ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page

Lower Back Pain

Back Clinic Lower Back Pain Chiropractic Team. More than 80% of the population suffers from back pain at some point in their lives. Most cases can be linked to the most common causes: muscle strain, injury, or overuse. But it can also be attributed to a specific condition of the spine: Herniated Disc, Degenerative Disc Disease, Spondylolisthesis, Spinal Stenosis, and Osteoarthritis. Less common conditions are sacroiliac joint dysfunction, spinal tumors, fibromyalgia, and piriformis syndrome.

Pain is caused by damage or injury to the muscles and ligaments of the back. Dr. Alex Jimenez compiled articles outline the importance of understanding the causes and effects of this uncomfortable symptom. Chiropractic focuses on restoring a person’s strength and flexibility to help improve symptoms of lower back pain.


Maignes Syndrome: 4 Ways Chiropractic Treatment Can Help In El Paso, TX.

Maignes Syndrome: 4 Ways Chiropractic Treatment Can Help In El Paso, TX.

Back pain is a daily issue for millions of Americans, with a variety of medial issues being the culprit. The results of lower back pain on the economy as a whole are far reaching, from tons of lost work time to enormous medical costs. Maignes Syndrome is estimated to be the cause of a great deal of the instances of lower back pain.

Never heard of it? Lucky you because those who are diagnosed with Maignes Syndrome suffer pain that sometimes lasts for weeks or even months, and can become quite severe. Discomfort is increased sometimes when the patient twists his torso, or lifts a heavy object.

What Is Maignes Syndrome?

Also called Thoracolumbar Junction Syndrome, Maignes Syndrome is a spinal disorder that is located in the nerves in the upper lumbar region of the back, causing pain to radiate along the nerves from the site. This spinal condition creates difficult to diagnose symptoms, since it often results in pain in a different part of the body than the actual source. It is believed this “condition exists because of the facet joint issues at the junction between the middle spine and lower spine.”. The pain from Maignes Syndrome usually shows up in the hip, lower back, or groin.

If you are experiencing lower back pain, you may suffer from Maignes Syndrome. Schedule a chiropractic visit as soon as possible, because a chiropractor benefits Maignes Syndrome sufferers in four important ways.

Chiropractors Can�

�Help Correctly Diagnose It

Unfortunately, the nature of the pain and location of the condition frequently cause Maignes Syndrome to be misdiagnosed. Sacroiliac joint pain is sometimes the diagnosis they receive, which hinders proper treatment. For this reason, the patient needs to make certain they are working with an experienced chiropractor who understands the subtle differences of the two conditions.

�Adjust The Area Where The Issue Originates

In order to minimize the symptoms of the condition, a chiropractor can administer adjustments on and around the area causing the issue, the thoracolumbar facet joints. Aligning this area correctly, and loosening the area that may have become tight from overcompensation, assists in relieving pain from Maignes Syndrome.

�Offer At Home Exercises To Help With Healing

Fortunately, there are exercises that can aid Maignes Syndrome, both in loosening the tightness of the afflicted area, and building up the surrounding muscle strength so the body can compensate for the issue. A chiropractor who understands this spinal condition can walk you through a step-by-step exercise regimen of the types of exercises that will help your body adapt to and heal from Maignes Syndrome.

�Promote Your Body’s Ability To Heal Itself

Chiropractic care is a broad-based approach to the body’s inner function and balance. Experienced chiropractors understand that all parts fit together for overall health. A patient with Maignes Syndrome benefits from chiropractic care because of this.

Your chiropractor will make a series of adjustments that help the nervous system work at optimum capacity, which promotes healing to the entire body. Attacking Maignes Syndrome directly at the site and through the body as a whole promotes faster healing and increased mobility.

Individuals with Maignes Syndrome unfortunately face an uphill battle that begins with being correctly diagnosed. The complexity of the spinal condition is the primary reason to seek a professional chiropractor’s opinion at the first sign of ongoing lower back pain. Once Maignes Syndrome is correctly pinpointed, the chiropractor will be able to design an in-house and at-home blend of treatment options to minimize your healing time and achieve a pain-free, fully functioning back.

Chiropractic Treatment Helps�Avoid Back Surgery

McKenzie Therapy for Acute Non-Specific Low Back Pain

McKenzie Therapy for Acute Non-Specific Low Back Pain

Have you ever experienced low back pain? If you haven’t already, there’s a high probability you will present at least one case of back pain sometime during your lifetime. Back pain is one of the most prevalent spine health issues reported among the population of the United States, affecting up to 80 percent of Americans at some point in their lives. Back pain is not a specific disease, rather it is a symptom which may develop as a result of a variety of injuries and/or conditions.�Although most cases typically resolve on their own, the effective treatment of acute low back pain is essential towards preventing chronic low back pain.

 

Chiropractors and physical therapists frequently utilize a similar series of treatment methods, such as spinal adjustments and manual manipulations as well as massage and physical therapy, to help treat symptoms of back and low back pain. Many healthcare professionals, however, have started using the McKenzie method to manage acute back pain. The purpose of the following article is to educate patients on the effectiveness of the McKenzie method for acute non-specific low back pain.

 

The McKenzie Method for the Management of Acute Non-Specific Low Back Pain: Design of a Randomised Controlled Trial

 

Abstract

 

Background

 

Low back pain (LBP) is a major health problem. Effective treatment of acute LBP is important because it prevents patients from developing chronic LBP, the stage of LBP that requires costly and more complex treatment.

 

Physiotherapists commonly use a system of diagnosis and exercise prescription called the McKenzie Method to manage patients with LBP. However, there is insufficient evidence to support the use of the McKenzie Method for these patients. We have designed a randomised controlled trial to evaluate whether the addition of the McKenzie Method to general practitioner care results in better outcomes than general practitioner care alone for patients with acute LBP.

 

Methods/Design

 

This paper describes the protocol for a trial examining the effects of the McKenzie Method in the treatment of acute non-specific LBP. One hundred and forty eight participants who present to general medical practitioners with a new episode of acute non-specific LBP will be randomised to receive general practitioner care or general practitioner care plus a program of care based on the McKenzie Method. The primary outcomes are average pain during week 1, pain at week 1 and 3 and global perceived effect at week 3.

 

Discussion

 

This trial will provide the first rigorous test of the effectiveness of the McKenzie Method for acute non-specific LBP.

 

Background

 

In Australia, low back pain (LBP) is the most frequently seen musculoskeletal condition in general practice and the seventh most frequent reason for consulting a physician[1,2]. According to the Australian National Health Survey, 21% of Australians reported back pain in 2001; additionally, the Australian Bureau of Statistic’s 1998 Survey of Disability, Ageing and Carers estimated that over one million Australians suffer from some form of disability associated with back problems[1].

 

LBP poses an enormous economic burden to society in countries such as the USA, UK and The Netherlands[3]. In the largest state in Australia, New South Wales, back injuries account for 30% of the cost of workplace injuries, with a gross incurred cost of $229 million in 2002/03[4]. It is expected that most people with an acute episode of LBP will improve rapidly, but a proportion of patients will develop persistent lower levels of pain and disability[5,6]. Those patients with chronic complaints are responsible for most of the costs[6]. Effective treatment of acute LBP is important because it prevents patients from developing chronic LBP, the stage of LBP that requires costly and more complex treatment.

 

There is a growing concern about effectiveness of treatments for LBP, as reflected in the large number of systematic reviews published in the last 5 years addressing this issue. [7-12]. Despite the large amount of evidence regarding LBP management, a definitive conclusion on which is the most appropriate intervention is not yet available. A comparison of 11 international clinical practice guidelines for the management of LBP showed that the provision of advice and information, together with analgesics and NSAIDs, is the approach consistently recommended for patients with an acute episode[13]. Most guidelines do not recommend specific exercises for acute LBP because trials to date have concluded that it is not more effective than other active treatments, or than inactive or placebo treatments[8]. However, some authors have suggested that the negative results observed in trials of exercises are a consequence of applying the same exercise therapy to heterogeneous groups of patients. [14-16]. This hypothesis has some support from a recent high-quality randomised trial in which treatment based on a diagnostic classification system led to larger reductions in disability and promoted faster return to work in patients with acute LBP than the therapy recommended by the clinical guidelines[17].

 

In 1981, McKenzie proposed a classification system and a classification-based treatment for LBP labelled Mechanical Diagnosis and Treatment (MDT), or simply McKenzie Method[18]. Of the large number of classification schemes developed in the last 20 years [19-26], the McKenzie Method has the greatest empirical support (e.g. validity, reliability and generalisability) among the systems based on clinical features[27] and therefore seems to be the most promising classification system for implementation in clinical practice.

 

Physiotherapists commonly adopt the McKenzie Method for treating patients with LBP[28,29]. A survey of 293 physiotherapists in 1994 found that 85% of them perceived the McKenzie Method as moderately to very effective[28]. Nevertheless, a recent systematic review concluded that there is insufficient evidence to evaluate the effectiveness of the McKenzie Method for patients with LBP [30]. A critical concern is that most trials to date have not implemented the McKenzie Method appropriately. The most common flaw is that all trial participants are given the same intervention regardless of classification, an approach contradictory to the principles of McKenzie therapy.

 

 

The primary aim of this trial is to evaluate whether the addition of the McKenzie Method to general practitioner (GP) care results in better outcomes than GP care alone for patients with acute non-specific LBP when effect is measured in terms pain, disability, global perceived effect, and persistent symptoms.

 

Methods

 

The University of Sydney Human Research Ethics Committee granted approval for this study.

 

Study Sample

 

One hundred and forty eight participants with a new episode of acute non-specific LBP who present to GPs will be recruited for the study. A new episode of LBP will be defined as an episode of pain lasting longer than 24 hours, preceded by a period of at least one month without LBP and in which the patient did not consult a health care practitioner[31]. Participants will be screened for eligibility at their first appointment with the GP according to the inclusion and exclusion criteria.

 

Inclusion Criteria

 

To be eligible for inclusion, participants must have pain extending in an area between the twelfth rib and buttock crease (this may or may not be accompanied by leg pain); pain of at least 24 hours duration; pain of less than 6 weeks duration; and they need to be eligible for referral to private physiotherapy practice within 48 hours.

 

Exclusion Criteria

 

Participants will be excluded if they have one of the following conditions: nerve root compromise (defined as 2 positive tests out of sensation, power and reflexes for the same spinal nerve root); known or suspected serious spinal pathology; spinal surgery within the preceding 6 months; pregnancy; severe cardiovascular or metabolic disease; or inability to read and understand English.

 

Recruiting GPs will record the number of patients who are invited to participate, the number who decline to participate, and the number of screened patients who are ineligible and their reasons for declining participation or ineligibility. Written consent will be obtained for each participant.

 

Subjects who volunteer to participate and satisfy the eligibility criteria will receive baseline treatment and then be randomly allocated to one of the study groups. To ensure equal-sized treatment groups, random permuted blocks of 4�8 participants will be used[32]. Randomisation will be stratified by Workcover compensation status. The stratified random allocation schedule will be generated by a person not otherwise involved in recruitment, assessment or treatment of subjects and the randomisation sequence will be placed in sequentially numbered, sealed envelopes. The flow of participants through the study is detailed in Figure ?1.

 

Figure 1 Flow of Participants Through the Study

Figure 1: Flow of participants through the study. Legend: GP � General practitioner; NRS � Numeric pain rating scale; PSFS � Patient-specific functional scale; RMQ � Roland-Morris questionnaire; GPE � Global perceived effect; LBP � Low back pain.

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

In the management of low back pain, the attitudes, beliefs and treatment preferences of chiropractors, as well as that of physical therapists, can determine the most effective outcome measures in the care of patients with different types of spinal health issues. According to the following evidence-based research studies, the McKenzie method has been deemed to be one of the most useful treatment approaches for managing symptoms in patients with back and low back pain. Exercise and physical activity is also one of the most common treatment preferences for improving an individual’s strength, mobility and flexibility. Every healthcare professional varies in respect to their specific treatment preferences. These variations emphasize the need to identify the most effective treatment approach to guarantee proper treatment of LBP.

