ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page

Chiropractic

Back Clinic Chiropractic. This is a form of alternative treatment that focuses on the diagnosis and treatment of various musculoskeletal injuries and conditions, especially those associated with the spine. Dr. Alex Jimenez discusses how spinal adjustments and manual manipulations regularly can greatly help both improve and eliminate many symptoms that could be causing discomfort to the individual. Chiropractors believe among the main reasons for pain and disease are the vertebrae’s misalignment in the spinal column (this is known as a chiropractic subluxation).

Through the usage of manual detection (or palpation), carefully applied pressure, massage, and manual manipulation of the vertebrae and joints (called adjustments), chiropractors can alleviate pressure and irritation on the nerves, restore joint mobility, and help return the body’s homeostasis. From subluxations, or spinal misalignments, to sciatica, a set of symptoms along the sciatic nerve caused by nerve impingement, chiropractic care can gradually restore the individual’s natural state of being. Dr. Jimenez compiles a group of concepts on chiropractic to best educate individuals on the variety of injuries and conditions affecting the human body.


Degenerative Disk Disease Treatment El Paso, TX

Degenerative Disk Disease Treatment El Paso, TX

George Lara, now retired, found relief with Dr. Alex Jimenez, back pain specialist and chiropractor, for his degenerative disk disease following two back injuries he experienced several years ago. After using drugs/medications and experiencing constant symptoms due to his DDD, Mr. Lara describes how Dr. Jimenez’s chiropractic treatment greatly helped restore his quality of life as well as promote his overall health and wellness. George Lara highly recommends Dr. Alex Jimenez as a non-surgical treatment choice for degenerative disc disease, and praises his dedication for treating his patients.

degenerative disk disease el paso tx.

Degenerative disk disease, or DDD, refers to the natural breakdown of an intervertebral disk of the spine. Despite its title, DDD isn’t regarded as a disorder, nor is it degenerative. To the contrary, disk degeneration is frequently the consequence of ordinary daily stresses and minor accidents that cause spinal disks to slowly eliminate water in the anulus fibrosus, or even through the stiff outer layer of a disk. As water content decreases, they start to collapse. This could lead to pressure being placed on the nerves causing weakness and pain. While not necessarily symptomatic, DDD may lead to acute or chronic low back or neck pain in addition to nerve pain based on the positioning of the affected disk and the amount of strain it puts around the surrounding nerve roots.

Please Recommend Us: If you have enjoyed this video and/or we have helped you in any way please feel free to recommend us. Thank You.

Recommend: Dr. Alex Jimenez � Chiropractor

Health Grades:�� www.healthgrades.com/review/3SDJ4

Facebook Clinical Page:� www.facebook.com/dralexjimenez/reviews/

Facebook Sports Page: www.facebook.com/pushasrx/

Facebook Injuries Page: www.facebook.com/elpasochiropractor/

Facebook Neuropathy Page: www.facebook.com/ElPasoNeuropathyCenter/

Yelp:�� goo.gl/pwY2n2

Clinical Testimonies: www.dralexjimenez.com/category/testimonies/

Information: Dr. Alex Jimenez � Chiropractor

Clinical Site: www.dralexjimenez.com

Injury Site: personalinjurydoctorgroup.com

Sports Injury Site: chiropracticscientist.com

Back Injury Site: elpasobackclinic.com

Linked In:�� www.linkedin.com/in/dralexjimenez

Pinterest:�� www.pinterest.com/dralexjimenez/

Twitter:�� twitter.com/dralexjimenez

Twitter: twitter.com/crossfitdoctor

Recommend: PUSH-as-Rx ��

Rehabilitation Center: www.pushasrx.com

Facebook:�� www.facebook.com/PUSHftinessathletictraining/

PUSH-as-Rx:�� www.push4fitness.com/team/

Hydration Is Important To Spinal Health In El Paso, TX.

Hydration Is Important To Spinal Health In El Paso, TX.

Hydration: There is no denying that a healthy diet is integral to overall wellness and staying hydrated is absolutely vital. Every organ, every cell in your body contains water. In fact, when you don�t drink enough water and keep your body properly hydrated, it does not function as it should.

The health of your spine and back depends heavily on whether you are properly hydrated. In fact, if you don�t drink enough water plain, pure water, it could affect your back, causing pain and limiting mobility.

Hydration

Overview Of Spinal Construction

To understand water�s role in spinal health, you first need to understand how the spine is constructed. The row of bones that make up the spine are called vertebrae. Between each vertebrae is a disc. This disc works like a shock absorber so as you bend, flex, and move about the disc provides a buffer so the bones do not rub together.

Each disc is comprised of two parts. The center of the disc is the nucleus pulposis. It is made up mostly of water. The nucleus pulposis is surrounded by a tough, flexible ring that contains a gelatinous substance. It protects the inner area which is the cushion for the vertebrae. Two factors that further complicate the rehydration of the discs are aging and sedentary lifestyles.

How Water Is Good For Your Back

As you go about your daily activities, each time you move, the spine compresses the disc, squeezing out the water within. Even walking or sitting upright can cause this as gravity causes the spine to compress. When the disc does not have adequate water, the result is pain and lack of mobility as well as increased risk of spinal injury.

When you are not properly hydrated your body cannot replenish the water in the discs, causing them to remain compressed. Beverages like soda are not adequate for effective hydration. You need to make sure that you drink enough water every day.

For years we were told that 8 eight ounce glasses of water a day was the rule for proper hydration, and that works for many people. However, an article in the Harvard Health Letter suggests that the body can be properly hydrated with 30 to 50 ounces of water a day. The article goes on to suggest that water can also be found in foods like spinach, watermelon, soups, and lettuce are also good sources for hydration.

hydration in el paso tx.

Spinal Problems Caused By Dehydration

When the body is dehydrated the discs remain compressed instead of refilling. When that happens the overall function of the spine is compromised. Your constant back pain may actually be caused by dehydration. When the discs cannot refill they can�t do their job. This leads to immobility and a compromised range of motion.

Hydration also plays an important role in how the cerebrospinal fluid moves and works. While it does require more than water to function properly, water does play an important role. When the body is dehydrated this fluid cannot move as it should which can even affect brain function.

On a larger scale, when the body is dehydrated it begins to retrieve water from other parts of the body so it can reroute it to the vital organs and sustain life. The extremities are the first places it pulls water from and the spine is another. When it deprives the spine of water in order to supply the organs then you remain in a constant deficit which can cause pain and mobility problems.

How The Spine Rehydrates

As the body rehydrates itself, it does not assign the spine as a priority. The vital organs take precedence so the spine basically gets what is left over. If there is already a deficiency present, then there is nothing left over to rehydrate the spine.

When there is adequate water in the body, normal activity and movement aids in the rehydration of the discs. The most significant rehydration occurs while you sleep though. When you lie down and rest your body is best able to initiate the process of rehydrating your spinal discs via osmosis.

Chiropractic care is another way to adjust the spine and encourage the refilling of the discs. That depends, of course, on proper water intake. Be good to your spine; it�s the only one you have.

Herniated Disc | El Paso, Texas

Migraine Headache Pain Chiropractic Therapy in El Paso, TX

Migraine Headache Pain Chiropractic Therapy in El Paso, TX

Migraine headaches have been considered to be one of the most frustrating ailments when compared to other common health issues. Generally triggered by stress, the symptoms of migraines, including the debilitating head pain, sensitivity to light and sound as well as the nausea, can tremendously affect a migraineur’s quality of life. However, research studies have found that chiropractic care can help reduce the frequency and the severity of your migraine pain. Many healthcare professionals have demonstrated that a spinal misalignment, or subluxation, may be the source of migraine headache pain. The purpose of the article below is to demonstrate the outcome measures of chiropractic spinal manipulative therapy for migraine.

 

Chiropractic Spinal Manipulative Therapy for Migraine: a Three?Armed, Single?Blinded, Placebo, Randomized Controlled Trial

 

Abstract

 

  • Background and purpose: To investigate the efficacy of chiropractic spinal manipulative therapy (CSMT) for migraineurs.
  • Methods: This was a prospective three?armed, single?blinded, placebo, randomized controlled trial (RCT) of 17 months duration including 104 migraineurs with at least one migraine attack per month. The RCT was conducted at Akershus University Hospital, Oslo, Norway. Active treatment consisted of CSMT, whereas placebo was a sham push manoeuvre of the lateral edge of the scapula and/or the gluteal region. The control group continued their usual pharmacological management. The RCT consisted of a 1?month run?in, 3 months intervention and outcome measures at the end of the intervention and at 3, 6 and 12 months follow?up. The primary end?point was the number of migraine days per month, whereas secondary end?points were migraine duration, migraine intensity and headache index, and medicine consumption.
  • Results: Migraine days were significantly reduced within all three groups from baseline to post?treatment (P < 0.001). The effect continued in the CSMT and placebo group at all follow?up time points, whereas the control group returned to baseline. The reduction in migraine days was not significantly different between the groups (P > 0.025 for interaction). Migraine duration and headache index were reduced significantly more in the CSMT than the control group towards the end of follow?up (P = 0.02 and P = 0.04 for interaction, respectively). Adverse events were few, mild and transient. Blinding was strongly sustained throughout the RCT.
  • Conclusions: It is possible to conduct a manual?therapy RCT with concealed placebo. The effect of CSMT observed in our study is probably due to a placebo response.
  • Keywords: chiropractic, headache, migraine, randomized controlled trial, spinal manipulative therapy

 

Dr-Jimenez_White-Coat_01.png

Dr. Alex Jimenez’s Insight

Neck pain and headaches are the third most common reason people seek chiropractic care. Many research studies have demonstrated that chiropractic spinal manipulative therapy is a safe and effective alternative treatment option for migraines. Chiropractic care can carefully correct any spinal misalignment, or subluxation, found along the length of the spine, which has been shown to be a source for migraine headaches. In addition, spinal adjustments and manual manipulations can help reduce stress and muscle tension by decreasing the amount of pressure being placed against the complex structures of the spine as a result of a spinal misalignment, or subluxation. By realigning the spine as well as reducing stress and muscle tension, chiropractic care can improve migraine symptoms and decrease their frequency.

 

Introduction

 

The socio?economic costs of migraine are enormous due to its high prevalence and disability during attacks [1, 2, 3]. Acute pharmacological treatment is usually the first treatment option for migraine in adults. Migraineurs with frequent attacks, insufficient effect and/or contraindication to acute medication are potential candidates for prophylactic treatment. Migraine prophylactic treatment is often pharmacological, but manual therapy is not unusual, especially if pharmacological treatment fails or if the patient wishes to avoid medicine [4]. Research has suggested that spinal manipulative therapy may stimulate neural inhibitory systems at different spinal cord levels because it might activate various central descending inhibitory pathways [5, 6, 7, 8, 9, 10].

 

Pharmacological randomized controlled trials (RCTs) are usually double?blinded, but this is not possible in manual?therapy RCTs, as the interventional therapist cannot be blinded. At present there is no consensus on a sham procedure in manual?therapy RCTs that mimics placebo in pharmacological RCTs [11]. Lack of a proper sham procedure is a major limitation in all previous manual?therapy RCTs [12, 13]. Recently, we developed a sham chiropractic spinal manipulative therapy (CSMT) procedure, where participants with migraine were unable to distinguish between real and sham CSMT evaluated after each of 12 individual interventions over a 3?month period [14].

 

The first objective of this study was to conduct a manual?therapy three?armed, single?blinded, placebo RCT for migraineurs with a methodological standard similar to that of pharmacological RCTs.

 

The second objective was to assess the efficacy of CSMT versus sham manipulation (placebo) and CSMT versus controls, i.e. participants who continued their usual pharmacological management.

 

Methods

 

Study Design

 

The study was a three?armed, single?blinded, placebo RCT over 17 months. The RCT consisted of a 1?month baseline, 12 treatment sessions over 3 months with follow?up measures at the end of intervention, 3, 6 and 12 months later.

 

Participants were, before baseline, randomized equally into three groups: CSMT, placebo (sham manipulation) and control (continued their usual pharmacological management).

 

The design of the study conformed to the recommendations of the International Headache Society (IHS) and CONSORT (Appendix S1) [1, 15, 16]. The Norwegian Regional Committee for Medical Research Ethics and the Norwegian Social Science Data Services approved the project. The RCT was registered at ClinicalTrials.gov (ID no: NCT01741714). The full trial protocol has been published previously [17].

 

Participants

 

Participants were recruited from January to September 2013 primarily through the Department of Neurology, Akershus University Hospital. Some participants were also recruited through General Practitioners from Akershus and Oslo Counties or media advertisement. All participants received posted information about the project followed by a telephone interview.

 

Eligible participants were migraineurs of 18�70 years old with at least one migraine attack per month and were allowed to have concomitant tension?type headache but no other primary headaches. All participants were diagnosed by a chiropractor with experience in headache diagnostics during the interview and according to the International Classification of Headache Disorders?II (ICHD?II) 2. A neurologist had diagnosed all migraineurs from Akershus University Hospital.

 

Exclusion criteria were contraindication to spinal manipulative therapy, spinal radiculopathy, pregnancy, depression and CSMT within the previous 12 months. Participants who received manual therapy [18], changed their prophylactic migraine medicine or became pregnant during the RCT were informed that they would be withdrawn from the study at that time and regarded as drop?outs. Participants were allowed to continue and change acute migraine medication throughout the study period.

 

Eligible participants were invited to an interview and physical assessment including meticulous spinal column investigation by a chiropractor (A.C.). Participants randomized to the CSMT or the placebo group had a full spine radiographic examination.

 

Randomization and Masking

 

After written consent was obtained, participants were equally randomized into one of the three study arms by drawing one single lot. Numbered sealed lots with the three study arms were each subdivided into four subgroups by age and gender, i.e. 18�39 or 40�70 years, and men or women.

 

After each treatment session, the participants in the CSMT and the placebo group completed a questionnaire on whether they believed CSMT treatment was received, and how certain they were that active treatment was received on a 0�10 numeric rating scale, where 10 represented absolute certainty [14].

 

Both the block randomization and the blinding questionnaire were exclusively administered by a single external party.

 

Interventions

 

The CSMT group received spinal manipulative therapy using the Gonstead method, a specific contact, high?velocity, low?amplitude, short?lever spinal with no post?adjustment recoil that was directed to spinal biomechanical dysfunction (full spine approach) as diagnosed by standard chiropractic tests at each individual treatment session [19].

 

The placebo group received sham manipulation, a broad non?specific contact, low?velocity, low?amplitude sham push manoeuvre in a non?intentional and non?therapeutic directional line of the lateral edge of the scapula and/or the gluteal region [14]. All of the non?therapeutic contacts were performed outside the spinal column with adequate joint slack and without soft tissue pre?tension so that no joint cavitations occurred. The sham manipulation alternatives were pre?set and equally interchanged among the placebo participants according to protocol during the 12?week treatment period to strengthen the study validity. The placebo procedure is described in detail in the available trial protocol [17].

 

Each intervention session lasted for 15 min and both groups underwent the same structural and motion assessments prior to and after each intervention. No other intervention or advice was given to participants during the trial period. Both groups received interventions at Akershus University Hospital by a single experienced chiropractor (A.C.).

 

The control group continued their usual pharmacological management without receiving manual intervention by the clinical investigator.

 

Outcomes

 

The participants filled in a validated diagnostic headache diary throughout the study and returned them on a monthly basis [20]. In the case of unreturned diaries or missing data, the participants were contacted by phone to secure compliance.

 

The primary end?point was number of migraine days per month (30 days/month). At least 25% reduction of migraine days from baseline to end of intervention, with the same level maintained at 3, 6 and 12 months follow?up was expected in the CSMT group.

 

Secondary end?points were migraine duration, migraine intensity and headache index (HI), and medicine consumption. At least 25% reduction in duration, intensity and HI, and at least 50% reduction in medicine consumption were expected from baseline to end of intervention, with the same level maintained at 3, 6 and 12 months follow?up in the CSMT group.

 

No change was expected for primary and secondary end?point in the placebo and the control group.

 

A migraine day was defined as a day on which migraine with aura, migraine without aura or probable migraine occurred. Migraine attacks lasting for >24 h were calculated as one attack unless pain?free intervals of ?48 h had occurred [21]. If a patient fell asleep during a migraine attack and woke up without a migraine, in accordance with the ICHD?III ?, the duration of the attack was recorded as persisting until the time of awakening [22]. The minimum duration of a migraine attack was 4 h unless a triptan or drug containing ergotamine was used, in which case we specified no minimum duration. HI was calculated as mean migraine days per month (30 days) � mean migraine duration (h/day) � mean intensity (0�10 numeric rating scale).

 

The primary and secondary end?points were chosen based on the Task Force of the IHS Clinical Trial Subcommittee’s clinical trial guidelines [1, 15]. Based on previous reviews on migraine, a 25% reduction was considered to be a conservative estimate [12, 13].

 

The outcome analyses were calculated during the 30 days after the last intervention session and 30 days after the follow?up time points, i.e. 3, 6 and 12 months, respectively.

 

All adverse events (AEs) were recorded after each intervention in accordance with the recommendations of CONSORT and the IHS Task Force on AEs in migraine trials [16, 23].

 

Statistical Analysis

 

We based the power calculation on a recent study of topiramate in migraineurs [24]. We hypothesized the average difference in reduction of number of migraine days per month between the active and the placebo, and between the active and the control groups of 2.5 days, with SD of 2.5 for reduction in each group. As primary analysis includes two group comparisons, the significance level was set at 0.025. For the power of 80%, a sample size of 20 patients was required in each group to detect a significant difference in reduction of 2.5 days.

 

Patient characteristics at baseline were presented as means and SD or frequencies and percentages in each group and compared by independent samples t?test and ? 2 test.

 

Time profiles of all end?points were compared between the groups. Due to repeated measurements for each patient, linear mixed models accounting for the intra?individual variations were estimated for all end?points. Fixed effects for (non?linear) time, group allocation and interaction between the two were included. Random effects for patients and slopes were entered into the model. As the residuals were skewed, the bootstrap inference based on 1000 cluster samples was used. Pairwise comparisons were performed by deriving individual time point contrasts within each group at each time point with the corresponding P?values and 95% confidence intervals. Medicine consumption within groups was reported by mean doses with SD, and groups were compared by an independent samples median test. A dose was defined as a single administration of a triptan or ergotamine; paracetamol 1000 mg � codeine; non?steroidal anti?inflammatory drugs (tolfenamic acid, 200 mg; diclofenac, 50 mg; aspirin, 1000 mg; ibuprofen, 600 mg; naproxen, 500 mg); and morphinomimetics (tramadol, 50 mg). None of the patients changed study arm and none of the drop?outs filled in headache diaries after withdrawal from the study. Hence, only per protocol analysis was relevant.

 

The analyses were blinded to treatment allocation and conducted in SPSS v22 (IBM Corporation, Armonk, NY, USA) and STATA v14 (JSB) (StataCorp LP, College Station, TX, USA). A significance level of 0.025 was applied for the primary end?point, whereas elsewhere a level of 0.05 was used.

 

Ethics

 

Good clinical practice guidelines were followed [25]. Oral and written information about the project was provided in advance of inclusion and group allocation. Written consent was obtained from all participants. Participants in the placebo and control group were promised CSMT treatment after the RCT, if the active intervention was found to be effective. Insurance was provided through the Norwegian System of Compensation to Patients (Patient Injury Compensation), an independent national body that compensates patients injured by treatments provided by the Norwegian health service. A stopping rule was defined for withdrawing participants from this study in accordance with the recommendations in the CONSORT extension for Better Reporting of Harms [26]. All AEs were monitored during the intervention period and acted on as they occurred according to the recommendations of CONSORT and the IHS Task Force on AEs in migraine trials [16, 23]. In case of severe AE, the participant would be withdrawn from the study and referred to the General Practitioner or hospital emergency department depending on the event. The investigator (A.C.) was available by mobile phone at any time throughout the study treatment period.

 

Results

 

Figure ?1 shows a flow chart of the 104 migraineurs included in the study. Baseline and demographic characteristics were similar across the three groups (Table 1).

 

Figure 1 Study Flow Chart

Figure 1: Study flow chart.

 

Table 1 Baseline Demographic and Clinical Characteristics

 

Outcome Measures

 

The results on all end?points are presented in Fig. ?2a�d and Tables 2, 3, 4.

 

Figure 2

Figure 2: (a) Headache days; (b) headache duration; (c) headache intensity; (d) headache index. Time profiles in primary and secondary end?points, means and error bars represent 95% confidence intervals. BL, baseline; control, control group (�); CSMT, chiropractic spinal manipulative therapy (?); placebo, sham manipulation (?); PT, post?treatment; 3 m, 3?month follow?up; 6 m, 6?month follow?up; 12 m, 12?month follow?up; VAS, visual analogue scale.

 

Table 2 Regression Coefficients and SE

 

Table 3 Means and SD

 

Table 4 Mean SD Doses of Medications

 

Primary end?point. Migraine days were significantly reduced within all groups from baseline to post?treatment (P < 0.001). The effect continued in the CSMT and the placebo groups at 3, 6 and 12 months follow?up, whereas migraine days reverted to baseline level in the control group (Fig. ?2a). The linear mixed model showed no overall significant differences in change in migraine days between the CSMT and the placebo groups (P = 0.04) or between the CSMT and the control group (P = 0.06; Table 2). However, the pairwise comparisons at individual time points showed significant differences between the CSMT and the control group at all time points starting at post?treatment (Table 3).

 

Secondary end?points. There was a significant reduction from baseline to post?treatment in migraine duration, intensity and HI in the CSMT (P = 0.003, P = 0.002 and P < 0.001, respectively) and the placebo (P < 0.001, P = 0.001 and P < 0.001, respectively) groups, and the effect continued at 3, 6 and 12 months follow?up.

 

The only significant differences between the CSMT and control groups were change in migraine duration (P = 0.02) and in HI (P = 0.04; Table 2).

 

At 12 months follow?up, change in consumption of paracetamol was significantly lower in the CSMT group as compared with the placebo (P = 0.04) and control (P = 0.03) groups (Table 4).

