lowback pain and for assessing patients with lumbar disc herniation (27).

 

Secondary outcome measures included pain intensity in the back rated using a VAS and the degree of kinesiophobia using the Tampa Scale for Kinesiophobia (TSK). The TSK score varies between 17 and 68 and a cut-off more than 37 was defined as a high degree of kinesiophobia (28). Health-Related Quality of Life (HRQoL) in the European Quality of Life in 5 Dimensions Questionnaires (EQ-5D) was used. The EQ-5D includes 2 parts, EQ-5Dindex ranges from 0 to 1.0, where 1.0 is optimal health and EQ-5DVAS is a vertical visual analogue scale ranging from 0 (worst possible health state) to 100 (best possible health state) (29). The Zung Self-Rating Depression Scale (ZDS) ranges from 20�80 and the more depressed the patient is, the higher score (30). The Self-Efficacy Scale (SES) ranges from 8 to 64, with higher scores indicating more positive beliefs (31) was also used. Work status was measured using a 3-grade Likert scale: working full time, full-time sick leave and part-time sick leave. Likewise, patient�satisfaction with treatment was measured on a 3-grade Likert scale; satisfied, less satisfied and dissatisfied (32). These secondary outcome measures evaluate bio-psychosocial factors described as important in connection with lumbar disc surgery (33).

 

Table 2 Baseline Characteristics for the 41 Patients

 

Statistical Analyses

 

The results are presented as median values and interquartile range (IQR), except for age, which is presented as the mean and standard deviation (SD). Changes over time within the group were analysed with the Wilcoxon signed-rank test. Statistical significance was set at an alpha level of 0.05.

 

Results

 

The baseline characteristics are shown in Table II. No patient had undergone surgery at the 3-month follow-up. At the 12-month follow-up, 3 patients had undergone surgery and, at the 24-month follow-up, 1 additional patient had been operated on. After surgery, these 4 patients were excluded from further follow-ups (Fig. 1).

 

Change Over Time in Primary Outcome Measures

 

Disability. The patients showed significant improvements (p < 0.001) in ODI at the 3-month follow-up compared with baseline. The median (IQR) score decreased from 42 (27�53) to 14 (8�33). This improvement could still be seen at 12 and 24 months (Table III and Fig. 2). At baseline, 22 patients reported�severe disability (54%) and 3 patients reported no disability. The degree of disability decreased at the 3-month follow-up, as only 9 patients (22%) reported severe disability and 26 (64%) reported no disability. At 12- and 24-month follow-ups only 2 patients (5%) reported severe disability. At 12-month followup 26 patients still reported no disability, and at 24-month follow-up 27 patients reported no disability.

 

Figure 2 Visual Analogue Scale Leg Pain and Oswestry Disability Index

 

Leg pain. A significant reduction in patients� leg pain was found at the 3-month follow-up (p < 0.001) on the VAS compared with baseline. The median (IQR) on the VAS decreased from 60 (40�75) to 9 (2�27). This improvement could still be seen at the 12- and 24-month follow-ups (Table III and Fig. 2). Before treatment, all patients reported leg pain. Three months after treatment, the median on the VAS was 9 mm, i.e. classified as no leg pain (26). Twenty-three patients (56%) reported no leg pain at the 3-month follow-up. At the 12-month follow-up 22 patients reported no leg pain, and after 24 months 24 patients reported no leg pain.

 

Table 3 Changes Over Time in Primary and Secondary Outcome Measures

 

Change in Secondary Outcome Measures Over Time

 

Back pain. A significant improvement in back pain was found at the 3-month follow-up (p < 0.001) on the VAS compared with baseline. This improvement could still be seen at 12 and 24 months (Table III). At baseline, 6 patients (15%) reported no back pain. Three months after treatment began, 20 patients (49%) reported no back pain.

 

Figure 3 Number of Patients Classified with Kinesiophobia at Baseline

 

Kinesiophobia. The degree of kinesiophobia showed a significant improvement at the 3-month follow-up (p < 0.001) and the improvement could be seen throughout the follow-up period (Table III). Before treatment, 25 patients (61%) were classified as having kinesiophobia and 15 patients (37%) had no kinesiophobia, while data for 1 patient was missing. After 3 months, 15 patients (37%) had kinesiophobia and 26 (63%) had no kinesiophobia. At the 12-month follow-up, the number of patients with kinesiophobia had reduced to 4 (11%) (Fig. 3).

 

Health-related quality of life, depression and self-efficacy. All 4 assessments (EQ-5Dindex, EQ-5DVAS, ZDS and SES) showed significant improvements at the 3-month follow-up (p < 0.001). This improvement could still be seen at 12 and 24 months (Table III).

 

Sick leave. At baseline, 22 patients (54%) were on full-time sick leave (Table IV), compared with 9 (22%) patients at�the 3-month follow-up. At baseline, 14 patients (34%) were working full time, compared with 22 (54%) at the 3-month follow-up.

 

Table 4 Number of Patients on Sick Leave at Each Follow Up

 

Satisfaction with Treatment

 

At the 3-month follow-up, 32 (78%) of 41 patients were satisfied with the structured physiotherapy treatment. Seven patients were less satisfied and 2 patients were dissatisfied. Both of the dissatisfied patients were later operated. At the 2-year follow-up, the number of satisfied patients was 29 (80%) of 36. Seven patients were less satisfied, but none dissatisfied after structured physiotherapy treatment.

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

A disc herniation in the lumbar spine can cause pain, numbness and weakness in the lower back. Because of the severity of the symptoms, many patients seeking fast pain relief consider surgery. However, many non-operative treatment options can help improve as well as manage lumbar herniated disc symptoms.�A structured physiotherapy treatment model can provide rapid pain relief to patients who would otherwise qualify for lumbar disc surgery, according to the following article. Patients looking to avoid taking long periods of sick leave from work due to their symptoms may benefit from a structured physiotherapy treatment model. As with any type of injury and/or condition, the use of other treatment options should be properly considered before turning to surgical interventions for fast pain relief.

 

Discussion

 

The principal finding of this study was that patients who qualified for lumbar disc surgery improved to a statistically significant and clinically substantial degree just 3 months after the start of the structured physiotherapy treatment in all assessments: disability, leg and back pain, kinesiophobia, health-related quality of life, depression and self-efficacy. The improvements could still be seen at the 2-year follow-up.

 

The natural course of healing must be considered carefully, especially when evaluating treatment effects in patients with disc herniation. The symptoms often vary over time and many discs heal spontaneously and the symptoms cease. Approximately 75% of patients with sciatica, without an MRI-verified disc herniation, recover within 3 months, and approximately one-third of patients recover within 2 weeks after the onset of sciatica (6). The natural course of sciatica was evaluated in a randomized controlled trial (34), which compared NSAIDs with placebo. The patients were, however, examined within 14 days after the onset of radiating leg pain. After 3 months, 60% of the patients had recovered and, after 12 months, 70% had recovered. In order to minimize the influence of spontaneous healing in the present study, the patients were therefore included only if they had had persistent pain and disability for more than 6 weeks. In fact, the majority of the patients had had pain and disability for more than 3 months. It is therefore most likely that the effects of treatment seen in the present study are, in the majority of patients, an effect of the structured physiotherapy treatment model and not a result of spontaneous healing.

 

In the study by Weber et al. (34), the VAS leg pain mean score was reduced from 54 mm at baseline to 19 mm within 4 weeks for all 183 patients, regardless of treatment. After 1 year, the VAS leg pain mean score was 17 mm. The patients in the present study who were a little worse at baseline (60 mm) reported 9 mm on the VAS leg pain just 3 months after treatment. Consequently, in the present study, the median VAS level had already been reduced to under the no-pain score, defined as 0�10 on the VAS (26), at the 3-month follow-up and this was maintained to the 12- and 24-month follow-ups.

 

Physiotherapy treatment for patients with lumbar disc herniation can lead to improvements. Br�tz et al. (17) included a selected group of patients who responded with the centralization of pain after the first 5 daily sessions of treatment according to the MDT method. Centralization of pain is defined as a clinically induced change in the location of pain referred from the spine, that moves from the most distal position toward the lumbar midline (35). However, the patients� medium duration of symptoms before treatment was only 12 days and the possibility that patients recovered naturally cannot therefore be excluded (17).

 

In a retrospective study, 95 patients were treated with a functional restoration programme (36). The patients achieved significant improvements after a mean treatment period of 8.7 months. The evaluation was performed at discharge only. With a treatment period of this length, it is, however, difficult to differentiate between the effects of treatment and the natural healing process. In the present study, a shorter treatment period was adopted, and large and significant improvements were found after just 3 months and were still present at the 24-month follow-up. It is therefore not likely that the natural healing process was responsible for the positive results in the present study.

 

In a prospective study of 82 consecutive patients with acute severe sciatica, included for conservative management, only a minority of the patients had made a full recovery after 12 months (37). Twenty-five percent of the patients underwent surgery within 4 months and one-third had surgery within 1 year. In spite of the fact that the inclusion criteria in the present study followed the recommendations for surgery (21, 38), no patient required surgery at the 3-month follow-up and, after 12 months, only 3 patients (7%) had undergone surgery. The interpretation of the divergence could be that the structured physiotherapy treatment model used in the present study appeared to influence patients with lumbar disc herniation in a very positive direction. One recommendation is therefore to follow the structured physiotherapy treatment model before considering surgery.

 

In this study, MRI verification of disc herniation was an inclusion criterion. In clinical practice, MRI verification is not mandatory, as it is in surgical treatment, before introducing structured physiotherapy treatment to patients with symptoms from a disc herniation. Consequently, treatment according to the structured physiotherapy treatment model can start early after the commencement of symptoms, as it is not necessary to wait for an MRI. It is possible to speculate that, if treatment with a structured physiotherapy model starts earlier than in the present study, the improvements would be even better, further reducing the risk of persistent pain and accompanying problems. Moreover, the need for MRI is likely to diminish; this, however, should be further evaluated in future studies.