 

Outcome Measures

 

The McKenzie protocol is thought to promote rapid symptom improvement in patients with LBP[33,34] and this is one of the reasons that therapists choose this therapy. Therefore it is important to focus assessment on short-term outcomes. The primary outcomes will be:

 

  1. Usual pain intensity over last 24 hours recorded each morning in a pain diary over the first week. Pain will be measured on a 0�10 numerical rating scale (NRS). The unit of analysis will be the mean of the 7 measures[35];
  2. Usual pain intensity over last 24 hours (0�10 NRS) recorded at 1 and 3 weeks[35];
  3. Global perceived effect (0�10 GPE) recorded at 3 weeks.

 

The secondary outcomes will be:

 

  1. Global perceived effect (0�10 GPE) recorded at 1 week;
  2. Patient-generated measure of disability (Patient-Specific Functional Scale; PSFS) recorded at 1 and 3 weeks[36];
  3. Condition-specific measure of disability (Roland Morris Questionnaire; RMQ) recorded at 1 and 3 weeks[37];
  4. Number of patients reporting persistent back pain at 3 months.

 

Following the screening consultation in which the inclusion and exclusion criteria are assessed, the GP will supervise the baseline measurement of pain. All patients will then receive an assessment booklet and a pre-paid envelope in which all other self-assessed outcome measures are to be recorded and sealed. One member of the research team will contact patients by telephone within 24 hours of the consultation with the GP in order to give explanations regarding the appropriate form of filling in the assessment booklet. At this time, other baseline outcomes will be recorded and then the patient will be randomised to study groups. The patient will be advised to keep the booklet at home, to seal it into the pre-paid envelope after the final assessment and mail the sealed envelope to the research team. To ensure the proper use of the assessment booklet and to avoid loss of data due to non-returned booklets, a blinded assessor will contact all patients by telephone 9 and 22 days after the consultation with the GP to collect patient’s answers from the 1st week and 3rd week assessments, respectively.

 

The procedure for obtaining outcome data will be followed for all participants, regardless of compliance with trial protocols. At 3 months, data regarding the presence of persistent (chronic) symptoms will be collected by telephone. Participants will be asked to answer the following yes-no question: “During the past 3 months have you ever been completely free of low back pain? By this I mean no low back pain at all and would this pain-free period have lasted for a whole month”. Those answering no will be considered to have persistent LBP. Information on additional treatment and the direct costs with low back pain management will also be collected at 3 months.

 

A secondary analysis will be performed on predictors of response to McKenzie treatment and prediction of chronicity. This will involve the measurement of participants’ expectation about the helpfulness of both treatments under investigation as well as information on the occurrence of the centralisation phenomenon. Expectation will be recorded prior to randomisation according to the procedures described by Kalauokalani et al[38].

 

Treatments

 

All participants will receive GP care as advocated by the NHMRC guideline for the management of acute musculoskeletal pain[2]. Guideline-based GP care consists of providing information on a favourable prognosis of acute LBP and advising patients to stay active, together with the prescription of paracetamol. Patients randomised to the experimental group will be referred to physiotherapy to receive the McKenzie Method. A research assistant not involved in the assessment or treatment of subjects will be responsible for the randomisation process and will contact therapists and patients to arrange the first physiotherapy session. The McKenzie treatment will be delivered by credentialed physiotherapists who will follow the treatment principles described in McKenzie’s text book[18]. All therapists will have completed the four basic courses taught by the McKenzie Institute International. To ensure the appropriate implementation of the McKenzie’s classification algorithm, a training session with a member of McKenzie’s educational program will be conducted prior to the commencement of the study. The treatment frequency will be at the discretion of the therapist with a maximum of 7 sessions over 3 weeks. We chose to restrict the McKenzie treatment to a maximum of 7 sessions based on the study of Werneke and colleagues[39], which concluded that further reductions in pain and function are not expected if favourable changes in pain location are not present until the seventh treatment visit. Treatment procedures from the McKenzie Method are summarised in the Appendix.

 

Participants randomised to the control group will continue their GP care as usual. All participants regardless of intervention group will be advised not to seek other treatments for their low back pain during the treatment period. Physiotherapists will be asked to withhold co-interventions during the course of the trial.

 

Several mechanisms will be used to ensure that the trial protocol is applied consistently. Protocol manuals will be developed and all involved researchers (GPs, physiotherapists, assessor, and statistician) will be trained to ensure that screening, assessment, random allocation and treatment procedures are conducted according to the protocol. A random sample of treatment sessions will be audited to check that treatment is being administered according to the protocol.

 

Dr Jimenez helping man stretch_preview

 

Data Analysis

 

Power was calculated based on the primary outcome measures (pain intensity and global perceived effect). A sample size of 148 participants will provide 80% power to detect a difference of 1 unit (15%) on a 0�10 pain scale (SD = 2.0) between the experimental and control groups, assuming alpha of 0.05. This allows for loss to follow-up of 15%. This sample size also allows the detection of a difference of 1.2 units (12%) on a 0�10 global perceived effect scale (SD = 2.4).

 

Data will be analysed by a research member blinded to group status. The primary analysis will be by intention-to-treat. In order to estimate treatment effects, between-group mean differences (95%CI) will be calculated for all outcome measures. In the primary analysis these will be calculated using linear models that include baseline values of outcome variables as covariates to maximise precision.

 

Discussion

 

We have presented the rationale and design of an RCT evaluating the effects of the McKenzie Method in the treatment of acute non-specific LBP. The results of this trial will be presented as soon as they are available.

 

Competing Interests

 

The author(s) declare that they have no competing interests.

 

Authors’ Contributions

 

LACM, CGM and RDH were responsible for the design of the study. HC was responsible for recruiting McKenzie therapists and she will also participate as a clinician in the trial. LACM and JMc will act as trial coordinators. All authors have read and approved the final manuscript.

 

Appendix

 

Clinical picture and treatment principles according to the McKenzie Method

 

This table summarises the procedures involved in the McKenzie Method (Table 1). For detailed description of all procedures and progressions, refer to McKenzie’s text book. This is particularly important for Derangement syndrome since the treatment is extremely variable and complex and the full description of procedures would not be appropriate for the purposes of this paper.

 

Table 1 Summarized Procedures Involved in the McKenzie Method

 

Pre-Publication History

 

The pre-publication history for this paper can be accessed here: www.biomedcentral.com/1471-2474/6/50/prepub

 

Acknowledgements

 

The authors thank the physiotherapists credentialed in the McKenzie Method for their participation in this project.

 

Managing Low Back Pain: Attitudes & Treatment Preferences of Physical Therapists & Chiropractors

 

Abstract

 

Background and Purpose:�Researchers surveyed physical therapists about their attitudes, beliefs, and treatment preferences in caring for patients with different types of low back pain problems.

 

Subjects and Methods: Questionnaires were mailed to all 71 therapists employed by a large health maintenance organization in western Washington and to a random sample of 331 other therapists licensed in the state of Washington.

 

Results: Responses were received from 293 (74%) of the therapists surveyed, and 186 of these claimed to be practicing in settings in which they treat patients who have back pain. Back pain was estimated to account for 45% of patient visits. The McKenzie method was deemed the most useful approach for managing patients with back pain, and education in body mechanics, stretching, strengthening exercises, and aerobic exercises were among the most common treatment preferences. There were significant variations among therapists in private practice, hospital-operated, and health maintenance organization settings with respect to treatment preferences, willingness to take advantage of the placebo effect, and mean number of visits for patients with back pain.

 

Conclusions and Discussion: These variations emphasize the need for more outcomes research to identify the most effective treatment approaches and to guide clinical practice.

 

In conclusion,�the effective treatment of acute low back pain is essential because it can potentially help prevent the development of chronic low back pain. A growing number of chiropractors and physical therapists, including other healthcare professionals, have utilized the McKenzie method to help manage acute non-specific low back pain in patients. According to the research study, further evidence is required to support the use of the McKenzie method for LBP, however, the outcome measures of the research study regarding the effectiveness of the McKenzie method for low back pain are promising. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Sciatica

 

Sciatica is referred to as a collection of symptoms rather than a single type of injury or condition. The symptoms are characterized as radiating pain, numbness and tingling sensations from the sciatic nerve in the lower back, down the buttocks and thighs and through one or both legs and into the feet. Sciatica is commonly the result of irritation, inflammation or compression of the largest nerve in the human body, generally due to a herniated disc or bone spur.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: Treating Sciatica Pain

 

 