 

Blinding. After each of the 12 intervention sessions, >80% of the participants believed they had received CSMT regardless of group allocation. The odds ratio for believing that CSMT treatment was received was >10 at all treatment sessions in both groups (all P < 0.001).

 

Adverse effects. A total of 703 of the potential 770 intervention sessions were assessed for AEs (355 in the CSMT group and 348 in the placebo group). Reasons for missed AE assessment were drop?out or missed intervention sessions. AEs were significantly more frequent in the CSMT than the placebo intervention sessions (83/355 vs. 32/348; P < 0.001). Local tenderness was the most common AE reported by 11.3% (95% CI, 8.4�15.0) in the CSMT group and 6.9% (95% CI, 4.7�10.1) in the placebo group, whereas tiredness on the intervention day and neck pain were reported by 8.5% and 2.0% (95% CI, 6.0�11.8 and 1.0�4.0), and 1.4% and 0.3% (95% CI, 0.6�3.3 and 0.1�1.9), respectively. All other AEs (lower back pain, face numbness, nausea, provoked migraine attack and fatigue in arms) were rare (<1%). No severe or serious AEs were reported.

 

Discussion

 

To our knowledge, this is the first manual?therapy RCT with a documented successful blinding. Our three?armed, single?blinded, placebo RCT evaluated the efficacy of CSMT in the treatment of migraine versus placebo (sham chiropractic) and control (usual pharmacological treatment). The results showed that migraine days were significantly reduced within all three groups from baseline to post?treatment. The effect continued in the CSMT and placebo groups at all follow?up time points, whereas the control group returned to baseline. AEs were mild and transient, which is in accordance with previous studies.

 

The study design adhered to the recommendations for pharmacological RCTs as given by the IHS and CONSORT [1, 15, 16]. Manual?therapy RCTs have three major obstacles as compared with pharmacological RCTs. Firstly, it is impossible to blind the investigator in relation to the applied treatment. Secondly, consensus on an inert placebo treatment is lacking [11]. Thirdly, previous attempts to include a placebo group have omitted validating the blinding, thus, it remains unknown whether active and placebo treatment were concealed [27]. Due to these challenges we decided to conduct a three?armed, single?blinded RCT, which also included a control group that continued usual pharmacological treatment in order to obtain an indication of the magnitude of the placebo response.

 

It has been suggested that, in pharmacological double?blind placebo RCTs, only 50% will believe that they receive active treatment in each group, if the blinding is perfect. However, this may not be true in manual?therapy RCTs, because the active and placebo physical stimulus might be more convincing than a tablet [28]. A single investigator reduces inter?investigator variability by providing similar information to all participants and it is generally recommended that the placebo intervention should resemble the active treatment in terms of procedure, treatment frequency and time spent with the investigator to allow for similar expectations in both groups [28]. The importance of our successful blinding is emphasized by the fact that all previous manual?therapy RCTs on headache lack placebo. Thus, we believe that our results discussed below are valid at the same level as a pharmacological RCT [14].

 

Prospective data are more reliable than retrospective data in terms of recall bias; however, non?compliance can be a challenge, especially at the end of the study. We believe the frequent contact between participants and the investigator, including monthly contact in the follow?up period, probably maintained high compliance throughout our study.

 

Although our study sample ended with 104 participants in the three groups, the power calculation assumption and the high completion rate support the data achieved being valid for the investigated population. The Gonstead method is used by 59% of chiropractors [19] and, thus, the results are generalizable for the profession. Diagnostic certainty is one of our major strengths as nearly all of the participants had been diagnosed by a neurologist according to the ICHD?II [2]. In contrast to previous chiropractic migraine RCTs that recruited participants through media such as newspapers and radio advertisement [12], the majority of our participants were recruited from the Department of Neurology, Akershus University Hospital, indicating that the migraineurs may have more frequent/severe attacks that are difficult to treat than the general population, as they were referred by their General Practitioner and/or practicing neurologist. Thus, our study is representative of primarily the tertiary clinic population, and the outcome might have been different if participants had been recruited from the general population. The percentage of neck pain has been found to be high in patients with migraine [29] and, thus, the high percentage of non?radicular spinal pain in our study might be a confounder for which effect was seen on migraine days.

 

Three pragmatic chiropractic manual?therapy RCTs using the diversified technique have previously been conducted for migraineurs [12, 30, 31, 32]. An Australian RCT showed within?group reduction in migraine frequency, duration and intensity of 40%, 43% and 36%, respectively, at 2 months follow?up [30]. An American study found migraine frequency and intensity to reduce within?group by 33% and 42%, respectively, at 1 month follow?up [31]. Another Australian study, which was the only RCT to include a control group, i.e. detuned ultrasound, found a within?group reduction of migraine frequency and duration of 35% and 40%, respectively, at 2 months follow?up in the CSMT group, as compared with a within?group reduction of 17% and 20% in the control group, respectively [32]. The reduction in migraine days was similar to ours (40%) in the CSMT group from baseline to 3 months follow?up, whereas migraine duration and intensity were less reduced at 3 months follow?up, i.e. 21% and 14%, respectively. Long?term follow?up comparisons are impossible as neither of the previous studies included a sufficient follow?up period. Our study design including strong internal validity allows us to interpret the effect seen as a placebo response.

 

Our RCT had fewer AEs as compared with previous manual?therapy studies, but of similar transient and mild character [33, 34, 35, 36, 37, 38, 39]. However, it was not sufficiently powered to detect uncommon serious AEs. In comparison, AEs in pharmacological migraine prophylactic placebo RCTs are common including non?mild and non?transient AEs [40, 41].

 

Conclusion

 

The blinding was strongly sustained throughout the RCT, AEs were few and mild, and the effect in the CSMT and placebo group was probably a placebo response. Because some migraineurs do not tolerate medication because of AEs or co?morbid disorders, CSMT might be considered in situations where other therapeutic options are ineffective or poorly tolerated.

 

Disclosure of Conflicts of Interest

 

All authors have completed the International Committee of Medical Journal Editors uniform disclosure form and declare no financial or other conflicts of interest.

 

Supporting Information

 

Ncbi.nlm.nih.gov/pmc/articles/PMC5214068/#ene13166-tbl-0001

 

Acknowledgements

 

The authors want to express their sincere gratitude to Akershus University Hospital, which kindly provided the research facilities, and Chiropractor Clinic 1, Oslo, Norway, which performed all x?ray assessments. This study was supported by grants from Extrastiftelsen, the Norwegian Chiropractic Association, Akershus University Hospital and University of Oslo in Norway.

 

In conclusion, the debilitating symptoms of migraines, including the severe head pain and the sensitivity to light and sound as well as the nausea, can affect an individual’s quality of life, fortunately, chiropractic care has been demonstrated to be a safe and effective treatment option for migraine headache pain. Furthermore, the article above demonstrated that migraineurs experienced reduced symptoms and migraine days as a result of chiropractic care.�Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC:�Neck Pain Treatment El Paso, TX Chiropractor

 

 

MORE TOPICS: EXTRA EXTRA: El Paso, Tx | Athletes

 

Blank
References
1.�Tfelt?Hansen P, Block G, Dahlof C,�et alInternational Headache Society Clinical Trial Subcommittee. Guidelines for controlled trials of drugs in migraine: second edition.�Cephalalgia�2000;�20: 765�786.[PubMed]
2.�Headache Classification Subcommittee of the International Headache Society .�The International Classification of Headache Disorders: 2nd edition.�Cephalalgia�2004;�24(Suppl. 1): 9�160.�[PubMed]
3.�Vos T, Flaxman AD, Naghavi M,�et alYears lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990�2010: a systematic analysis for the Global Burden of Disease Study 2010.�Lancet�2012;�380: 2163�2196.�[PubMed]
4.�Diener HC, Charles A, Goadsby PJ, Holle D.�New therapeutic approaches for the prevention and treatment of migraine.�Lancet Neurol�2015;�14: 1010�1022.�[PubMed]
5.�McLain RF, Pickar JG.�Mechanoreceptor endings in human thoracic and lumbar facet joints.�Spine (Phila Pa 1976)�1998;�23: 168�173.�[PubMed]
6.�Vernon H.�Qualitative review of studies of manipulation?induced hypoalgesia.�J Manipulative Physiol Ther�2000;�23: 134�138.�[PubMed]
7.�Vicenzino B, Paungmali A, Buratowski S, Wright A.�Specific manipulative therapy treatment for chronic lateral epicondylalgia produces uniquely characteristic hypoalgesia.�Man Ther�2001;�6: 205�212.[PubMed]
8.�Boal RW, Gillette RG.�Central neuronal plasticity, low back pain and spinal manipulative therapy.�J Manipulative Physiol Ther�2004;�27: 314�326.�[PubMed]
9.�Bialosky JE, Bishop MD, Price DD, Robinson ME, George SZ.�The mechanisms of manual therapy in the treatment of musculoskeletal pain: a comprehensive model.�Man Ther�2009;�14: 531�538.�[PubMed]
10.�De Camargo VM, Alburquerque?Sendin F, Berzin F, Stefanelli VC, de Souza DP, Fernandez?de?las?Penas C.�Immediate effects on electromyographic activity and pressure pain thresholds after a cervical manipulation in mechanical neck pain: a randomized controlled trial.�J Manipulative Physiol Ther�2011;�34: 211�220.�[PubMed]
11.�Hancock MJ, Maher CG, Latimer J, McAuley JH.�Selecting an appropriate placebo for a trial of spinal manipulative therapy.�Aust J Physiother�2006;�52: 135�138.�[PubMed]
12.�Chaibi A, Tuchin PJ, Russell MB.�Manual therapies for migraine: a systematic review.�J Headache Pain2011;�12: 127�133.�[PubMed]
13.�Chaibi A, Russell MB.�Manual therapies for primary chronic headaches: a systematic review of randomized controlled trials.�J Headache Pain�2014;�15: 67.�[PubMed]
14.�Chaibi A, Saltyte Benth J, Bjorn Russell M.�Validation of placebo in a manual therapy randomized controlled trial.�Sci Rep�2015;�5: 11774.�[PubMed]
15.�Silberstein S, Tfelt?Hansen P, Dodick DW,�et alTask force of the International Headache Society Clinical Trial Subcommittee. Guidelines for controlled trials of prophylactic treatment of chronic migraine in adults.�Cephalalgia�2008;�28: 484�495.�[PubMed]
16.�Moher D, Hopewell S, Schulz KF,�et alCONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials.�BMJ�2010;�340: c869.�[PubMed]
17.�Chaibi A, Saltyte Benth J, Tuchin PJ, Russell MB.�Chiropractic spinal manipulative therapy for migraine: a study protocol of a single?blinded placebo?controlled randomised clinical trial.�BMJ Open2015;�5: e008095.�[PMC free article][PubMed]
18.�French HP, Brennan A, White B, Cusack T.�Manual therapy for osteoarthritis of the hip or knee ? a systematic review.�Man Ther�2011;�16: 109�117.�[PubMed]
19.�Cooperstein R.�Gonstead chiropractic technique (GCT).�J Chiropr Med�2003;�2: 16�24.�[PubMed]
20.�Russell MB, Rasmussen BK, Brennum J, Iversen HK, Jensen RA, Olesen J.�Presentation of a new instrument: the diagnostic headache diary.�Cephalalgia�1992;�12: 369�374.�[PubMed]
21.�Tfelt?Hansen P, Pascual J, Ramadan N,�et alGuidelines for controlled trials of drugs in migraine: third edition. A guide for investigators.�Cephalalgia�2012;�32: 6�38.�[PubMed]
22.�Headache Classification Subcommittee of the International Headache Society .�The International Classification of Headache Disorders, 3rd edition (beta version).�Cephalalgia�2013;�33: 629�808.[PubMed]
23.�Tfelt?Hansen P, Bjarnason NH, Dahlof C, Derry S, Loder E, Massiou H.�Evaluation and registration of adverse events in clinical drug trials in migraine.�Cephalalgia�2008;�28: 683�688.�[PubMed]
24.�Silberstein SD, Neto W, Schmitt J, Jacobs D.�Topiramate in migraine prevention: results of a large controlled trial.�Arch Neurol�2004;�61: 490�495.�[PubMed]
25.�Dixon JR.�The International Conference on Harmonization Good Clinical Practice guideline.�Qual Assur�1998;�6: 65�74.�[PubMed]
26.�Ioannidis JP, Evans SJ, Gotzsche PC,�et alBetter reporting of harms in randomized trials: an extension of the CONSORT statement.�Ann Intern Med�2004;�141: 781�788.�[PubMed]
27.�Scholten?Peeters GG, Thoomes E, Konings S,�et alIs manipulative therapy more effective than sham manipulation in adults: a systematic review and meta?analysis.�Chiropr Man Therap�2013;�21: 34.�[PMC free article][PubMed]
28.�Meissner K, Fassler M, Rucker G,�et alDifferential effectiveness of placebo treatments: a systematic review of migraine prophylaxis.�JAMA Intern Med�2013;�173: 10.�[PubMed]
29.�Ashina S, Bendtsen L, Lyngberg AC, Lipton RB, Hajiyeva N, Jensen R.�Prevalence of neck pain in migraine and tension?type headache: a population study.�Cephalalgia�2015;�35: 211�219.�[PubMed]
30.�Parker GB, Tupling H, Pryor DS.�A controlled trial of cervical manipulation of migraine.�Aust NZ J Med�1978;�8: 589�593.�[PubMed]
31.�Nelson CF, Bronfort G, Evans R, Boline P, Goldsmith C, Anderson AV.�The efficacy of spinal manipulation, amitriptyline and the combination of both therapies for the prophylaxis of migraine headache.�J Manipulative Physiol Ther�1998;�21: 511�519.�[PubMed]
32.�Tuchin PJ, Pollard H, Bonello R.�A randomized controlled trial of chiropractic spinal manipulative therapy for migraine.�J Manipulative Physiol Ther�2000;�23: 91�95.�[PubMed]
33.�Cagnie B, Vinck E, Beernaert A, Cambier D.�How common are side effects of spinal manipulation and can these side effects be predicted?Man Ther�2004;�9: 151�156.�[PubMed]
34.�Hurwitz EL, Morgenstern H, Vassilaki M, Chiang LM.�Adverse reactions to chiropractic treatment and their effects on satisfaction and clinical outcomes among patients enrolled in the UCLA Neck Pain Study.�J Manipulative Physiol Ther�2004;�27: 16�25.�[PubMed]
35.�Thiel HW, Bolton JE, Docherty S, Portlock JC.�Safety of chiropractic manipulation of the cervical spine: a prospective national survey.�Spine (Phila Pa 1976)�2007;�32: 2375�2378.�[PubMed]
36.�Rubinstein SM, Leboeuf?Yde C, Knol DL, de Koekkoek TE, Pfeifle CE, van Tulder MW.�The benefits outweigh the risks for patients undergoing chiropractic care for neck pain: a prospective, multicenter, cohort study.�J Manipulative Physiol Ther�2007;�30: 408�418.�[PubMed]
37.�Eriksen K, Rochester RP, Hurwitz EL.�Symptomatic reactions, clinical outcomes and patient satisfaction associated with upper cervical chiropractic care: a prospective, multicenter, cohort study.�BMC Musculoskelet Disord�2011;�12: 219.�[PubMed]
38.�Walker BF, Hebert JJ, Stomski NJ,�et alOutcomes of usual chiropractic. The OUCH randomized controlled trial of adverse events.�Spine�2013;�38: 1723�1729.�[PubMed]
39.�Maiers M, Evans R, Hartvigsen J, Schulz C, Bronfort G.�Adverse events among seniors receiving spinal manipulation and exercise in a randomized clinical trial.�Man Ther�2015;�20: 335�341.�[PubMed]
40.�Jackson JL, Cogbill E, Santana?Davila R,�et alA comparative effectiveness meta?analysis of drugs for the prophylaxis of migraine headache.�PLoS One�2015;�10: e0130733.�[PubMed]
41.�Ferrari MD, Roon KI, Lipton RB, Goadsby PJ.�Oral triptans (serotonin 5?HT(1B/1D) agonists) in acute migraine treatment: a meta?analysis of 53 trials.�Lancet�2001;�358: 1668�1675.�[PubMed]
Close Accordion
Chiropractic Treatment for Migraine Pain in El Paso, TX

Chiropractic Treatment for Migraine Pain in El Paso, TX

Migraine headache pain can be characterized as a throbbing pain or a pulsing sensation of varying intensity, which is generally accompanied by nausea as well as extreme sensitivity to light and sound. According to the American Migraine Association, migraines affect about 36 million Americans, or approximately 12 percent of the population in the United States. Because the symptoms can often become very debilitating, many migraine sufferers will have tried everything to attempt to relieve their headache pain, including avoiding triggers and using drugs and/or medications to reduce the symptoms. However, research studies have found that one alternative treatment option can greatly benefit migraineurs: chiropractic care.

 

Chiropractor Treating Migraine Pain

 

Chiropractic care is a safe and effective alternative treatment option which focuses on the diagnosis, treatment and prevention of a variety of injuries and/or conditions associated with the musculoskeletal and nervous system. A doctor of chiropractic, or chiropractor, will commonly utilize a series of chiropractic methods and techniques, including spinal adjustments and manual manipulations, to carefully correct any spinal misalignment, or subluxation, located along the length of the spine. Although the true source of migraines is still misunderstood today, healthcare professionals believe that a misalignment of the cervical spine, or neck, may trigger migraine symptoms. By correcting the alignment of the spine, a chiropractor can release the pressure being placed against the spinal column which may be irritating and/or compressing the complex structures surrounding the spine, manifesting the well-known symptoms of migraines. Furthermore, chiropractic care can decrease muscle tension and increase circulation, eliminating stress in the body which is also known to be a factor behind migraines, promoting further relief.

 

Dr. Alex Jimenez chiropractor treating migraine pain.

 

Dr. Jimenez using chiropractic treatment to release pressure on a patient's neck

 

The Efficacy of Chiropractic Spinal Manipulative Therapy (SMT) in the Treatment of Migraine

 

Abstract

 

  • Objective: To test the efficacy of Chiropractic spinal manipulative therapy (SMT) in the treatment of migraine, using an uncontrolled clinical trial.
  • Design: A clinical trial of six months duration. The trial consisted of 3 stages: two months of pre-treatment, two months of treatment, and two months post treatment. Comparison was made to initial baseline episodes of migraine preceding commencement of SMT.
  • Setting: Chiropractic Research Centre of Macquarie University
  • Participants: Thirty two volunteers, between the ages of 23 to 60 were recruited through media advertising. The diagnosis of migraine based on a detailed questionnaire, regarding self reported symptoms or signs, with minimum of one migraine with aura per month.
  • Interventions: Two months of SMT provided by an experienced chiropractor at a university clinic.
  • Main Outcome Measures: Participants completed diaries during the entire trial noting the frequency, intensity, duration, disability, associated symptoms and use of medication for each migraine episode. In addition, clinic records were compared to their diary entries of migraine episodes.
  • Results: A total of fifty nine participants responded to the advertising, with twenty five being excluded or deciding not to continue in the trial. Two participants (5.9%) withdrew during the trial, one due to alteration in work situation and one following soreness after SMT. The Chiropractic SMT group showed statistically significant improvement (p < 0.05) in migraine frequency and duration, when compared to initial baseline levels. Only one participant (3.1%) reported that the migraine episodes were worse after the two months of SMT, and this was not sustained at the two month post treatment follow up period.
  • Conclusion: The results of this study suggest that Chiropractic SMT is an effective treatment for migraine with aura. However, due to the cyclical nature of migraine with aura, and the finding that episodes usually reduce following any intervention, further research is required. A prospective randomised controlled trial utilising detuned EPT (interferential), a sham manipulation group and an SMT group is nearing conclusion. It is anticipated this trial will provide further information of the efficacy of Chiropractic SMT in the treatment of migraine with aura.
  • Key Indexing Terms (MeSH): Migraine, chiropractic, spinal manipulation, clinical trial.

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

According to the American Chiropractic Association, a 2011 report published in the Journal of Manipulative and Physiological Therapeutics, or JMPT, found that chiropractic care, including spinal adjustments and manual manipulations, can improve migraine and cervicogenic headache symptoms. Healthcare professionals have associated primary headaches with stress and muscle tension. Chiropractic care can help decrease the frequency of migraines and manage its symptoms by carefully correcting any spinal misalignment, or subluxation, found along the spine. By restoring the proper alignment of the spine, chiropractic care can improve overall spinal function by alleviating pressure on the nervous system, increasing circulation and reducing muscle tension and stress which causes migraine pain.

 

Introduction

 

Some studies appear to have demonstrated significant reduction in migraines following chiropractic intervention (1-8). However, this reduction may in part have been due to inaccurate diagnosis or overlapping symptoms (4,9,10). Many different conditions of the cervical spine, including mechanical and joint pathology, have been reported to cause headache (10-16). Sjaastad (17) used the term �cervicogenic headache� to describe a type of the chronic paroxysmal unilateral headache, which is accompanied by autonomic symptoms and provacated by movements of the head and neck. Sjaastad proposed that entrapment of the occipital nerve or a C2-C3 rhizopathy may produce this headache (18).

 

There are a number of aetiologies of migraines proposed in the literature. These include: vascular (19-21); autonomic (22); biochemical/cellular/immunological (23- 27); psychophysiological (28,29); neurogenic (9,15,25,30) and somatic (1-9,31,32). This has made a common treatment regime difficult. One early medical model was vascular cause of migraine, where a migrainous attack is initiated by a decreased blood flow to the cerebral vasculature or a cerebrovascular spasm, but characterized by extracranial vasodilation during the headache phase (19,20). However, later aetiological models have demonstrated more complex vascular changes with associated neurological changes (9).

 

Many practitioners involved in the treatment of migraine would, however, accept that a number of aetiological factors are involved and that there is substantial overlap in both aetiology or diagnosis (9,15,26,33,34). In addition, no single model appears to explain all the possible symptoms associated with migraine.

 

One possible aetiological factor is cervical spondylosis with associated neck pain and stiffness (34). Anthony states �when this is recognised, appropriate treatment can give impressive results…the aim is to relieve pressure on nerve roots in the upper neck thereby reducing activation of the spinal tract of the trigeminal nerve, which is part of the pain centre in the head and neck� (34). Surgical decompression of the lower cervical nerve�roots as carried out by Ghavamian (36) showed relief of migraine symptoms. He proposed that irritation and compression of the deep sympathetic fibres incited such symptomatology.