 

One explanation for the good results of this study could be that the patients followed a structured physiotherapy treatment model, comprising MDT and trunk stabilization exercises, allowing for an individual design and progression of the treatment. Similar results were described in a retrospective cohort study (39) using several treatment methods for pain control as well as for exercise training for patients with lumbar disc herniation. The evaluation was not carried out until approximately 31 months after treatment. The results of Saal et al. (39) and of the present study are in agreement, in that structured physiotherapy treatment can reduce symptoms, but symptoms were relieved much more rapidly in the present study.

 

In a multicentre study comprising 501 patients, randomized to surgery or non-operative care, 18% of the patients assigned to non-operative treatment underwent surgery within 6 weeks and 30% had surgery at approximately 3 months (7). The nonoperative treatment group received non-specified �usual care�, which could include a variety of different treatment methods. In contrast, the patients in the present study were offered a structured physiotherapy treatment model that included both bio-psychological and social components, as described in the International Classification of Functioning, Disability and Health (40).

 

There are many possible explanations for the positive effects seen in this present study, and 5 of these will now be discussed. Firstly, the patients were well informed about the design of the structured physiotherapy treatment model, including the timetable for different phases of the treatment and when the treatment was planned to end. This information enhanced the patients� opportunity for self-management and gave them an active role in treatment decision-making.

 

Secondly, the patients acquired strategies to deal with their pain by using the different activities and movements in order to reduce pain according to the MDT method (14). The MDT method aims to enhance the patients� ability to cope with the symptoms, motivate the patient to comply with the treatment and empower them to achieve independence. Leijon et al. (41) have shown that low levels of motivation plus pain are important factors that enhance non-adherence to physical activity. It therefore appears important to reduce pain and increase motivation as early as possible. It is reasonable to believe that, when the patients participated in the evaluation of different activities and exercises, this augmented their opportunity to discover the connection between activities and the following reduction or increase in symptoms. This could have led to the increased self-efficacy and empowerment of the patients. The use of empowerment in physiotherapy has been recommended in a review by Perrault (42), who argues that empowerment improves the intervention.

 

Thirdly, the intensity of exercises was gradually increased on an individual basis with respect to the patients� reported pain. The objective was to strengthen the patients� self-efficacy, which also improved significantly in the present study. Fourthly, the trunk stabilization exercises were conducted with the aim of increasing deep trunk muscle control (23). It can be speculated that the physiological effects of training may also have led to reduced pain through increased blood circulation, muscle relaxation and the release of pain-reducing substances, such as endorphins.

 

Finally, one reason for the improvements could be that the physiotherapists were experienced and well educated in the MDT method. Subsequently, the physiotherapists were able to guide the patients during the rehabilitation process. It is, however, not possible to determine whether and how much each of the reasons discussed above contributed to the improvements. It seems reasonable to assume that all 5 factors were operating.

 

In this study, the majority of patients experienced kinesiophobia before treatment started. As early as 3 months after the structured physiotherapy treatment started, the number of patients with kinesiophobia fell dramatically and the majority of patients no longer experienced kinesiophobia. These results are in agreement with those of a study of patients with chronic pain and high kinesiophobia who increased their physical activity level after a pain management programme designed to enable the patients to regain overall function (43).

 

There are some limitations to this study. It is not possible to exclude the possibility that some patients may have improved spontaneously without treatment. Measures were taken to limit this risk by using symptoms for at least 6 weeks as an inclusion criterion. Again, the majority of patients had symptoms for more than 3 months. Another limitation might relate to whether the patients were selected accurately for the study. Clinically experienced orthopaedic surgeons evaluated the clinical findings and the MRI scans and classified the patients as surgical candidates based on recommendations from the American Academy of Orthopaedic Surgeons for intervention for disc herniation published in 1993 (21). The patients included in the present study also fulfilled the recommendations as presented by Bono and co-workers in 2006 (38). The patients can therefore be regarded as serving as their own controls, and comparisons can be made with baseline symptoms and with patients from other studies. An RCT would have been the best way to explore different treatment options; however, we did not reach the number of patients required for an RCT. As the treatment model used in the present study has not been evaluated previously in a group of patients with long-standing pain, with the majority of the patients having pain for more than 3 months due to disc herniation, and, as the results are clinically interesting, it was decided to present the results as a cohort study.

 

In conclusion, this study shows that patients eligible for lumbar disc surgery improved significantly after treatment with the structured physiotherapy model, as early as 3 months after treatment, and the results could still be seen at the 24-month follow-up. Consequently, these patients did not qualify for lumbar disc surgery 3 months after the physiotherapy treatment started. Moreover, the majority of patients had symptoms for more than 3 months at the start of treatment and, for this reason, most of the spontaneous healing ought to have occurred before this study started. This study therefore recommends adoption of the structured physiotherapy treatment model before considering surgery when patients report symptoms such as pain and disability due to lumbar disc herniation.

 

Acknowledgements

 

The authors would like to thank physiotherapists Patrik Drevander, Christina Grund�n, Sofia Frid�n and Eva Fahlgren for treating the patients and Valter Sundh for statistical support. This study was supported by grants from the Health & Medical Care Committee of the V�stra G�taland Region, Ren�e Eander�s Foundation and Wilhelm & Martina Lundgren�s Foundation of Science.

 

Herniated discs can cause pain, numbness and weakness, a variety of symptoms which may often become so severe, that surgery might seem like the only option for fast relief. However, a�structured physiotherapy treatment model can provide rapid relief to patients who qualify for lumbar disc surgery, according to the results of the research study. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Neck Pain

 

Neck pain is a common complaint which can result due to a variety of injuries and/or conditions. According to statistics, automobile accident injuries and whiplash injuries are some of the most prevalent causes for neck pain among the general population. During an auto accident, the sudden impact from the incident can cause the head and neck to jolt abruptly back-and-forth in any direction, damaging the complex structures surrounding the cervical spine. Trauma to the tendons and ligaments, as well as that of other tissues in the neck, can cause neck pain and radiating symptoms throughout the human body.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: A Healthier You!

 

OTHER IMPORTANT TOPICS: EXTRA: Sports Injuries? | Vincent Garcia | Patient | El Paso, TX Chiropractor

 