Blank
References
  • Australian Institute of Health and Welfare . Australia’s health 2004. 1st. Camberra , AIHW; 2004.
  • Australian Acute Musculoskeletal Pain Guidelines Group Evidence-based management of acute musculoskeletal pain. . 2003. www.nhmrc.gov.au
  • Maetzel A, Li L. The economic burden of low back pain: a review of studies published between 1996 and 2001. Best Pract Res Clin Rheumatol. 2002;16:23�30. doi: 10.1053/berh.2001.0204. [PubMed] [Cross Ref]
  • WorkCover Authority NSW . Statistical Bulletin. NSW Workers Compensation 2002/03. Sydney , The WorkCover Authority NSW ; 2003.
  • Pengel LH, Herbert RD, Maher CG, Kathryn RM. Acute low back pain: Systematic review of its prognosis. BMJ. 2003;327:1�5. [PMC free article] [PubMed]
  • Thomas E, Silman AJ, Croft PR, Papageorgiou AC, Jayson M, Macfarlane GJ. Predicting who develops chronic low back pain in primary care: a prospective study. BMJ. 1999;318:1662�1667. [PMC free article] [PubMed]
  • Guzm�n J, Esmail R, Karjalainen K, Malmivaara A, Irvin E, Bombardier C. Multidisciplinary rehabilitation for chronic low back pain: systematic review. BMJ. 2001;322:1511�1516. doi: 10.1136/bmj.322.7301.1511. [PMC free article] [PubMed] [Cross Ref]
  • van Tulder M, Malmivaara A, Esmail R, Koes B. Exercise therapy for low back pain. A systematic review within the framework of the Cochrane Collaboration Back Review Group. Spine. 2000;25:2784�2796. doi: 10.1097/00007632-200011010-00011. [PubMed] [Cross Ref]
  • van Tulder M, Ostelo R, Vlaeyen JWS, Linton SJ, Morley SJ, Assendelft WJJ. Behavioral treatment for chronic low back pain. A systematic review within the framework of the Cochrane Back Review Group. Spine. 2000;25:2688�2699. doi: 10.1097/00007632-200010150-00024. [PubMed] [Cross Ref]
  • Jellema P, van Tulder MW, van Poppel MN, Nachemson AL, Bouter LM. Lumbar supports for prevention and treatment of low back pain. A systematic review within the framework of the Cochrane Back Review Group. Spine. 2001;26:377�386. doi: 10.1097/00007632-200102150-00014. [PubMed] [Cross Ref]
  • Ferreira ML, Ferreira PH, Latimer J, Herbert RD, Maher CG. Does spinal manipulative therapy help people with chronic low back pain? Aust J Physiother. 2002;48:277�284. [PubMed]
  • Pengel HM, Maher CG, Refshauge KM. Systematic review of conservative interventions for subacute low back pain. Clin Rehabil. 2002;16:811�820. doi: 10.1191/0269215502cr562oa. [PubMed] [Cross Ref]
  • Koes BW, van Tulder MW, Ostelo R, Burton K, Waddell G. Clinical guidelines for the management of low back pain in primary care: an international comparison. Spine. 2001;26:2504�2514. doi: 10.1097/00007632-200111150-00022. [PubMed] [Cross Ref]
  • Borkan J, Koes B, Reis S, Cherkin DC. A report from the Second International Forum for Primary Care Research on low back pain: reexamining priorities. Spine. 1998;23:1992�1996. doi: 10.1097/00007632-199809150-00016. [PubMed] [Cross Ref]
  • Bouter LM, van Tulder MW, Koes BW. Methodologic issues in low back pain research in primary care. Spine. 1998;23:2014�2020. doi: 10.1097/00007632-199809150-00019. [PubMed] [Cross Ref]
  • Leboeuf-Yde C, Lauritsen JM, Lauritzen T. Why has the search for causes of low back pain largely been nonconclusive? Spine. 1997;22:877�881. doi: 10.1097/00007632-199704150-00010. [PubMed] [Cross Ref]
  • Fritz JM, Delitto A, Erhard RE. Comparison of classification-based physical therapy with therapy based on clinical practice guidelines for patients with acute low back pain. Spine. 2003;28:1363�1372. doi: 10.1097/00007632-200307010-00003. [PubMed] [Cross Ref]
  • McKenzie R, May S. The lumbar spine. Mechanical diagnosis & therapy. 2nd. Vol. 1. Waikanae , Spinal Publications New Zealand Ltd; 2003. p. 374.
  • van Dillen LR, Sahrmann SA, Norton BJ, Caldwell CA, McDonnell MK, Bloom NJ. Movement system impairment-based categories for low back pain: stage 1 validation. J Orthop Sports Phys Ther. 2003;33:126�142. [PubMed]
  • BenDebba M, Torgerson WS, Long DM. A validated, practical classification procedure for many persistent low back pain patients. Pain. 2000;87:89�97. doi: 10.1016/S0304-3959(00)00278-5. [PubMed] [Cross Ref]
  • Delitto A, Erhard RE, Bowling RW, DeRosa CP, Greathouse DG. A treatment-based classification approach to low back syndrome: identifying and staging patients for conservative treatment. Phys Ther. 1995;75:470�485. [PubMed]
  • Klapow JC, Slater MA, Patterson TL, Doctor JN, Atkinson JH, Garfin SR. An empirical evaluation of multidimensional clinical outcome in chronic low back pain patients. Pain. 1993;55:107�118. doi: 10.1016/0304-3959(93)90190-Z. [PubMed] [Cross Ref]
  • Laslett M, van Wijmen P. Low back and referred pain: diagnosis and proposed new system of classification. N Z J Physiother. 1999;27:5�14.
  • Maluf KS, Sahrmann SA, van Dillen LR. Use of a classification system to guide nonsurgical management of a patient with chronic low back pain. Phys Ther. 2000;80:1097�1111. [PubMed]
  • Petersen T, Laslett M, Thorsen H, Manniche C, Ekdahl C, Jacobsen S. Diagnostic classification of non-specific low back pain. A new system integrating patho-anatomic and clinical categories. Physiother Theory Pract. 2003;19:213�237.
  • Stiefel F, deJonge P, Huyse F, al INTERMED – An assessment and classification system for case complexity: Results in patients with low back pain. Spine. 1999;24:378�384. doi: 10.1097/00007632-199902150-00017. [PubMed] [Cross Ref]
  • McCarthy CJ, Arnall FA, Strimpakos N, Freemont A, Oldham JA. The biopsychosocial classification of non-specific low back pain: a systematic review. Phys Ther Rev. 2004;9:17�30. doi: 10.1179/108331904225003955. [Cross Ref]
  • Batti� MC, Cherkin DC, Dunn R, Ciol MA, Wheeler KJ. Managing low back pain: attitudes and treatment preferences of physical therapists. Phys Ther. 1994;74:219�226. [PubMed]
  • Li LC, Bombardier C. Physical therapy management of low back pain: An exploratory survey of therapist approaches. Phys Ther. 2001;81:1018�1028. [PubMed]
  • Machado LAC, de Souza MS, Ferreira PH, Ferreira ML. The McKenzie protocol for low back pain: a systematic review of the literature with a meta-analysis approach. Spine (in press) 2005. [PubMed]
  • de Vet HCWPD, Heymans MWMS, Dunn KMMP, Pope DPPD, van der Beek AJPD, Macfarlane GJPD, Bouter LMPD, Croft PRPD. Episodes of Low Back Pain: A Proposal for Uniform Definitions to Be Used in Research. Spine. 2002;27:2409�2416. doi: 10.1097/00007632-200211010-00016. [PubMed] [Cross Ref]
  • Pocock SJ. Clinical trials. A practical approach. 1st. Chichester , John Wiley & Sons; 1984.
  • Delitto A, Cibulka MT, Erhard RE, Bowling RW, Tenhula JA. Evidence for use of an extension-mobilization category in acute low back syndrome: A prescriptive validation pilot study. Phys Ther. 1993;73:216�228. [PubMed]
  • Schenk RJ, Jozefczyk C, Kopf A. A randomized trial comparing interventions in patients with lumbar posterior derangement. J Manual Manip Ther. 2003;11:95�102.
  • Farrar J, Young J, LaMoreaux L, al Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94:149�158. doi: 10.1016/S0304-3959(01)00349-9. [PubMed] [Cross Ref]
  • Stratford P, Gill C, Westaway M, Binkley J. Assessing disability and change on individual patients: a report of a patient specific measure. Physiother Can. 1995;47:258�263.
  • Roland M, Morris R. A study of the natural history of back pain. Part I: development of a reliable and sensitive measure of disability in low-back pain. Spine. 1983;8:141�144. [PubMed]
  • Kalauokalani D, Cherkin D, Sherman K, Koepsell T, R D. Lessons from a trial of acupuncture and massage for low back pain. Spine. 2001;26:1418�1424. doi: 10.1097/00007632-200107010-00005. [PubMed] [Cross Ref]
  • Werneke M, Hart DL, Cook D. A descriptive study of the centralization phenomenon. A prospective analysis. Spine. 1999;24:676�683. doi: 10.1097/00007632-199904010-00012. [PubMed] [Cross Ref]
Close Accordion
McKenzie Therapy and Endurance Exercises for Low Back Pain

McKenzie Therapy and Endurance Exercises for Low Back Pain

Low back pain is a common complaint that generally goes away on its own, however, what should a person do if their LBP becomes chronic and/or persistent? How is an individual’s quality of life affected and how does their pain intensity impact their physical capacity? Is there any type of treatment which can help improve low back pain? Many different types of treatment options can be used to safely and effectively treat low back pain. The purpose of the following research study is to determine the influence of the McKenzie method and endurance exercises on low back pain. The article demonstrates evidence-based information on the improvement of the quality of life of patients with LBP after receiving the treatment protocol mentioned below.

 

Influence of Mckenzie Protocol and Two Modes of Endurance Exercises on Health-Related Quality of Life of Patients with Long-Term Mechanical Low Back Pain

 

Abstract

 

Introduction

 

Long-term Mechanical Low-Back Pain (LMLBP) negatively impacts on patients� physical capacity and quality of life. This study investigated the relationship between Health-Related Quality of Life (HRQoL) and pain intensity, and the influence of static and dynamic back extensors� endurance exercises on HRQoL in Nigerian patients with LMLBP treated with the McKenzie Protocol (MP).

 

Methods

 

A single-blind controlled trial involving 84 patients who received treatment thrice weekly for eight weeks was conducted. Participants were assigned to the MP Group (MPG), MP plus Static Back Endurance Exercise Group (MPSBEEG) or MP plus Dynamic Endurance Exercise Group (MPDBEEG) using permuted randomization. HRQoL and pain was assessed using the Short-Form (SF-36) questionnaire and Quadruple Visual Analogue Scale respectively.

 

Results

 

Sixty seven participants aged 51.8 � 7.35 years completed the study. A total drop-out rate of 20.2% was observed in the study. Within-group comparison across weeks 0-4, 4-8 and 0-8 of the study revealed significant differences in HRQoL scores (p < 0.05). Treatment Effect Scores (TES) across the groups were significantly different (p = 0.001). MPSBEEG and MPDBEEG were comparable in TES on General Health Perception (GHP) at week 4; and GHP and Physical Functioning at week 8 respectively (p > 0.05). However, MPDEEG had significantly higher TES in the other domains of the SF-36 (p = 0.001).

 

Conclusion

 

HRQoL in patients with LMLBP decreases with pain severity. Each of MP, static and dynamic back extensors endurance exercises significantly improved HRQoL in LMLBP. However, the addition of dynamic back extensors endurance exercise to MP led to greater improvement in HRQoL.

 

Keywords: Mckenzie protocol, endurance exercises, quality of life, back pain

 

Background

 

Low-Back Pain (LBP) is described as the constellation of symptoms of pain or discomfort originating from impairments in the structures in the low back [1�2]. LBP is one of the most common ailments afflicting mankind [3]. It is a complicated condition which affects the physiological and psychosocial aspects of the patient [4, 5]. Epidemiological reports indicate that 70 to 85% of all people have LBP at some time in their life [1, 6]. The World Health Organization predicted that the greatest increases in LBP prevalence in the next decade will be in developing nations [7]. In line with this, a systematic review by Louw et al [8] concluded that the global burden and prevalence of LBP among Africans is rising.

 

It is estimated that 80-90% of patients with LBP will recover within six weeks, regardless of treatment [9]. However, 5-15% of all people that have LBP will develop long-term LBP (i.e. LBP of 12 weeks and longer) [10, 11]. The patient subgroup with long-term LBP accounts for 75-90% of the socioeconomic cost of LBP [12] and over 30% of these patients with long-term LBP seek healthcare for their back complaints. Long-term LBP significantly impacts on patients� physical [13], psychological and social functioning [14] and can affect well-being and quality of life [15]. Reduced quality of life in patients with long-term LBP is associated with poor prognosis [16], intermittent or recurrent episodes of LBP [17], disability [18] and psychosocial dysfunction [19, 20].

 

Assessment of Health-Related Quality of Life (HRQoL) in relation to LBP has been recommended in LBP management [21, 22]. Several HRQoL instruments have been developed to assess self-perceived general health status [21, 22]. The SF-36 Health Status Questionnaire, though a generic instrument, has been recommended in the assessment of HRQoL of patients with long-term LBP [22] and it assesses eight domains such as physical functioning, role limitations due to physical problems, bodily pain, general health perceptions, vitality, social functioning, role limitation due to emotional problems and general mental health [23, 24].

 

Consequent to the foregoing, treatment intervention that may help improve the HRQoL of patients with long-term LBP has been advocated. Although, physiotherapy plays an important role in the management of patients with LBP, the traditional approach based on biomedical model, which is centered on the treatment of impairments and patho-physiological variables, may not fully addressed the wider range of factors including psychosocial impairments associated with long-term LBP [25, 26]. However, long-term LBP is considered to be a multi-factorial bio-psychosocial problem which has an impact on both social life [27, 28] and quality of life [29] and thus requires a multi-dimensional approach based on a bio-psychosocial model (a model that includes physical, psychological and social elements) in its assessment and treatment [30, 31].

 

 

Based on empirical recommendations from research, recent decades have witnessed tremendous advances in preventive, pharmacological and physiotherapy management for a limited number of patients with LBP especially in developed countries. However, the improvement in health outcomes observed in most Western countries over the past few decades has not been achieved in Africa [32] and therefore, the health of Africans is of global concern [8]. Compared with Australians [33], Europeans [34] and North Americans [35], the use of exercise as medicine in Africans is poor. Exercise is the central element in the physical therapy management of patients with long-term LBP [9, 36]. Exercise often does not require expensive instruments and probably the cheapest intervention and one in which the patient has some measure of direct control [37]. Nonetheless, it remains inconclusive which exercise regimen will significantly influence the quality of life of patients with long-term LBP. The McKenzie Protocol (MP) is one of the most commonly used physical therapy interventions in long-term mechanical LBP with documented effectiveness [38�41]. However, there is a dearth of studies that have investigated the influence of the MP on HRQoL in patients with long-term mechanical LBP. Therefore, this study was intended to answer the following questions: (1). Will pain intensity significantly influence HRQoL? (2) Will static and dynamic back extensors� endurance exercises significantly influence HRQoL in Nigerian patients with long-term mechanical LBP (LMLBP) treated with the MP?