 

Vernon (7), proposed a vertebrogenic model which involves components from the different categories previously stated. One part involves lesions in the low cervical/upper thoracic spine and the upper cervical spine. The low cervical spine/upper thoracic spine (C7-T4) model proposed that dysfunction (i.e. somatic dysfunction) at these vertebral levels causes joint fixation and pain. This pain alters the neural messages received, and therefore sent, by the Central Nervous System (CNS). The Autonomic Nervous System which controls, amongst other functions, blood supply, is thus also affected. It is proposed that when certain threshold levels of transient cerebral ischaemia (due to vasoconstriction caused by the above mechanism) are reached, a migraine cascade of symptomatology may be precipitated.

 

A second part involves somatic dysfunction in the upper cervical spine (Occiput-C2), which produces local pain and fixation leading to increased neural input to the CNS. This results in a reduction in descending pain-inhibiting impulses from the CNS and consequently increases activity within the spinal trigeminal tract (which transmits the majority of sensory afferents and pain signals from the upper cervical region to the brain). Having exceeded a threshold level, this excessive afferent input to the CNS will trigger focal, and spreading vasoconstriction within the intracerebral vasculature. This will in turn promote extra-carotid vasodilation and cranial pain which is mediated by the ipsilateral trigeminal nerve (7).

 

Another model contends that irritation of the vertebral nerve by cervical lesions can produce a sympathetic syndrome, giving symptoms of headache, vertigo, visual disturbances and tinnitus. However, this model has not been well substantiated and appears more likely a cause of vascular headache as opposed to migraine (11). The source of pain in migraines is found in the intra- and extracranial blood vessels. The blood vessel walls are pain sensitive to distension, traction or displacement. The idiopathic dilation of cranial blood vessels, together with an increase in a pain threshold lowering substance, result in headache of migraine type (26).

 

Migraine has a well established symptomatology that has been outlined in various studies (4,12,15). The debilitating and frequent nature of symptoms that include head pain, nausea, vomiting, phonophobia, and photophobia, costs our society both socially and economically (4,12,15,20). As such, effective treatment has long been sought, therefore justifying study in this area. However, there is substantial overlap of symptoms between migraine and cervicogenic�headache, and some authors believe elements of the migraine headache continuum involve cervical headache (9,10).

 

The Headache Classification Committee of the International Headaches Society, has discarded the former terms classical migraine and common migraine in favour of migraine with aura and migraine without aura. In migraine with aura (MA), this condition is defined as recurrent, periodic, unilateral headache which is preceded or accompanied by transient visual, sensory, motor, or other focal neurological symptoms which localise to the cerebral cortex or brainstem. Migraine without aura, (MWA) is defined as a vascular headache without striking prodromal or associated symptoms of cerebral dysfunction (37).

 

The incidence of migraine in Australia is estimated at 12%, with the cost to industry an estimated $250 million (38). In the USA approximately 8% of headaches diagnosed by medical practitioners are called migraine headaches (39). Migraine, in its various forms, affects an estimated 5-20% of people throughout the world (40).

 

A review of the literature appears to indicate that migraine is an associated feature of cervical dysfunction. This paper will evaluate chiropractic spinal manipulative treatment directed towards improving vertebral function, and its role in the management of the migraines.

 

Methodology

 

Chiropractic spinal manipulative therapy (SMT) is defined as a passive manual manoeuvre during which the three joint complex is carried beyond the normal physiological range of movement without exceeding the boundaries of anatomical integrity (41). SMT requires a dynamic force in a specific direction, usually with a short amplitude, to correct a problem of reduced vertebral motion or positional fault.

 

The study design was based on a previous study which involved 82 subjects who received either chiropractic SMT, physiotherapy manipulation, or a control treatment of medical mobilization (1). Parker et al, concluded that manipulation was not found to be more effective than mobilisation, and chiropractic treatment not more effective than the other two groups (3). However, much criticism was received over the study, especially the statistical analysis (42).

 

People with migraines were advertised for participation in the study via the radio and newspapers within a local region of Sydney. All applicants completed a questionnaire, developed from Vernon (12), which contains over 25 sections, including details of the initial�history, frequency, severity, location and reaction to the pain, associated symptoms, precipitating or aggravating factors, relieving factors, past treatment for migraines, medical history including medications and other diagnostic tests.

 

The participants to take part in the trial were selected according to responses in the questionnaire of specific symptoms. The criteria for migraine diagnosis was compliance with at least 5 out of the following indicators: reaction to pain requiring cessation of activities or the need to seek a quiet dark area; pain located around the temples; pain described as throbbing; associated symptoms of nausea, vomiting, aura, photophobia or phonophobia; migraine precipitated by weather changes; migraine aggravated by head or neck movements; previous diagnosis of migraine by a specialist; and a family history of migraine.

 

Participants also had to experience migraine at least once a month, but not daily, and the migraines could not have been initiated by trauma. Participants were excluded from the study if there were contra-indications to SMT, such as meningitis or cerebral aneurysm. In addition, participants with temporal arteritis, benign intracranial hypertension or space occupying lesions, were also excluded due to safety aspects.

 

Participants were informed that they were involved in a trial of manipulative therapy for migraine, and that they may be randomly assigned to a control group which would receive a placebo (non effective) treatment, or to an intervention group which would receive Chiropractic SMT. However, because of the small numbers of participants that were involved in the trial, a control group was not used. Participants were also informed that a thorough physical examination would be performed prior to commencement of treatment to assess any physical problems precluding them receiving SMT. Patients were blinded, by believing that they may or may not receive an effective treatment. In addition, practitioners were not aware of ongoing treatment results, therefore they were also �blinded� to the stage of progress of the patients condition or response to treatment.

 

The trial was conducted over six months, and consisted of 3 stages: two months pretreatment, two months treatment, and two months post treatment. Participants completed diaries during the entire trial noting the frequency, intensity, duration, disability, associated symptoms and use of medication for each migraine episode. In addition, clinic records were compared to their diary entries of migraine episodes. Concurrently, the subjects were contacted by telephone by the author every month and asked to describe the migraine episodes for comparison to their diaries.

 

Patients were instructed at the beginning of the study on the use of the diary and were given an instruction sheet to use throughout the course of the trial. The diary consisted of a table for entries of each of the outcome measures. This included noting the date of each episode, a number representing a visual analogue score, letters denoting associated symptoms, the length (in hours) of each migraine, the time (in hours) before the person could return to normal duties, type and use of medications and the overall relief from the medication. The diaries were modified from standard diaries used by the Brain Foundation of Australia.

 

A detailed history of the patient’s subjective pain features was taken during the initial consultation. This included the type of pain, duration, onset, severity, radiation, aggravating and relieving factors. The history also included medical features, a systems review for potential pathologies, previous treatments and its effects.

 

Factors for assessing subluxation included: orthopaedic and neurological testing, segmental springing, mobility measures such as visual estimation of range of motion, assessment of previous radiographs, specific chiropractic vertebral testing procedures, as well as response of the patient to SMT.

 

In addition, several vascular investigations were performed where indicated, which included: vertebral artery test, manipulative provocation test, blood pressure assessment, and abdominal aortic aneurysm screening.

 

During the treatment period, the subjects continued to record migraine episodes in their diary, and receive telephone calls from the authors. Treatment consisted of short amplitude, high velocity spinal manipulative thrusts, or areas of fixation determined by the physical examination. Patients were allowed a maximum of sixteen treatments, and the frequency of treatment was dependent on the clinicians opinion of the severity of the vertebral dysfunction. The majority of patients received a minimum of twelve treatments.

 

Comparison was made to initial baseline episodes of migraine preceding commencement of SMT. Statistical analysis involved comparing the effects of the different treatment regimes on the incidence, intensity, and duration of migraines throughout the trial. Statistical tests employed were a students t test to test for significant difference between each group and a one way analysis of variance (ANOVA) to test for changes for all groups. Statistical calculations were performed via a computer software program Minitab for Macintosh.

 

Results

 

A total of fifty nine participants responded to the�advertising, with twenty five being excluded or deciding not to continue in the trial. These included: six cases of infrequent recurrence of the migraines (less than one per month); two cases of contraindications to SMT; one case of cluster headache; one case of motor vehicle accident during pre treatment; one case of fear of SMT; fourteen cases where the university clinic was inconvenient or time constraints were too difficult for participants. Two participants (5.9%) withdrew during the trial, one due to alteration in work situation and one following soreness after SMT.

 

Thirty two participants, between the ages of 23 to 60, joined the study with there being 14 males and 18 females. Table 1 gives the comparative descriptive statistics for the group.

 

Table 1 Comparative Descriptive Statistics

 

The Chiropractic SMT group showed statistically significant improvement (p < 0.05) in migraine severity (Figure 1), duration (Figure 2) and disability (Figure 3), when compared to initial baseline levels. Only one participant (3.1%) reported that their migraine episodes were worse after the two months of SMT, but this was not sustained at the two month post treatment follow up period. Table 2 demonstrates variate scores in each of the six diary categories for the three phases of the trial.

 

Table 2 Variate Scores for the Three Phases of the Trial

 

The greatest area for improvement was with disability scores (p < 0.01), where participants were asked to rate the time that elapsed before they could return to normal activities (Table 3). In addition, the duration of the migraine and the use of medication, reduced significantly following the SMT intervention (p < 0.05). Table 3 shows mean variate scores for the three phases of the trial�and statistical significance by analysis of variance (ANOVA).

 

Table 3 Mean Variate Scores

 

There was no apparent difference in the number of associated symptoms and the time taken for treatment to give relief of each migraine episode (Table 3). In addition, self reported possible trigger factors demonstrated no significant findings, predominantly due to the small sample size. Common trigger factors that were cited included stress, lack of sleep, work changes, or family situations. Most participants could not state a particular trigger factor.

 

Discussion

 

The majority of people who participated in this trial had chronic migraines that were severe and debilitating. However, the results have demonstrated a significant (p< 0.05) reduction in their�migraine episodes and their associated disability. The mean number of migraine per month reduced from 7.6 to 4.9 episodes.

 

This trial was conducted using a similar design to a previous study which demonstrated significant improvement in migraines following chiropractic SMT (1,3). The initial trial had limitations due to an inadequate control group, and this could also be a limitation with this study(2). However, the use of self reported, non treatment period as a control, allows flexibility regarding use of medication and any alteration during the trial.

 

Figure 1 Comparison of Visual Analogue Scores

Figure 1: Comparison of visual analogue scores for pre-treatment, treatment and post-treatment group means.

 

Figure 2 Comparison of Duration Time of Migraine Hours

Figure 2: Comparison of duration time of migraine (hours) for pre-treatment, treatment and post-treatment group means.

 

Figure 3 Comparison of Disability Time of Migraine Hours

Figure 3: Comparison of disability time of migraine (hours) for pre-treatment, treatment and post-treatment group means.

 

A similar design to this study has also been used in a study of headache and SMT (14). The Boline study was a randomised controlled trial using two parallel groups, with a two week baseline, a six week treatment period and a four week post treatment period. The results of this study show that SMT was an effective method of treatment for tension type headaches, and that the benefit was sustained for the four weeks after cessation of the treatment.

 

The present study was conducted over a six month period which gives the results substantial significance because early criticisms of studies were that the length of the trial was too short to allow for the cyclical nature of migraines. However, the study is limited in the sample size and the fact that the trial was a pragmatic study which did not consider what aspects of chiropractic SMT had contributed to the improvement in the migraine episodes.

 

In addition, the study is limited due to the lack of a control group. However, the fact that the trial was conducted over a six month period, with two months pre-treatment, it could be argued that participants acted as their own form of control.

 

A further limitation of this study, as with other studies of migraine or headaches is that there is substantial overlap in diagnosis and classification of migraines. The questionnaire used in this study proved to have good reliability, however, there is strong suggestion that many headache sufferers may have more than one type of headache (12). An advantage with the design of this study is that regardless of the exact �diagnosis� of the migraine, self reported, non-treatment controls still allow assessment of the therapy in question.

 

The measurement used for relief scores proved to be poor, which was probably due in part to the small scale for response that participants were given. Future studies should address this issue. In addition, associated symptoms did not give a clear result because the study only measured the total number of associated symptoms, and the sample size was too small for a significant percentage breakdown. Future studies should also address this issue.

 

Conclusion

 

The results of this study suggest that Chiropractic SMT may be an effective treatment for migraine. However, due to the cyclical nature of migraine, and the finding that episodes usually reduce following any intervention, further research is required. A prospective randomised controlled trial utilising detuned EPT (interferential), a sham manipulation group and an SMT group is nearing�conclusion. It is anticipated this trial will provide further information of the efficacy of Chiropractic SMT in the treatment of migraine.

 

In conclusion,�chiropractic care is a safe and effective alternative treatment option which can be used to improve migraine symptoms as well as decrease their frequency. A chiropractor will utilize spinal adjustments and manual manipulations to correct spinal misalignments, or subluxations, releasing pressure being placed against the complex structures surrounding the spine, decreasing muscle tension and improving circulation to eliminate stress, ultimately benefitting migraine sufferers. Finally, the purpose of the article above was to demonstrate the efficacy of chiropractic spinal manipulative therapy, or SMT, in the treatment of migraine. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC:�Neck Pain Treatment El Paso, TX Chiropractor

 

 

MORE TOPICS: EXTRA EXTRA: El Paso, Tx | Athletes

 

Blank
References

1. Parker GB, Tupling H, Pryor DS. A controlled trial of cervical manipulation for migraine. Aust NZ J Med 1978; 8: 585-93.
2. Parker GB, Tupling H, Pryor DS. Letters to the editor: cervical manipulation for migraine. Aust NZ J Med 1979; 9: 341-2.
3. Parker GB, Tupling H, Pryor DS. Why does migraine improve during a clinical trial? Further results from a trial of cervical manipulation for migraine. Aust NZ J Med 1980; 10: 192-8.
4. Tuchin PJ, Bonello R. Classic migraine or not classic migraine, that is the question. Aust Chiro & Osteo 1996; 5: 66-74.
5. Whittingham W, Ellis WS, Molyneux TP. The effect of manipulation (Toggle recoil technique) for headaches with upper cervical joint dysfunction: a case study. J Manipulative Physiol Ther 1994; 17(6): 369-75.
6. Wight JS. Migraine: a statistical analysis of chiropractic treatment. J Am Chiro Assoc 1978; 12: 363-7.
7. Vernon H, Steiman I, Hagino C. Cervicogenic dysfunction in muscle contraction headache and migraine: a descriptive study. J Manipulative Physiol Ther 1992; 15: 418-29
8. Lenhart LJ. Chiropractic management of migraine without aura: a case study. JNMS 1995; 3: 20-6.
9. Nelson CF. The tension headache, migraine continuum: a hypothesis. J Manipulative Physiol Ther 1994; 17(3): 157-67.
10. Jull GA. Cervical headache: a review. In: Greive GP, ed. Modern manual therapy of the vertebral column. 2nd ed. Edinburgh: Churchill Livingstone, 1994: 333-46
11. Bogduk N. Cervical causes of headache and dizziness In: Greive GP, ed. Modern manual therapy of the vertebral column. 2nd ed. Edinburgh: Churchill Livingstone, 1994: 317-31.
12. Vernon H. ed. Upper cervical syndrome: cervical diagnosis and treatment. In: Differential diagnosis of headache. Baltimore: Williams & Wilkins. 1988: l46
13. Vernon HT. Spinal manipulation and headache of cervical origin. J Manipulative Physiol Ther 1989; 12: 455-68
14. Boline PD, Kassak K, Bronfort G, Nelson C, Anderson AV. Spinal manipulations vs. amitriptyline for the treatment of chronic tension-type headaches: a randomized clinical trial. J Manipulative Physiol Ther 1995; 18(3): 148-54.
15. Milne E. The mechanism and treatment of migraine and other disorders of cervical and postural dysfunction. Cephalgia 1989; 9 (suppl 10): 381-2.
16. Young K, Dharmi M. The efficacy of cervical manipulation as opposed to pharmocological therapeutics in the treatment of migraine patients. Transactions of the Consortium for Chiropractic Research. 1987
17. Sjaastad O, Saunte C, Hovdahl H, Breivok H, Gronback E. Cervical headache: an hypothesis. Cephalgia 1983; 3: 249-56.
18. Sjaastad O, Fredricksen TA, Stolt-Nielsen A. Cervicogenic headache, C2 rhizopathy, and occipital neuralgia: a connection. Cephalgia 1986; 6: 189-95.
19. Wolff�s Headache and other head pain. Revised by Dalessio DJ. 3rd ed. New York: Oxford University Press. 1972.
20. Selby G, Lance JW. Observations on 500 cases of migraine and allied vascular headache. J Neurol Neurosurg Psychiatry 1960; 23: 23-32.
21. Anderson A, Friberg L, Olsen T, Olsen J. Delayed hyperemia following hypoperfusion in classic migraine. Arch Neurol 1988; 45: 154-9.
22. Appel S, Kiritzky A, Zahavi I, et al. Evidence for instability of the autonomic nervous system in patients with migraine headache. Headache 1992; 32: 10-7.
23. Takasha T, Shimomura T, Kazuro T. Platelet activation in muscle contraction headache and migraine. Cephalgia 1987; 7: 239-43.
24. Lance J, Lambert G, Goadsby P, et al. 5-Hydroxytryptamine and its putative aetiological involvement in migraine. Cephalgia 1989; 9(Suppl 9): 7-13
25. Ferrari M, Odink J, Tapparelli C, et al. Serotonin metabolisminmigraine.Neurology1989;39:1239-42.
26. Dalassio D. The pathology of migraine. Clin J Pain 1990; 6: 235-9.
27. Stellar S, et al. Migraine prevention with timolol. JAMA 1984; 252(18): 2576-80.
28. Couch J, Hassanein R. Amitriptyline in migraine prophylaxis. Arch Neurol 1979; 36: 695-9.
29. Zeigler D, Hurwitz A, Hassanein R, et al. Migraine prophylaxis: a comparison of propranolol and amitriptyline. Arch Neurol 1987; 44: 486-9.
30. Anthony MN, Lance JW. Plasma serotonin in patients with chronic tension headache. J Neurol Neurosurg Psychiatry 1989; 52: 182-4.
31. Sjasstad 0, Fredricksen TA, Sand T. The localization of the initial pain of attack: a comparison between classic migraine and cervicogenic headache. Functional Neurololgy 1989; 4: 73-8
32. Commission of Enquiry Into Chiropractic. Chiropractic in New Zealand. 1979 NZ PD Hasselburg.
33. Marcus DA. Migraine and tension type headaches: the questionable validity of current classification systems. Pain 1992; 8: 28-36
34. Anthony M. Migraine and its management. Aust
Fam Phys 1986; 15(5): 643-9.
35. Grayham JR. Migraine headache: diagnosis and
management. Headache 1979; 19(3): 133-41.
36. Ghavamian T. Cervical discopathy and a new concept in the sympathetics of the cervical spine and
head. J Bone Joint Surg 1971; 53A: 1233.
37. Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalgia 1988; 9 (Suppl
7): 1-93.
38. King J. Migraine in the workplace. Brainwaves. Australian Brain Foundation 1995 Hawthorn, Victoria.
39. Lipton RB, Stewart WE. Migraine in the United States: a review of epidemiology and health care use. Neurology 1993; 43(Suppl 3): S6-10.
40. Stewart WE, Lipton RB, Celentous DD, et al. Prevalence of migraine headache in the United States. JAMA 1992; 267: 64-9.
41. Brunarski DJ. Clinical trials of spinal manipulation: a critical appraisal and review of the literature. JMPT 1984; 7(4): 243-7.
42. Marosszeky JE. Letters to the editor: cervical manipulation for migraine. Aust NZ J Med 1979; 9: 339.

Close Accordion
Migraine Headache Treatment in El Paso, TX

Migraine Headache Treatment in El Paso, TX

A migraine is a neurological condition commonly characterized by an intense, debilitating headache. Approximately 12 percent of the population in the United States suffers from migraines. Other symptoms may include: nausea, vomiting, difficulty speaking, numbness or tingling, and sensitivity to light and sound. Several factors can trigger a migraine. These include: stress, lack of food or sleep, exposure to light, hormonal changes in women and anxiety. Although healthcare professionals have yet to understand the true source of migraines, doctors of chiropractic have concluded that a spinal misalignment, or subluxation, may be associated with different types of headaches. The purpose of the following article is to demonstrate the results of a case of chronic migraine remission after a 72-year-old woman with a 60-year history of migraine headaches received chiropractic care.

 

A Case of Chronic Migraine Remission After Chiropractic Care

 

Abstract

 

  • Objective: To present a case study of migraine sufferer who had a dramatic improvement after chiropractic spinal manipulative therapy (CSMT).
  • Clinical features: The case presented is a 72-year�old woman with a 60-year history of migraine headaches, which included nausea, vomiting, photophobia, and phonophobia.
  • Intervention and outcome: The average frequency of migraine episodes before treatment was 1 to 2 per week, including nausea, vomiting, photophobia, and phonophobia; and the average duration of each episode was 1 to 3 days. The patient was treated with CSMT. She reported all episodes being eliminated after CSMT. The patient was certain there had been no other lifestyle changes that could have contributed to her improvement. She also noted that the use of her medication was reduced by 100%. A 7-year follow-up revealed that the person had still not had a single migraine episode in this period.
  • Conclusion: This case highlights that a subgroup of migraine patients may respond favorably to CSMT. While a case study does not represent significant scientific evidence, in context with other studies conducted, this study suggests that a trial of CSMT should be considered for chronic, nonresponsive migraine headache, especially if migraine patients are nonresponsive to pharmaceuticals or prefer to use other treatment methods.
  • Key indexing terms: Migraine, Chiropractic, Spinal manipulative therapy

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

Migraine is a prevalent and debilitating condition which affects about 12 percent of the population in the U.S.� Furthermore, migraine affects more women than men. While the causes and symptoms of migraine headache pain have been identified, many healthcare professionals believe that a spinal misalignment, or subluxation, may often lead to various types of headaches. Chiropractic care utilizes spinal adjustments and manual manipulations to carefully correct the alignment of the spine, restoring proper structure and function. According to the research study below, chiropractic can be an effective migraine headache treatment. Chiropractic care is a safe and effective alternative treatment option for patients with migraine who seek a natural method and technique to reduce their symptoms without the use of drugs and/or medications.