Blank
References

1. Konstantinou K, Dunn KM. Sciatica: review of epidemiological
studies and prevalence estimates. Spine (Phila Pa 1976) 2008;
33: 2464�2472.
2. Nygaard OP, Kloster R, Solberg T. Duration of leg pain as a
predictor of outcome after surgery for lumbar disc herniation:
a prospective cohort study with 1-year follow up. J Neurosurg
2000; 92: 131�134.
3. Orief T, Orz Y, Attia W, Almusrea K. Spontaneous resorption
of sequestrated intervertebral disc herniation. World Neurosurg
2012; 77: 146�152.
4. Maigne JY, Rime B, Deligne B. Computed tomographic follow-up
study of forty-eight cases of nonoperatively treated lumbar intervertebral
disc herniation. Spine (Phila Pa 1976) 1992; 17: 1071�1074.
5. Takada E, Takahashi M, Shimada K. Natural history of lumbar disc
hernia with radicular leg pain: spontaneous MRI changes of the
herniated mass and correlation with clinical outcome. J Orthopaed
Surg (Hong Kong) 2001; 9: 1�7.
6. Vroomen PC, de Krom MC, Knottnerus JA. Predicting the outcome
of sciatica at short-term follow-up. Br J Gen Pract 2002;
52: 119�123.
7. Weinstein JN, Tosteson TD, Lurie JD, Tosteson AN, Hanscom
B, Skinner JS, et al. Surgical vs nonoperative treatment for lumbar
disk herniation: the Spine Patient Outcomes Research Trial
(SPORT): a randomized trial. JAMA 2006; 296: 2441�2450.
8. Peul WC, van den Hout WB, Brand R, Thomeer RT, Koes BW.
Prolonged conservative care versus early surgery in patients with
sciatica caused by lumbar disc herniation: two year results of a
randomised controlled trial. BMJ 2008; 336: 1355�1358.
9. Atlas SJ, Keller RB, Wu YA, Deyo RA, Singer DE. Long-term
outcomes of surgical and nonsurgical management of sciatica secondary
to a lumbar disc herniation: 10 year results from the maine
lumbar spine study. Spine (Phila Pa 1976) 2005; 30: 927�935.
10. Weber H. Lumbar disc herniation. A controlled, prospective
study with ten years of observation. Spine (Phila Pa 1976) 1983;
8: 131�140.
11. Osterman H, Seitsalo S, Karppinen J, Malmivaara A. Effectiveness of microdiscectomy for lumbar disc herniation: a randomized
controlled trial with 2 years of follow-up. Spine (Phila Pa 1976)
2006; 31: 2409�2414.
12. Jacobs WC , van Tulder M, Arts M, Rubinstein SM, van Middelkoop
M, Ostelo R, et al. Surgery versus conservative management of
sciatica due to a lumbar herniated disc: a systematic review. Eur
Spine J 2011; 20: 513�522.
13. Svensson GL, Lundberg M, �stgaard HC, Wendt GK. High degree
of kinesiophobia after lumbar disc herniation surgery: a crosssectional
study of 84 patients. Acta Orthop 2011; 82: 732�736.
14. McKenzie R, May S. The lumbar spine: mechanical diagnosis
& therapy. 2nd ed. Spinal Publications New Zealand Limited:
Wellington; 2003.
15. Clare HA, Adams R, Maher CG. A systematic review of efficacy
of McKenzie therapy for spinal pain. Aust J Physiother 2004;
50: 209�216.
16. Paatelma M, Kilpikoski S, Simonen R, Heinonen A, Alen M, Videman
T. Orthopaedic manual therapy, McKenzie method or advice
only for low back pain in working adults: a randomized controlled
trial with one year follow-up. J Rehabil Med 2008; 40: 858�863.
17. Br�tz D, Kuker W, Maschke E, Wick W, Dichgans J, Weller M.
A prospective trial of mechanical physiotherapy for lumbar disk
prolapse. J Neurol 2003; 250: 746�749.
18. Hodges PW, Moseley GL. Pain and motor control of the lumbopelvic
region: effect and possible mechanisms. J Electromyogr
Kinesiol 2003; 13: 361�370.
19. Hides JA, Jull GA, Richardson CA. Long-term effects of specific
stabilizing exercises for first-episode low back pain. Spine (Phila
Pa 1976) 2001; 26: E243�E248.
20. Yilmaz F, Yilmaz A, Merdol F, Parlar D, Sahin F, Kuran B. Efficacy
of dynamic lumbar stabilization exercise in lumbar microdiscectomy.
J Rehabil Med 2003; 35: 163�167.
21. Nachemson AL. Lumbar disc herniation � conclusions. Acta Orthop
Scand Suppl 1993; 251: 49�50.
22. Kilpikoski S, Airaksinen O, Kankaanpaa M, Leminen P, Videman
T, Alen M. Interexaminer reliability of low back pain assessment
using the McKenzie method. Spine (Phila Pa 1976) 2002; 27:
E207�E214.
23. Richardson CA, Jull GA. Muscle control-pain control. What exercises
would you prescribe? Man Ther 1995; 1: 2�10.
24. Scott J, Huskisson EC. Graphic representation of pain. Pain 1976;
2: 175�184.
25. Fairbank JC, Couper J, Davies JB, O�Brien JP. The Oswestry
low back pain disability questionnaire. Physiotherapy 1980; 66:
271�273.
26. �berg B, Enthoven P, Kjellman G, Skargren E. Back pain in
primary care: a prospective cohort study of clinical outcome and
healthcare consumption. Adv Physiother 2003; 5: 98.
27. Bombardier C. Outcome assessments in the evaluation of treatment
of spinal disorders: summary and general recommendations. Spine
2000; 25: 3100�3103.
28. Vlaeyen JW, Kole-Snijders AM, Boeren RG, van Eek H. Fear of
movement/(re)injury in chronic low back pain and its relation to
behavioral performance. Pain 1995; 62: 363�372.
29. EuroQol � a new facility for the measurement of health-related quality
of life. The EuroQol Group. Health Policy 1990; 16: 199�208.
30. Zung WW. A self-rating depression scale. Arch Gen Psychiatry
1965; 12: 63�70.
31. Estlander AM, Vanharanta H, Moneta GB, Kaivanto K. Anthropometric
variables, self-efficacy beliefs, and pain and disability
ratings on the isokinetic performance of low back pain patients.
Spine 1994; 19: 941�947.
32. Str�mqvist B, J�nsson B, Fritzell P, H�gg O, Larsson BE, Lind B.
The Swedish National Register for lumbar spine surgery: Swedish
Society for Spinal Surgery. Acta Orthop Scand 2001; 72: 99�106.
33. den Boer JJ, Oostendorp RA, Beems T, Munneke M, Oerlemans
M, Evers AW. A systematic review of bio-psychosocial risk factors
for an unfavourable outcome after lumbar disc surgery. Eur Spine
J 2006; 15: 527�536.
34. Weber H, Holme I, Amlie E. The natural course of acute sciatica
with nerve root symptoms in a double-blind placebo-controlled
trial evaluating the effect of piroxicam. Spine (Phila Pa 1976)
1993; 18: 1433�1438.
35. Werneke M, Hart DL, Cook D. A descriptive study of the centralization
phenomenon. A prospective analysis. Spine (Phila Pa
1976) 1999; 24: 676�683.
36. Hahne AJ, Ford JJ, Hinman RS, Taylor NF, Surkitt LD, Walters
AG, et al. Outcomes and adverse events from physiotherapy
functional restoration for lumbar disc herniation with associated
radiculopathy. Disabil Rehabil 2011; 33: 1537�1547.
37. Balague F, Nordin M, Sheikhzadeh A, Echegoyen AC, Brisby H,
Hoogewoud HM, et al. Recovery of severe sciatica. Spine (Phila
Pa 1976) 1999; 24: 2516�2524.
38. Bono CM, Wisneski R, Garfin SR. Lumbar disc herniations. In:
Herkowitz HN, Garfin SR, Eismont FJ, Bell GR, Balderston RA,
editors. Rothman-Simeone the spine. 5th ed. Saunders Elsevier:
Philadelphia; 2006: p. 979�980.
39. Saal JA, Saal JS. Nonoperative treatment of herniated lumbar
intervertebral disc with radiculopathy. An outcome study. Spine
(Phila Pa 1976) 1989; 14: 431�437.
40. World Health Organisation. International Classification of Functioning,
Disability and Health (ICF). 2001 [cited 2012 Oct 9].
Available from: www.who.int/classifications/icf/en/.
41. Leijon ME, Faskunger J, Bendtsen P, Festin K, Nilsen P. Who is
not adhering to physical activity referrals, and why? Scand J Prim
Health Care 2011; 29: 234�240.
42. Perreault K. Linking health promotion with physiotherapy for low
back pain: a review. J Rehabil Med 2008; 40: 401�409.
43. Koho P, Orenius T, Kautiainen H, Haanpaa M, Pohjolainen T, Hurri
H. Association of fear of movement and leisure-time physical
activity among patients with chronic pain. J Rehabil Med 2011;
43: 794�799.

Close Accordion

Herniated Disc Diagnosis: Exams and Imaging | Scientific Chiropractor

Herniated Disc Diagnosis: Exams and Imaging | Scientific Chiropractor

A herniated disc can lead to pain as well as disrupt your daily activities, as you likely know. That is probably what brings you to the office of the doctor: You have back pain or neck pain, and you’d love to understand why.

 

Your doctor will ask you questions and execute a few exams. This is to try to find the origin of your pain and also to find out which intervertebral disks are herniated. An accurate diagnosis will help your doctor develop a treatment plan method to help you recover and to handle your herniated disc pain and other spine symptoms.

 

Physical Exam: Herniated Disc Diagnosis

 

As part of the physical exam, your doctor will ask about your current symptoms and remedies you have already tried for your pain. Some average herniated disc diagnostic questions include:

 

  • When did the pain begin? Where’s the pain (cervical, thoracic or mid-back, or lumbar or lower back)?
  • What activities did you lately do?
  • What do you do for your herniated disc pain?
  • Can the disc herniation pain radiate or travel to other parts of your body?
  • Does anything reduce the disk pain or make it even worse?

 

Your doctor may also observe your position, range of movement, and physical condition both lying down and standing up. Movement that causes pain will be noticed. A Las�gue evaluation, also referred to as the Straight-Leg Raising evaluation, may be accomplished. You’ll be asked to lie down and extend your knee with your hip bent. If it produces pain or makes your pain worse, this may indicate a herniated disc.

 

With a herniated disc (or a bulging or ruptured disc), you might feel stiff and may have lost your normal spinal curvature because of muscle strain. Your physician may also feel for tightness and note the spine’s curvature and alignment.

 

Neurological Exam: Herniated Disc Diagnosis

 

Your spine specialist will also run a neurological exam, which tests your reflexes, muscle strength, other nerve changes, and pain disperse. Radicular pain (pain that travels away from the source of the pain) can increase when stress is applied directly to the affected area. You might, for instance, have sciatica; this is radicular pain that might be caused by the herniated disk. Since the disc is compressing a nerve, you might experience pain and symptoms in other areas of the body, although the origin of the pain is on your spine.

 

Imaging Tests for Herniated Discs

 

Your spine specialist may order imaging tests to help diagnose your injury or condition; you might have to see an imaging facility for those evaluations.

 

 

herniated-disc-large

 

An X-ray may demonstrate a secondhand disk space, fracture, bone spur, or arthritis, which might rule out disk herniation. A computerized axial tomography scan (a CT or CAT scan) or a magnetic resonance imaging test (an MRI) equally can show soft tissue of a bulging disk or herniateddisc. So that you may get treatment these tests will demonstrate location and the stage of the herniated discs.

 

Herniated Disc Imaging Samples - El Paso Chiropractor

 

Other Tests to Diagnose�a Herniated Disc

 

To obtain the most accurate identification, your spine specialist may order additional tests, for example:

 

  • Electromyography (EMG): He or she may order an examination known as an electromyography to measure your nerves respond, if your spine pro suspects you’ve got nerve damage.
  • Discogram or discography: A sterile procedure where dye is injected into one of your vertebral disc and seen under special conditions (fluoroscopy). The goal is to pinpoint which disk(s) might be causing your pain.
  • Bone scan: This technique generates film or computer images of bones. A very small number of radioactive substance is injected into a blood vessel throughout the blood flow. It collects on your bones and can be detected by a scanner. This procedure helps doctors detect spinal problems such as disease, a fracture, tumor, or arthritis.
  • Laboratory evaluations: Typically blood is attracted (venipuncture) and tested to determine if the blood cells are normal or abnormal. A metabolic disease which might be contributing to a back pain may be indicated by Chemical changes in the blood.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Green-Call-Now-Button-24H-150x150-2.png

 

By Dr. Alex Jimenez

 

Additional Topics: Sciatica

 

Lower back pain is one of the most commonly reported symptoms among the general population. Sciatica, is well-known group of symptoms, including lower back pain, numbness and tingling sensations, which often describe the source of an individual’s lumbar spine issues. Sciatica can be due to a variety of injuries and/or conditions, such as spinal misalignment, or subluxation, disc herniation and even spinal degeneration.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

 

The Importance of MRI for Herniated Disc Diagnosis | Scientific Specialist

The Importance of MRI for Herniated Disc Diagnosis | Scientific Specialist

There are a number of important factors to take into consideration, such as the timing of when an MRI scan must be performed and limitations with interpretation of findings, to get an MRI scan for herniated discs.