 

Methods

 

Eighty four patients with LMLBP participated in this single-blind randomized trial. The participants were consecutively recruited from the physiotherapy department, Obafemi Awolowo University (OAU) Teaching Hospitals Complex and the OAU Health Centre, Ile-Ife, Nigeria. The McKenzie Institute’s Lumbar Spine Assessment Format (MILSAF) [3] was used to determine eligibility to participate in the study. Based on the MILSAF, patients who demonstrated Directional Preference (DP) for extension only were recruited to ensure homogeneity of samples. DP is described as the posture or movement that reduces or centralizes radiating pain that emanates from the spine. Exclusion criteria were red flags indicative of serious spinal pathology with signs and symptoms of nerve root compromise (with at least two of dermatomal sensory loss, myotomal muscle weakness and reduced lower limb reflexes), individuals with any obvious spinal deformity or neurological disease; pregnancy; previous spinal surgery; previous experience of static and dynamic endurance exercise and having DP for flexion, lateral or no DP. Long-term low-back pain was defined as a history of LBP of not less than 3 months [42].

 

Personal Trainer Encouraging Patient to Engage in Endurance Exercises

 

Based on the sample size table by Cohen [43] with alpha level set at 0.05, degree of freedom at 2, effect size at 0.25, and power at 80, the study found a minimum sample size of 52. However, in order to accommodate for possible attrition or loss during the study, a total of 75 patients (25 per group) was included. The participants were randomly assigned to one of three treatment groups using permuted block randomization; the McKenzie Protocol (MP) Group (MPG) (n = 29), MP plus Static Back Endurance Exercise Group (MPSBEEG) (n = 27) and MP plus Dynamic Back Endurance Exercise Group (MPDBEEG) (n = 28). Sixty seven (32 males (47.8%) and 35 females (52.2%) participants completed the eight week study. Twenty five participants completed the study in MPG, 22 in MPSBEEG and 20 in MPDBEEG. A total drop-out rate of 20.2% was observed in the study. Fourteen percent of participants in MPG were lost to follow-up. Nineteen percent of the participants in MPSBEEG dropped out (out of these, 40% were lost to follow-up while 60% absconded due to improvement in their health condition). In the MPDBEEG, 28.6% of the participants dropped out (37.5% were lost to follow-up while 62.5% absconded due to improvement in their health condition).

 

Treatment was given thrice weekly for eight weeks and outcomes were assessed at the end of the fourth and eighth week of study. Ethics and Research Committee of the Obafemi Awolowo University Teaching Hospitals Complex and the joint University of Ibadan /University College Hospital Institutional Review Committee respectively gave approval for the study.

 

Instruments

 

A height meter calibrated from 0-200cm was used to measure the height of each participant to the nearest 0.1cm. A weighing scale was used to measure the body weight of participants in kilograms to the nearest 1.0Kg. It is calibrated from 0 – 120kg. A metronome (Wittner Metronom system Maelzel, Made in Germany) was used to set a uniform tempo for dynamic back endurance muscles endurance test, which involves repeated contraction or movements over a period of time performed synchronously to the metronome beat. Patients lay on a plinth for the MP, static and dynamic back endurance exercise respectively.

 

General Health Status Questionnaire – Short Form -36 (SF-36) was used to assess the quality of life of the participants. The SF-36 has been recommended in the assessment of patients with long-term LBP [24, 44, 45]. A Yoruba translated version of the Health Status Questionnaire (SF-36) was used for participants who were literate in the Yoruba language and preferred the Yoruba version. The translation was done at the department of linguistics and African languages of Obafemi Awolowo University, Ile Ife. Pearson product moment correlation coefficient (r) of 0.84 was obtained for the criterion validity of the back translation of the Yoruba version. Quadruple Visual Analogue Scale (QVAS) was used to assess pain intensity of participants. QVAS is a reliable and valid method for pain measurement [46, 47]. A Yoruba translated version of the QVAS was used for participants who were literate in the Yoruba language and prefers the Yoruba version. The translation was done at the department of linguistics and African languages of Obafemi Awolowo University, Ile Ife. Pearson product moment correlation coefficient (r) of 0.88 was obtained for the criterion validity of the back translation of the Yoruba version.

 

Treatment

 

Treatment for the different groups (MPG, MPSBEEG and MPDBEEG) comprised three phases including warm up, main exercise and cool down. Prior to treatment, the participants were instructed in details on the study procedures. This was followed by a low intensity warm-up phase of five minutes duration comprising active stretching of the upper extremities and low back and strolling at self-determined pace around the research venue. Treatment also ended with a cool-down phase comprising of the same low intensity exercise as the warm-up for about five minutes.

 

Trainer Demonstrating Examples of Endurance Exercises

 

Elderly Man does Band Exercises with Mike_01_preview

 

The McKenzie Protocol (MP) involved a course of specific lumbosacral repeated movements in extension that cause the symptoms to centralize, decrease or abolish. The determination of the direction preference for extension was followed by the main MP activities including �Extension lying prone�, �Extension In Prone� and �Extension in standing�. The MP also included a set of back care education instructions which comprised a 9 item instructional guide on standing, sitting, lifting and other activities of daily living for home exercise for all the participants (Appendix).

 

Woman Performing the McKenzie Method on a Patient

 

In addition to completing the MP (i.e., back extension exercises plus the back care education), static back extensors endurance exercise which included five different static exercises differentiated by the alteration of the positions of the upper and lower limbs with the patient in prone lying on a plinth was carried out [48]. The participants began the exercise training programme with the first exercise position, but progressed to the next exercises at their own pace when they could hold a given position for 10 seconds. On reaching the fifth progression, they continued with the fifth progression until the end of the exercise programme [48, 49]. The following were the five exercise progressions:

 

  1. Participant lay in prone position with both arms by the sides of the body and lifting the head and trunk off the plinth from neutral to extension;
  2. Participant lay in prone position with the hands interlocked at the occiput so that shoulders were abducted to 90� and the elbows flexed, and lifting the head and trunk off the plinth from neutral to extension;
  3. Participant lay in prone position with both arms elevated forwards, and lifting the head, trunk and elevated arms off the plinth from neutral to extension;
  4. Participant lay in prone position and lifting the head, trunk and contralateral arm and leg off the plinth from neutral to extension; and
  5. Participant lay in prone position with both shoulders abducted and elbows flexed to 90�, and lifting the head, trunk and both legs (with knees extended) off the plinth.

 

If pain was aggravated during the exercise, the participant was asked to stop. If the pain diminished within 5 minutes after the exercise, he/she was asked to continue the exercise but to hold the exercise position for only 5 seconds. The participant was asked to progress to 10 seconds if there was no adverse response. Each exercise was repeated 9 times. After 10 repetitions, the participant was instructed to rest for between 30 seconds to 1 minute. Static holding time in the exercise position was gradually increased to 20 seconds to provide a greater training stimulus [50, 51]. The dosage of series of 10 repetitions was adopted from a previous protocol for participants with sub-acute LBP [52].

 

In addition to completing the MP, dynamic back extensors endurance exercise which included five different isokinetic exercises differentiated by the alteration of the positions of the upper and lower limbs with the patient in prone lying on a plinth was carried out. The dynamic back endurance exercise was an exact replica of the static back extensors endurance exercise protocol in terms of exercise positions, progressions and duration. However, instead of static posturing of the trunk in the prone lying position and holding the positions of the upper and lower limbs suspended in the air during all the five exercise progressions for the 10 seconds, the participant was asked to move the trunk and the suspended limbs 10 times.

 

If pain was aggravated during the exercise, participant was asked to stop. If the pain diminished within 5 minutes after the exercise, the participant was asked to continue the exercise but to carry out only 5 movements in the exercise position. The participant was asked to progress to 10 movements if there is no adverse response. Each exercise was repeated 9 times. After 10 repetitions, the participants were instructed to rest for between 30 seconds to 1 minute. The number of movements of the trunk in the exercise position was gradually increased to 20 seconds to provide a greater training stimulus.

 

In order to achieve adequate training effect based on recommendation of previous studies, a 30 to 45 minute exercise duration, thrice weekly and eight weeks exercise; and training load of 10 seconds static hold or 10 repetitions per exercise position was adopted [53, 54].

 

The researchers (CEM and OA) were credentialed in the McKenzie method and supervised the exercises. The researchers were blinded to the recruitment, randomization and assessment procedures which were carried out by an assistant who was blinded to the treatment protocols of the different groups. The research assistant was also credentialed in McKenzie method. The questionnaires used in this study were self- administered.

 

Data Analysis

 

Data were analyzed using descriptive of mean and standard deviation; and inferential statistics. One-way ANOVA was used to compare the participants� general characteristics and pain intensity by treatment groups. Pearson’s Product Moment Correlation Analysis was used to test the relationship between HRQoL and intensity of pain. The Kruskal Wallis test was used to compare the treatment outcomes (mean change) on HRQoL across group at week four and eight of the study respectively. Friedman’s ANOVA and Wilcoxon signed ranked tests for multiple comparisons were used to compare within group changes in across the three study time points Alpha level was set at p = 0.05. The data analyses were carried out using SPSS 13.0 version software (SPSS Inc., Chicago, Illinois, USA).

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

How can the McKenzie method improve an individual’s quality of life? With years of experience working alongside patients to help them recover from a variety of spinal health issues, I’ve seen how debilitating low back pain can be if left untreated for an increased amount of time. Although spinal adjustments and manual manipulations can efficiently help improve symptoms of low back pain, other alternative treatment options may help patients recover faster. The McKenzie method and endurance exercises are used by many healthcare professionals to safely and effectively rehabilitate patients with LBP. The results of the research study ultimately demonstrate how the treatment protocol can help improve an individual’s quality of life.

 

Results

 

The mean age, height, weight and BMI of all the participants was 51.8 � 7.35 years, 1.66 � 0.04m, 76.2�11.2 Kg and 27.2 � 4.43 kg/m2 respectively. Comparison of the participants� general characteristics by treatment groups revealed that the participants in the different groups were comparable in their general characteristics (p > 0.05) (Table 1).

 

Table 1 One Way ANOVA Comparison of the Participants' Information

Table 1: One-way ANOVA comparison of the participants� general characteristics and pain intensity by treatment groups

 

The mean pain intensity score (VAS) reported by the participants was 6.55 � 1.75. The relationship between each of the eight domains of HRQoL and intensity of pain (VAS score) is presented in Table 2.

 

Table 2 Relationship Between Health-Related Quality of Life and Intensity of Pain

Table 2: Relationship between Health-Related Quality of Life and intensity of pain (VAS score) (n = 67)

 

From the result, correlation co-efficient (r) ranged between-0.603 to-0.878 at p = 0.001. Table 3 shows the comparison of the participants� baseline measure of HRQoL.

 

Table 3 Kruskal Wallis Comparison of the Participants' Information

Table 3: Kruskal Wallis comparison of the participants� baseline assessment of HRQoL

 

The results indicate that the participants in the different treatment groups were comparable in all the domains of HRQoL (p > 0.05). Within-group comparison of HRQoL in MPG, MPSBEEG and MPDBEEG across the 3 time points (weeks 0-4, 4-8 and 0-8) of the study showed that there were significant improvements (p < 0.05) (Table 4). Comparison of treatment outcomes (mean change score (MCS)) at week four and eight of the study are presented in Table 5. There were significant differences in SF-36 scores across the group (p > 0.05) at the end of the 4th and 8th week of the study respectively. The Tukey multiple comparisons post-hoc analysis was used to elucidate where the differences within between groups lie. The result indicated that MPSBEEG and MPDBEEG had significantly higher MCS on all domains of SF-36 compared with MPG at week four and eight respectively (p < 0.05). There was no significant difference between the MPSBEEG and MPDBEEG in the MCS of General Health Perception domain of SF-36 at week four; and on General Health Perception and Physical Functioning Domains of SF-36 at week eight respectively. However, MPDBEE had significantly higher treatment effects on other domains of HRQoL (p = 0.001).