 

Introduction

 

Migraine remains a common and debilitating condition.[1,2] It has an estimated incidence of 6% in males and 18% in females.[2] A study in Australia found the cost to industry to be an estimated $750 million.[3] Lipton et al found that migraine is one of the most frequent reasons for consultations with general practitioners, affecting between 12 million and 18 million people each year in the United States.[4] The estimated cost in the United States is $25 billion in lost productivity due to 156 million full-time work days being lost each year.[5] Recent information has suggested that these older figures above are still current, but also underestimated, because of many sufferers not stating their problem because of a perceived poor social stigma.[6]

 

The Brain Foundation in Australia notes that 23% of households contain at least one migraine sufferer. Nearly all migraine sufferers and 60% of those with tension-type headache experience reductions in social activities and work capacity. The direct and indirect costs of migraine alone would be about $1 billion per annum.[3]

 

The Headache Classification Committee of the International Headache Society (IHS) defines migraines as having the following: unilateral location, pulsating quality, moderate or severe intensity, and aggravated by routine physical activity. During the headache, the person must also experience nausea and/or vomiting, photophobia, and/or phonophobia.[7] In addition, there is no suggestion either by history or by physical or neurologic examination that the person has a headache listed in groups 5 to 11 of their classification system.[7] Groups 5 to 11 of the classification system include headache associated with head trauma, vascular disorder, nonvascular intracranial disorder, substances or their withdrawal, noncephalic infection, or metabolic disorder, or with disorders of cranium, neck, eyes, nose, sinuses, teeth, mouth, or other facial or cranial structures.

 

Some confusion relates to the �aura� feature that distinguishes migraine with aura (MA) and migraine without aura (MW). An aura usually consists of homonymous visual disturbances, unilateral paresthesias and/or numbness, unilateral weakness, aphasia, or unclassifiable speech difficulty.[7] Some migraineurs describe the aura as an opaque object, or a zigzag line around a cloud; even cases of tactile hallucinations have been recorded.[8] The new terms MA and MW replace the old terms classic migraine and common migraine, respectively.

 

The IHS diagnostic criteria for MA (category 1.2) is at least 3 of the following:

 

  • 1) One or more fully reversible aura symptoms indicating focal cerebral cortex and/or brain stem dysfunction.
  • 2) At least 1 aura symptom develops gradually over more than 4 minutes or 2 or more symptoms occurring in succession.
  • 3) No aura symptom lasts more than 60 minutes.
  • 4) Headache follows aura with a free interval of less than 60 minutes.

 

Migraine is often still nonresponsive to treatment.[9] However, several studies have demonstrated statistically significant reduction in migraines after chiropractic spinal manipulative therapy (CSMT).[10-15]

 

This article will discuss a patient presenting with MW and her response after CSMT. The discussion will also outline specific diagnostic criteria for migraine and other headaches relevant to chiropractors, osteopaths, or other health practitioners.

 

Case Report

 

A 72-year�old 61-kg white woman presented with migraine headaches that had commenced in early childhood (approximately 12 years old). The patient could not relate anything to the commencement of her migraines, although she believed there was a family history (father) of the condition. During the history, the patient stated that she suffered regular migraine headaches (1-2 per week) with which she also experienced nausea, vomiting, vertigo, and photophobia. She needed to cease activities to alleviate the symptoms, and she often required acetaminophen and codeine medication (25 mg) or sumatriptan succinate for pain relief. The patient was also taking verapamil (calcium ion antagonist, for essential hypertension), calcitriol (calcium uptake, for osteoporosis), pnuemenium on a daily basis, and carbamazipine (antiepileptic, neurotropic medication) twice daily.

 

The patient reported that an average episode lasted 1 to 3 days and that she could not perform activities of daily living for a minimum of 12 hours. In addition, a visual analogue scale score for an average episode was 8.5 out of a possible maximum score of 10, corresponding to a description of �terrible� pain. The patient noted that stress or tension would precipitate a migraine and that light and noise aggravated her condition. She described the migraine as a throbbing head pain located in the parietotemporal region and was always left-sided.

 

The patient had a previous history of a pulmonary embolism (2 years before treatment) and had a partial hysterectomy 4 years before treatment. She also stated she had hypertension that was controlled. She was a widow with 2 children, and she had never smoked. The patient had tried acupuncture, physiotherapy, substantial dental treatment, and numerous other medications; but nothing had changed her migraine pattern. She stated that she had never had previous chiropractic treatment. The patient also stated that she had been treated by a neurologist for �migraines� over many years.

 

On examination, she was found to have very sensitive suboccipital and upper cervical musculature and decreased range of motion at the joint between the occiput and first cervical vertebra (Occ-C1), coupled with pain on flexion and extension of the cervical spine. She also had significant reduction in thoracic spine motion and a marked increase in her thoracic kyphosis.

 

Blood pressure testing revealed she was hypertensive (178/94), which the patient reported was an average result (stage 2 hypertension using the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure 7 guidelines).

 

Based on the IHS Headache Classification Committee classification and diagnostic criteria, the patient had an MW�category 1.1, previously called common migraine (Table 1). This appeared secondary to moderate cervical segmental dysfunction with mild to moderate suboccipital and cervical paraspinal myofibrosis.

 

Table 1 Headache Classifications

Table 1: Headache classifications (IHS Headache Classification Committee).

 

The patient received CSMT (diversified chiropractic �adjustments�) to her Occ-C1 joint, upper thoracic spine (T2 through T7), and the affected hypertonic musculature. Hypertonic muscles were released through gentle massage and stretching. An initial course of 8 treatments was conducted at a frequency of twice a week for 4 weeks. The treatment program also included recording several features for every migraine episode. This included frequency, visual analogue scores, episode duration, medication, and time before they could return to normal activities.

 

The patient reported a dramatic improvement after her first treatment and noticed a reduction in the intensity of her head and neck pain. This continued with the patient reporting having no migraines in the initial month course of treatment. Further treatment was recommended to increase her range of motion, increase muscle tone, and reduce suboccipital muscle tension. In addition, monitoring of her migraine symptoms was continued. A program of treatment at a frequency of once a week for a further 8 weeks was instigated. After the next phase of treatment, the patient noted much less neck tension, better movement, and no migraine. In addition, she no longer used pain-relieving medication (acetaminophen, codeine, and sumatriptan succinate) and noted that she did not experience nausea, vomiting, photophobia, or phonophobia (Table 2). The patient continued treatment at 2-weekly intervals and stated that, after 6 months, her migraine episodes had disappeared completely. In addition, she was no longer experiencing neck pain. Examination revealed no pain on active neck movement; however, a passive motion restriction at the C1-2 motion segment was still present.

 

Table 2 Category 1 Migraine

Table 2: Category 1: migraine (IHS Headache Classification Committee).

 

The patient is currently having treatment every 4 weeks, and she still reports no return of her migraine episodes or neck pain. The patient has now not experienced any migraines for a period of more than 7 years since her last episode, which was immediately before her having her first chiropractic treatment.

 

Discussion

 

Case studies do not form high levels of scientific data. However, some cases do present significant findings. For example, cases with long (chronic) and/or severe symptomatology can highlight alternative treatment options. With case studies such as this, there is always a possibility that the symptoms spontaneously resolved, with no effective from the treatment. The case presented highlights a potential alternative treatment option. A 7-year follow-up revealed that the person had still not had a single migraine episode in this period. The patient was certain that there had been no other lifestyle changes that could have contributed to her improvement. She also noted that the migraines had stopped after her first treatment.

 

The average frequency of her migraines before treatment was 1 to 2 per week, with episodes that always included nausea, vomiting, photophobia, and phonophobia. In addition, the average duration of each episode was 1 to 3 days before her receiving CSMT. The person also noted that the use of her pain-relieving medication was also reduced by 100% (Table 3).

 

Table 3 Summary of Key Changes for this Case

Table 3: Summary of key changes for this case.

 

Migraines are a common and debilitating condition; yet because they have an uncertain etiology, the most appropriate treatment regime is often unclear.[16] Previous etiological models described vascular causes of migraine, where episodes seem to be initiated by a decreased blood flow to the cerebrum followed by extracranial vasodilation during the headache phase.[8] However, other etiological models seem connected with vascular changes related to neurologic changes and associated serotonergic disturbances.[9] Therefore, previous treatments have focused on pharmacological modification of blood flow or serotonin antagonist block.[17]

 

Studies examining the role of the cervical spine to headache (ie, �cervicogenic headache�) have been well described in the literature.[18-30] However, the relation of the cervical spine to migraine is less well documented.[10-15] Previous studies by this author have demonstrated an apparent reduction in migraines after CSMT.[10,11] In addition, other studies have suggested that CSMT may be an effective intervention for migraine.[14,15] Although, previous studies have some limitations (inaccurate diagnosis, overlapping symptoms, inadequate control groups), the level of evidence gives support for CSMT in migraine treatment.[11] However, practitioners need to be critically aware of potential overlap of diagnoses when reviewing migraine research or case studies on effectiveness of their treatment.[18-22] This is especially important in comparison of migraine patients who may be suitable for chiropractic manipulative therapy.[23-28]

 

Between 40% and 66% of patients with migraine, particularly those with severe or frequent migraine attacks, do not seek help from a physician.[29] Among those who do, many do not continue regular physician visits.[30] This may be due to patients’ perceived lack of empathy from the physician and a belief that physicians cannot effectively treat migraine. In a 1999 British survey, 17% of 9770 migraineurs had not consulted a physician because they believed their condition would not be taken seriously; and 8% had not seen a physician because they believed existing migraine medications were ineffective.[30] The most common reason for not seeking a physician’s advice (cited by 76% of patients) was the patients’ belief that they did not need a physician’s opinion to treat their migraine attacks.

 

The case was presented to assist practitioners making a more informed decision on the treatment of choice for migraines. The outcome of this case is also relevant in relation to other research that concludes that CSMT is a very effective treatment for some people. Practitioners could consider CSMT for migraine based on the following:

 

  • 1) Limitation of passive neck movements.
  • 2) Changes in neck muscle contour, texture, or response to active and passive stretching and contraction.
  • 3) Abnormal tenderness of the suboccipital area.
  • 4) Neck pain before or at the onset of the migraine.
  • 5) Initial response to CSMT.

 

As with all case reports, results are limited in application to larger populations. Careful clinical decision making should be used when applying these results to other patients and clinical situations.

 

Conclusion

 

This case demonstrates that some migraine sufferers may respond well with manual therapies, which includes CSMT. Therefore, migraine patients who have not received a trial of CSMT should be encouraged to consider this treatment and assess any potential response. Where there are no contraindications to CSMT, an initial trial of treatment may be warranted. Following evidence-based medicine guidelines, medical practitioners should discuss CSMT with migraine patients as an option for treatment.[31,32] Subsequent studies should address this issue and the role that CSMT has in migraine management.

 

In conclusion, amigraine is a debilitating and intense type of headache which is often accompanied by a variety of other symptoms. Although still misunderstood today, doctors of chiropractic have shown that a spinal misalignment, or subluxation may trigger migraine headaches. According to the article above, chiropractic care may effectively help individuals who suffer from migraine headaches. However, further research studies are required.�Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC:�Neck Pain Treatment El Paso, TX Chiropractor

 

 

MORE TOPICS: EXTRA EXTRA: El Paso, Tx | Athletes

 

Blank
References
1.�Bigal M.E., Lipton R.B., Stewart W.F. The epidemiology and impact of migraine.�Curr Neurol Neurosci Rep.�2004;4(2):98�104.�[PubMed]
2.�Lipton R.B., Stewart W.F., Diamond M.L., Diamond S., Reed M. Prevalence and burden of migraine in the United States: data from the American Migraine Study 11.�Headache.�2001;41:646�657.�[PubMed]
3.�Alexander L.�Migraine in the workplace. Brainwaves.�Australian Brain Foundation; Hawthorn, Victoria: 2003. pp. 1�4.
4.�Lipton R.B., Bigal M.E. The epidemiology of migraine.�Am J Med.�2005;118(Suppl 1):3S�10S.[PubMed]
5.�Lipton R.B., Bigal M.E. Migraine: epidemiology, impact, and risk factors for progression.�Headache.�2005;45(Suppl 1):S3�S13.�[PubMed]
6.�Stewart W.F., Lipton R.B. Migraine headache: epidemiology and health care utilization.�Cephalalgia.�1993;13(suppl 12):41�46.�[PubMed]
7.�Headache Classification Committee of the International Headache, Society Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain.�Cephalgia.�2004;24(Suppl. 1):1�151.[PubMed]
8.�Goadsby P.J., Lipton R.B., Ferrari M.D. Migraine�current understanding and treatment.�N Engl J Med.�2002;346:257�263.�[PMID 11807151]�[PubMed]
9.�Goadsby P.J. The scientific basis of medication choice in symptomatic migraine treatment.�Can J Neurol Sci.�1999;26(suppl 3):S20�S26.�[PubMed]
10.�Tuchin P.J., Pollard H., Bonello R. A randomized controlled trial of chiropractic spinal manipulative therapy for migraine.�J Manipulative Physiol Ther.�2000;23:91�95.�[PubMed]
11.�Tuchin P.J. The efficacy of chiropractic spinal manipulative therapy (SMT) in the treatment of migraine�a pilot study.�Aust Chiropr Osteopath.�1997;6:41�47.�[PMC free article][PubMed]
12.�Tuchin P.J., Bonello R. Classic migraine or not classic migraine, that is the question.�Aust Chiropr Osteopath.�1996;5:66�74.�[PMC free article][PubMed]
13.�Tuchin P.J., Scwafer T., Brookes M. A case study of chronic headaches.�Aust Chiropr Osteopath.�1996;5:47�53.�[PMC free article][PubMed]
14.�Nelson C.F., Bronfort G., Evans R., Boline P., Goldsmith C., Anderson A.V. The efficacy of spinal manipulation, amitriptyline and the combination of both therapies for the prophylaxis of migraine headache.�J Manipulative Physiol Ther.�1998;21:511�519.�[PubMed]
15.�Parker G.B., Tupling H., Pryor D.S. A controlled trial of cervical manipulation for migraine.�Aust NZ J Med.�1978;8:585�593.�[PubMed]
16.�Dowson A.J., Lipscome S., Sender J. New guidelines for the management of migraine in primary care.�Curr Med Res Opin.�2002;18:414�439.�[PubMed]
17.�Ferrari M.D., Roon K.I., Lipton R.B. Oral triptans (serotonin 5-HT1B/1D agonists) in acute migraine treatment: a meta-analysis of 53 trials.�Lancet.�2001;358:1668�1675.�[PubMed]
18.�Sjasstad O., Saunte C., Hovdahl H., Breivek H., Gronback E. Cervical headache: an hypothesis.�Cephalgia.�1983;3:249�256.
19.�Vernon H.T. Spinal manipulation and headache of cervical origin.�J Manipulative Physiol Ther.�1989;12:455�468.�[PubMed]
20.�Sjasstad O., Fredricksen T.A., Stolt-Nielsen A. Cervicogenic headache, C2 rhizopathy, and occipital neuralgia: a connection.�Cephalgia.�1986;6:189�195.�[PubMed]
21.�Bogduk N. Cervical causes of headache and dizziness. In: Greive G.P., editor.�Modern manual therapy of the vertebral column.�2nd ed. Edinburgh; Churchill Livingstone: 1994. pp. 317�331.
22.�Jull G.A. Cervical headache: a review. In: Greive GP, editor.�Modern manual therapy of the vertebral column.�2nd ed. Edinburgh; Churchill Livingstone: 1994. pp. 333�346.
23.�Boline P.D., Kassak K., Bronfort G. Spinal manipulations vs. amitriptyline for the treatment of chronic tension-type headaches: a randomized clinical trial.�J Manipulative Physiol Ther.�1995;18:148�154.[PubMed]
24.�Vernon H., Steiman I., Hagino C. Cervicogenic dysfunction in muscle contraction headache and migraine: a descriptive study.�J Manipulative Physiol Ther.�1992;15:418�429.�[PubMed]
25.�Kidd R., Nelson C. Musculoskeletal dysfunction of the neck in migraine and tension headache.�Headache.�1993;33:566�569.�[PubMed]
26.�Whittingham W., Ellis W.S., Molyneux T.P. The effect of manipulation (Toggle recoil technique) for headaches with upper cervical joint dysfunction: a case study.�J Manipulative Physiol Ther.�1994;17:369�375.�[PubMed]
27.�Jull G., Trott P., Potter H., Zito G., Shirley D., Richardson C. A randomized controlled trial of exercise and spinal manipulation for cervicogenic headache.�Spine.�2002;27:1835�1843.�[PubMed]
28.�Bronfort G, Nilsson N, Assendelft WJJ, Bouter L, Goldsmith C, Evans R, et al. Non-invasive physical treatments for chronic headache (a Cochrane review). In: The Cochrane Library Issue 2 2003. Oxford: Update Software.
29.�Dowson A., Jagger S. The UK migraine patient survey: quality of life and treatment.�Curr Med Res Opin.�1999;15:241�253.�[PubMed]
30.�Solomon G.D., Price K.L. Burden of migraine: a review of its socioeconomic impact.�Pharmacoeconomics.�1997;11(Suppl 1):1�10.�[PubMed]
31.�Bronfort G., Assendelft W.J.J., Evans R., Haas M., Bouter L. Efficacy of spinal manipulation for chronic headache: a systematic review.�J Manipulative Physiol Ther.�2001;24:457�466.�[PubMed]
32.�Vernon H.T. Spinal manipulation in the management of tension-type migraine and cervicogenic headaches: the state of the evidence.�Top Clin Chiropr.�2002;9:14�21.
Close Accordion
Psychology, Headache, Back Pain, Chronic Pain and Chiropractic in El Paso, TX

Psychology, Headache, Back Pain, Chronic Pain and Chiropractic in El Paso, TX

Everyone experiences pain from time to time. Pain is a physical feeling of discomfort caused by injury or illness. When you pull a muscle or cut your finger, for instance, a signal is sent through the nerve roots to the brain, signaling you that something is wrong in the body. Pain may be different for everyone and there are several ways of feeling and describing pain. After an injury or illness heals, the pain will subside, however, what happens if the pain continues even after you’ve healed?

 

Chronic pain is often defined as any pain which lasts more than 12 weeks. Chronic pain can range from mild to severe and it can be the result of previous injury or surgery, migraine and headache, arthritis, nerve damage, infection and fibromyalgia. Chronic pain can affect an individual’s emotional and mental disposition, making it more difficult to relieve the symptoms. Research studies have demonstrated that psychological interventions can assist the chronic pain recovery process. Several healthcare professionals, like a doctor of chiropractic, can provide chiropractic care together with psychological interventions to help restore the overall health and wellness of their patients. The purpose of the following article is to demonstrate the role of psychological interventions in the management of patients with chronic pain, including headache and back pain.

 

 

The Role of Psychological Interventions in the Management of Patients with Chronic Pain

 

Abstract

 

Chronic pain can be best understood from a biopsychosocial perspective through which pain is viewed as a complex, multifaceted experience emerging from the dynamic interplay of a patient�s physiological state, thoughts, emotions, behaviors, and sociocultural influences. A biopsychosocial perspective focuses on viewing chronic pain as an illness rather than disease, thus recognizing that it is a subjective experience and that treatment approaches are aimed at the management, rather than the cure, of chronic pain. Current psychological approaches to the management of chronic pain include interventions that aim to achieve increased self-management, behavioral change, and cognitive change rather than directly eliminate the locus of pain. Benefits of including psychological treatments in multidisciplinary approaches to the management of chronic pain include, but are not limited to, increased self-management of pain, improved pain-coping resources, reduced pain-related disability, and reduced emotional distress � improvements that are effected via a variety of effective self-regulatory, behavioral, and cognitive techniques. Through implementation of these changes, psychologists can effectively help patients feel more in command of their pain control and enable them to live as normal a life as possible despite pain. Moreover, the skills learned through psychological interventions empower and enable patients to become active participants in the management of their illness and instill valuable skills that patients can employ throughout their lives.

 

Keywords: chronic pain management, psychology, multidisciplinary pain treatment, cognitive behavioral therapy for pain

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

Chronic pain has previously been determined to affect the psychological health of those with persistent symptoms, ultimately altering their overall mental and emotional disposition. In addition, patients with overlapping conditions, including stress, anxiety and depression, can make treatment a challenge. The role of chiropractic care is to restore as well as maintain and improve the original alignment of the spine through the use of spinal adjustments and manual manipulations. Chiropractic care allows the body to naturally heal itself without the need for drugs/medications and surgical interventions, although these can be referred to by a chiropractor if needed. However, chiropractic care focuses on the body as a whole, rather than on a single injury and/or condition and its symptoms. Spinal adjustments and manual manipulations, among other treatment methods and techniques commonly used by a chiropractor, require awareness of the patient’s mental and emotional disposition in order to effectively provide them with overall health and wellness. Patients who visit my clinic with emotional distress from their chronic pain are often more susceptible to experience psychological issues as a result. Therefore, chiropractic care can be a fundamental psychological intervention for chronic pain management, along with those demonstrated below.