 

To begin with, the difficulty with the results of an MRI scan, as with a number of other diagnostic studies, is that the abnormality may not always be the source of an individual’s back pain or other symptoms. Numerous studies have shown that approximately 30 percent of people in their twenties and forties have a lumbar disc herniation in their MRI scan, even though they don’t have any pain.

 

An MRI scan cannot be interpreted on its own. Everything Has to Be well-correlated into the individual patient’s condition, for example:

 

  • Symptoms (such as the duration, location, and severity of pain)
  • Any deficits in their examination

 

Another concern with MRI scans is the time of when the scan is done. When a patient has experienced the following symptoms would be the only time that an MRI scan is needed immediately:

 

  • Bowel or bladder incontinence
  • Progressive weakness due to nerve damage in the legs.

 

Herniated Disc Analysis with MRI

 

Obtaining an MRI (magnetic resonance imaging) can be an important step in correctly assessing a herniated disc in the spine. Unlike an X-ray, MRI uses a magnetic field and a computer to create and record detailed pictures of the internal workings of your entire body. This technology can also be capable of producing cross-sectional views in identifying a disc of the body, which greatly help doctors. MRI scans are based on new technology, but they have become essential in diagnosing a number of back and neck issues, such as spinal stenosis, herniated discs and bone spurs.

 

An MRI scan has a number of benefits that greatly help a herniated disc patient. The advantages of an MRI can be:

 

  • Unobtrusive
  • Painless and free of radiation
  • Can focus on a particular part of the entire body
  • Extremely accurate

 

Diagnosing Disc Herniation

 

Should you believe you have a herniated disc in the neck or back, the very first step would be to visit a physician. Your physician will have the ability to supply you with a complete evaluation and inspection of your medical history to create a identification. Following that, you may be referred to execute an MRI stabilize and to confirm the herniated disc.

 

 

 

 

At the imaging center you’ll be put to the tubular MRI machine to get a body scan. You may remain enclosed in the MRI device for up to an hour while the comprehensive scan of place where the herniated disc along the spine is completed. The MRI can reveal the exact condition of the herniated disc and surrounding arrangements. This allows your doctor to produce the treatment plan that is right for you and to understand the origin of the disc damage and pain.

 

Herniated Disc Follow-Up Treatment

 

Most patients are able to successfully treat herniated disc pain using nonsurgical standard treatments prescribed by their physician. These include relaxation, compression treatment and mild exercise. Surgery can then be explored when months or weeks of treatment do not bring a return to previous action.

 

If you’re researching surgical options and have become concerned by a number of the risks and unsuccessful results of traditional open back operation, contact a specialist. Spine surgery specialists perform minimally invasive spine surgery, including invasive stabilization surgeries and minimally invasive decompression, which can treat a number of the very acute herniated discs. They may review your MRI to determine if you are a candidate for minimally invasive spine surgery, which may help you get your life back.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Green-Call-Now-Button-24H-150x150-2.png

 

By Dr. Alex Jimenez

 

Additional Topics: Sciatica

 

Lower back pain is one of the most commonly reported symptoms among the general population. Sciatica, is well-known group of symptoms, including lower back pain, numbness and tingling sensations, which often describe the source of an individual’s lumbar spine issues. Sciatica can be due to a variety of injuries and/or conditions, such as spinal misalignment, or subluxation, disc herniation and even spinal degeneration.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

 

Understanding Herniated Discs & its Diagnosis | El Paso Chiropractor

Understanding Herniated Discs & its Diagnosis | El Paso Chiropractor

A healthcare professional’s clinical diagnosis focuses on finding out the source of a patient’s pain. For this reason, the clinical identification of pain in the herniated disc relies on more than only the findings from a diagnostic evaluation, like CT scan or an MRI scan.

 

The spine care professional arrives at a clinical diagnosis of the cause of the patient’s pain by means of a combination of findings by a comprehensive medical history, conducting a complete physical exam, and, if appropriate, running one or more diagnostic tests:

 

  • Medical history: The physician will choose the patient’s medical history, such as a description of if sciatica, the back pain or other symptoms occur, a description of how the pain feels, what remedies, positions or activities make the pain feel better and more.
  • Physical examination: The physicians will conduct a physical exam of the individual, such as muscle power and analyzing neural function in parts of the leg or arm, analyzing for pain in positions and much more. Ordinarily, this series of physical tests will give a good idea of the type of back issue the individual has to the spine professional.
  • Diagnostic tests: After the physician has a fantastic idea of the origin of the patient’s pain, a diagnostic evaluation, such as a CT scan or a MRI scan, is often ordered to confirm the presence of an anatomical lesion at the backbone. The evaluations can give a picture of the location of nerve roots and the disc.

 

It’s important to emphasize that MRI scans and other diagnostic tests aren’t utilized to diagnose the patient’s pain; rather, they are only utilized to confirm the existence of an anatomical problem that was suspected or identified throughout the medical history and physical examination. Because of this, while the radiographic findings on an MRI scan or other tests are significant, they aren’t as important in diagnosing the reason for the patient’s pain (that the clinical investigation demonstrated) as are the findings from the medical history and physical examination. Many times, an MRI scan or other kind of evaluation will be used for the purpose of treatment, so the healthcare specialist can determine the way it’s currently impinging on the nerve root and precisely where the herniated disc is.

 

 

Circled Herniated Disc MRI

 

When MRI is Used to Diagnose Herniated Discs

 

When patients have predominantly experienced leg pain along with a lumbar disc herniation, MRI scans are usually recommended early in a patient’s path of pain.

 

Therefore, physicians often recommend waiting 3 to 6 months (following the onset of lower back pain) prior to having an MRI scan done as a way to see whether the pain will get better with conservative (nonsurgical) remedies. As a very general guideline, if the results of the MRI scan aren’t likely to affect a patient’s further back pain therapy, and �the patient will continue with non-surgical treatments such as chiropractic treatments, physical therapy and drugs, waiting to acquire an MRI scan, as well as other imaging scans, in most situations is a fair option.

 

What Happens When a Disc Herniates

 

Though the spinal discs are made to withstand significant amounts of force, injury and other issues with the disc can happen. After the disc ages or is injured, the outer portion (annulus fibrosus) of a disk may be torn as well as the disc’s inner substance (nucleus pulposus) can herniate or extrude out of the disk. Nerves, and the inner portion of the disc surround each spinal disc that leaks out comprises proteins, therefore when this material comes in contact with a nerve wracking pain that may travel down the length of the nerve can be caused by it. Even a tiny disk herniation which enables a small quantity of the inner disc material to touch the nerve may cause pain.

 

Herniated Disc Image Diagram

 

Pain from a Herniated Disc vs. Degenerative Disc Disease

 

A herniated disc will generally create another type of pain than degenerative disk disease (another common disc problem).

 

When a patient has a symptomatic degenerated disc (one which causes pain or other symptoms), it’s the disc space itself which is debilitating and is the origin of pain. This type of pain is called axial pain.

 

When a patient has a symptomatic herniated disc, it is not the disk space itself that hurts, but rather the disc difficulty is causing pain in a nerve in the spine. This kind of pain is typically called radicular pain (nerve root pain, or tingling from a lumbar herniated disk).

 

In conclusion, when an individual begins to experience painful symptoms along their lower back, or lumbar spine, although they may sometimes not experience any symptoms, it a herniated disc is suspected, its recommended to seek immediate medical attention and to consider having an MRI, CT scan or other imaging tests to properly diagnose the presence of a herniated disc or other injury and/or condition before following with treatment.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Green-Call-Now-Button-24H-150x150-2.png

 

By Dr. Alex Jimenez

 

Additional Topics: Sciatica

 

Lower back pain is one of the most commonly reported symptoms among the general population. Sciatica, is well-known group of symptoms, including lower back pain, numbness and tingling sensations, which often describe the source of an individual’s lumbar spine issues. Sciatica can be due to a variety of injuries and/or conditions, such as spinal misalignment, or subluxation, disc herniation and even spinal degeneration.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

 

Exercises and Stretches for Herniated Discs | Scientific Specialist

Exercises and Stretches for Herniated Discs | Scientific Specialist

Exercise is a frequent component of disc treatment. Your pain will be reduced by maintaining a proactive approach and help ensure the long-term health of your spine.

 

A herniated disc may need 1 or 2 days rest to relieve pain. You need to resist the desire to lie in bed for days at a time since your muscles need conditioning to help the healing procedure. Your body may not respond to treatment, should you forgo physical activity and exercise.

 

Benefits of Exercise for Herniated Discs

 

Exercising is an efficient method to strengthen and stabilize your low back muscles and prevent additional injury and pain. Strong muscles support your own body weight and bones, carrying pressure.

 

However, even if you have powerful muscles to support your spine, you must get rid of �excess weight to truly support your spine. Your back is strained by carrying around extra weight constantly, you’re practically doing all of the time to heavy lifting! Losing weight will reduce your pain and encourage the health of your back. If you need to lose weight, talk to you physician about �the different choices you may have.

 

 

Herniated Disc Diagram - El Paso Chiropractor

 

Types of Exercise for Herniated Discs

 

You don’t need to endure an intense cardio program or lift heavy weights, simple stretches and aerobic exercises may efficiently control your herniated disc pain.

 

Stretching programs like yoga and Pilates enhance flexibility and strength, and supply relief of severe pain in your leg and low back. Your physician can also prescribe dynamic lumbar stabilization exercises. This program contains exercises that work the abdominal and back muscles to address posture, flexibility, and stamina.

 

Moderate aerobic activities, including walking, biking, and swimming, also help relieve pain. Some activities might be better suited to your particular condition. Speak with your doctor about what exercises will help you.