 

Table 4 Friedman's ANOVA and Wilcoxon Signed Ranked Test Multiple Comparisons

Table 4: Friedman’s ANOVA and Wilcoxon signed ranked test multiple comparisons of HRQoL among MPG, MPSBEEG and MPDBEEG across the 3 time points of the study.

 

Table 5 Kruskal Wallis Comparison of the Participants' Treatment Outcomes

Table 5: Kruskal Wallis comparison of the participants� treatment outcomes (mean change) at week four of the study.

 

Discussion

 

This study evaluated the relationship between HRQoL and pain intensity, and the influence of static and dynamic back extensors� endurance exercises on HRQoL in Nigerian patients with LMLBP treated with the MP. The mean age of the patients in this study was 51.8 � 7.35 years. This age falls within the age bracket during which LBP is reported to be a more common problem [55]. From the result of this study, no significant difference in physical characteristics and pain intensity was found in the different treatment groups at baseline. Baseline characteristics are believed to be predictors of response to treatment in clinical trials for LBP [56]. Comparability in baseline measure in clinical trials is reported to reduce the chances of co-founders other than the intervention in predicting outcomes. Therefore, it is implied that the results obtained at different point in the course of this study could have been largely due to the effects of the various treatment regimens.

 

This study investigated the relationship between HRQoL and the intensity of pain. From the result, significant moderate to high inverse relationships were found between pain intensity and the different domains of HRQoL. General health perception showed the least correlation (r = -0.603; p = 0.001) while social functioning had the highest correlation with pain intensity (r = -0.878; p = 0.001). It is inferred from the study’s result that HRQoL of patients with long-term LBP decreases with severity of pain. Previous studies have reported an association between LBP and psychosocial factors [26, 57]. Specifically, significant inverse correlation has been reported between severity of pain and quality of life in patients with chronic LBP [57�59]. Pain is believed to have a profound effect on HRQoL [59] and the degree, to which the patients believe that they are disabled by it, is a powerful factor in the extent of their quality of life impairments [60]. Therefore, quality of life is an indicator of the level of endurance of people to pain [61].

 

Dr. Jimenez helps a PushasRx client_01 BW_preview

 

Within-group comparison of each of MP, MP plus Static Back Endurance Exercise (MPSBEE) and MP plus Dynamic Back Endurance Exercise (MPDBEE) across the 3 time-points (weeks 0-4, 4-8 and 0-8) of the study revealed that each treatment regimen led to significant improvement in HRQoL. Patients in this study displayed baseline values of the SF-36 comparable to those described in other studies on chronic LBP [62]. The baseline values of all domains of the SF-36 observed in this study were lower than those of adult normative data reported by Jenkinson et al [63] leaving room for any improvement accruable to treatment regimens to be assessed. From this study, all the eight domains of the SF-36 significantly improved at the 4th and 8th week assessment. However, on the final assessment, social functioning, general health perception and bodily pain improved more than the other domains of SF-36 in the MPG. General health perception, physical functioning, social functioning, bodily pain and energy vitality improved more than the other domains of SF-36 in the MPSBEEG while general health perception, physical functioning, social functioning, bodily pain and energy vitality improved more than the other domains of SF-36 in the MPDBEEG. Role physical, role emotional and mental health were the least improved domains of the SF-36 among the treatment groups. Though significant improvements were observed in the different domains by treatment groups on final assessment, the values were still lower than the adult normative data for general health status assessed using the SF-36 questionnaire [63]. A previous study by Smeets and colleagues [64] found that active physical therapy regimen primarily designed to improve physiological aspects of LBP such as aerobic fitness level, low back muscle strength and endurance can also reduce the impact of psychosocial factors that it did not deliberately target. In view of current evidence, Hill and Fritz [57] suggest that it may not necessarily follow that a psychologist is better placed to improve treatment outcomes than a physical therapist, even when a goal of treatment is the mediation of a psychosocial factor. Hill and Fritz [57] also argue that psychosocial factors including fear of movement, anxiety, a faulty coping strategy and quality of life have a strong influence on the success of treatment for patients with back pain at a group level. Literature suggests that exercise generally has a potential benefit on psychosocial aspect of patient with long-term LBP. Long-term LBP leads to deconditioning [65] and many problems associated with deconditioning are believed to be reversible through general and specific exercise regimens [66]. Harding and Watson [66] note that improvement in overall physical function is linked with improvement in psychosocial function. Unfortunately, there is a dearth of studies on the effect of the MP and back extensors endurance exercises on HRQoL in patients with long-term mechanical LBP.

 

From the result of this study, comparison of the different treatment regimens indicate that MPSBEE and MPDBEE had significantly higher treatment effect on all domains of HRQoL compared with MP at week four and eight respectively. MPSBEE and MPDBEE were comparable in their effect on general health perception domain at week four; and on health perception and physical functioning domains of the HRQoL at week eight. However, MPDBEE had significantly higher treatment effects on other domains of HRQoL. Generally, exercise seems to leads to improved wellness and quality of life. Still, there does not appear to be a consensus of opinion on the most effective programme designed to maintain exercise benefits. The McKenzie method is a popular and promising classification-based treatment for LBP among physical therapists [3] in addition to delivering theoretical information in order to educate patients about their condition, so that patients are better able to understand their condition and how to change their behaviour towards an episode of LBP [67]. However, few studies have investigated the effect of the MP on HRQoL in patients with LMLBP. Udermann et al [68] found significant improvements in HRQoL measures in chronic LBP patients treated with MP but reported that the addition of resistance training for the lumbar extensors provided no additional benefit. In recent times, endurance training of the low-back extensors aimed at improving physical performance and psychosocial health in patients with LBP has increased in popularity [69, 48, 52, 70], yet their effectiveness in enhancing quality of life remains unclear [71].

 

The observed efficacy of the MP, MPSBEE and MPDBEE in this study could be as a result of the fact that each of the regimen contained active exercise carried out in extension positions. Active exercise can be described as functional exercise performed by the patient or client. Previous studies have shown that active exercise, irrespective of the type is more effective in the management of patients with long-term LBP than passive therapy [72, 73]. The MP utilizes a system of patient self generated force to mobilize or manipulate the spine through a series of active repeated movements or static positioning and it is based on the patient’s pain response to certain movements and postures during assessment [3]. Similarly, endurance exercises are active exercises that require static posturing or repeated movements in order to initiate overload stimuli on the musculature. The different treatment regimen in this study had movement components, either from the MP which is the baseline treatment for all the groups or from the back extensors endurance exercise protocols. It is postulated from the results of this study that the significant higher treatment outcome of MPDBEE might be due to the combined effects of movements and overload stimulus on the back extensor muscles. MPDBEE seems to contain movement ingredients, firstly, from the MP which is the baseline treatment for this group and it involved a series of active repeated movements. Secondly, the dynamic back extensors endurance exercise also involved repeated movements of the trunk and limbs in the sagittal plane. It seems that extension exercise with movement elements carried out in patterns similar to the daily tasks motions might help to improve psychosocial aspects of long-term LBP as observed in this study.

 

Limitations of the Study

 

The generalizability of the findings of this study is limited by the fact that a generic quality of life tool was employed because of the scarcity of standard HRQoL tools with documented psychometric properties specific for patients with LBP. Theoretically, specific HRQoL measures are opined to be more responsive than generic HRQL measures [74]. Like all other self-reported assessment, it is possible that the patients in this study might have given exaggerated responses or overestimated the effect of exercise on their HRQoL. Furthermore, individuals� perception of psychosocial construct such as HRQoL is believed to be influenced by subjective interpretation and cultural bias [75, 76]. The high drop-out rate observed in this study is also a potential limitation and source of bias which may limit the interpretation and generalizability of study results. Finally, the treatment outcomes of the different regimens were only measured over such a short period of time of eight weeks.

 

Conclusion

 

Health-related quality of life of patients with long-term LBP decreases with severity of pain. The McKenzie Protocol, static and dynamic back extensors endurance exercises had significant therapeutic effect on HRQoL in patients with LMLBP. However, the addition of dynamic back extensors endurance exercise to MP led to higher improvement on HRQoL. It is recommended that static or dynamic endurance exercise be combined with MP in patients with LMLBP to derive maximum improvement in general health status.

 

Acknowledgements

 

This research was funded by an African Doctoral Dissertation Research Fellowship award offered by the African Population and Health Research Center (APHRC) in partnership with the International Development Research Centre (IDRC). We would like to thank the management and clinicians of the department of physiotherapy OAUTHC, Ile-Ife, Nigeria for their support in carrying out the study. We will also like to thank all the patients who participated in this study.

 

Competing Interests

 

The authors declare no competing interests.

 

Authors� Contributions

 

All the authors have contributed in this study in ways that comply to the ICMJE authorship criteria. All the authors have read and approved the final version of the manuscript.

 

In conclusion,�the quality of life of patients with chronic and/or persistent low back pain improved and the pain intensity of the symptoms of LBP appeared to decrease with the use of McKenzie therapy and endurance exercises, according to the study. Furthermore, under the McKenzie treatment protocol, static and dynamic back extensor endurance exercises were recorded to significantly improve symptoms as compared to endurance exercises alone. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Sciatica

 

Sciatica is referred to as a collection of symptoms rather than a single type of injury or condition. The symptoms are characterized as radiating pain, numbness and tingling sensations from the sciatic nerve in the lower back, down the buttocks and thighs and through one or both legs and into the feet. Sciatica is commonly the result of irritation, inflammation or compression of the largest nerve in the human body, generally due to a herniated disc or bone spur.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: Treating Sciatica Pain

 

 