 

Introduction

 

Pain is a ubiquitous human experience. It is estimated that approximately 20%�35% of adults experience chronic pain.[1,2] The National Institute of Nursing Research reports that pain affects more Americans than diabetes, heart disease, and cancer combined.[3] Pain has been cited as the primary reason to seek medical care in the United States.[4] Furthermore, pain relievers are the second most commonly prescribed medications in physicians� offices and emergency rooms.[5] Further solidifying the importance of adequate assessment of pain, the Joint Commission on the Accreditation of Healthcare Organizations issued a mandate requiring that pain be evaluated as the fifth vital sign during medical visits.[6]

 

The International Association for the Study of Pain (IASP) defines pain as �an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage�.[7] The IASP�s definition highlights the multidimensional and subjective nature of pain, a complex experience that is unique to each individual. Chronic pain is typically differentiated from acute pain based on its chronicity or persistence, its physiological maintenance mechanisms, and/or its detrimental impact on an individual�s life. Generally, it is accepted that pain that persists beyond the expected period of time for tissue healing following an injury or surgery is considered chronic pain. However, the specific timeframe constituting an expected healing period is variable and often difficult to ascertain. For ease of classification, certain guidelines suggest that pain persisting beyond a 3�6 month time window is considered chronic pain.[7] Nevertheless, classification of pain based solely on duration is a strictly practical and, in some instances, arbitrary criterion. More commonly, additional factors such as etiology, pain intensity, and impact are considered alongside duration when classifying chronic pain. An alternative way to characterize chronic pain has been based on its physiological maintenance mechanism; that is, pain that is thought to emerge as a result of peripheral and central reorganization. Common chronic pain conditions include musculoskeletal disorders, neuropathic pain conditions, headache pain, cancer pain, and visceral pain. More broadly, pain conditions may be primarily nociceptive (producing mechanical or chemical pain), neuropathic (resulting from nerve damage), or central (resulting from dysfunction in the neurons of the central nervous system).[8]

 

Unfortunately, the experience of pain is frequently characterized by undue physical, psychological, social, and financial suffering. Chronic pain has been recognized as the leading cause of long-term disability in the working- age American population.[9] Because chronic pain affects the individual at multiple domains of his/her existence it also constitutes an enormous financial burden to our society. The combined direct and indirect costs of pain have been estimated to range from $125 billion to $215 billion, annually.[10,11] The widespread implications of chronic pain include increased reports of emotional distress (eg, depression, anxiety, and frustration), increased rates of pain-related disability, pain-related alterations in cognition, and reduced quality of life. Thus, chronic pain can be best understood from a biopsychosocial perspective through which pain is viewed as a complex, multifaceted experience emerging from the dynamic interplay of a patient�s physiological state, thoughts, emotions, behaviors, and sociocultural influences.

 

Pain Management

 

Given the widespread prevalence of pain and its multi-dimensional nature, an ideal pain management regimen will be comprehensive, integrative, and interdisciplinary. Current approaches to the management of chronic pain have increasingly transcended the reductionist and strictly surgical, physical, or pharmacological approach to treatment. Current approaches recognize the value of a multidisciplinary treatment framework that targets not only nociceptive aspects of pain but also cognitive-evaluative, and motivational-affective aspects alongside equally unpleasant and impacting sequelae. The interdisciplinary management of chronic pain typically includes multimodal treatments such as combinations of analgesics, physical therapy, behavioral therapy, and psychological therapy. The multimodal approach more adequately and comprehensively addresses pain management at the molecular, behavioral, cognitive-affective, and functional levels. These approaches have been shown to lead to superior and long-lasting subjective and objective outcomes including pain reports, mood, restoration of daily functioning, work status, and medication or health care use; multimodal approaches have also been shown to be more cost-effective than unimodal approaches.[12,13] The focus of this review will be specifically on elucidating the benefits of psychology in the management of chronic pain.

 

Dr. Jimenez performing physical therapy on a patient.

 

Patients will typically initially present to a physician�s office in the pursuit of a cure or treatment for their ailment/acute pain. For many patients, depending on the etiology and pathology of their pain alongside biopsychosocial influences on the pain experience, acute pain will resolve with the passage of time, or following treatments aimed at targeting the presumed cause of pain or its transmission. Nonetheless, some patients will not achieve resolution of their pain despite numerous medical and complementary interventions and will transition from an acute pain state to a state of chronic, intractable pain. For instance, research has demonstrated that approximately 30% of patients presenting to their primary-care physician for complaints related to acute back pain will continue to experience pain and, for many others, severe activity limitations and suffering 12 months later.[14] As pain and its consequences continue to develop and manifest in diverse aspects of life, chronic pain may become primarily a biopsychosocial problem, whereby numerous biopsychosocial aspects may serve to perpetuate and maintain pain, thus continuing to negatively impact the affected individual�s life. It is at this point that the original treatment regimen may diversify to include other therapeutic components, including psychological approaches to pain management.

 

Psychological approaches for the management of chronic pain initially gained popularity in the late 1960s with the emergence of Melzack and Wall�s �gate-control theory of pain�[15] and the subsequent �neuromatrix theory of pain�.[16] Briefly, these theories posit that psychosocial and physiological processes interact to affect perception, transmission, and evaluation of pain, and recognize the influence of these processes as maintenance factors involved in the states of chronic or prolonged pain. Namely, these theories served as integral catalysts for instituting change in the dominant and unimodal approach to the treatment of pain, one heavily dominated by strictly biological perspectives. Clinicians and patients alike gained an increasing recognition and appreciation for the complexity of pain processing and maintenance; consequently, the acceptance of and preference for multidimensional conceptualizations of pain were established. Currently, the biopsychosocial model of pain is, perhaps, the most widely accepted heuristic approach to understanding pain.[17] A biopsychosocial perspective focuses on viewing chronic pain as an illness rather than disease, thus recognizing that it is a subjective experience and that treatment approaches are aimed at the management, rather than the cure, of chronic pain.[17] As the utility of a broader and more comprehensive approach to the management of chronic pain has become evident, psychologically-based interventions have witnessed a remarkable rise in popularity and recognition as adjunct treatments. The types of psychological interventions employed as part of a multidisciplinary pain treatment program vary according to therapist orientation, pain etiology, and patient characteristics. Likewise, research on the effectiveness of psychologically based interventions for chronic pain has shown variable, albeit promising, results on key variables studied. This overview will briefly describe frequently employed psychologically based treatment options and their respective effectiveness on key outcomes.

 

Current psychological approaches to the management of chronic pain include interventions that aim to achieve increased self-management, behavioral change, and cognitive change rather than directly eliminate the locus of pain. As such, they target the frequently overlooked behavioral, emotional, and cognitive components of chronic pain and factors contributing to its maintenance. Informed by the framework offered by Hoffman et al[18] and Kerns et al,[19] the following frequently employed psychologically-based treatment domains are reviewed: psychophysiological techniques, behavioral approaches to treatment, cognitive behavioral therapy, and acceptance-based interventions.

 

Psychophysiological Techniques

 

Biofeedback

 

Biofeedback is a learning technique through which patients learn to interpret feedback (in the form of physiological data) regarding certain physiological functions. For instance, a patient may use biofeedback equipment to learn to recognize areas of tension in their body and subsequently learn to relax those areas to reduce muscular tension. Feedback is provided by a variety of measurement instruments that can yield information about brain electrical activity, blood pressure, blood flow, muscle tone, electrodermal activity, heart rate, and skin temperature, among other physiological functions in a rapid manner. The goal of biofeedback approaches is for the patient to learn how to initiate physiological self-regulatory processes by achieving voluntary control over certain physiological responses to ultimately increase physiological flexibility through greater awareness and specific training. Thus a patient will use specific self-regulatory skills in an attempt to reduce an undesired event (eg, pain) or maladaptive physiological reactions to an undesired event (eg, stress response). Many psychologists are trained in biofeedback techniques and provide these services as part of therapy. Biofeedback has been designated as an efficacious treatment for pain associated with headache and temporomandibular disorders (TMD).[20] A meta-analysis of 55 studies revealed that biofeedback interventions (including various biofeedback modalities) yielded significant improvements with regard to frequency of migraine attacks and perceptions of headache management self-efficacy when compared to control conditions.[21] Studies have provided empirical support for biofeedback for TMD, albeit more robust improvements with regard to pain and pain-related disability have been found for protocols that combine biofeedback with cognitive behavioral skills training, under the assumption that a combined treatment approach more comprehensively addresses the gamut of biopsychosocial problems that may be encountered as a result of TMD.[22]

 

Behavioral Approaches

 

Relaxation Training

 

It is generally accepted that stress is a key factor involved in the exacerbation and maintenance of chronic pain.[16,23] Stress can be predominantly of an environmental, physical, or psychological/emotional basis, though typically these mechanisms are intricately intertwined. The focus of relaxation training is to reduce tension levels (physical and mental) through activation of the parasympathetic nervous system and through attainment of greater awareness of physiological and psychological states, thereby achieving reductions in pain and increasing control over pain. Patients can be taught several relaxation techniques and practice them individually or in conjunction with one another, as well as adjuvant components to other behavioral and cognitive pain management techniques. The following are brief descriptions of relaxation techniques commonly taught by psychologists specializing in the management of chronic pain.

 

Diaphragmatic breathing. Diaphragmatic breathing is a basic relaxation technique whereby patients are instructed to use the muscles of their diaphragm as opposed to the muscles of their chest to engage in deep breathing exercises. Breathing by contracting the diaphragm allows the lungs to expand down (marked by expansion of abdomen during inhalation) and thus increase oxygen intake.[24]

 

Progressive muscle relaxation (PMR). PMR is characterized by engaging in a combination of muscle tension and relaxation exercises of specific muscles or muscle groups throughout the body.[25] The patient is typically instructed to engage in the tension/relaxation exercises in a sequential manner until all areas of the body have been addressed.

 

Autogenic training (AT). AT is a self-regulatory relaxation technique in which a patient repeats a phrase in conjunction with visualization to induce a state of relaxation.[26,27] This method combines passive concentration, visualization, and deep breathing techniques.

 

Visualization/Guided imagery. This technique encourages patients to use all of their senses in imagining a vivid, serene, and safe environment to achieve a sense of relaxation and distraction from their pain and pain-related thoughts and sensations.[27]

 

Collectively, relaxation techniques have generally been found to be beneficial in the management of a variety of types of acute and chronic pain conditions as well as in the management of important pain sequelae (eg, health-related quality of life).[28�31] Relaxation techniques are usually practiced in conjunction with other pain management modalities, and there is considerable overlap in the presumed mechanisms of relaxation and biofeedback, for instance.

 

Operant Behavior Therapy

 

Operant behavior therapy for chronic pain is guided by the original operant conditioning principles proposed by Skinner[32] and refined by Fordyce[33] to be applicable to pain management. The main tenets of the operant conditioning model as it relates to pain hold that pain behavior can eventually evolve into and be maintained as chronic pain manifestations as a result of positive or negative reinforcement of a given pain behavior as well as punishment of more adaptive, non-pain behavior. If reinforcement and the ensuing consequences occur with sufficient frequency, they can serve to condition the behavior, thus increasing the likelihood of repeating the behavior in the future. Therefore, conditioned behaviors occur as a product of learning of the consequences (actual or anticipated) of engaging in the given behavior. An example of a conditioned behavior is continued use of medication � a behavior that results from learning through repeated associations that taking medication is followed by removal of an aversive sensation (pain). Likewise, pain behaviors (eg, verbal expressions of pain, low activity levels) can be become conditioned behaviors that serve to perpetuate chronic pain and its sequelae. Treatments that are guided by operant behavior principles aim to extinguish maladaptive pain behaviors through the same learning principles that these may have been established by. In general, treatment components of operant behavior therapy include graded activation, time contingent medication schedules, and use of reinforcement principles to increase well behaviors and decrease maladaptive pain behaviors.

 

Graded activation. Psychologists can implement graded activity programs for chronic pain patients who have vastly reduced their activity levels (increasing likelihood of physical deconditioning) and subsequently experience high levels of pain upon engaging in activity. Patients are instructed to safely break the cycle of inactivity and deconditioning by engaging in activity in a controlled and time-limited fashion. In this manner, patients can gradually increase the length of time and intensity of activity to improve functioning. Psychologists can oversee progress and provide appropriate reinforcement for compliance, correction of misperceptions or misinterpretations of pain resulting from activity, where appropriate, and problem-solve barriers to adherence. This approach is frequently embedded within cognitive-behavioral pain management treatments.

 

Time-contingent medication schedules. A psychologist can be an important adjunct healthcare provider in overseeing the management of pain medications. In some cases, psychologists have the opportunity for more frequent and in-depth contact with patients than physicians and thus can serve as valuable collaborators of an integrated multidisciplinary treatment approach. Psychologists can institute time-contingent medication schedules to reduce the likelihood of dependence on pain medications for attaining adequate control over pain. Furthermore, psychologists are well equipped to engage patients in important conversations regarding the importance of proper adherence to medications and medical recommendations and problem-solve perceived barriers to safe adherence.

 

Fear-avoidance. The fear-avoidance model of chronic pain is a heuristic most frequently applied in the context of chronic low back pain (LBP).[34] This model draws largely from the operant behavior principles described previously. In essence, the fear-avoidance model posits that when acute pain states are repeatedly misinterpreted as danger signals or signs of serious injury, patients may be at risk of engaging in fear-driven avoidance behaviors and cognitions that further reinforce the belief that pain is a danger signal and perpetuate physical deconditioning. As the cycle continues, avoidance may generalize to broader types of activity and result in hypervigilance of physical sensations characterized by misinformed catastrophic interpretations of physical sensations. Research has shown that a high degree of pain catastrophizing is associated with maintenance of the cycle.[35] Treatments aimed at breaking the fear-avoidance cycle employ systematic graded exposure to feared activities to disconfirm the feared, often catastrophic, consequences of engaging in activities. Graded exposure is typically supplemented with psychoeducation about pain and cognitive restructuring elements that target maladaptive cognitions and expectations about activity and pain. Psychologists are in an excellent position to execute these types of interventions that closely mimic exposure treatments traditionally used in the treatment of some anxiety disorders.

 

Though specific graded exposure treatments have been shown to be effective in the treatment of complex regional pain syndrome type I (CRPS-1)[36] and LBP[37] in single-case designs, a larger-scale randomized controlled trial comparing systematic graded exposure treatment combined with multidisciplinary pain program treatment with multidisciplinary pain program treatment alone and with a wait-list control group found that the two active treatments resulted in significant improvements on outcome measures of pain intensity, fear of movement/injury, pain self-efficacy, depression, and activity level.[38] Results from this trial suggest that both interventions were associated with significant treatment effectiveness such that the graded exposure treatment did not appear to result in additional treatment gains.[38] A cautionary note in the interpretation of these results highlights that the randomized controlled trial (RCT) included a variety of chronic pain conditions that extended beyond LBP and CRPS-1 and did not exclusively include patients with high levels of pain-related fear; the interventions were also delivered in group formats rather than individual formats. Although in-vivo exposure treatments are superior at reducing pain catastrophizing and perceptions of harmfulness of activities, exposure treatments seem to be as effective as graded activity interventions in improving functional disability and chief complaints.[39] Another clinical trial compared the effectiveness of treatment-based classification (TBC) physical therapy alone to TBC augmented with graded activity or graded exposure for patients with acute and sub-acute LBP.[40] Outcomes revealed that there were no differences in 4-week and 6-month outcomes for reduction of disability, pain intensity, pain catastrophizing, and physical impairment among treatment groups, although graded exposure and TBC yielded larger reductions in fear-avoidance beliefs at 6 months.[40] Findings from this clinical trial suggest that enhancing TBC with graded activity or graded exposure does not lead to improved outcomes with regard to measures associated with the development of chronic LBP beyond improvements achieved with TBC alone.[40]

 

Cognitive-Behavioral Approaches

 

Cognitive-behavioral therapy (CBT) interventions for chronic pain utilize psychological principles to effect adaptive changes in the patient�s behaviors, cognitions or evaluations, and emotions. These interventions are generally comprised of basic psychoeducation about pain and the patient�s particular pain syndrome, several behavioral components, coping skills training, problem-solving approaches, and a cognitive restructuring component, though the exact treatment components vary according to the clinician. Behavioral components may include a variety of relaxation skills (as reviewed in the behavioral approaches section), activity pacing instructions/graded activation, behavioral activation strategies, and promotion of resumption of physical activity if there is a significant history of activity avoidance and subsequent deconditioning. The primary aim in coping skills training is to identify current maladaptive coping strategies (eg, catastrophizing, avoidance) that the patient is engaging in alongside their use of adaptive coping strategies (eg, use of positive self-statements, social support). As a cautionary note, the degree to which a strategy is adaptive or maladaptive and the perceived effectiveness of particular coping strategies varies from individual to individual.[41] Throughout treatment, problem-solving techniques are honed to aid patients in their adherence efforts and to help them increase their self-efficacy. Cognitive restructuring entails recognition of current maladaptive cognitions the patient is engaging in, challenging of the identified negative cognitions, and reformulation of thoughts to generate balanced, adaptive alternative thoughts. Through cognitive restructuring exercises, patients become increasingly adept at recognizing how their emotions, cognitions, and interpretations modulate their pain in positive and negative directions. As a result, it is presumed that the patients will attain a greater perception of control over their pain, be better able to manage their behavior and thoughts as they relate to pain, and be able to more adaptively evaluate the meaning they ascribe to their pain. Additional components sometimes included in a CBT intervention include social skills training, communication training, and broader approaches to stress management. Via a pain-oriented CBT intervention, many patients profit from improvements with regard to their emotional and functional well-being, and ultimately their global perceived health-related quality of life.

 

Dr. Alex Jimenez engaging in fitness exercise and physical activity.

 

CBT interventions are delivered within a supportive and empathetic environment that strives to understand the patient�s pain from a biopsychosocial perspective and in an integrated manner. Therapists see their role as �teachers� or �coaches� and the message communicated to patients is that of learning to better manage their pain and improve their daily function and quality of life as opposed to aiming to cure or eradicate the pain. The overarching goal is to increase the patients� understanding of their pain and their efforts to manage pain and its sequelae in a safe and adaptive manner; therefore, teaching patients to self-monitor their behavior, thoughts, and emotions is an integral component of therapy and a useful strategy to enhance self-efficacy. Additionally, the therapist endeavors to foster an optimistic, realistic, and encouraging environment in which the patient can become increasingly skilled at recognizing and learning from their successes and learning from and improving upon unsuccessful attempts. In this manner, therapists and patients work together to identify patient successes, barriers to adherence, and to develop maintenance and relapse-prevention plans in a constructive, collaborative, and trustworthy atmosphere. An appealing feature of the cognitive behavioral approach is its endorsement of the patient as an active participant of his/her pain rehabilitation or management program.

 

Research has found CBT to be an effective treatment for chronic pain and its sequelae as marked by significant changes in various domains (ie, measures of pain experience, mood/affect, cognitive coping and appraisal, pain behavior and activity level, and social role function) when compared with wait-list control conditions.[42] When compared with other active treatments or control conditions, CBT has resulted in notable improvements, albeit smaller effects (effect size ~ 0.50), with regard to pain experience, cognitive coping and appraisal, and social role function.[42] A more recent meta-analysis of 52 published studies compared behavior therapy (BT) and CBT against treatment as usual control conditions and active control conditions at various time-points.[43] This meta-analysis concluded that their data did not lend support for BT beyond improvements in pain immediately following treatment when compared with treatment as usual control conditions.[43] With regard to CBT, they concluded that CBT has limited positive effects for pain disability, and mood; nonetheless, there are insufficient data available to investigate the specific influence of treatment content on selected outcomes.[43] Overall, it appears that CBT and BT are effective treatment approaches to improve mood; outcomes that remain robust at follow-up data points. However, as highlighted by several reviews and meta-analyses, a critical factor to consider in evaluating the effectiveness of CBT for the management of chronic pain is centered on issues of effective delivery, lack of uniform treatment components, differences in delivery across clinicians and treatment populations, and variability in outcome variables of interest across research trials.[13] Further complicating the interpretation of effectiveness findings are patient characteristics and additional variables that may independently affect treatment outcome.

 

Acceptance-Based Approaches

 

Acceptance-based approaches are frequently identified as third-wave cognitive-behavioral therapies. Acceptance and commitment therapy (ACT) is the most common of the acceptance-based psychotherapies. ACT emphasizes the importance of facilitating the client�s progress toward attaining a more valued and fulfilling life by increasing psychological flexibility rather than strictly focusing on restructuring cognitions.[44] In the context of chronic pain, ACT targets ineffective control strategies and experiential avoidance by fostering techniques that establish psychological flexibility. The six core processes of ACT include: acceptance, cognitive defusion, being present, self as context, values, and committed action.[45] Briefly, acceptance encourages chronic pain patients to actively embrace pain and its sequelae rather than attempt to change it, in doing so encouraging the patient to cease a futile fight directed at the eradication of their pain. Cognitive defusion (deliteralization) techniques are employed to modify the function of thoughts rather than to reduce their frequency or restructure their content. In this manner, cognitive defusion may simply alter the undesirable meaning or function of negative thoughts and thus decrease the attachment and subsequent emotional and behavioral response to such thoughts. The core process of being present emphasizes a non-judgmental interaction between the self and private thoughts and events. Values are utilized as guides for electing behaviors and interpretations that are characterized by those values an individual strives to instantiate in everyday life. Finally, through committed action, patients can realize behavior changes aligned with individual values. Thus, ACT utilizes the six core principles in conjunction with one another to take a holistic approach toward increasing psychological flexibility and decreasing suffering. Patients are encouraged to view pain as inevitable and accept it in a nonjudgmental manner so that they can continue to derive meaning from life despite the presence of pain. The interrelated core processes exemplify mindfulness and acceptance processes and commitment and behavior change processes.[45]

 

Results of research on the effectiveness of ACT-based approaches for the management of chronic pain are promising, albeit still warranting further evaluation. A RCT comparing ACT with a waitlist control condition reported significant improvements in pain catastrophizing, pain-related disability, life satisfaction, fear of movements, and psychological distress that were maintained at the 7 month follow-up.[46] A larger trial reported significant improvements for pain, depression, pain-related anxiety, disability, medical visits, work status, and physical performance.[47] A recent meta-analysis evaluating acceptance-based interventions (ACT and mindfulness-based stress reduction) in patients with chronic pain found that, in general, acceptance-based therapies lead to favorable outcomes for patients with chronic pain.[48] Specifically, the meta-analysis revealed small to medium effect sizes for pain intensity, depression, anxiety, physical wellbeing, and quality of life, with smaller effects found when controlled clinical trials were excluded and only RCTs were included in the analyses.[48] Other acceptance-based interventions include contextual cognitive-behavioral therapy and mindfulness-based cognitive therapy, though empirical research on the effectiveness of these therapies for the management of chronic pain is still in its infancy.