 

When beginning an aerobic exercise program, start slow–perhaps 10 minutes the first day–and gradually increase your time each day. Eventually, you should aim for 30 to 40 minutes of activity 5 days per week.

 

Exercise may be a pleasant and satisfying method to take care of symptoms associated with a herniated disc. Your physician and you can work together to develop a program which you will lower your pain and could stick with. In the end, exercise can help you feel better, and it should help relieve your pain from a herniated disc.

 

Herniated Disc Exercises (Video)

 

 

When Should You Go to a Doctor For Herniated Disc Pain?

 

Oftentimes, patience and time (and perhaps some medication) are sufficient to reduce the pain of a lumbar herniated disc, however, a new study indicates that waiting too long to seek medical treatment for your low back pain may end up doing more harm than good.

 

The findings, which were introduced in the 2010 Annual Meeting of the American Academy of Orthopaedic Surgeons (AAOS), revealed that patients who waited more than 6 months to report their herniated disc symptoms to a doctor didn’t respond to therapy in addition to those who waited less than 6 weeks to seek out medical advice.

 

In this study, researchers compared 927 patients who had lumbar herniated disc symptoms for less than 6 weeks to 265 patients who had symptoms for more than 6 months.

 

The researcher team found that the patients who sought medical therapy within 6 weeks of first experiencing symptoms reacted better to both nonsurgical and surgical treatments.

 

The lesson patients ought to learn from this research, researchers say, is not to wait too long to see your doctor if your herniated disc pain is severe. Visiting a doctor sooner rather than later might enhance the success of your treatment, in case you have low back pain that persists.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Green-Call-Now-Button-24H-150x150-2.png

 

By Dr. Alex Jimenez

 

Additional Topics: Sciatica

 

Lower back pain is one of the most commonly reported symptoms among the general population. Sciatica, is well-known group of symptoms, including lower back pain, numbness and tingling sensations, which often describe the source of an individual’s lumbar spine issues. Sciatica can be due to a variety of injuries and/or conditions, such as spinal misalignment, or subluxation, disc herniation and even spinal degeneration.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

 

Chiropractic Techniques for Herniated Discs | El Paso Chiropractor

Chiropractic Techniques for Herniated Discs | El Paso Chiropractor

Chiropractic care is a nonsurgical treatment option for discs. But what is a chiropractor’s approach to healing a herniated disc?

 

With the exception of the initial 2 vertebrae in the neck–the atlas (C1) and the axis (C2), there is an intervertebral disc between each vertebra of the spine. Discs supply flexibility, and act as a shock absorber and a shock distributor.

 

Picture if you jump up and down. What would occur to the stack of bony vertebrae that form the spine without the cushioning and support of those disks? Now, move your back from side to side. Again, you can picture the give and take between the vertebrae of the discs. Without these discs, your spine couldn’t function.

 

Intervertebral discs do not really “slip”, even though the term “slipped disc” has come into popular usage to refer to bulging, ruptured, or herniated discs. Throughout this guide, we will refer to herniated discs, which is the term that is correct.

 

Your disks comprise of the annulus fibrosus (the tough outer layer) and the nucleus pulposus (that contains a gentle, gelatin-like centre). The material inside of the disc can begin to push out, when cracks happen in the outer layer of this disk. A lot of factors can cause a disc herniation.

 

 

For example, there could be too much stress on the disc due to bad posture or from becoming obese. In actuality, a combination of a physical injury or variables can cause herniated discs.

 

Chiropractic Care and Herniated Discs

 

A chiropractor can help address back pain and other herniated disk symptoms. In your first appointment, your chiropractor will undergo your medical history, do a physical examination, and perform neurological and orthopaedic evaluations.

 

Your physician will look for several things. The chiropractor will also carefully look at your position, and they may purchase an X-ray or MRI, if needed, to aid with the diagnostic procedure.

 

Herniated Disc MRI

 

Bulging and Herniated Discs MRI

 

Chiropractors evaluate the entire spine. Your chiropractor will analyze your neck, also if you simply have lower back pain. Recall, he or she wants to see how well your spine is working overall: What happens in one area of your spine can influence other components of your spine and/or body.

 

After reviewing this information, your physician can ascertain whether you have an intervertebral disk injury. The kind will use to handle your symptoms.

 

Some patients are not good candidates for some sorts of chiropractic care remedies. As an example, when you have cauda equina syndrome (a condition where you lose control of your bowel/bladder with an uncontrollable intervertebral disk injury), then you will need immediate medical care because this is something which cannot be treated by your physician.

 

In addition, if your physician finds that you’ve advanced lack of power, sensation, reflexes, and other unusual neurological findings, then he or she will refer you to a spine surgeon.

 

But, most intervertebral disk injuries are associated with a herniated disc, along with your chiropractor can give you various therapy alternatives to deal with your pain and other ailments.

 

To deal with a herniated disk, your physician will create a treatment plan which might include spinal manipulation, also called adjustments, and other chiropractic methods to help ease your herniated disk symptoms. It may include exercises and manual therapy, although this is going to be an individualized treatment plan.

 

The particulars of what are in your treatment plan are particular to your own pain, amount of activity, general wellness, and exactly what your chiropractor believes is best. As with any treatment option, do not hesitate to ask questions about what treatments are being recommended and why. You need to be certain that you understand what’s going to be done and how it can help relieve your pain. Chiropractice treatment is safe and effective .

 

Below are some examples of chiropractic techniques used for herniated discs.

 

Flexion-distraction Technique for Herniated Discs

 

A mutual chiropractic technique is your flexion-distraction procedure, which may be used to help address herniated disc symptoms.

 

Flexion-distraction entails the use of a technical table that softly “distracts” or stretching the backbone. This allows the chiropractor to isolate the affected region while marginally “bending” the backbone using a pumping rhythm.

 

There is typically no pain associated with this treatment. Rather, the flexion-distraction technique’s gentle pumping to the painful area makes it possible for the middle of the intervertebral disc (called the nucleus pulposus) to assume its central place in the disk. Disc height may be also improved by flexion-distraction.

 

This technique can help move the disk away from the nerve, reducing inflammation of the nerve root, and eventually any associated pain and inflammation into the leg (if there’s any associated with your herniated disc).

 

With flexion-distraction, you generally require a collection of treatments together with adjunctive ultrasound, muscle stimulation, physiotherapy, supplementation, and at-home treatments (your physician will let you know what those are). Gradually, specific nutritional supplements and nutritional recommendations will be integrated into your treatment plan. Your physician will track you.

 

Manipulation Under Anesthesia (MUA)

 

Manipulation under anesthesia or MUA is also a suitable chiropractic treatment for some spinal ailments. MUA is performed at hospital or an ambulatory care centre. The type of anesthesia is called sleep; meaning that the duration of sleep and also sedsation is brief. While your body is in, even though the patient is sedated, the therapy area stretches and manipulates Relaxed state. This therapy is generally conducted during 1 to 3 sessions that are.

 

Pelvic Blocking Strategies for Herniated Discs

 

Chiropractors also utilize pelvic blocking methods to treat herniated disc symptoms.

 

Pelvic blocking remedies include using cushioned pliers, which can be placed under both sides of the pelvis. Gentle exercises may be utilized. These will allow changes in mechanisms to draw your disk away from the guts it may be pressing on.

 

Misconceptions about Chiropractic

 

It is a misconception that chiropractors “pop up a disc back in position” using forceful alterations. The “pop” sound comes from the release of gas under pressure in a joint. It is similar to the sound.

 

Another misconception is that chiropractic care involves a few quick remedies, which may “fix” your disc. Instead, as explained above, herniated discs using gentle practices that are low-force are treated by chiropractors.

 

In Conclusion

 

Your chiropractor will create a treatment strategy for your herniated disk, and if your symptoms don’t improve with chiropractic care methods, your physician may recommend and comanage your condition with a pain medicine specialist and/or a spine surgeon.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Green-Call-Now-Button-24H-150x150-2.png

 

By Dr. Alex Jimenez

 

Additional Topics: Sciatica

 

Lower back pain is one of the most commonly reported symptoms among the general population. Sciatica, is well-known group of symptoms, including lower back pain, numbness and tingling sensations, which often describe the source of an individual’s lumbar spine issues. Sciatica can be due to a variety of injuries and/or conditions, such as spinal misalignment, or subluxation, disc herniation and even spinal degeneration.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

 

Scientific Specialist: 5 Common Causes of Sciatica Pain

Scientific Specialist: 5 Common Causes of Sciatica Pain

Several lumbar spine (lower back) disorders can cause sciatica. Sciatica is often described as moderate to intense pain at the left or right leg. Sciatica is caused by compression of at least one of the 5 places of nerve roots in the lower spine. Sometimes physicians call a radiculopathy sciatica. Radiculopathy is a term used to refer to pain, numbness, tingling, and weakness in the arms or legs brought on by a nerve root issue. If the nerve problem is in the neck, then it is called a cervical radiculopathy. However, because the low back is affected by sciatica, it is called a lumbar radiculopathy.

 

Pathways to Reduce Nerve Pain

 

Five sets of nerve roots at the lumbar spine combine to produce the sciatic nerve. Beginning at the back of the pelvis (sacrum), the sciatic nerve runs from the trunk, beneath the buttocks, and downward through the hip place into every leg. Nerve roots aren’t “solitary” structures but are a part of the body’s entire nervous system capable of transmitting pain and sensation to other areas of the human body. Radiculopathy occurs when compression of a nerve due to a disc rupture (herniated disc) or bone spur (osteophyte) occurs in the lumbar spine prior to it joining the sciatic nerve.

 

What Causes Sciatic Nerve Compression?

 

Several spinal disorders can lead to nerve compression or lumbar radiculopathy. The 5 are:

 

  • a bulging or herniated disc
  • lumbar spinal stenosis
  • spondylolisthesis
  • Injury
  • piriformis syndrome

 

Lumbar Bulging Disc or Herniated Disc

 

 

A bulging disc is also called a contained disc disorder. This usually means the gel-like center (nucleus pulposus) remains “contained” inside the tire-like outer wall (annulus fibrosus) of the disc.