Blank
References
1. Waddell G. London: Churchill Livingstone; 1998. The back pain revolution.
2. Burton AK, Balague F, Cardon G, Eriksen HR, Henrotin Y, Lahad A, et al. On behalf of the COST B13 Working Group on Guidelines for Prevention in Low Back Pain. European guidelines for prevention in low back pain – November 2004. Eur Spine J. 2006;15:s136�168. [PMC free article] [PubMed]
3. Mckenzie RA. Waikanae, New Zealand: Spinal Publication Limited; 1990. Treat Your Own Back. Spinal Publication. Pu.
4. Sikorski JM, Stampfer HG, Cole RM, Wheatley AE. Psychological aspects of chronic low back pain. Aust N Zeal J Surg. 1996;66(5):294�7. [PubMed]
5. Filho IT, Simmonds MJ, Protas EJ, Jones S. Back pain, physical function, and estimates of aerobic capacity: what are the relationships among methods and measures? Am J Phys Med Rehabil. 2002;81(12):913�20. [PubMed]
6. Anderson GBJ. Epidemiologic features of chronic low-back pain. Lancet. 1999;354(9178):581�585. [PubMed]
7. World Health Organization (WHO) Scientific Group on the Burden of Musculoskeletal Conditions of the Start of the New Millennium. Geneva: WHO; 2003. The burden of musculoskeletal conditions at the start of the new millennium. [PubMed]
8. Louw QA, Morris LD, Grimmer-Somers K. The prevalence of low back pain in Africa: a systematic review. BMC Musculoskelet Disord. 2007;8:105. [PMC free article] [PubMed]
9. van Tulder MW, Koes BW, Bouter LM. Conservative treatment of acute and chronic nonspecific low back pain. A systematic review of randomized controlled trials of the most common interventions. Spine. 1997;22(18):2128�56. [PubMed]
10. Quittan M. Management of Back Pain. Disabil Rehabil. 2002;24(8):423�34. [PubMed]
11. Bigos SJ, McKee J, Holland JP, Holland CL, Hildebrandt J. Back pain; the uncomfortable truth-assurance and activity paradigm. Der Schmertz. 2001;15(6):430�434. [PubMed]
12. Deyo RA, Tsui-Wu YJ. Functional disability due to low-back pain: a population-based study indicating the importance of socioeconomic factors. Arthritis Rheum. 1987;30(11):1247�1253. [PubMed]
13. Coste J, Delecoeuillerie G, Cohen de Lara A, Le Parc JM, Paolaggi JB. Clinical course and prognostic factors of acute low-back pain: an inception cohort study in primary care practice. BMJ. 1994;308(6928):577�80. [PMC free article] [PubMed]
14. Picavet HS, Schouten JS. Musculoskeletal pain in the Netherlands: prevalences; consequences and risk groups; the DMC 3-study. Pain. 2003;102(1-2):167�78. [PubMed]
15. Tuzun EH. Quality of life in chronic musculoskeletal pain. Best Pract Res Clin Rheumatol. 2007;21(3):567�579. [PubMed]
16. Last AR, Hulbert K. Chronic Low Back Pain: Evaluation and Management. Am Fam Physician. 2009 www.vertebrologi.ru/biblio/chronic_back.pdf. Accessed 4th December 2013. [PubMed]
17. Linton SJ. A review of psychological risk factors in back and neck pain. Spine. 2000;25(9):1148�56. [PubMed]
18. Scholich SL, Hallner D, Wittenberg RH, Hasenbring MI, Rusu AC. The relationship between pain, disability, quality of life and cognitive-behavioural factors in chronic back pain. Disabil Rehabil. 2012;34(23):1993�2000. [PubMed]
19. Geisser ME, Robinson ME, Miller QL, Bade SM. Psychosocial factors and functional capacity evaluation among persons with chronic pain. J Occup Rehabil. 2003;13(4):259�76. [PubMed]
20. Lam� IE, Peters ML, Vlaeyen JW, Kleef M, Patijn J. Quality of life in chronic pain is more associated with beliefs about pain, than with pain intensity. Eur J Pain. 2005;9(1):15�24. [PubMed]
21. Deyo RA, Andersson G, Bombardier C, Cherkin DC, Keller RB, Lee CK, et al. Outcome measures for studying patients with low back pain. Spine. 1994;19(Suppl 18):2032S�6. [PubMed]
22. Bombardier C. Outcome assessments in the evaluation of treatment of spinal disorders. Spine. 2000;25(24):3100�3. [PubMed]
23. Ware JE, Snow KK, Kosinski M, Gandek B. SF-36 Health Survey – Manual and Interpretation Guide. Boston: The Health Institute; New England Medical Center. 1993;4:3.
24. Ware JE, Jr, Sherbourne CD. The MOS 36-item shortform health survey (SF-36) I. Conceptual framework and item selection. Med Care. 1992;30(6):473�483. [PubMed]
25. Main CJ, George SZ. Psychosocial Influences on Low Back Pain: Why Should You Care? Phys Ther. 2011;91(5):609�13. [PubMed]
26. Vlaeyenm JWS, Kole-Snijders AM, Boeren RG, van Eek H. Fear of movement/(re)injury in chronic low back pain and its relation to behavioral performance. Pain. 1995;62:363�372. [PubMed]
27. Gatchel RJ, Polatin PB, Mayer TG. The dominant role of psychosocial risk factors in the development of chronic low back pain disability. Spine. 1995;20(24):2702�2709. [PubMed]
28. George SZ, Joel E Bialosky, Julie M Fritz. Beliefs Acute Low Back Pain and Elevated Fear-Avoidance Physical Therapist Management of a Patient With. Phys Ther. 2004;84(6):538�549. [PubMed]
29. H�gg O, Burckhardt C, Fritzell C, Nordwall A. Quality of Life in Chronic Low Back Pain: A Comparison with Fibromyalgia and the General Population. J Muscoskel Pain. 2003;11(1):31�38.
30. Woby SR, Watson PJ, Roach NK, Urmston M. Are changes in fear-avoidance beliefs, catastrophizing, and appraisals of control, predictive of changes in chronic low back pain and disability? Eur J Pain. 2004;8(3):201�210. [PubMed]
31. Weiner BK. Spine Update – The Biopsychosocial Model and Spine Care. Spine. 2008;33(2):219�223. [PubMed]
32. Lopez A, Mathers C, Ezzati M, Jamison D, Murray J. Global and regional burden of disease and risk factors, : Systematic analysis of population health data 2001. Lancet. 2006;367(9524):1747�57. [PubMed]
33. Australian Bureau of Statistics (ABS) Canberra: ABS; 2006. Physical activity in Australia: a snapshot, 2004-05. ABS cat. no. 4835.0.55.001.
34. Cavill N, Kahlmeier S, Racioppi F. Physical activity and health in Europe: evidence for action. www.euro.who.int/en/publications/abstracts/physical-activity-and-health-in-europe-evidence-for-action. Accessed 22/12/2012.
35. Centers for Disease Control and Prevention (CDCP) Exercise or Physical Activity. 2013 www.cdc.gov/nchs/fastats/exercise.htm Accessed 12th January 2013.
36. Hayden JA, van Tulder MW, Tomlinson G. Systematic Review: Strategies for using exercise therapy to improve outcomes in chronic low-back pain. Ann Int Med. 2005;142(9):776�785. [PubMed]
37. Brukner P, Khan K. Sydney: McGraw-Hill; 1993. Clinical Sports Medicine.
38. Cherkin DC, Deyo RA, Battla MC, Street JH, Hund M, Barlow W. A comparison of Physical therapy chiropractice manipulation or an educational booklet for the treatment of low back pain. New Eng J Med. 1998;339(15):1021�1029. [PubMed]
39. McKenzie R, May S. Mechanical diagnosis & therapy. 2nd edition. Vol. 1. Waikanae, New Zealand: Spinal Publications New Zealand Ltd.; 2003. The lumbar spine.
40. Machado LA, de Souza MS, Ferreira PH, Ferreira ML. The McKenzie method for low back pain: a systematic review of the literature with a meta-analysis approach. Spine. 2006;31:254�262. [PubMed]
41. Ayanniyi O, Lasisi OT, Adegoke BOA, Oni-Orisan MO. Management of low back pain: Attitudes and treatment preferences of physiotherapists in Nigeria. Afr J Biomed Res. 2007;10(1):41�49.
42. Mbada CE, Ayanniyi O, Ogunlade SO. Effect of static and dynamic back extensor muscles endurance exercise on pain intensity, activity limitation and participation restriction in patients with long-term mechanical low-back pain. Med Rehabil. 2011;15(3):11�20.
43. Cohen J. In Statistical Power Analyses for Behavioural Sceinces 2nd Ed Chapter 8. New Jersey: Lawrence Erlbaum Associates; 1988. The analysis of variance and covariance: Sample size tables.
44. Bronfort G, Bouter LM. Responsiveness of general health status in chronic low back pain: a comparison of the COOP charts and the SF-36. Pain. 1999;83(2):201�9. [PubMed]
45. Taylor SJ, Taylor AE, Foy MA, Fogg AJB. Responsiveness of common outcome measures for patients with low back pain. Spine. 2001;24(17):1805�1812. [PubMed]
46. Jensen MP, McFarland CA. Increasing the reliability and validity of pain intensity measurement in chronic pain patients. Pain. 1993;55(2):195�203. [PubMed]
47. Von Korff M, Deyo RA, Cherkin D, Barlow SF. Back pain in primary care: Outcomes at 1 year. Spine. 1993:55�862. [PubMed]
48. Moffroid MT, Haugh LD, Haig AJ, Henry SM, Pope MH. Endurance training of trunk extensor muscles. Phys Ther. 1993;73:10�17. [PubMed]
49. Adegoke BOA, Babatunde FO. Effect of an exercise protocol on the endurance of trunk extensor muscles: a RCT. Hong Kong Physiother J. 2007;25:2�9.
50. Petrofsky JS, Lind AR. Aging, isometric strength and endurance; and cardiovascular responses to static effort. J Appl Physiol. 1975;38(1):91�95. [PubMed]
51. Bonde-Petersen F, Mork AL, Nielsen E. Local muscle blood flow and sustained contractions of human arm and back muscles. Eur J Appl Physiol Occup Physiol. 1975;34(1):43�50. [PubMed]
52. Chok B, Lee R, Latimer J, Beng Tan S. Endurance training of the trunk extensor muscles in people with sub acute low back pain. Phys Ther. 1999;79(11):1032�1042. [PubMed]
53. Fox EL, Bowers RW, Foss ML. 4th Ed. Philadelphia: Saunders College; 1988. The physiological basis of physical education and athletics.
54. Liddle SD, Baxter GD, Gracey JH. Exercise and chronic low back pain – what works? Pain. 2004;107(1-2):176�190. [PubMed]
55. Leboeuf-Yde C, Kyvik KO. At what age does low back pain become a common problem? A study of 29;4 24 individuals aged 12-41 years. Spine. 1998;23(2):228�34. [PubMed]
56. Underwood MR, Morton V, Farrin A, UK BEAM trial team Do baseline characteristics predict response to treatment for low back pain? Secondary analysis of the UK BEAM dataset. Rheumatology. 2007;46(8):1297�1302. [PubMed]
57. Hill JC, Fritz JM. Psychosocial influences on low back pain; disability; and response to treatment. Phys Ther. 2011;91(5):712�21. [PubMed]
58. Sengul Y, Kara B, Arda MN. The relationship between health locus of control and quality of life in patients with chronic low back pain. Turk Neurosurg. 2010;20(2):180�185. [PubMed]
59. Tavafian SS, Eftekhar H, Mohammad K, Jamshidi AR, Montazeri A, Shojaeezadeh D, Ghofranipour F. Quality of Life in Women with Different Intensity of Low Back Pain. Iran J Public Health. 2005;34(2):36�39.
60. Turner JA, Jensen MP, Romano JM. Do beliefs, coping, and catastrophizing independently predict functioning in patients with chronic pain. Pain. 2000;85(1-2):115�25. [PubMed]
61. Lyons RA, Lo SV, Littlepage BNC. Comparative health status of patients with 11 common illnesses in Wales. J Epidemiol Community Health. 1994;48(4):388�390. [PMC free article] [PubMed]
62. Lurie J. A review of generic health status measures in patients with low back pain. Spine. 2000;25(24):3125�9. [PubMed]
63. Jenkinson C, Coulter A, Wright L. Short form 36 (SF 36) health survey questionnaire: normative data for adults ofworking age. BMJ. 1993;306(6890):143740. [PMC free article] [PubMed]
64. Smeets RJ, Vlaeyen JW, Kester AD, Knottnerus JA. Reduction of pain catastrophizing mediates the outcome of both physical and cognitive-behavioral treatment in chronic low back pain. J Pain. 2006;7:261�271. [PubMed]
65. Verbunt JA, Seelen HA, Vlaeyen JW, van de Heijden GJ, Heuts PH, Pons K, Knottnerus JA. Disuse and deconditioning in chronic low back pain: concepts and hypotheses on contributing mechanisms. Eur J Pain. 2003;7(1):9�21. [PubMed]
66. Harding VR, Watson PJ. Increasing Activity & Improving Function In Chronic Pain Management. Physiotherapy. 2000;86(12):619�630.
67. Garcia AN, Gondo FLB, Costa RA, Cyrillo FN, Silva TM, Costa LCM, Costa LOP. Effectiveness of the back school and McKenzie techniques in patients with chronic non-specific low back pain: a protocol of a randomised controlled trial. BMC Musculoskelet Disord. 2011;12:179. [PMC free article] [PubMed]
68. Udermann BE, Mayer JM, Donelson RG, Graves JE, Murray SR. Combining lumbar extension training with McKenzie therapy: Effects on pain; disability; and psychosocial functioning in chronic low back pain patients. GLMJ. 2004;3(2):7�12.
69. Kovascs FM, Abraira V, Zamora J, Fernandez C. The transition from acute to subacute and chronic low back pain: A study based on determinants of quality of life and prediction of chronic disability. Spine. 2005;30:1786�1792. [PubMed]
70. Johnson OE, Adegoke BOA, Ogunlade SO. Comparison of four physiotherapy regimens in the treatment of long-term mechanical low back pain. JJPTA. 2010;13(1):9�16. [PMC free article] [PubMed]
71. Shaughnessy M, Caulfield B. A pilot study to investigate the effect of lumbar stabilisation exercise training on functional ability and quality of life in patients with chronic low back pain. Int J Rehabil Res. 2004;27(4):297�301. [PubMed]
72. Kank��np�� M, Taimela S, Airaksien OJ, Hannnien O. The efficacy of active rehabilitation in chronic low back pain. Effect on pain intensity; self-experienced disability and lumbar fatigability. Spine. 1999;24(10):1034�42. [PubMed]
73. Rainville J, Hartigan C, Martinez E, Limke J, Jouve C, Finno M. Exercise as a treatment for chronic low back pain. Spine J. 2004;4(1):106�115. [PubMed]
74. Guyatt Gordon. Insights and Limitations from Health-Related Quality-of-Life Research. Gen Intern Med. 1997;12(11):720�721. [PMC free article] [PubMed]
75. Kleinman A, Eisenberg L, Good B. Culture, illness and care: clinical lessons from anthropologic and cross-cultural research. Ann Intern Med. 1978;88:251�258. [PubMed]
76. Carr AJ, Higginson IJ. Are quality of life measures patient centred? BMJ. 2001;322(7298):1357�1360. [PMC free article] [PubMed]
Close Accordion
Impact of the McKenzie Method with METs for Low Back Pain