 

Expectations

 

An important and vastly overlooked common underlying element of all treatment approaches is consideration of the patient�s expectation for treatment success. Despite the numerous advances in the formulation and delivery of effective multidisciplinary treatments for chronic pain, relatively little emphasis has been placed on recognizing the importance of expectations for success and on focusing efforts on enhancement of patients� expectations. The recognition that placebo for pain is characterized by active properties leading to reliable, observable, and quantifiable changes with neurobiological underpinnings is currently at the vanguard of pain research. Numerous studies have confirmed that, when induced in a manner that optimizes expectations (via manipulation of explicit expectations and/or conditioning), analgesic placebos can result in observable and measurable changes in pain perception at a conscious self-reported level as well as a neurological pain-processing level.[49,50] Analgesic placebos have been broadly defined as simulated treatments or procedures that occur within a psychosocial context and exert effects on an individual�s experience and/or physiology.[51] The current conceptualization of placebo emphasizes the importance of the psychosocial context within which placebos are embedded. Underlying the psychosocial context and ritual of treatment are patients� expectations. Therefore, it is not surprising that the placebo effect is intricately embedded in virtually every treatment; as such, clinicians and patients alike will likely benefit from recognition that therein lies an additional avenue by which current treatment approaches to pain can be enhanced.

 

It has been proposed that outcome expectancies are core influences driving the positive changes attained through the various modes of relaxation training, hypnosis, exposure treatments, and many cognitive-oriented therapeutic approaches. Thus, a sensible approach to the management of chronic pain capitalizes on the power of patients� expectations for success. Regrettably, too often, health care providers neglect to directly address and emphasize the importance of patients� expectations as integral factors contributing to successful management of chronic pain. The zeitgeist in our society is that of mounting medicalization of ailments fueling the general expectation that pain (even chronic pain) ought to be eradicated through medical advancements. These all too commonly held expectations leave many patients disillusioned with current treatment outcomes and contribute to an incessant search for the �cure�. Finding the �cure� is the exception rather than the rule with respect to chronic pain conditions. In our current climate, where chronic pain afflicts millions of Americans annually, it is in our best interest to instill and continue to advocate a conceptual shift that instead focuses on effective management of chronic pain. A viable and promising route to achieving this is to make the most of patients� positive (realistic) expectations and educate pain patients as well as the lay public (20% of whom will at some future point become pain patients) on what constitutes realistic expectations regarding the management of pain. Perhaps, this can occur initially through current, evidence-based education regarding placebo and nonspecific treatment effects such that patients can correct misinformed beliefs they may have previously held. Subsequently clinicians can aim to enhance patients� expectations within treatment contexts (in a realistic fashion) and minimize pessimistic expectations that deter from treatment success, therefore, learning to enhance their current multidisciplinary treatments through efforts guided at capitalizing on the improvements placebo can yield, even within an �active treatment�. Psychologists can readily address these issues with their patients and help them become advocates of their own treatment success.

 

Emotional Concomitants of Pain

 

An often challenging aspect of the management of chronic pain is the unequivocally high prevalence of comorbid emotional distress. Research has demonstrated that depression and anxiety disorders are upward to three times more prevalent among chronic pain patients than among the general population.[52,53] Frequently, pain patients with psychiatric comorbidities are labeled �difficult patients� by healthcare providers, possibly diminishing the quality of care they will receive. Patients with depression have poorer outcomes for both depression and pain treatments, compared with patients with single diagnoses of pain or depression.[54,55] Psychologists are remarkably suited to address most of the psychiatric comorbidities typically encountered in chronic pain populations and thus improve pain treatment outcomes and decrease the emotional suffering of patients. Psychologists can address key symptoms (eg, anhedonia, low motivation, problem-solving barriers) of depression that readily interfere with treatment participation and emotional distress. Moreover, irrespective of a psychiatric comorbidity, psychologists can help chronic pain patients process important role transitions they may undergo (eg, loss of job, disability), interpersonal difficulties they may be encountering (eg, sense of isolation brought about by pain), and emotional suffering (eg, anxiety, anger, sadness, disappointment) implicated in their experience. Thus, psychologists can positively impact the treatment course by reducing the influence of emotional concomitants that are addressed as part of therapy.

 

Conclusion

 

Benefits of including psychological treatments in multidisciplinary approaches to the management of chronic pain are abundant. These include, but are not limited to, increased self-management of pain, improved pain-coping resources, reduced pain-related disability, and reduced emotional distress-improvements that are effected via a variety of effective self-regulatory, behavioral, and cognitive techniques. Through implementation of these changes, a psychologist can effectively help patients feel more in command of their pain control and enable them to live as normal a life as possible despite pain. Moreover, the skills learned through psychological interventions empower and enable patients to become active participants in the management of their illness and instill valuable skills that patients can employ throughout their lives. Additional benefits of an integrated and holistic approach to the management of chronic pain may include increased rates of return to work, reductions in health care costs, and increased health-related quality of life for millions of patients throughout the world.

 

Image of a trainer providing training advice to a patient.

 

Footnotes

 

Disclosure: No conflicts of interest were declared in relation to this paper.

 

In conclusion, psychological interventions can be effectively used to help relieve symptoms of chronic pain along with the use of other treatment modalities, such as chiropractic care. Furthermore, the research study above demonstrated how specific psychological interventions can improve the outcome measures of chronic pain management. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC: Managing Workplace Stress

 

 

MORE IMPORTANT TOPICS: EXTRA EXTRA: Car Accident Injury Treatment El Paso, TX Chiropractor

 

Blank
References
1.�Boris-Karpel S. Policy and practice issues in pain management. In: Ebert MH, Kerns RD, editors.�Behavioral and psychopharmacologic pain management.�New York: Cambridge University Press; 2010. pp. 407�433.
2.�Harstall C, Ospina M. How prevalent is chronic pain?�Pain: Clinical Updates.�2003;11(2):1�4.
3.�National Institutes of Health.�Fact sheet: pain management.�2007. [Accessed 30 Mar 2011]. Available from:�www.ninr.nih.gov/NR/rdonlyres/DC0351A6-7029-4FE0-BEEA-7EFC3D1B23AE/0/Pain.pdf.
4.�Abbot FV, Fraser MI. Use and abuse of over-the-counter analgesic agents.�J Psychiatry Neurosci.�1998;23(1):13�34.�[PMC free article][PubMed]
5.�Schappert SM, Burt CW. Ambulatory care visits to physician offices, hospital outpatient departments, and emergency departments: United States, 2001�02.�Vital Health Stat.�2006;13(159):1�66.�[PubMed]
6.�Joint Commission of Accreditation of Healthcare Organizations.�Pain assessment and management: an organizational approach.�Oakbrook, IL: 2000.
7.�Merskey H, Bogduk N, editors.�Classification of chronic pain.�2nd edition. Seattle, WA: IASP Press; 1994. Task Force on Taxonomy of the IASP Part III: Pain terms, a current list with definitions and notes on usage; pp. 209�214.
8.�Woessner J. A conceptual model of pain: treatment modalities.�Pract Pain Manag.�2003;3(1):26�36.
9.�Loeser JD. Economic implications of pain management.�Acta Anaesthesiol Scand.�1999;43(9):957�959.[PubMed]
10.�National Research Council.�Musculoskeletal disorders and the workplace: low back and upper extremities.�Washington, DC: National Academy Press; 2001.�[PubMed]
11.�US Bureau of the Census.�Statistical abstract of the United States: 1996.�116th edition. Washington, DC:
12.�Flor H, Fydrich T, Turk DC. Efficacy of multidisciplinary pain treatment centers: a meta-analytic review.�Pain.�1992;49(2):221�230.�[PubMed]
13.�McCracken LM, Turk DC. Behavioral and cognitive-behavioral treatment for chronic pain: outcome, predictors of outcome, and treatment process.�Spine.�2002;27(22):2564�2573.�[PubMed]
14.�Von Korff M, Saunders K. The course of back pain in primary care.�Spine.�1996;21(24):2833�2837.[PubMed]
15.�Melzack R, Wall PD. Pain mechanisms: a new theory.�Science.�1965;150(699):971�979.�[PubMed]
16.�Melzack R. Pain and stress: a new perspective. In: Gatchel RJ, Turk DC, editors.�Psychosocial factors in pain: critical perspectives.�New York: Guilford Press; 1999. pp. 89�106.
17.�Gatchel RJ. The conceptual foundations of pain management: historical overview. In: Gatchel RJ, editor.�Clinical essentials of pain management.�Washington, DC: American Psychological Association; 2005. pp. 3�16.
18.�Hoffman BM, Papas RK, Chatkoff DK, Kerns RD. Meta-analysis of psychological interventions for chronic low back pain.�Health Psychol.�2007;26(1):1�9.�[PubMed]
19.�Kerns RD, Sellinger J, Goodin BR. Psychological treatment of chronic pain.�Annu Rev Clin Psychol.�2010 Sep 27;�[Epub ahead of print]
20.�Yucha C, Montgomery D.�Evidence-based practice in biofeedback and neurofeedback.�Wheat Ridge, CO: AAPB; 2008.
21.�Nestoriuc Y, Martin A. Efficacy of biofeedback for migraine: a meta-analysis.�Pain.�2007;128(1�2):111�127.�[PubMed]
22.�Gardea MA, Gatchel RJ, Mishra KD. Long-term efficacy of biobehavioral treatment of temporomandibular disorders.�J Behav Med.�2001;24(4):341�359.�[PubMed]
23.�Turk DC, Monarch ES. Biopsychosocial perspective on chronic pain. In: Turk DC, Gatchel RJ, editors.�Psychosocial approaches to pain management: a practitioner�s handbook.�2nd edition. New York: Guilford Press; 2002. pp. 3�29.
24.�Philips HC.�The psychological management of chronic pain: a treatment manual.�New York: Springer Publishing; 1988. Orientation: chronic pain and the self-management approach; pp. 45�60.
25.�Bernstein DA, Borkovek TD.�Progressive muscle relaxation training: a manual for helping professions.Champaign, IL: Research Press; 1973.
26.�Linden W.�Autogenic training: a clinical guide.�New York: Guilford; 1990.
27.�Jamison RN.�Mastering chronic pain: a professional�s guide to behavioral treatment.�Sarasota, FL: Professional Resource Press; 1996.
28.�Baird CL, Sands L. Effect of guided imagery with relaxation on health-related quality of life in older women with osteoarthritis.�Res Nurs Health.�2006;29(5):442�451.�[PubMed]
29.�Carroll D, Seers K. Relaxation for the relief of chronic pain: a systematic review.�J Adv Nurs.�1998;27(3):476�487.�[PubMed]
30.�Morone NE, Greco CM. Mind-body interventions for chronic pain in older adults: a structured review.�Pain Med.�2007;8(4):359�375.�[PubMed]
31.�Mannix LK, Chandurkar RS, Rybicki LA, Tusek DL, Solomon GD. Effect of guided imagery on quality of life for patients with chronic tension-type headache.�Headache.�1999;39(5):326�334.�[PubMed]
32.�Skinner BF.�Science and human behavior.�New York: Free Press; 1953.
33.�Fordyce WE.�Behavioural methods for chronic pain and illness.�London, UK: The CV Mosby Company; 1976.
34.�Vlayen JW, Linton SJ. Fear-avoidance and its consequences in chronic musculoskeletal pain: a state of the art.�Pain.�2000;85(3):317�332.�[PubMed]
35.�Vlayen JW, de Jong J, Sieben J, Crombez G. Graded exposure�in vivo�for pain-related fear. In: Turk DC, Gatchel RJ, editors.�Psychosocial approaches to pain management: a practitioner�s handbook.�2nd edition. New York: Guilford Press; 2002. pp. 210�233.
36.�De Jong JR, Vlaeyen JW, Onghena P, Cuypers C, den Hollander M, Ruijgrok J. Reduction of pain-related fear in complex regional pain syndrome type I: the application of graded exposure in vivo.�Pain.�2005;116(3):264�275.�[PubMed]
37.�Boersma K, Linton S, Overmeer T, Jansson M, Vlaeyen J, de Jong J. Lowering fear-avoidance and enhancing function through exposure in vivo: a multiple baseline study across six patients with back pain.�Pain.�2004;108(1�2):8�16.�[PubMed]
38.�Bliokas VV, Cartmill TK, Nagy BJ. Does systematic graded exposure in vivo enhance outcomes in multidisciplinary chronic pain management groups?�Clin J Pain.�2007;23(4):361�374.�[PubMed]
39.�Leeuw M, Goossens ME, van Breukelen GJ, et al. Exposure in vivo versus operant graded activity in chronic low back pain patients: results of a randomized controlled trial.�Pain.�2008;138(1):192�207.[PubMed]
40.�George SZ, Zeppieri G, Cere AL, et al. A randomized trial of behavioral physical therapy interventions for acute and sub-acute low back pain (NCT00373867)�Pain.�2008;140(1):145�157.�[PMC free article][PubMed]
41.�Roditi D, Waxenberg LB, Robinson ME. Frequency and perceived effectiveness of coping define important subgroups of patients with chronic pain.�Clin J Pain.�2010;26(8):677�682.�[PubMed]
42.�Morley S, Eccleston C, Williams A. Systematic review and meta-analysis of randomized controlled trials of cognitive behaviour therapy and behaviour therapy for chronic pain in adults, excluding headache.�Pain.�1999;80(1�2):1�13.�[PubMed]
43.�Eccleston C, Williams AC, Morley S. Psychological therapies for the management of chronic pain (excluding headache) in adults.�Cochrane Database Syst Rev.�2009;(2):CD007407.�[PubMed]
44.�Blackledge JT, Hayes SC. Emotion regulation in acceptance and commitment therapy.�J Clin Psychol.�2001;57(2):243�255.�[PubMed]
45.�Hayes SC, Luoma JB, Bond FW, Masuda A, Lillis J. Acceptance and commitment therapy: model, processes, and outcomes.�Behav Res Ther.�2006;44(1):1�25.�[PubMed]
46.�Wicksell RK, Ahlqvist J, Bring A, Melin L, Olsson GL. Can exposure strategies improve functioning and life satisfaction in people with chronic pain and whiplash-associated disorders (WAD)? A randomized controlled trial.�Cogn Behav Ther.�2008;37(3):169�182.�[PubMed]
47.�Vowles KE, McCracken LM. Acceptance and values-based action in chronic pain: a study of treatment effectiveness and process.�J Consult Clinl Psychol.�2008;76(3):397�407.�[PubMed]
48.�Veehof MM, Oskam MJ, Schreurs KMG, Bohlmeijer ET. Acceptance-based interventions for the treatment of chronic pain: a systematic review and meta-analysis.�Pain.�2011;152(3):533�542.�[PubMed]
49.�Wager TD, Rilling JK, Smith EE, et al. Placebo-induced changes in�f�MRI in the anticipation and experience of pain.�Science.�2004;303(5661):1162�1167.�[PubMed]
50.�Price DD, Craggs J, Verne GN, Perlstein WM, Robinson ME. Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable-bowel syndrome patients.�Pain.�2007;127(1�2):63�72.�[PubMed]
51.�Price D, Finniss D, Benedetti F. A comprehensive review of the placebo effect: recent advances and current thought.�Annu Rev Psychol.�2008;59:565�590.�[PubMed]
52.�Holroyd KA. Recurrent headache disorders. In: Dworkin RH, Breitbart WS, editors.�Psychosocial aspects of pain: a handbook for health care providers.�Seattle, WA: IASP Press; 2004. pp. 370�403.
53.�Fishbain DA. Approaches to treatment decisions for psychiatric comorbitity in the management of the chronic pain patient.�Med Clin North Am.�1999;83(3):737�760.�[PubMed]
54.�Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity � a literature review.�Arch Intern Med.�2003;163(20):2433�2445.�[PubMed]
55.�Poleshuck EL, Talbot NL, Su H, et al. Pain as a predictor of depression treatment outcomes in women with childhood sexual abuse.�Compr Psychiatry.�2009;50(3):215�220.�[PMC free article][PubMed]
Close Accordion
Psychological Therapy for Chronic Pain Management in El Paso, TX

Psychological Therapy for Chronic Pain Management in El Paso, TX

Psychological therapy, also known as psychotherapy, refers to the use of psychological methods to help change an individual’s way of thinking as well as improve their coping skills in order for them to learn how to best deal with stress. Psychological therapies have widely been utilized as a part of the multidisciplinary management of chronic pain. Common psychotherapies include, cognitive-behavioral therapy, mindfulness-based stress reduction and even chiropractic care. The connection between the mind and the body in relation to disease and illness have long been discussed in many research studies.

 

Evidence-based research studies have demonstrated that proper stress management through the use of psychological therapy as well as mindfulness interventions can effectively benefit patients with chronic pain. By way of instance, chiropractic care can safely and effectively help reduce stress, anxiety and depression by correcting spinal misalignments, or subluxation. A balanced spine can improve mood and mental health. Chiropractic care can include lifestyle modifications, such as nutritional advice, physical activity and exercise recommendations, and promote better sleeping habits, to further enhance the benefits of the treatment. The purpose of the following article is to demonstrate how psychological therapies impact the management of chronic pain.

 

Dr.-Jimenez-works-on-patients-back.jpg

 

Psychological Therapies for the Management of Chronic Pain

 

Abstract

 

Pain is a complex stressor that presents a significant challenge to most aspects of functioning and contributes to substantial physical, psychological, occupational, and financial cost, particularly in its chronic form. As medical intervention frequently cannot resolve pain completely, there is a need for management approaches to chronic pain, including psychological intervention. Psychotherapy for chronic pain primarily targets improvements in physical, emotional, social, and occupational functioning rather than focusing on resolution of pain itself. However, psychological therapies for chronic pain differ in their scope, duration, and goals, and thus show distinct patterns of treatment efficacy. These therapies fall into four categories: operant-behavioral therapy, cognitive-behavioral therapy, mindfulness-based therapy, and acceptance and commitment therapy. The current article explores the theoretical distinctiveness, therapeutic targets, and effectiveness of these approaches as well as mechanisms and individual differences that factor into treatment response and pain-related dysfunction and distress. Implications for future research, dissemination of treatment, and the integration of psychological principles with other treatment modalities are also discussed.

 

Keywords: pain management, multidisciplinary pain treatment, psychological therapy

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

Chiropractic care is an alternative treatment option which utilizes spinal adjustments and manual manipulations to treat injuries and/or conditions associated with the musculoskeletal and nervous system. Chiropractic treatment primarily focuses on spinal health, however, because the spine is the root of the nervous system, chiropractic care can also be effectively used to treat a variety of mental health issues. As a chiropractor, I make sure to focus on the body as a whole, rather than treating the symptoms of a single injury and/or condition. The truth of the matter is, chiropractic treatment must also deal with the emotional component of each health issue in order to provide overall relief. Psychosomatic disorders, refers to a physical illness caused or aggravated by a mental factor, such as stress. Chiropractic care can be utilized as a psychological therapy, in which, a chiropractor may recommend a series of lifestyle modifications to help reduce stress, anxiety and depression, together with spinal adjustments and manual manipulations to reduce symptoms associated with mental health issues. Furthermore, the understanding of the connection between the mind and body is essential in chiropractic treatment towards overall health and wellness.

 

Introduction to the Non-Pharmacological Treatment of Pain

 

Pain is an essential biological function that signals disturbance or damage in the body, prevents further harm through overuse of the afflicted area, and promotes physiological homeostasis.[1] Whether through abnormal healing, additional bodily damage, or failed medical intervention, pain may become chronic. Chronic pain no longer signals damage to the body and is instead a detriment to the physical and psychological well-being of the sufferer. Unfortunately, medical intervention frequently cannot resolve chronic pain, resulting in increased need for management approaches to pain, as is the approach to other chronic medical conditions.[2] In recent years, the biopsychosocial model has informed research and intervention in pain psychology, wherein physical, cognitive, affective, and interpersonal factors are used to inform treatment.[2] Currently, psychological interventions for chronic pain target a variety of domains, including physical functioning, pain medication use, mood, cognitive patterns, and quality of life, while changes in pain intensity may be secondary.[3] As such, psychological interventions for pain are ideally suited as complementary treatments to medical treatment.[4] In order to articulate the distinct philosophies and effects of each psychological intervention, it is important to first consider the variety of ways that pain affects psychological functioning.

 

Psychological Reactions to Pain

 

Recurrent pain may contribute to development of maladaptive cognitions and behavior that worsen daily functioning, increase psychiatric distress, or prolong the experience of pain.[5] Individuals suffering from chronic pain tend to show increased vulnerability to a variety of psychiatric conditions, including depressive disorders,[6] anxiety disorders,[7] and posttraumatic stress disorder.[7] However, the relationship between depression and pain is likely bidirectional, as the presence of a major depressive disorder has been identified as a key risk factor in the transition from acute pain to chronic pain.[8] Additionally, individuals with pain may suffer from significant anxiety and depressive symptomatology that does not reach the severity of a clinical diagnosis.[9] Further, chronic pain negatively impacts quality of life[10] and contributes to higher levels of disability.[10] Individuals with chronic pain are also vulnerable to higher rates of obesity,[11] sleep disturbance,[12] and fatigue,[13] show greater rates of medical utilization,[10] and are vulnerable to problematic pain medication use.[14] Given the negative psychological consequences of chronic pain, it is worthwhile to consider three psychological mechanisms related to pain-related distress that have proven to be suitable targets for intervention: pain catastrophizing, fear of pain, and pain acceptance.