 

A herniated disc occurs when the nucleus breaks throughout the annulus fibrosus. It’s known as a “non-contained” disc disease. Whether a disc herniates or bulges, disc material can press against an adjacent nerve root and compress lead to sciatica and nerve tissue.

 

Bulging and Herniated Discs MRI - El Paso Chiropractor

 

A disc’s consequences are somewhat worse. Not only does the herniated disc cause direct compression of the nerve root from the interior of the bony spinal canal, but also the disc material itself also contains an acidic, chemical irritant (hyaluronic acid) which causes nerve inflammation. In both situations, nerve wracking and irritation cause pain and swelling, muscle weakness, tingling, and often leading to extremity numbness.

 

Lumbar Spinal Stenosis

 

Spinal stenosis is a neural compression disease. Leg pain may happen as a result of lumbar spinal stenosis. The pain is usually positional, frequently brought on by activities such as walking or standing and relieved by sitting down.

 

Spinal nerve roots branch out in the spinal cord called foramina comprised of bone and ligaments. Between each set of vertebral bodies, situated on the right and left sides, is a foramen. Nerve roots pass through these openings and extend outward beyond the spinal column to innervate different parts of the human body. Whenever these passageways become obstructed causing nerve compression or lean, the expression foraminal stenosis is utilized.

 

Spondylolisthesis

 

Spondylolisthesis is a disorder that most often affects the lumbar spinal column. It’s characterized by a single vertebra slipping forward over an adjacent vertebra. A vertebra slips and is displaced, when, spinal nerve root compression often triggers sciatic leg pain and happens. Spondylolisthesis is categorized as developmental (found at birth, develops during childhood) or acquired from spinal degeneration, injury or physical strain (eg, lifting weights).

 

Trauma and Injury

 

Sciatica can result from nerve compression brought on by external forces to the lumbar or sacral nerve roots. Examples include motor vehicle accidents. The impact may injure the nerves or, sometimes, the nerves may be compressed by fragments of bone.

 

Piriformis Syndrome

 

piriformis-detail400

 

Piriformis syndrome is named after the muscle and the pain caused when the sciatic nerve irritates. The piriformis muscle and the thighbone is located in the lower portion of the spine, connect, and aids in cool rotation. The sciatic nerve runs beneath the piriformis muscle. When muscle aches grow in the muscle compressing the nerve, Piriformis syndrome develops. It may be difficult to diagnose and treat due to the deficiency of x ray or magnetic resonance imaging (MRI) findings.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Green-Call-Now-Button-24H-150x150-2.png

 

By Dr. Alex Jimenez

 

Additional Topics: Sciatica

 

Lower back pain is one of the most commonly reported symptoms among the general population. Sciatica, is well-known group of symptoms, including lower back pain, numbness and tingling sensations, which often describe the source of an individual’s lumbar spine issues. Sciatica can be due to a variety of injuries and/or conditions, such as spinal misalignment, or subluxation, disc herniation and even spinal degeneration.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

 

El Paso Scientific Chiropractor: Piriformis Syndrome vs Herniated Discs

El Paso Scientific Chiropractor: Piriformis Syndrome vs Herniated Discs

Pain that travels from the back down the leg and into the foot is known as sciatica, which is an overall expression for pain that is excruciating. The term does not clarify why, or what tissue is injured. In reality accidents can cause gastrointestinal pain, together with piriformis syndrome, lumbar spinal disc herniations, and sprains being the three most frequent types of injuries and conditions affecting health and wellness.

 

Piriformis syndrome is commonly misdiagnosed as a spinal disc herniation, because the pattern of radiating pain, in the back to the lower elevation, is similar in both cases. With both injuries, individuals experience pain with the same type of motions, particularly rising from a seated position, standing for prolonged period of time, or sleeping. At the same time, the pain related to both injuries feels better once you curl up in the fetal position on your side.

 

A spinal disc herniation occurs when the jelly-like substance from inside the lumbar disc compresses the spinal cord or nerve. Either the disc material compresses the nerves when squeezed out of this disc, or else the compression of the nervous tissue is caused by inflammation. A spinal disc herniation is generally considered a severe injury, causing a massive amount of restriction and back pain. Some folks lose sensation in their legs. They can experience numbness and tingling through the day. Several have tingling, burning, dull, or pain in leg, glutes, and their own back. These are all symptoms associated with sciatica. Compression of particular nerves causes muscle fatigue and loss of feeling.

 

 

piriformis_syndrome_sciatic-nerve - El Paso Chiropractor

Herniated Disc Treatments

 

Therapy entails helping the body break down the spinal disc material, and relieving the compression of the nerves. Spinal disc decompression treatments are treatments for disc herniations. Flexion distraction therapy is also a way of decreasing pressure in the low back. Patients benefit from at-home utilization of inversion tables. Improve movement in the back joints and stretches and light exercises are used to decrease muscle spasms.

 

Massage treatment is focused on the back, buttocks, and hamstring muscles to decrease spasms and to reach the lumbar spine and pelvis. Individuals with disc herniations have weakness within their muscles, which need to be strengthened with therapy in order to increase strength, endurance, and muscle coordination patterns. Patients with a history of previous disc herniations or back injuries benefit immensely from strengthening therapy to prevent injuries.

 

Piriformis Syndrome and Treatment

 

The piriformis muscle is a really strong and powerful muscle that runs from the sacrum into the femur. It runs beneath gluteal muscles the nerve travels beneath them. If this muscle goes into spasm, then the nerve creates radiating pain, numbness, tingling, or burning out of the buttocks to the leg and foot. People do experience pain together with the syndrome. Other people develop the syndrome while dealing with chronic low back pain.

 

Activities and motions that cause the piriformis muscle to contract further compress the sciatic nerve, causing pain. This muscle can be contracted once we squat, or stand, walk , go up steps. It tends to tighten when we sit at any position for more than 20 to 30 minutes.

 

Individuals who have a history of chronic low back pain frequently assume that their radiating sciatic pain is traceable to their lower spine. Their history of disc herniations, or sprains, strains has taught them to assume that it will go away like normal, and that the pain is out of their spine. It is just when the pain doesn’t respond as usual that individuals seek therapy, thus delaying their recovery.

 

Piriformis Syndrome Image - El Paso Chiropractor

 

piriformis-detail400

 

Treatment for piriformis syndrome entails decreasing the intensity of the piriformis muscle spasm that’s controlling the sciatic nerve. Trigger point therapy, massage therapy, ice, heat, electrical, and stretching are involved with the early stages of care. Deep massage therapy is not advised in the first phases of piriformis syndrome. Some of the pain may be relieved during the therapy, but individuals experience worsening symptoms the following day. After the piriformis muscle is worked deeply it might relax for a short time period before it goes to a bigger spasm, further worsening the gastrointestinal pain.

 

Chiropractic Therapy for Sciatica Symptoms

 

Chiropractic therapies and treatment goals are to increase joint selection of motion and reduce muscle spasms. Muscle spasms increase tension and pressure on the lumbosacral and sacroiliac regions, which raises back pain. Treatment restores motion in these regions. Treatment and remedies to improve flexibility and reduce spasms accelerate healing and healing times for many types of back pain.

 

Often, people aggravate their piriformis muscle when they’re protecting or protecting their low back. They may have strength and capacity to compensate, bend, turn, and twist — thus, to squat, they overwork piriformis muscles and their glutes. Treatment should focus on increasing strength and endurance of their muscles, to reduce strain and injury.

 

Both piriformis syndrome and spinal disc herniations produce radiating pain in the very low back and to the leg. They are two different injuries, requiring treatments for recovery and regular healing. They are both commonly associated with flexibility and low back weakness. Treatment should address the acute traumas but also the core weaknesses that resulted in the condition.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Green-Call-Now-Button-24H-150x150-2.png

 

By Dr. Alex Jimenez

 

Additional Topics: Sciatica

 

Lower back pain is one of the most commonly reported symptoms among the general population. Sciatica, is well-known group of symptoms, including lower back pain, numbness and tingling sensations, which often describe the source of an individual’s lumbar spine issues. Sciatica can be due to a variety of injuries and/or conditions, such as spinal misalignment, or subluxation, disc herniation and even spinal degeneration.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

 

Scientific Chiropractor: Herniated Disc Signs and Symptoms

Scientific Chiropractor: Herniated Disc Signs and Symptoms

Herniated discs are a common condition that can occur anywhere along the back or spine, but most often affects the lower back or neck region of the spine.

 

Also known as a slipped disc or ruptured disc, a herniated disc develops when one or several of the pads found between the vertebrae moves from position and presses on adjacent nerves, resulting in a variety of painful symptoms.

 

Herniated discs are caused by overuse injuries or trauma to the spine, nonetheless, disc conditions can also develop as a result of the normal aging process or due to degeneration. It’s also understood that there is a genetic element that leads to the development of disc herniation and disc degeneration.

 

 

Symptoms of a herniated disc may generally include sharp or dull pain and discomfort, muscle spasm or cramping, fatigue, tingling sensations, numbness or referred pain.

 

But here is something to consider: From time to time, a disc does not cause any symptoms . That’s called an asymptomatic herniated disc. Your intervertebral disc could be bulging or herniated, but it won’t cause any symptoms, such as pain, unless it is pressing on the spinal cord, its nerve roots or individual nerves.

 

This brings up a fantastic point about herniated disc symptoms: Your symptoms are dependent on where you’ve got a herniated disc.