Impact of the McKenzie Method with METs for Low Back Pain

Muscular energy techniques, or METs, are considered to be some of the most valuable tools any healthcare professional can have and there are several reasons for it. METs have a wide application range and essential modifications can be made for each of them for a variety of injuries and/or conditions. Muscular energy techniques also represent an important aspect of rehabilitation. Furthermore, METs are both gentle and effective. But most importantly, METs actively involve the patient in the recovery process. Unlike other types of treatment therapies, the patient is involved in every step, contracting at the appropriate time, relaxing at the appropriate time, engaging in eye movement, and even breathing when instructed by the healthcare professional.

 

Muscular energy techniques have been used with other treatment modalities, such as the McKenzie method, to improve the outcome measures of injuries or conditions. The following research study demonstrates clinical and experimental evidence on the impact of the McKenzie method with METs for low back pain, one of the most common complaints affecting spine health. The purpose of the article is to educate and advice patients with low back pain on the use of METs with the McKenzie method.

 

Impact of McKenzie Method Therapy Enriched by Muscular Energy Techniques on Subjective and Objective Parameters Related to Spine Function in Patients with Chronic Low Back Pain

 

Abstract

 

  • Background: The high incidence and inconsistencies in diagnostic and therapeutic process of low back pain (LBP) stimulate the continuing search for more efficient treatment modalities. Integration of the information obtained with various therapeutic methods and a holistic approach to the patient seem to be associated with positive outcomes.The aim of this study was to analyze the efficacy of combined treatment with McKenzie method and Muscle Energy Technique (MET), and to compare it with the outcomes of treatment with McKenzie method or standard physiotherapy in specific chronic lumbar pain.
  • Material/Methods: The study included 60 men and women with LBP (mean age 44 years). The patients were randomly assigned to 1 of 3 therapeutic groups, which were further treated with: 1) McKenzie method and MET, 2) McKenzie method alone, or 3) standard physiotherapy for 10 days. The extent of spinal movements (electrogoniometry), level of experienced pain (Visual Analogue Scale and Revised Oswestry Pain Questionnaire), and structure of the spinal discs (MRI) were examined prior to the intervention, immediately thereafter, and 3 months after the intervention.
  • Results: McKenzie method enriched with MET had the best therapeutic outcomes. The mobility of cervical, thoracic, and lumbar spine normalized at levels corresponding to 87.1%, 66.7%, and 95% of respective average normative values. Implementation of McKenzie method, both alone and combined with MET, was associated with a significant decrease in Oswestry Disability Index, significant alleviation of pain (VAS), and significantly reduced size of spinal disc herniation.
  • Conclusions: The combined method can be effectively used in the treatment of chronic LBP.
  • MeSH Keywords: Low Back Pain, Manipulation, Chiropractic, Manipulation, Spinal

 

Background

 

Low back pain (LBP) is the most prevalent form of musculoskeletal disorder. According to published statistical data, 70�85% of people experience LBP at some stage of their lives [1�7]. Only 39�76% of the patients recover completely after an acute episode of pain, suggesting that a considerable fraction of them develop a chronic condition [8].

 

The goals of physiotherapy in patients with chronic LBP include elimination of pain, restoration of the lost extent of movements, functional improvement, and improvement of the quality of life. These objectives are achieved by various protocols of exercise, manipulation, massage, relaxation techniques, and counselling. Although numerous previously published studies have dealt with various therapeutic modalities of LBP, the evidence of their efficacy is highly inconclusive [9�12]. At present the management of chronic LBP still raises many controversies. Inconsistency of established diagnoses and implemented protocols of management points to the importance of the problem in question. Despite extensive research, the issue of spinal pain management still constitutes a challenge for physicians, physiotherapists, and researchers [8,13].

 

 

McKenzie method is 1 of many treatment modalities of LBP. It is a system of mechanical diagnosis and management of spinal pain syndromes, based on comprehensive and reproducible evaluation, knowledge of symptoms patterns, directional preference, and centralization phenomenon. This method is focused on the spinal disc disorders [14]. McKenzie method is based on the phenomenon of movement of the nucleus pulposus inside the intervertebral disc, depending on the adopted position and the direction of the movements of the spine. The nucleus pulposus that is exposed to the pressure from both surfaces of the vertebral bodies takes the shape of a spherical joint. This means that it has the ability to perform 3 rotary movements in all directions and has 6 degrees of freedom of movement. The nucleus pulposus performs the movements of flexion, extension, lateral bend (left and right), rotation (right and left), linear displacement (slip) along the sagittal axis, linear displacement along the transverse axis and the separation or approximation along the vertical axis [15].Numerous studies have shown that during forward bend of the spine it is possible to observe extension of the rear surface of the fibrous ring, compressing of the front part of the intervertebral disc and the shift of nucleus pulposus to the dorsal side. When stretching, the mechanism is the opposite [16].

 

The musculoskeletal system is vital for the maintenance of the balanced tension of the body. Musculofascial disorders can be associated with various problems, pain, or even loss of some motor function. Muscle Energy Techniques (MET) are among the most popular therapeutic modalities aimed at the improvement of elasticity in contractile and non-contractile tissues [17].

 

High incidence, inconsistencies in diagnostic and therapeutic process, and huge costs associated with the management of chronic spinal disorders stimulate the continuing search for more efficient treatment modalities. This requires the knowledge of neurophysiological processes, proper interpretation of pain, identification of unfavorable motor and postural patterns, holistic approach to the patient, and integration of the information obtained with various therapeutic methods [18].

 

Impact of the McKenzie Method with METs for Low Back Pain | El Paso, TX Chiropractor

 

The aim of this study was to analyze the efficacy of combined treatment with McKenzie method and MET, and to compare it with the outcomes of treatment with McKenzie method or standard physiotherapy in chronic lumbar pain. We evaluated the effect exerted by each of the interventions on the extent of movements, level of experienced pain, and structure of the spinal discs as assessed by means of magnetic resonance imaging.

 

Material and Methods

 

Patients

 

The randomized study included 60 men and women with mean age of 44 years. All individuals were diagnosed by a specialist physician and referred for rehabilitation. The protocol of the study was approved by the Local Bioethical Committee of the Poznan University of Medical Sciences (decision no. 368/0). All patients were diagnosed with chronic spinal pain persisting for longer than 1 year. The inclusion criteria of the study were: 1) documented magnetic resonance imaging (MRI) of the spine, 2) confirmed protrusion or bulging in the lumbosacral spine, 3) intermittent lumbosacral pain, 4) projection of pain to the buttock or thigh, 5) unilateral character of the symptoms. The exclusion criteria were: 1) confirmed extrusion or sequestration of nucleus pulposus of the spinal disc, 2) symptoms manifesting below the knee, 3) history of spinal surgery, 4) structural disorders of spinal discs in more than 2 spinal segments, 5) evident stenosis of the spinal canal, 6) focal lesions of the spinal cord, and 7) spondylolisthesis.

 

Patients showed great interest and all completed the study.

 

Protocol

 

The following tests were used to determine the baseline (i.e. pre-intervention) parameters of the studied patients: 1) electrogoniometric determination of the extent of movement in all spinal segments and angular values of physiological curvatures, 2) Oswestry questionnaire, and 3) Visual Analogue Scale (VAS). Subsequently, the patients were randomly assigned to 1 of 3 therapeutic groups (20 persons each), which were further treated with: 1) McKenzie method and MET, 2) McKenzie method alone, 3) standard physiotherapy. Each of the 3 therapeutic protocols included 10 daily sessions, performed during 5 consecutive weekdays. 24 hours following the last therapeutic session, the same parameters as at the baseline were determined by the investigator blinded to the treatment assignment. Moreover, all patients were subjected to repeated magnetic resonance.

 

Therapeutic Intervention

 

McKenzie group One session lasted 30 minutes. On the basis of the McKenzie spinal pain classification, the derangement syndrome was diagnosed in all patients [14]. The therapy included hyperextension techniques, hyperextension with self-pressure or pressure by the therapist, and hyperextensive mobilization. These techniques were applied in the sagittal plane, following the rule of force progression [14]. Moreover, the patients were asked to self-perform the therapeutic procedure at home (5 cycles per day with 2-hour intervals, 15 repetitions each).

 

McKenzie + MET group The classic McKenzie method enriched with Muscle Energy Technique was implemented. McKenzie protocol in both groups (McKenzie McKenzie + MET) was the same. All patients in this therapeutic group were also diagnosed with the derangement syndrome. A technique of post-isometric relaxation was used at the end of each therapeutic session. It was characterized by the following parameters: 1) time of contraction equal to 7�10 seconds, 2) intensity of contraction corresponding to 20�35%, 3) beginning in the intermediate extent of movement for a given patient, 4) 3 seconds of interval between consecutive contraction phases, 5) 3 repetitions, 6) contraction of antagonist muscle at the terminal phase of the procedure, 7) passive return to the baseline position. The procedure involved relaxation of the erector spinae muscle group and was performed in a sitting position. The exercise was performed in an anterior and lateral flexion, and in rotation. The therapy involved bilateral parts of the erector spinae so as to balance the muscular tension [17]. The duration of 1 combined session was 40 minutes. Patients treated with the combined method were also asked to exercise at home (5 cycles per day with 2-hour intervals, 15 repetitions each).

 

Standard treatment group Individuals randomized to this therapeutic group were treated with classical massage, laser therapy, and transcutaneous electrical nerve stimulation (TENS) applied to the lumbosacral region. Additionally, the patients were asked to perform general exercises strengthening spinal and abdominal muscles (once a day at home). The exercises were to be performed for 15 minutes, in a prone, supine, and lateral position. The aim of the training was to strengthen the muscles stabilizing the pelvic girdle, i.e. the erector spinae, quadratus lumborum, rectus abdominis, oblique abdominal, gluteal, and iliopsoas muscles. The classical massage lasted 20 minutes. The laser therapy was conducted with a contact technique with Lasertronic LT-2S device. The duration of laser therapy was 80 seconds (2�40 s). The treatment was applied on both sides of the spinous processes of the lumbar spine. The parameters of the procedure were as follows: energy 32 J, power of radiation 400 mW, wavelength 810 nm, continuous mode. TENS electrotherapy was performed with Diatronic DT-10B device. The electrodes were placed on both sides of the lumbosacral spine. The parameters of the TENS procedure were as follows: duration 15 minutes, frequency 50 Hz, current 20�30 mA (subjectively adjusted), duration of a single impulse 50 microseconds. The total time per session=36 min 20 sec + 15 min as home exercises once a day.