 

Pain catastrophizing is defined as a negative cognitive and affective mental set related to expected or actual pain experience.[15] Pain catastrophizing is characterized by magnification of the negative effects of pain, rumination about pain, and feelings of helplessness in coping with pain.[16] Pain catastrophizing has been associated with various forms of dysfunction, including increased rates of depression[17] and anxiety,[16] greater functional impairment and disability due to pain,[17] and lower overall quality of life.[18] Individuals who catastrophize about their pain report lower levels of perceived control over pain,[19] poorer emotional and social functioning,[20] and poorer responses to medical intervention.[21] Pain catastrophizing also contributes to poorer pain coping and overall functioning, making pain catastrophizing a viable target for psychological intervention. Addressing catastrophic thoughts about pain improves physical and psychological functioning in the short term[22] and improves the likelihood of returning to work despite the presence of persistent pain.[23]

 

Pain-related fear is another psychological mechanism that has significant implications for physical and psychological functioning in chronic pain. Pain-related fear reflects a fear of injury or worsening of one�s physical condition through activities that may trigger pain.[24] Pain-related fear is associated with increased pain intensity[25] and increased disability.[26] Pain-related fear contributes to disability by fostering passive or avoidant pain-coping behaviors that contribute to physical deconditioning and pain.[27] If left unaddressed, fear of pain can impair gains in physical rehabilitation settings.[28] Evidence suggests that pain catastrophizing precedes pain-related fear,[24] but both of these mechanisms uniquely contribute to pain and physical disability.[5,29]

 

Recently, there has been increased attention to the psychological flexibility model, which extends the fear-avoidance model of chronic pain and proposes to improve treatment outcomes through fostering of accepting attitudes towards pain.[30] Psychological flexibility has been defined as an ability to engage in the present moment in a way that allows the individual to either maintain or adjust his or her behavior in the way that is most consistent with internally held goals and values;[31] this idea is especially important in times of greater pain, given the narrowing of focus that is common during times of pain.[32] Similar to psychological acceptance, which fosters a nonjudgmental approach to distressing thoughts and emotions, pain acceptance is defined as a process of nonjudgmentally acknowledging pain, stopping maladaptive attempts to control pain, and learning to live a richer life in spite of pain.[33] Pain acceptance influences emotional functioning through two distinct mechanisms: a willingness to experience pain, which buffers against negative emotional reactions to pain, and continued engagement in valued activities despite the presence of pain, which bolsters positive emotions.[34] Acceptance of pain is theorized to uncouple the occurrence of catastrophic thoughts about pain from subsequent emotional suffering[35] and reduces reliance on control- or avoidance-based coping,[36] thereby freeing cognitive and emotional resources for more meaningful pursuits.[33] Pain acceptance has demonstrated positive associations with cognitive, emotional, social, and occupational functioning in chronic pain populations.[36] Acceptance of pain predicts lower levels of pain catastrophizing[37] and greater levels of positive affect, which in turn reduce the association between pain intensity and negative emotions.[38] Pain acceptance is a particularly salient target for intervention in mindfulness- and acceptance-based therapies for chronic pain, which will be discussed later (see Table 1).

 

Table 1 Descriptions of Psychological Therapies for Pain

Table 1: Descriptions of psychological therapies for pain.

 

Psychological Intervention as an Approach to Pain Management

 

Operant Behavioral Approaches

 

Fordyce[39] proposed a behavioral model of pain adaptation in which maladaptive behavioral responses to pain develop through contingent relief from pain or pain-related fear. According to this theory, a behavioral drive to avoid pain leads individuals to avoid behaviors that are painful but maintain their physical and emotional health; this avoidance contributes to the development and maintenance of pain chronicity, deconditioning, and depression.[40] Operant therapy for chronic pain utilizes reinforcement and punishment contingencies to reduce pain-related behaviors and foster more adaptive behaviors, including graded patterns of activity, activity pacing, and time-contingent medication management.[40] Behavioral therapy for pain has shown positive effects on a variety of domains, including pain experience, mood, negative cognitive appraisals, and functioning in social roles.[3]

 

A recent application of learning theory to chronic pain involves in vivo exposure treatment for pain-related fear, which focuses on decreasing the perceived harmfulness of physical activity.[41] Learning theory posits that the aversive signal of pain may be passed to neutral stimuli (like physical movement behaviors), which contributes to avoidant behavior. In vivo exposure therapy extinguishes threat, fear, and behavioral avoidance through progressively increasing engagement in painful behaviors in the absence of catastrophic outcomes; when these behaviors are performed without serious negative consequences, patients may realize that their expectations about the consequences of physical movement and pain are unrealistic.[24,42] Consistent with exposure treatments for phobias and other anxiety disorders, in vivo exposure treatment for fear of pain involves development of a personalized, graded hierarchy of activities that elicit a fearful response, psychoeducation related to pain, fear, and behavior, and ultimately slow and systematic exposure to activities related to the individual�s fear hierarchy.[41] In vivo exposure treatment for pain-related fear has demonstrated efficacy in improving pain, pain catastrophizing, and functional disability,[41] and in decreasing pain-related fear and anxiety, depression, and anxiety.[43] Exclusively behavioral approaches to pain have been less prevalent in recent years but have demonstrated efficacy in lower back pain samples, among others (see Table 2). The effects of in vivo exposure on functional disability appear to be mediated by decreased catastrophizing and perceived harmfulness of activity[41] but may be differentially effective for patients of differing baseline levels of functionality.[40]

 

Table 2 Demonstrated Efficacy of Psychological Interventions

Table 2: Demonstrated efficacy of psychological interventions by pain population.

 

Cognitive-Behavioral Therapy

 

Cognitive-behavioral therapy (CBT) adopts a biopsychosocial approach to the treatment of chronic pain by targeting maladaptive behavioral and cognitive responses to pain and social and environmental contingencies that modify reactions to pain.[44] CBT principles have demonstrated efficacy for a variety of psychiatric disorders and physical illnesses, in addition to pain.[45] CBT for pain develops coping skills intended to manage pain and improve psychological functioning, including structured relaxation, behavioral activation and scheduling of pleasurable events, assertive communication, and pacing of behavior in order to avoid prolongation or exacerbation of pain flares. Unlike operant-behavioral approaches, CBT for pain also addresses maladaptive beliefs about pain and pain catastrophizing through formal use of cognitive restructuring: identification and replacement of unrealistic or unhelpful thoughts about pain with thoughts that are oriented towards adaptive behavior and positive functioning.[44] CBT for pain has been widely implemented as a standard treatment for pain and constitutes the current �gold standard� for psychological intervention for pain.[44]

 

According to recent meta-analytic studies,[45] CBT for pain demonstrates small-to-medium effect sizes in a variety of domains and shows effects on pain and functioning comparable to standard medical care for pain.[3] CBT significantly improves disability and pain catastrophizing after treatment and yields longer-term improvements in disability, above and beyond the effects of usual medical care,[3] as well as smaller effects on pain, catastrophizing, and mood when compared to no treatment.[3] CBT-related changes in helplessness and catastrophizing are uniquely predictive of later changes in pain intensity and pain-related interference in daily functioning.[22] CBT is also a valuable adjunct treatment in physical rehabilitation programs.[46] The benefits of CBT for pain have been noted in many chronic pain populations (see Table 2) but may not be as robust in some populations, including fibromyalgia.[47] Further, some have suggested that the effects of CBT are at best moderately sized and not maintained long-term.[30] The intractable nature of chronic pain may make adaptation difficult as attempts to control pain may prove ineffectual, ultimately contributing to greater psychological distress.[36] Recent efforts have thus expanded the cognitive-behavioral model of pain intervention to address these issues, which has yielded two newer treatment modalities: mindfulness-based stress reduction (MBSR) and acceptance and commitment therapy (ACT). Unlike CBT, these approaches focus on fostering acceptance of chronic pain rather than emphasizing strategies for controlling pain, thereby improving emotional well-being and greater engagement in nonpain-related pursuits. Though these interventions both target acceptance of pain, they differ in their therapeutic implementation and approach to meditation and daily practice.

 

Mindfulness-Based Stress Reduction

 

Mindfulness-based interventions approach seeks to uncouple the sensory aspects of pain from the evaluative and emotional aspects of pain,[48] and promote detached awareness of the somatic and psychological sensations within the body.[48] As the chronic pain signal often cannot be extinguished, this detachment may enhance individual responses to chronic pain.[48] Through mindful awareness and meditation, thoughts about pain can be viewed as discrete events rather than an indication of an underlying problem that necessitates immediate and possibly maladaptive responses.[49] An individual may then recognize these sensations or thoughts as something familiar, which may serve to ameliorate emotional or maladaptive behavioral responses to pain.

 

MBSR is a form of meditation developed in Eastern philosophy and later adapted to Western intervention that enhances awareness and acceptance of physical, cognitive, and emotional states and disconnects psychological reactions from the uncontrollable experience of pain flares.[44] MBSR interventions have traditionally been structured as 2-hour sessions occurring weekly over 10 weeks that develop awareness of the body and proprioceptive signals, awareness of the breath and physical sensations, and development of mindful activities (such as eating, walking, and standing).[48] MBSR promotes mindfulness through daily meditation, which is a requisite component of the treatment.[50] The mechanisms underlying effective MBSR intervention may be similar to desensitization to pain, as meditations involve motionless sitting practices that expose participants to painful sensations in the absence of catastrophic consequences.[48,50] In this way, MBSR interventions may function similarly to in vivo exposure for pain but serve the additional purpose of increasing tolerance for negative emotions, thereby fostering more adaptive responses to pain.[50] MBSR also reduces rumination[51] and interoception of distressing physical signals[52] and increases mindful awareness[51] and acceptance of pain.[53] MBSR necessitates cultivation of daily mindfulness practices,[48] yet compliance rates of MBSR have been found to compare favorably to behavioral pain management techniques.[54] However, evidence on the importance of daily practice is mixed; the amount of time devoted to these mindful activities correlates with symptom improvement in some studies,[55] yet compliance rates appear to correlate only modestly with improvement in others.[54] Unlike CBT, which identifies thoughts as distorted and in need of change, practitioners of mindfulness adopt a nonjudgmental approach to thoughts as �discrete events� that encourage emotional distance from thoughts.[44,50] Further, CBT is a goal-oriented treatment modality, targeting an increased relaxation response or an altered behavioral or thought response, whereas mindfulness does not prescribe specific goals, relying instead on nonjudgmental observation.[50] Further, mindfulness instructors are expected to engage in their own daily mindfulness practices, whereas CBT practitioners do not necessarily need daily practice in CBT to teach it effectively.[50]

 

MBSR has demonstrated efficacy in addressing the severity of medical symptoms and psychological symptoms,[48] pain intensity,[56] and coping with stress and pain;[54] these treatment gains may last up to 4 years after intervention in many domains.[54] MBSR has been effective in diverse pain samples,[48,54,56] and in individuals with irritable bowel syndrome,[52] neck pain,[57] migraine,[57] fibromyalgia,[58] and chronic musculoskeletal pain.[59] Additionally, MBSR addresses co-occurring symptoms of depression in individuals with some chronic pain conditions like fibromyalgia[60] and enhances the effects of multidisciplinary treatment on disability, anxiety, depression, and catastrophizing.[61] Meta-analytic studies of MBSR in chronic pain have shown small to moderate effects of MBSR on anxiety, depression, and psychological distress in patients with chronic illnesses including pain,[62] and these benefits tend to be robust across studies.[63] However, as with CBT, MBSR may be differentially effective across populations; a recent longitudinal study noted greater improvements in pain, health-related quality of life, and psychological well-being for back or neck pain than in fibromyalgia, chronic migraine, or headache.[57]

 

Acceptance and Commitment Therapy

 

ACT adopts a theoretical approach that thoughts do not need to be targeted or changed; instead, responses to thoughts may be altered so that their negative consequences are minimized.[31] ACT interventions improve well-being through nonjudgmental and purposeful acknowledgment of mental events (ie, thoughts and emotions), fostering acceptance of these events, and increasing the ability of the individual to remain present and aware of personally relevant psychological and environmental factors; in doing so, individuals are able to adjust their behavior in a way that is consistent with their goals or values, rather than focusing on immediate relief from thoughts and emotions.[31] In the treatment of pain, ACT fosters purposeful awareness and acceptance of pain, thereby minimizing the focus on reducing pain or thought content and instead directing efforts towards fulfilling behavioral functioning.[44] ACT shares conceptual similarity with MBSR due to shared goals of promoting mindfulness and acceptance of pain but, unlike MBSR, ACT does not utilize daily mindful meditation and instead focuses on identification of the values and goals of the individual, which serve to direct behavior.[64] ACT-based interventions have demonstrated benefits on various aspects of mental health in chronic pain populations, including mental health quality of life, self-efficacy, depression, and anxiety.[65] Some studies of ACT interventions for chronic pain have reported medium or larger effect sizes for improvements in pain-related anxiety and distress, disability, number of medical visits, current work status, and physical performance,[66,67] with smaller effects of this intervention noted on pain and depression.[64] However, meta-analytic studies of acceptance-based therapies for pain have revealed that ACT does not show incrementally greater efficacy in comparison to other established psychological treatments for chronic pain.[64]

 

Future Directions and Remaining Questions

 

The extant literature suggests that each of the previously reviewed psychological interventions has retained value for the treatment of chronic pain. At present, there is little evidence of the superiority of any treatment approach, with one exception: CBT has demonstrated incrementally greater benefit in many areas than the effects of behavioral therapy.[3] As previously noted, however, operant-behavioral principles have been adopted for newer treatment approaches like in vivo exposure for fear of pain, which has demonstrated good benefit in multidisciplinary treatment with some pain populations.[41] Recent reviews have concluded that MBSR and ACT are promising but yield generally comparable effects to CBT, despite their distinct intervention methods.[64] The ability to draw conclusions regarding treatment superiority is further limited by the smaller number of high-quality studies of ACT or MBSR compared to the more robust CBT literature.[64]

 

Some critical questions remain regarding the comparative effectiveness of these interventions. First, the effects of CBT are significant in the short term but are not consistently maintained across time, possibly due to decreased adherence.[3] It is conceivable that acceptance-based approaches, which are predicated less on mechanistic coping strategies and instead foster accepting attitudes towards pain, may show greater rates of long-term adherence and longer-term benefits than CBT, though future study of this question is needed. Further, some pain disorders (such as fibromyalgia) have shown comparatively poorer treatment response to CBT than other pain disorders in some studies, which highlights the possible benefit of alternative interventions in such populations. Indeed, ACT and MBSR have also shown efficacy in fibromyalgia populations, though there remains a need to identify predictors of differential treatment response.[65]

 

Safety and Tolerability of Psychological Therapies

 

Psychological therapies for pain are presumed to be at low risk for adverse effects to the recipient; as a result, there is a dearth of empirical evidence regarding the risks of psychological interventions.[68] Some have suggested that patients who enter psychological treatment face risks of incorrect psychological diagnosis, psychological dependence, undermining of a patient�s ability to make their own decisions, or manipulation by the therapist to achieve nontherapeutic goals.[69,70] However, these concerns are alleviated through proper clinical and ethical training of practitioners and are not typically considered salient risks of psychological therapies when they are properly administered.[70] Recently, there has been a call for additional research to address the possibility of adverse psychotherapeutic effects[71] as well as a more systematic method of monitoring and identifying adverse events related to psychotherapy.[68] Though the rates of adverse effects of psychotherapy are still largely unknown, it is encouraging that recent studies have begun to specifically report the incidence of adverse events directly.[72]

 

Factors Affecting the Outcomes of Psychological Intervention

 

Practitioners should be cautioned against the assumption of homogeneity among patients with pain disorders, as a variety of factors may predict treatment response.[69,71] Turk[73] proposed that individuals coping with comparable levels of pain show distinct patterns of response that could be clustered into recognizable subclasses: �dysfunctional� patients, who report high levels of pain-related interference and distress; �interpersonally distressed� patients, who report lacking the support of loved ones in coping with their pain; and �adaptive copers,� who report notably higher levels of function and perceived social support and lower levels of pain-related dysfunction. Turk proposed that these patient subgroups respond differently to psychological intervention, and subsequent findings have supported this idea: �dysfunctional� patients have demonstrated greater response to interdisciplinary treatment involving psychological care than �interpersonally distressed� patients.[74] Identification of patient subgroups may be accomplished using instruments like the Multidisciplinary Pain Inventory[75] and through detailed assessment of chronic pain intensity and disability.[76] Additionally, patients� readiness to adopt a self-management approach to their own chronic pain appears to have significant implications for treatment response;[77] patients who are in the precontemplation stage of treatment readiness may benefit more from insight-focused therapy, versus those in an action stage, who may benefit more from establishing relaxation-based and other active coping strategies.[77] Patient readiness to self-manage pain may be assessed using the Pain Stages of Change Questionnaire.[77] Additionally, treatment response may be subject to patient beliefs about the importance of intervention-specific behaviors and about one�s own ability to perform these actions.[78]

 

Additionally, there may be demographic, psychological, and medical differences among patients that are relevant to treatment response, including the etiology of pain conditions, socioeconomic status, and cultural and ethnic background; these factors require further empirical research in order to optimize clinical outcomes but have not yet received adequate attention in the clinical literature.[79] For example, baseline levels of physical functioning appear to predict response to certain psychological treatment modalities like in vivo exposure for fear of pain.[40] Further, baseline levels of pain, depression, and anxiety have been found to predict dropout rates in some samples,[80,81] though these effects are not apparent in all samples.[3] In addition to being an important mechanism of treatment, there is evidence that baseline levels of fear of pain may also predict differential treatment response; individuals more fearful of pain at the outset of a multidisciplinary pain treatment program showed greater responsiveness to in vivo exposure for this problem.[28] The presence of medical comorbidities that are likely to impact future functioning is also important to consider; recently, psychological interventions have been developed that address comorbid symptoms of sleep,[82] obesity,[29] and fatigue[83] that may accompany chronic pain. Hybrid treatments may be more important in independent clinical practice, where comorbidity is more common.[82] Notably, there is little evidence that personality variables factor significantly into treatment response; most of the connections between personality traits and variables relevant to psychological intervention for pain are theoretical and have not consistently emerged in empirical research.[84,85]

 

Patient age is also an important consideration in examining responses to interventions for pain. Older adults have increased risks of various ailments related to pain, including arthritis and osteoporosis, but may have poor tolerance to medications for these conditions.[86] Further, age may alter psychological reactions to pain; the emotional aspects of pain are more strongly correlated with pain catastrophizing in younger adults than older adults while sensory aspects of pain appear more strongly related to pain catastrophizing in older adults.[87] Additionally, treatment protocols may require accommodation for elderly populations; addressing an elderly patient�s fear of movement may be complicated by a fear of falling that is absent in younger populations.[88] As memory concerns are more common in older adulthood, treatment protocols may be improved if they minimize the demand for memorized tasks.[89] Unfortunately, research is lacking for specific psychological interventions in elderly populations.[86] In general, psychological interventions are presumed to be of low risk for older adults,[90] and CBT for pain has received comparatively greater empirical support for older adults.[88] Overall, the efficacy of psychological intervention for pain in older adults is an area that warrants additional study in the future.

 

Treatment availability is a key consideration for psychological intervention, especially for patients in poverty or living in remote geographical locations. Though it is beyond the scope of this paper to review ethnic and socioeconomic contributors to health, low socioeconomic status is a significant risk factor for the development of chronic pain and factors heavily into racial disparities in health outcomes.[91] As financial challenges may restrict access to traditional psychological interventions, the importance of alternative modalities for provision of mental health interventions for chronic pain is paramount. Teleinterventions[92] and Internet-based interventions[93] may be viable for psychological treatment of chronic pain; Internet-based programs delivering ACT,[94] CBT,[46] and mindfulness interventions[95] have demonstrated benefits in psychosocial functioning, mood, and pain coping. However, methodologically rigorous clinical trials and evidence for maximally effective and efficient implementation of these programs are needed, as many interventions have shown modest effects and comparatively high dropout rates.[96]

 

Combining psychological treatment modalities with one another and with other medical interventions may constitute the next logical step in enhancing treatment outcomes. Institution of a flexible, goal-oriented approach, akin to ACT, may enhance engagement and adherence in CBT.[97] Additionally, a combination of graded in vivo exposure and ACT may show incremental benefit in addressing pain-related fear and anxiety.[98] Effects of CBT may also be enhanced in conjunction with treatments like biofeedback[99] and hypnosis.[100] A word of caution: presentation of psychological treatment by nontraditional practitioners may show variable effectiveness unless treatment approaches are adjusted appropriately.[101] If trained properly, however, appropriately-designed cognitive-behavioral interventions can be effectively administered by physiotherapists,[102] physical therapists,[103] nurses, and occupational therapists.[104]

 

Conclusion

 

Psychotherapy constitutes a valuable modality for addressing the behavioral, cognitive, emotional, and social factors that both result from and contribute to pain-related dysfunction and distress through enhancement of self-management strategies. There are several distinct psychological interventions that differ in their theoretical approaches, therapeutic targets, and areas of efficacy, but CBT, ACT, MBSR, and operant behavioral approaches to pain may all play important roles for enhancing the self-management abilities of individuals with chronic pain. However, there remains a need to identify predictors of differential treatment response and salient patient subgroups to optimize treatment outcomes, as well as additional and alternative means to provision of psychological services for those who are unwilling or unable to engage in traditional psychotherapy. More empirical research into contributing factors of differential treatment response and the dissemination of psychological treatment for pain may result in significant savings to the physical, emotional, and financial costs of chronic pain.

 

Footnotes

 

Disclosure:�The author reports no conflicts of interest in this work.