 

Cervical Herniated Disc Symptoms

 

If you’ve got a herniated disc or bulging disc on your neck (cervical spine), then you will experience:

 

  • Neck pain
  • Muscle tightness or cramping on your neck
  • Pain which radiates (or travels) down your arm(s) (this can be called referred pain or cervical radiculopathy)
  • Tingling in your arm(s) or hand(s)
  • Weakness in your arm(s) or hand(s)

 

Cervical Disc Herniation MRI - El Paso Chiropractor

 

Lumbar Herniated Disc Symptoms

 

A herniated disc in the low back (lumbar spine) may cause the following symptoms:

 

  • Low back pain
  • Muscle tightness or cramping in your back
  • Pain that radiates down your leg(s) (this can be known as referred pain, lumbar radiculopathy, or sciatica)
  • Tingling in your leg(s) or foot/feet
  • Weakness in your leg(s) or foot/feet
  • Really infrequent: Loss of bowel or bladder control (Please, even if this occurs, seek prompt medical care.)

 

Lumbar Herniated Disc MRI

 

A Note on Referred Pain Brought on by a Herniated Disc

 

Referred pain means that you’ve got pain in another part of your body as a result of the intervertebral disc issue. As an example, in case you’ve got a bulging disc or a herniated disc in your low back (lumbar spine), you may have known pain in your leg. This is called lumbar radiculpathy or sciatica, a shooting pain that can extend from the buttock into the leg and to the foot. Only one leg is typically affected.

 

When you’ve got a herniated disc in your neck (cervical spine), then you may have referred pain down your arm and into your hand. Arm and shoulder pain caused by a herniated disc is also called radiculopathy.

 

Lower Back Pain: Causes & Symptoms (Video)

 

 

Herniated Disc Symptoms: When Should You Find a Doctor?

 

The pain from a herniated disc can make it hard to enjoy your daily life; it may make it tough to walk, sit, or even sleep comfortably. If your disc symptoms linger for more than fourteen days, you should make a doctor appointment. Should you experience unexpected onset of pain (after lifting something heavy incorrectly, as an instance), call your physician.

 

It’s very rare, but herniated discs can sometimes affect bowel or bladder control (as mentioned above). If this occurs, seek medical attention immediately for a proper diagnosis, followed up by treatment.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Green-Call-Now-Button-24H-150x150-2.png

 

By Dr. Alex Jimenez

 

Additional Topics: Sciatica

 

Lower back pain is one of the most commonly reported symptoms among the general population. Sciatica, is well-known group of symptoms, including lower back pain, numbness and tingling sensations, which often describe the source of an individual’s lumbar spine issues. Sciatica can be due to a variety of injuries and/or conditions, such as spinal misalignment, or subluxation, disc herniation and even spinal degeneration.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

 

El Paso Scientific Specialist: Lumbar Herniated Discs and Sciatica

El Paso Scientific Specialist: Lumbar Herniated Discs and Sciatica

A herniated (ruptured or “slipped”) disc results whenever a disc moves from place or bulges and puts pressure on the nerves or nerve roots. This kind of injury is comparatively common. Repetitive movements, lifting, being obese, and high-impact injuries, as well as simply the aging process, can cause a herniated disc.

 

As we age, we become more prone to disc injuries over time, primarily because the discs begin to degenerate: they dry out and can become torn and cracked. Moreover, certain genetic elements may also predispose a person to suffer from a herniated disc and disc degeneration.

 

Intervertebral discs would be the cushion-like pads that sit between the vertebrae of the spine; they act like shock absorbers and permit the spine to become elastic. A strong outer layer known as the annulus fibrosus surrounds a center called the nucleus pulposus, similar to a hard candy with a soft center. The spine can be broken up into regions. The vertebrae are numbered, and the discs are numbered by level. For example, the lumbar spine (lower back) vertebrae are tagged L1 to L5, and the discs are labeled L1-L2, all the way down to L5-S1 (where the spine joins the sacrum).

 

 

Lumbar Herniated Disc and Sciatica

 

Several symptoms may indicate a LHD, or lumbar herniated disc. Pain can range from a dull ache to a severe, sharp pain. Sciatica is a type of nerve pain which could be caused by a lumbar disc compressing the nerve. The sciatic nerve originates in the lumbar spine and extends down the buttocks and down each leg. When a disc protrudes, it can compress the nerves, causing sciatica where pain extends from the buttock and thigh down into the leg and below the knee. You might have other symptoms, such as numbness on your leg or foot, burning or tingling sensations (paresthesias), muscular fatigue and/or weakness, abnormal reflexes, and, in severe cases, loss of bladder or bowel control (that constitutes a medical emergency and needs immediate attention).

 

Lumbar Herniated Disc Diagnosis

 

The science of a medical diagnosis starts with a history and physical examination. Your doctor will assess body movements and asks about your symptoms. If lifting up the leg while lying down generates pain which radiates down your leg, a diagnosis of LHD is possible, especially if you have other symptoms, such as numbness or paresthesias.

 

Herniated Disc MRI - El Paso Chiropractor

 

 

Although X-rays may help rule out other conditions, such as a fracture, for example, other imaging studies, such as magnetic resonance imaging (MRI), are necessary for a diagnosis of lumbar herniated disc. X-rays don’t show soft tissues like discs and nerves. Additional tests, such as nerve conduction studies and an electromyogram (EMG) are needed to confirm that a herniated disc is the source of the symptoms.

 

LHD and Sciatica Statistics

 

While low back pain is a common ailment, sciatica happens less frequently. Approximately 80% of the general population experiences low back pain but only 2-3% of people with low back pain actually have sciatica. Most cases of LHD occur in people aged 30 to 50 decades. The level of herniation is L4-L5, followed.

 

Is Surgery Necessary for LHD?

 

Herniated disks and sciatica often heal on their own with appropriate care, such as medications, injections, and physical therapy, including chiropractic care and other alternative treatment options. If the symptoms progress and when neurologic problems (such as shooting numbness or pain in the leg) become more severe, or when weakness in the leg or foot gets worse, surgery may be suggested.

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Green-Call-Now-Button-24H-150x150-2.png

 

By Dr. Alex Jimenez

 

Additional Topics: Sciatica

 

Lower back pain is one of the most commonly reported symptoms among the general population. Sciatica, is well-known group of symptoms, including lower back pain, numbness and tingling sensations, which often describe the source of an individual’s lumbar spine issues. Sciatica can be due to a variety of injuries and/or conditions, such as spinal misalignment, or subluxation, disc herniation and even spinal degeneration.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

 

Chiropractic Care for Herniated Discs | Scientific Doctor

Chiropractic Care for Herniated Discs | Scientific Doctor

As we get older, we become more prone to injuries, since our bodies are not as elastic as they once were. This is especially true for the inner material of your spine’s discs. Every year you become a little more at risk of experiencing herniated discs, a condition where a stressed disc ruptures, because the elasticity and water content of your intervertebral discs reduces overall.

 

But herniated discs aren’t only a problem for elderly people. A disc herniation can be experienced by anyone as a result of twisting or lifting the wrong way. And in the event that you currently have a bulging disc, a disc that is hurt but still intact, chances are higher that stress on the affected disc could cause it to rupture or become “herniated”.

 

A herniated disc can cause pain throughout the entire body, not just back pain. And as you might think of surgery being the sole remedy for a herniated disc, there are lots of complementary and alternative treatment option for herniated discs. Chiropractic specializes in supplying non-invasive spinal decompression treatment and therapy methods.

 

A visit to your chiropractor will help you confirm whether you have a herniated disc, a bulging disc, or even some other spinal problem altogether. If you do have an injured disc, a doctor of chiropractic can create an individual treatment plan to assist you avoid surgery and return to enjoying your life, pain-free.

 

What are Herniated Discs?

 

The 24 vertebrae of your spine are separated from one another by pads of cartilage known as intervertebral discs. These discs have an outer coating with a soft interior to cushion against stresses and strains as well as the shocks experienced in your spine. The discs are subject to injury, disease, and degeneration with use over time. Certain activities and types of work increase the risk of discs being damaged or deteriorating.

 

 

Once the soft inside material of a disc pushes or is bulged out through a tear or weakening in the outside covering, the disc is reported to be herniated. Slipped, ruptured and �prolapsed discs are also known as protruding, bulging, or degenerated discs. There are distinctions between these terms, but they really refer to a disc that is no longer in its normal condition and/or position and may require chiropractic care to treat them. Herniated discs trigger pain by impinging on (intruding upon, irritating, and pinching) as well as depriving nerves in the spine.

 

Chiropractic for Herniated Discs

 

A healthcare professional can help address back pain along with other herniated disc symptoms. In your first appointment, your chiropractor will go through your medical history, do a physical exam, and carry out orthopedic and neurological tests. The chiropractor will also look over your posture, and may order an X-ray or MRI, if necessary, to aid with the diagnostic procedure and determine the presence of a disc herniation.

 

Herniated Disc X Ray - El Paso Chiropractor

 

Normal and Herniated Disc Figures - El Paso Chiropractor

 

Chiropractors assess the whole spine. Your chiropractor will examine your neck, too, even when you simply have back pain. She or he wants to see how well your backbone is functioning and recall: What happens in one area of your spine can affect other parts of your spine and/or body.

 

After reviewing this information, your physician can ascertain whether you have an intervertebral disc injury. The type of disc injury you have will determine what treatments your chiropractor will use to address your symptoms. Your chiropractor can provide treatment options to you to address your pain and other symptoms.

 

To treat a herniated disk, your physician will develop a treatment program that might include spinal manipulation–also called adjustments–and other chiropractic techniques to help alleviate your herniated disc symptoms. It might consist of therapy and exercises, although this will be an individualized treatment plan.

 

The particulars of what are on your treatment strategy are particular to your own pain, level of activity, general health, and what your chiropractor thinks is best. As with any treatment option, do not be afraid to ask questions regarding what chiropractic treatments are being recommended and why. You want to be sure you know how it can help relieve your pain and what will be performed. Therapy is safe and effective for most patients.