 

In conclusion, psychological therapies, such as cognitive-behavioral therapy, mindfulness-based stress reduction and even chiropractic care, have been demonstrated to effective help treat chronic pain, according to research studies. The connection between the mind and body has previously been referenced as a cause for a variety of health issues, including chronic pain. Finally, the article above demonstrated the effects of psychological therapy for chronic pain management. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC: Managing Workplace Stress

 

 

MORE IMPORTANT TOPICS: EXTRA EXTRA: Car Accident Injury Treatment El Paso, TX Chiropractor

 

Blank
References
1.�Craig AD. A new view of pain as a homeostatic emotion.�Trends Neurosci.�2003;26(6):303�307.[PubMed]
2.�Gatchel RJ. Comorbidity of chronic pain and mental health disorders: the biopsychosocial perspective.�Am Psychol.�2004;59(8):795�805.�[PubMed]
3.�Williams AC, Eccleston C, Morley S. Psychological therapies for the management of chronic pain (excluding headache) in adults.�Cochrane Database Syst Rev.�2012;11:CD007407.�[PubMed]
4.�Turk DC, Audette J, Levy RM, Mackey SC, Stanos S. Assessment and treatment of psychosocial comorbidities in patients with neuropathic pain.�Mayo Clin Proc.�2010;85(Suppl 3):S42�S50.[PMC free article][PubMed]
5.�Thibault P, Loisel P, Durand MJ, Catchlove R, Sullivan MJ. Psychological predictors of pain expression and activity intolerance in chronic pain patients.�Pain.�2008;139(1):47�54.�[PubMed]
6.�Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity: a literature review.�Arch Intern Med.�2003;163(20):2433�2445.�[PubMed]
7.�McWilliams LA, Cox BJ, Enns MW. Mood and anxiety disorders associated with chronic pain: an examination in a nationally representative sample.�Pain.�2003;106(1�2):127�133.�[PubMed]
8.�Young Casey C, Greenberg MA, Nicassio PM, Harpin RE, Hubbard D. Transition from acute to chronic pain and disability: a model including cognitive, affective, and trauma factors.�Pain.�2008;134(1�2):69�79.[PubMed]
9.�Geenen R, Newman S, Bossema ER, Vriezekolk JE, Boelen PA. Psychological interventions for patients with rheumatic diseases and anxiety or depression.�Best Pract Res Clin Rheumatol.�2012;26(3):305�319.[PubMed]
10.�Winkelmann A, Perrot S, Schaefer C, et al. Impact of fibromyalgia severity on health economic costs: results from a European cross- sectional study.�Appl Health Econ Health Policy.�2011;9(2):125�136.[PubMed]
11.�Wright LJ, Schur E, Noonan C, Ahumada S, Buchwald D, Afari N. Chronic pain, overweight, and obesity: findings from a community-based twin registry.�J Pain.�2010;11(7):628�635.�[PMC free article][PubMed]
12.�Smith MT, Haythornthwaite JA. How do sleep disturbance and chronic pain inter-relate? Insights from the longitudinal and cognitive- behavioral clinical trials literature.�Sleep Med Rev.�2004;8(2):119�132.[PubMed]
13.�Kato K, Sullivan PF, Eveng�rd B, Pedersen NL. Chronic widespread pain and its comorbidities: a population-based study.�Arch Intern Med.�2006;166(15):1649�1654.�[PubMed]
14.�Richardson LP, Russo JE, Katon W, et al. Mental health disorders and long-term opioid use among adolescents and young adults with chronic pain.�J Adolesc Health.�2012;50(6):553�558.�[PMC free article][PubMed]
15.�Sullivan MJ, Thorn B, Haythornthwaite JA, et al. Theoretical perspectives on the relation between catastrophizing and pain.�Clin J Pain.�2001;17(1):52�64.�[PubMed]
16.�Sullivan MJL, Bishop SR, Pivik J. The pain catastrophizing scale: development and validation.�Psychol Assess.�1995;7(4):524�532.
17.�Keefe FJ, Brown GK, Wallston KA, Caldwell DS. Coping with rheumatoid arthritis pain: catastrophizing as a maladaptive strategy.�Pain.�1989;37(1):51�56.�[PubMed]
18.�Wollaars MM, Post MW, van Asbeck FW, Brand N. Spinal cord injury pain: the influence of psychologic factors and impact on quality of life.�Clin J Pain.�2007;23(5):383�391.�[PubMed]
19.�Crisson JE, Keefe FJ. The relationship of locus of control to pain coping strategies and psychological distress in chronic pain patients.�Pain.�1988;35(2):147�154.�[PubMed]
20.�Hamilton NA, Karoly P, Zautra AJ. Health goal cognition and adjustment in women with fibromyalgia.�J Behav Med.�2005;28(5):455�466.�[PubMed]
21.�Mankovsky T, Lynch M, Clark A, Sawynok J, Sullivan MJ. Pain catastrophizing predicts poor response to topical analgesics in patients with neuropathic pain.�Pain Res Manag.�2012;17(1):10�14.[PMC free article][PubMed]
22.�Burns JW, Glenn B, Bruehl S, Harden RN, Lofland K. Cognitive factors influence outcome following multidisciplinary chronic pain treatment: a replication and extension of a cross-lagged panel analysis.�Behav Res Ther.�2003;41(10):1163�1182.�[PubMed]
23.�Sullivan MJL, Adams H, Ellis T. Targeting catastrophic thinking to promote return to work in individuals with fibromyalgia.�J Cogn Psychother.�2012;26(2):130�142.
24.�Leeuw M, Goossens ME, Linton SJ, Crombez G, Boersma K, Vlaeyen JW. The fear-avoidance model of musculoskeletal pain: current state of scientific evidence.�J Behav Med.�2007;30(1):77�94.�[PubMed]
25.�Demmelmaier I, Asenl�f P, Lindberg P, Denison E. Biopsychosocial predictors of pain, disability, health care consumption, and sick leave in first-episode and long-term back pain: a longitudinal study in the general population.�Int J Behav Med.�2010;17(2):79�89.�[PubMed]
26.�Zale EL, Lange KL, Fields SA, Ditre JW. The relation between pain-related fear and disability: a meta-analysis.�J Pain.�2013;14(10):1019�1030.�[PMC free article][PubMed]
27.�Samwel HJ, Evers AW, Crul BJ, Kraaimaat FW. The role of helplessness, fear of pain, and passive pain-coping in chronic pain patients.�Clin J Pain.�2006;22(3):245�251.�[PubMed]
28.�Werneke MW, Hart DL, George SZ, Stratford PW, Matheson JW, Reyes A. Clinical outcomes for patients classified by fear-avoidance beliefs and centralization phenomenon.�Arch Phys Med Rehabil.�2009;90(5):768�777.�[PubMed]
29.�Somers TJ, Keefe FJ, Pells JJ, et al. Pain catastrophizing and pain-related fear in osteoarthritis patients: relationships to pain and disability.�J Pain Symptom Manage.�2009;37(5):863�872.�[PMC free article][PubMed]
30.�Pincus T, McCracken LM. Psychological factors and treatment opportunities in low back pain.�Best Pract Res Clin Rheumatol.�2013;27(5):625�635.�[PubMed]
31.�Hayes SC, Luoma JB, Bond FW, Masuda A, Lillis J. Acceptance and commitment therapy: model, processes and outcomes.�Behav Res Ther.�2006;44(1):1�25.�[PubMed]
32.�Eccleston C, Crombez G, Aldrich S, Stannard C. Worry and chronic pain patients: a description and analysis of individual differences.�Eur J Pain.�2001;5(3):309�318.�[PubMed]
33.�McCracken LM. Learning to live with the pain: acceptance of pain predicts adjustment in persons with chronic pain.�Pain.�1998;74(1):21�27.�[PubMed]
34.�Kranz D, Bollinger A, Nilges P. Chronic pain acceptance and affective well-being: a coping perspective.�Eur J Pain.�2010;14(10):1021�1025.�[PubMed]
35.�Vowles KE, McCracken LM, Eccleston C. Patient functioning and catastrophizing in chronic pain: the mediating effects of acceptance.�Health Psychol.�2008;27(Suppl 2):S136�S143.�[PubMed]
36.�McCracken LM, Eccleston C. A prospective study of acceptance of pain and patient functioning with chronic pain.�Pain.�2005;118(1�2):164�169.�[PubMed]
37.�Vowles KE, McCracken LM, Eccleston C. Processes of change in treatment for chronic pain: the contributions of pain, acceptance, and catastrophizing.�Eur J Pain.�2007;11(7):779�787.�[PubMed]
38.�Kratz AL, Davis MC, Zautra AJ. Pain acceptance moderates the relation between pain and negative affect in female osteoarthritis and fibromyalgia patients.�Ann Behav Med.�2007;33(3):291�301.[PMC free article][PubMed]
39.�Fordyce WE.�Behavioral Methods for Chronic Pain and Illness.�St Louis, MO: Mosby; 1976. p. 1.
40.�Gatzounis R, Schrooten MG, Crombez G, Vlaeyen JW. Operant learning theory in pain and chronic pain rehabilitation.�Curr Pain Headache Rep.�2012;16(2):117�126.�[PubMed]
41.�Leeuw M, Goossens ME, van Breukelen GJ, et al. Exposure in vivo versus operant graded activity in chronic low back pain patients: results of a randomized controlled trial.�Pain.�2008;138(1):192�207.[PubMed]
42.�den Hollander M, de Jong JR, Volders S, Goossens ME, Smeets RJ, Vlaeyen JW. Fear reduction in patients with chronic pain: a learning theory perspective.�Expert Rev Neurother.�2010;10(11):1733�1745.[PubMed]
43.�Woods MP, Asmundson GJ. Evaluating the efficacy of graded in vivo exposure for the treatment of fear in patients with chronic back pain: a randomized controlled clinical trial.�Pain.�2008;136(3):271�280.[PubMed]
44.�Day MA, Thorn BE, Burns JW. The continuing evolution of biopsychosocial interventions for chronic pain.�J Cogn Psychother.�2012;26(2):114�129.
45.�Hofmann SG, Asnaani A, Vonk IJ, Sawyer AT, Fang A. The efficacy of cognitive behavioral therapy: a review of meta-analyses.�Cognit Ther Res.�2012;36(5):427�440.�[PMC free article][PubMed]
46.�Buhrman M, Fredriksson A, Edstr�m G, et al. Guided Internet-delivered cognitive behavioural therapy for chronic pain patients who have residual symptoms after rehabilitation treatment: randomized controlled trial.�Eur J Pain.�2013;17(5):753�765.�[PubMed]
47.�Bennett R, Nelson D. Cognitive behavioral therapy for fibromyalgia.�Nat Clin Pract Rheumatol.�2006;2(8):416�424.�[PubMed]
48.�Kabat-Zinn J. An outpatient program in behavioral medicine for chronic pain patients based on the practice of mindfulness meditation: theoretical considerations and preliminary results.�Gen Hosp Psychiatry.�1982;4(1):33�47.�[PubMed]
49.�Lauwerier E, Van Damme S, Goubert L, Paemeleire K, Devulder J, Crombez G. To control or not? A motivational perspective on coping with pain.�Acta Neurol Belg.�2012;112(1):3�7.�[PubMed]
50.�Baer RA. Mindfulness training as a clinical intervention: a conceptual and empirical review.�Clin Psychol: Sci Pract.�2003;10(2):125�143.
51.�Campbell TS, Labelle LE, Bacon SL, Faris P, Carlson LE. Impact of Mindfulness-Based Stress Reduction (MBSR) on attention, rumination and resting blood pressure in women with cancer: a waitlist-controlled study.�J Behav Med.�2012;35(3):262�271.�[PubMed]
52.�Garland EL, Gaylord SA, Palsson O, Faurot K, Douglas Mann J, Whitehead WE. Therapeutic mechanisms of a mindfulness-based treatment for IBS: effects on visceral sensitivity, catastrophizing, and affective processing of pain sensations.�J Behav Med.�2012;35(6):591�602.�[PMC free article][PubMed]
53.�Kabat-Zinn J.�Full Catastrophe Living: The Program of the Stress Reduction Clinic at the University of Massachusetts Medical Center.�New York, NY: Delta; 1990.
54.�Kabat-Zinn J, Lipworth L, Burney R, Sellers W. Four-year follow-up of a meditation-based program for the self-regulation of chronic pain: treatment outcomes and compliance.�Clin J Pain.�1986;2(3):159�173.
55.�Carmody J, Baer RA. Relationships between mindfulness practice and levels of mindfulness, medical and psychological symptoms and well-being in a mindfulness-based stress reduction program.�J Behav Med.�2008;31(1):23�33.�[PubMed]
56.�Randolph P, Caldera YM, Tacone AM, Greak BL. The long-term combined effects of medical treatment and a mindfulness-based behavioral program for the multidisciplinary management of chronic pain in West Texas.�Pain Digest.�1999;9:103�112.
57.�Rosenzweig S, Greeson JM, Reibel DK, Green JS, Jasser SA, Beasley D. Mindfulness-based stress reduction for chronic pain conditions: variation in treatment outcomes and role of home meditation practice.�J Psychosom Res.�2010;68(1):29�36.�[PubMed]
58.�Grossman P, Tiefenthaler-Gilmer U, Raysz A, Kesper U. Mindfulness training as an intervention for fibromyalgia: evidence of postintervention and 3-year follow-up benefits in well-being.�Psychother Psychosom.�2007;76(4):226�233.�[PubMed]
59.�Plews-Ogan M, Owens JE, Goodman M, Wolfe P, Schorling J. A pilot study evaluating mindfulness-based stress reduction and massage for the management of chronic pain.�J Gen Intern Med.�2005;20(12):1136�1138.�[PMC free article][PubMed]
60.�Sephton SE, Salmon P, Weissbecker I, et al. Mindfulness meditation alleviates depressive symptoms in women with fibromyalgia: results of a randomized clinical trial.�Arthritis Rheum.�2007;57(1):77�85.[PubMed]
61.�Cassidy EL, Atherton RJ, Robertson N, Walsh DA, Gillett R. Mindfulness, functioning and catastrophizing after multidisciplinary pain management for chronic low back pain.�Pain.�2012;153(3):644�650.�[PubMed]
62.�Bohlmeijer E, Prenger R, Taal E, Cuijpers P. The effects of mindfulness-based stress reduction therapy on mental health of adults with a chronic medical disease: a meta-analysis.�J Psychosom Res.�2010;68(6):539�544.�[PubMed]
63.�Merkes M. Mindfulness-based stress reduction for people with chronic diseases.�Aust J Prim Health.�2010;16(3):200�210.�[PubMed]
64.�Veehof MM, Oskam MJ, Schreurs KM, Bohlmeijer ET. Acceptance-based interventions for the treatment of chronic pain: a systematic review and meta-analysis.�Pain.�2011;152(3):533�542.�[PubMed]
65.�Wicksell RK, Kemani M, Jensen K, et al. Acceptance and commitment therapy for fibromyalgia: a randomized controlled trial.�Eur J Pain.�2013;17(4):599�611.�[PubMed]
66.�McCracken LM, MacKichan F, Eccleston C. Contextual cognitive-behavioral therapy for severely disabled chronic pain sufferers: effectiveness and clinically significant change.�Eur J Pain.�2007;11(3):314�322.�[PubMed]
67.�Vowles KE, McCracken LM. Acceptance and values-based action in chronic pain: a study of treatment effectiveness and process.�J Consult Clin Psychol.�2008;76(3):397�407.�[PubMed]
68.�Dimidjian S, Hollon SD. How would we know if psychotherapy were harmful?�Am Psychol.�2010;65(1):21�33.�[PubMed]
69.�Berk M, Parker G. The elephant on the couch: side-effects of psychotherapy.�Aust N Z J Psychiatry.�2009;43(9):787�794.�[PubMed]
70.�Green B. Adverse effects of psychotherapy.�Advances in Psychiatric Treatment.�2011;17(6):476.
71.�Barlow DH. Negative effects from psychological treatments: a perspective.�Am Psychol.�2010;65(1):13�20.�[PubMed]
72.�Shadick NA, Sowell NF, Frits ML, et al. A randomized controlled trial of an internal family systems-based psychotherapeutic intervention on outcomes in rheumatoid arthritis: a proof-of-concept study.�J Rheumatol.�2013;40(11):1831�1841.�[PubMed]
73.�Turk DC. The potential of treatment matching for subgroups of patients with chronic pain: lumping versus splitting.�Clin J Pain.�2005;21(1):44�55.�discussion 69�72.�[PubMed]
74.�Turk DC, Okifuji A, Sinclair JD, Starz TW. Differential responses by psychosocial subgroups of fibromyalgia syndrome patients to an interdisciplinary treatment.�Arthritis Care Res.�1998;11(5):397�404.[PubMed]
75.�Kerns RD, Turk DC, Rudy TE. The West Haven-Yale multidimensional pain inventory (WHYMPI)�Pain.�1985;23(4):345�356.�[PubMed]
76.�Von Korff M, Ormel J, Keefe FJ, Dworkin SF. Grading the severity of chronic pain.�Pain.�1992;50(2):133�149.�[PubMed]
77.�Kerns RD, Rosenberg R, Jamison RN, Caudill MA, Haythornthwaite J. Readiness to adopt a self-management approach to chronic pain: the Pain Stages of Change Questionnaire (PSOCQ)�Pain.�1997;72(1�2):227�234.�[PubMed]
78.�Kratz AL, Molton IR, Jensen MP, Ehde DM, Nielson WR. Further evaluation of the Motivational Model of Pain Self-Management: coping with chronic pain in multiple sclerosis.�Ann Behav Med.�2011;41(3):391�400.�[PMC free article][PubMed]
79.�Reese C, Mittag O. Psychological interventions in the rehabilitation of patients with chronic low back pain: evidence and recommendations from systematic reviews and guidelines.�Int J Rehabil Res.�2013;36(1):6�12.�[PubMed]
80.�Kraaimaat F, Brons MR, Geenen R, Bijlsma JW. The effect of cognitive behavior therapy in patients with rheumatoid arthritis.�Behav Res Ther.�1995;33(5):487�495.�[PubMed]
81.�Wetherell JL, Afari N, Rutledge T, et al. A randomized, controlled trial of acceptance and commitment therapy and cognitive-behavioral therapy for chronic pain.�Pain.�2011;152(9):2098�2107.�[PubMed]
82.�Tang NK, Goodchild CE, Salkovskis PM. Hybrid cognitive-behaviour therapy for individuals with insomnia and chronic pain: a pilot randomised controlled trial.�Behav Res Ther.�2012;50(12):814�821.[PubMed]
83.�Knoop H, Stulemeijer M, Prins JB, van der Meer JW, Bleijenberg G. Is cognitive behaviour therapy for chronic fatigue syndrome also effective for pain symptoms?�Behav Res Ther.�2007;45(9):2034�2043.[PubMed]
84.�Bishop SR. What do we really know about mindfulness-based stress reduction?�Psychosom Med.�2002;64(1):71�83.�[PubMed]
85.�Turner JA, Holtzman S, Mancl L. Mediators, moderators, and predictors of therapeutic change in cognitive-behavioral therapy for chronic pain.�Pain.�2007;127(3):276�286.�[PubMed]
86.�Park J, Hughes AK. Nonpharmacological approaches to the management of chronic pain in community-dwelling older adults: a review of empirical evidence.�J Am Geriatr Soc.�2012;60(3):555�568.[PubMed]
87.�Kraaij V, Pruymboom E, Garnefski N. Cognitive coping and depressive symptoms in the elderly: a longitudinal study.�Aging Ment Health.�2002;6(3):275�281.�[PubMed]
88.�Keefe FJ, Porter L, Somers T, Shelby R, Wren AV. Psychosocial interventions for managing pain in older adults: outcomes and clinical implications.�Br J Anaesth.�2013;111(1):89�94.�[PMC free article][PubMed]
89.�Nicholson NL, Blanchard EB. A controlled evaluation of behavioral treatment of chronic headache in the elderly.�Behav Ther.�1993;24(3):395�408.
90.�Morone NE, Greco CM. Mind-body interventions for chronic pain in older adults: a structured review.�Pain Med.�2007;8(4):359�375.�[PubMed]
91.�Fuentes M, Hart-Johnson T, Green CR. The association among neighborhood socioeconomic status, race and chronic pain in black and white older adults.�J Natl Med Assoc.�2007;99(10):1160�1169.[PMC free article][PubMed]
92.�Naylor MR, Naud S, Keefe FJ, Helzer JE. Therapeutic Interactive Voice Response (TIVR) to reduce analgesic medication use for chronic pain management.�J Pain.�2010;11(12):1410�1419.�[PMC free article][PubMed]
93.�Hoch DB, Watson AJ, Linton DA, et al. The feasibility and impact of delivering a mind-body intervention in a virtual world.�PLoS One.�2012;7(3):e33843.�[PMC free article][PubMed]
94.�Buhrman M, Skoglund A, Husell J, et al. Guided internet-delivered acceptance and commitment therapy for chronic pain patients: a randomized controlled trial.�Behav Res Ther.�2013;51(6):307�315.[PubMed]
95.�Davis MC, Zautra AJ. An online mindfulness intervention targeting socioemotional regulation in fibromyalgia: results of a randomized controlled trial.�Ann Behav Med.�2013;46(3):273�284.�[PubMed]
96.�Macea DD, Gajos K, Daglia Calil YA, Fregni F. The efficacy of Web-based cognitive behavioral interventions for chronic pain: a systematic review and meta-analysis.�J Pain.�2010;11(10):917�929.[PubMed]
97.�Schrooten MG, Vlaeyen JW, Morley S. Psychological interventions for chronic pain: reviewed within the context of goal pursuit.�Pain Management.�2012;2(2):141�150.�[PubMed]
98.�Bailey KM, Carleton RN, Vlaeyen JW, Asmundson GJ. Treatments addressing pain-related fear and anxiety in patients with chronic musculoskeletal pain: a preliminary review.�Cogn Behav Ther.�2010;39(1):46�63.�[PubMed]
99.�Glombiewski JA, Sawyer AT, Gutermann J, Koenig K, Rief W, Hofmann SG. Psychological treatments for fibromyalgia: a meta-analysis.�Pain.�2010;151(2):280�295.�[PubMed]
100.�Castel A, Casc�n R, Padrol A, Sala J, Rull M. Multicomponent cognitive-behavioral group therapy with hypnosis for the treatment of fibromyalgia: long-term outcome.�J Pain.�2012;13(3):255�265.[PubMed]
101.�Gross AR, Kaplan F, Huang S, et al. Psychological care, patient education, orthotics, ergonomics and prevention strategies for neck pain: a systematic overview update as part of the ICON Project.�Open Orthop J.�2013;7:530�561.�[PMC free article][PubMed]
102.�Hunt MA, Keefe FJ, Bryant C, et al. A physiotherapist-delivered, combined exercise and pain coping skills training intervention for individuals with knee osteoarthritis: a pilot study.�Knee.�2013;20(2):106�112.�[PubMed]
103.�Bruflat AK, Balter JE, McGuire D, Fethke NB, Maluf KS. Stress management as an adjunct to physical therapy for chronic neck pain.�Phys Ther.�2012;92(10):1348�1359.�[PMC free article][PubMed]
104.�Lamb SE, Mistry D, Lall R, et al. Back Skills Training Trial Group Group cognitive behavioural interventions for low back pain in primary care: extended follow-up of the Back Skills Training Trial (ISRCTN54717854)�Pain.�2012;153(2):494�501.�[PubMed]
Close Accordion