 

Chiropractic provides the distinctive training, techniques, and experience needed to safely and effectively adjust your spine so the stress on the discs is minimized, the pain alleviated, the damaged or displaced structures given a opportunity to heal, and your capacity to return to normal functioning restored.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Green-Call-Now-Button-24H-150x150-2.png

 

By Dr. Alex Jimenez

 

Additional Topics: Sciatica

 

Lower back pain is one of the most commonly reported symptoms among the general population. Sciatica, is well-known group of symptoms, including lower back pain, numbness and tingling sensations, which often describe the source of an individual’s lumbar spine issues. Sciatica can be due to a variety of injuries and/or conditions, such as spinal misalignment, or subluxation, disc herniation and even spinal degeneration.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

 

Physical Therapeutics for Herniated Discs | El Paso Chiropractor

Physical Therapeutics for Herniated Discs | El Paso Chiropractor

Physical therapy plays a part in herniated disc recovery. Its methods not only offer you immediate pain relief, but they also teach you how you can condition your body to prevent further injury.

 

 

The discs are pads that serve as “cushions” between the vertebral bodies that serve to minimize the impact of movement on the spinal column. Each disc is designed like a jelly donut with a central softer component (nucleus pulposus).

 

 

Top view of a healthy lumbar vertebra and unhealthy lumbar vertebra with a herniated disk and inflammed nerve - El Paso Chiropractor

 

As the disc degenerates from age or injury, the softer central portion can rupture (herniate) through the surrounding outer ring (annulus fibrosus). This abnormal rupture of the central portion of the disc is referred to as a disc herniation. The most common location for a herniated disc to occur is in the disc at the level between the fourth and fifth lumber vertebrae in the low back.

 

herniated-disc-large - El Paso Chiropractor

 

Axial Herniated Disc Scan - El Paso Chiropractor

 

You will find a variety of physical therapy techniques, such as passive treatments, which help relax your body and include deep tissue massage, hot and cold therapy, electric stimulation (eg, TENS), and hydrotherapy, among others.

 

Your physical treatment program will usually begin with passive remedies. But once your body heals, you will start active treatments that strengthen your body and protect against additional pain. Your therapist will work with you to develop a strategy which best suits you.

Passive Physical Treatments for Herniated Discs

 

Deep Tissue Massage: There are more than 100 kinds of massage, but deep tissue massage is an ideal option when you’ve got a herniated disc because it uses a lot of pressure to ease deep muscle tension and spasms, which develop to stop muscle movement at the affected place.

 

Hot and Cold Therapy: Both hot and cold therapies offer their own set of advantages, and your physical therapist may alternate between them to get the best outcomes.

Your physical therapist may use heat to increase blood flow to the target region. Blood helps by delivering nutrients and additional oxygen cure the area. Blood also removes waste byproducts.

Conversely, cold therapy (also called cryotherapy) slows circulation. This decreases inflammation, muscle spasms and pain. Your physical therapist may put an ice pack give you an ice massage, or use a spray known to cool tissues.

 

Hydrotherapy: As the name implies, hydrotherapy involves water. As a passive therapy, hydrotherapy may involve sitting in warm shower or a bath. Hydrotherapy gently relieves pain and relaxes muscles.

 

Transcutaneous electric nerve stimulation (TENS): A TENS machine utilizes an electrical current to stimulate your muscles. It isn’t painful, although it seems extreme. A electric current is sent by electrodes to key points on the neural pathway. TENS reduces muscle spasms and is generally believed to activate the release.

 

Traction: The goal of traction is to decrease the effects of gravity to the spine. The aim is to cut back the disk herniation, by pulling the bones apart. The analogy is similar to a flat tire “disappearing” when you place a jack under the car and take strain off the tire. It can be carried out in the lumbar or cervical spine.

 

Active Physical Treatments for Herniated Discs

 

Active remedies help address flexibility, posture, strength, core stability, and joint motion. An exercise program may also be prescribed to achieve results. This will not just suppress recurrent pain but may also benefit your health. Your therapist may work with you to develop a schedule based on your diagnosis and health history.

Core equilibrium: Many people don’t realize how important a strong heart is to their spinal health. Your core (abdominal) muscles help your back muscles support your spine. It puts pressure when your heart muscles are weak. Your physical therapist may teach core to you.

 

Flexibility: Learning appropriate stretching and endurance techniques will prepare one for aerobic and strength exercises. Flexibility helps your body move simpler by warding off stiffness.

 

Hydrotherapy: Compared to just sitting in a hot bath or bath like its counterpart that is passive, active hydrotherapy can demand water to help condition your body without unnecessary strain.

 

Muscle strengthening: Strong muscles are a great support system for your backbone and better handle pain.
Your physician will teach you ways to condition and strengthen your back to help prevent future pain. So that you realize how to best treat your symptoms, you may learn fundamentals. The aim is that you develop the knowledge to maintain a way of life.

It is essential that you understand how to exercise and condition your back following the formal physical therapy ends. You won’t appreciate its results, if you don’t implement the lessons you learned during physical therapy. You might prevent additional disc pain, by taking care of your back on your own.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Green-Call-Now-Button-24H-150x150-2.png

 

By Dr. Alex Jimenez

 

Additional Topics: Sciatica

 

Lower back pain is one of the most commonly reported symptoms among the general population. Sciatica, is well-known group of symptoms, including lower back pain, numbness and tingling sensations, which often describe the source of an individual’s lumbar spine issues. Sciatica can be due to a variety of injuries and/or conditions, such as spinal misalignment, or subluxation, disc herniation and even spinal degeneration.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

 

Other Alternative Treatments for Herniated Discs | Scientific Chiropractor

Other Alternative Treatments for Herniated Discs | Scientific Chiropractor

Complementary and alternative treatments like massage, acupressure, and acupuncture can relieve pain related to a bulging or herniated disc.

 

If you’re considering these remedies, you need to consult a complementary and alternative medicine (CAM) professional. This title can be confusing, although complementary medicine and other medicine follow the very same techniques, they’re distinct in that forms are used in place of traditional medicine, whereas complementary treatments are used with conventional medication.

 

A herniated disk refers to a problem with one of the rubbery cushions (disks) between the individual bones (vertebrae) that stack up to make your spine. A spinal disk is a little like a jelly donut, with a softer center encased within a tougher exterior. Sometimes called a slipped disk or a ruptured disk, a herniated disk occurs when some of the softer “jelly” pushes out through a tear in the tougher exterior.

 

 

Various Images of Herniated Disc - El Paso Chiropractor

 

Stages to a Disc Herniation - El Paso Chiropractor

 

A herniated disk can irritate nearby nerves and result in pain, numbness or weakness in an arm or leg. On the other hand, many people experience no symptoms from a herniated disk. Most people who have a herniated disk don’t need surgery to correct the problem, as a matter of fact, they can explore alternative treatment approaches.

 

Other Treatments for Herniated Discs

 

Exploring alternative approaches may not only help you feel relaxed and hassle free but these can also keep you away from the operating room. For a ruptured or herniated disc, you might want to try:

 

Acupuncture: This ancient Chinese practice is rooted in the belief that everyone has an energy force called the Chi (sometimes spelled Qi, but the two are pronounced “chee”). When the Chi is blocked or unbalanced, your body may react with sickness, pain and discomfort. Traditional acupuncturists aim to free up Chi channels, called meridians, by inserting extremely thin needles into certain points in your own body’s meridians.

 

Based on your particular diagnosis, the practitioner will probably insert multiple needles which are left in for approximately 20-40 minutes.

 

It’s also been suggested that acupuncture triggers the release of endorphins into the blood flow. In other words, endorphins are the body’s natural pain relievers. As such, their discharge decreases your perception of pain. Similarly, the Gate Control Theory can play a part in acupuncture’s efficacy in reducing pain. This theory maintains that pain signals traveling slowly from the area of injury to the spinal cord into the brain because the nerves may only deal with a limited number of signals at the same time. Acupuncture is supposed to create signals to audience the pain signs that were slow-moving, blocking out the pain.

 

Acupressure: Not surprisingly, acupressure is very much like acupuncture. Both are techniques that restore a healthy flow of energy throughout the entire body by stimulating specific meridian points. But acupressure relies on hands palms, and elbows, not needles, to manage pressure. Acupressure is for people of all ages but not for pregnant women (several acupressure points may lead to miscarriage) and those with high blood pressure.

 

Massage: When received frequently, massage can provide chronic low back pain relief. A massage involves the stroking, kneading, and manipulation of your tissues. Blood flow, which provides oxygen and nutrients to the muscles is increased by these movements. Extra blood also carries waste byproducts that may accumulate away.

 

Whilst massage is not a proven treatment for herniated discs, it is usually safe and free of side effects. However, massage might not be perfect for you in the event that you suffer from deep vein thrombosis, osteoporosis, skin infections, open wounds, or arthritis in or close to the area to be massaged.

 

You’ll find over 100 types of massage techniques. A Swedish massage, for example, uses long strokes to impact the superficial layers of the muscles. In contrast, a deep tissue massage uses slow strokes and direct pressure to soothe your layers of muscle and relieve chronic strain. Your massage therapist will work with you to determine what special massage will most likely reduce your pain.

 

When you start any new medical plan, let your practitioner know if you have any health conditions apart from pain from your herniated disc. Additionally, it is important to be aware that these treatments are best when used as complementary treatments (that can be combined with conventional medicine).

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Green-Call-Now-Button-24H-150x150-2.png

 

By Dr. Alex Jimenez

 

Additional Topics: Sciatica

 

Lower back pain is one of the most commonly reported symptoms among the general population. Sciatica, is well-known group of symptoms, including lower back pain, numbness and tingling sensations, which often describe the source of an individual’s lumbar spine issues. Sciatica can be due to a variety of injuries and/or conditions, such as spinal misalignment, or subluxation, disc herniation and even spinal degeneration.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center