 

Evaluation of Therapeutic Effect

 

Electrogoniometry The extent of movements and the angles of spinal curvatures were determined with tensiometric Penny & Giles electrogoniometer in Boocok�s modification [19], which prevents potential measurement bias associated with shifting skin and soft tissues in relation to bones. The electrogoniometer enables linear measurement with a bias no greater than 1�. The measurements were taken according to Lewandowski�s methodology [20]. The reliability of these measurements was previously verified by Szulc et al.21 The reference values used in our study were calculated on the basis of Lewandowski�s measurements taken in a group of about 20 000 individuals [20].

 

Revised Oswestry pain questionnaire The degree to which the dysfunction of the lumbar spine limited the performance of the activities of daily living was determined with the Revised Oswestry Pain Questionnaire [22,23]. We used the revised version of the questionnaire as it is the only variant of this instrument which examines the changes in the level of lumbar pain. The survey was conducted twice, prior to and after the therapy.

 

Visual analogue scale (VAS) To verify the efficacy of the therapy, the participants were examined with the visual analogue scale (VAS) at the baseline (prior to the intervention) and 24 hours after completing the treatment [24].

 

Magnetic resonance imaging The degree of degeneration of the spinal discs and the therapeutic outcome were verified on magnetic resonance imaging performed prior to and after the intervention, at the same time of the day. The examination was conducted in sagittal and axial planes, and used T1- and T2-weighted images. The displacement of the nucleus pulposus was expressed in mm. The methodology of examination was described previously by Fazey et al. [25].

 

Statistical Analysis

 

Statistical analysis was conducted with Statistica 10.0 software. Bivariate analysis of variance (AVOVA) with 1 intergroup factor (type of intervention) and 1 intragroup factor (measurement prior to intervention, 24 hours and 3 months after the intervention) was used to analyze the differences in studied parameters resulting from the type of the implemented therapy, and to verify the efficacy of various therapeutic protocols. The significance of differences in multiple comparisons was verified with the Scheff�s post-hoc test.

 

Dr. Alex Jimenez’s Insight

Low back pain is a common symptom that can be treated in a number of ways. Chiropractic care is one of the most common alternative treatment options for LBP, however, healthcare professionals have started using other treatment modalities to help improve symptoms of low back pain. Physical therapy and exercise have commonly been used together, alongside well-known treatment modalities, to help speed up the patient’s recovery process. The research study aims to determine how the McKenzie method and muscular energy techniques can improve low back pain and promote overall health and wellness. As a doctor of chiropractic, the positive effects of physical therapy and exercise is reflected on the recovery of patients.

 

Results

 

The significant effects of bivariate interaction (method � time) suggest that the implemented therapeutic methods exerted variable time-dependent effect on the functional parameters of the spine, Oswestry questionnaire scores, values of visual analog scale, and the results of magnetic resonance imaging in patients with chronic low back pain.

 

Data on the mobility of various spinal segments prior to the intervention, and 24 hours and 3 months after the intervention suggests that the implementation of McKenzie method enriched with MET was reflected by better therapeutic outcome compared to classical McKenzie method and standard physiotherapy. Mobility of various spinal segments in all axes and planes improved significantly as a result of the therapy with McKenzie method enriched in MET. In contrast, the least pronounced improvement of spinal mobility was documented in the case of standard physiotherapy (Tables 1?�3).

 

Table 1 Basic Statistical Characteristics and Significance of Differences Between the Angular Values of the Cervical Spine Mobility | El Paso, TX Chiropractor

Table 1: Basic statistical characteristics and significance of differences between the angular values of the cervical spine mobility depending on the phase of the study and type of implemented therapeutic method.

 

Table 2 Basic Statistical Characteristics and Significance of Differences Between the Angular Values of the Thoracic Spine Mobility | El Paso, TX Chiropractor

Table 2: Basic statistical characteristics and significance of differences between the angular values of the thoracic spine mobility depending on the phase of the study and type of implemented therapeutic method.

 

Table 3 Basic Statistical Characteristics and Significance of Differences Between the Angular Values of the Lumbar Spine Mobility | El Paso, TX Chiropractor

Table 3: Basic statistical characteristics and significance of differences between the angular values of the lumbar spine mobility depending on the phase of the study and type of implemented therapeutic method.

 

The analysis of the anterior flexion of the cervical spine revealed that the improvement of mobility was most pronounced in McKenzie + MET group (?%=42.02). The lack of significant difference between the measurement taken immediately after the intervention and 3 months thereafter suggests that the therapeutic effect was persistent. Less pronounced, albeit significant, improvement of the mobility was also documented in the case of McKenzie method alone (?%=14.79); also this effect persisted after 3 months. In contrast, no significant changes in the extent of anterior flexion of the cervical spine were documented in the group subjected to standard physiotherapy (Figure 1).

 

Figure 1 Mean Angular Values of the Anterior Flexion of the Cervical Spine Determined at Various Phases of the Study | El Paso, TX Chiropractor

Figure 1: Mean angular values of the anterior flexion of the cervical spine determined at various phases of the study in patients treated with three different therapeutic methods (McKenzie method + MET, McKenzie method alone, standard physiotherapy).

 

Also, the analysis of changes in the degree of thoracic and lumbar spine anterior flexion revealed variability in the outcomes of the studied methods (Figures 2, ?3).

 

Figure 2 Mean Angular Values of the Anterior Flexion of the Thoracic Spine Determined at Various Phases of the Study | El Paso, TX Chiropractor

Figure 2: Mean angular values of the anterior flexion of the thoracic spine determined at various phases of the study in patients treated with three different therapeutic methods (McKenzie method + MET, McKenzie method alone, standard physiotherapy).

 

Figure 3 Mean Angular Values of the Anterior Flexion of the Lumbar Spine Determined at Various Phases of the Study | El Paso, TX Chiropractor

Figure 3: Mean angular values of the anterior flexion of the lumbar spine determined at various phases of the study in patients treated with three different therapeutic methods (McKenzie method + MET, McKenzie method alone, standard physiotherapy).

 

The greatest improvement of the mobility, equal to ?%=80.34 and ?%=40.43 in the thoracic and lumbar segment, respectively, was documented in the McKenzie + MET group. The lack of significant difference between the measurements of both the segments taken immediately after the intervention and 3 months thereafter suggests that the therapeutic effect was persistent (Tables 2, ?3). The changes in the remaining functional spinal parameters followed a similar pattern and are summarized in Tables 1?�3.

 

The degree of mobility in various spinal segments observed after implementation of studied therapeutic methods was compared with respective average normative values published by Lewandowski [20[ (Figures 4?�6). Implementation of McKenzie method enriched with MET was reflected by the most pronounced improvement in the spinal mobility, which fit within the respective normative ranges. The functional parameters of cervical, thoracic, and lumbar spine normalized at levels corresponding to 87.1%, 66.7%, and 95% of respective average normative values.

 

Figure 4 Functional Parameters of the Cervical Spine | El Paso, TX Chiropractor

Figure 4: Functional parameters of the cervical spine (CL � cervical lordosis; CAF � cervical anterior flexion; CPF � cervical posterior flexion; CRF � cervical right flexion; CLF � cervical left flexion; CRR � cervical right rotation; CLR � cervical left rotation) � comparison between values determined in patients treated with three different therapeutic methods and respective normative values published by Lewandowski.

 

Figure 5 Functional Parameters of the Thoracic Spine | El Paso, TX Chiropractor

Figure 5: Functional parameters of the thoracic spine (ThK � thoracic kyphosis; ThAF � thoracic anterior flexion; ThPF � thoracic posterior flexion; ThRF � thoracic right flexion; ThLF � thoracic left flexion; ThRR � thoracic right rotation; ThLR � thoracic left rotation) � comparison between values determined in patients treated with three different therapeutic methods and respective normative values published by Lewandowski.

 

Figure 6 Functional Parameters of the Lumbar Spine | El Paso, TX Chiropractor

Figure 6: Functional parameters of the lumbar spine (LL � lumbar lordosis; LAF � lumbar anterior flexion; LPF � lumbar posterior flexion; LRF � lumbar right flexion; LLF � lumbar left flexion; LRR � lumbar right rotation; LLR � lumbar left rotation) � comparison between values determined in patients treated with three different therapeutic methods and respective normative values published by Lewandowski.

 

Irrespective of the therapeutic method and timing of measurement, the angular values of all spinal curvatures fit within the respective normative values and no significant inter- and intragroup differences were documented (Table 4).

 

Table 4 Basic Statistical Characteristics and Significance of Differences Between the Angular Values of the Physiological Spinal Curvatures | El Paso, TX Chiropractor

Table 4: Basic statistical characteristics and significance of differences between the angular values of the physiological spinal curvatures depending on the phase of the study and type of implemented therapeutic method.

 

The scores of Oswestry questionnaire also differed depending on the type of implemented intervention. Implementation of McKenzie method, both alone and combined with MET, was reflected by a significant decrease in Oswestry Disability Index. No significant differences were documented between the outcomes of these 2 methods. In contrast, standard physiotherapy had the least pronounced effect on the Oswestry Disability Index (Table 5).

 

Table 5 | El Paso, TX Chiropractor

Table 5: Basic statistical characteristics and significance of differences between the Oswestry questionnaire scores, values of visual analogue scale, and magnetic resonance imaging findings depending on the phase of the study and type of implemented therapeutic method.

 

The analysis of visual analogue scale values suggests that both McKenzie method enriched with MET and classical McKenzie method produced the strongest therapeutic effects, i.e. alleviation of pain. Implementation of both these methods was reflected by marked augmentation of experienced pain, without any significant intergroup differences. In contrast, standard physiotherapy reduced pain to a minimal extent, and no significant differences were observed between VAS scores obtained prior to and after this intervention (Table 5).

 

Magnetic resonance imaging performed prior to and after the intervention confirmed that McKenzie method enriched with MET produced the best therapeutic outcome manifested by a reduced size of spinal disc herniation. Smaller, albeit significant, improvement of this parameter was also documented in the case of classical McKenzie method. These 2 therapeutic methods did not differ significantly in terms of the post-intervention size of the spinal disc herniation. In contrast, no reduction in the size of the spinal disc herniation was documented after implementation of standard physiotherapy (Table 5).

 

Discussion

 

The number of studies validating the efficacy of combined therapeutic methods and techniques is sparse [3,21,26,27]. Wilson et al. [26] concluded that MET is an optimal adjunct technique for other therapeutic modalities [26].

 

Many studies confirmed the positive effects of McKenzie method [28�36]. Similarly, a body of evidence confirms the therapeutic value of MET [37�44]. Moreover, positive outcomes of both these techniques were documented in patients with spinal pain, including LBP [45,46]. However, to the best of our knowledge, none of the previous studies verified whether the combination of these methods improves the therapeutic outcome.

 

Noticeably, both the therapies are based on different concepts and involve different therapeutic techniques. The McKenzie method is oriented at the management of all structural abnormalities of the spinal discs. The aim of this therapy is to eliminate pain and normalize function of the affected spinal segment [14]. Therefore, McKenzie method focuses on the treatment of spinal disc pathologies as the principal cause of pain. Takasaki et al. [35] documented positive changes in the spinal disc, i.e. the resolution of herniation, in patient treated with McKenzie method.

 

However, various injuries and other medical conditions, as well as repetitive negative motor pattern, are also reflected by the disorders of the musculofascial system. This can be reflected by the development of certain compensatory mechanisms, accumulation of muscular tension, motor limitation, and functional disorders [17,40,42]. In contrast, the treatment of the musculofascial system is not included in the concept of McKenzie method. Therefore, the aim of including the muscle energy techniques in the proposed protocol of combined therapy was to potentiate its therapeutic effect through the relaxation and stretching of contracted musculature, strengthening of weakened muscles, reduction of passive muscular tension, improvement of joint mobility, and normalization of motor function [26,43].

 

The differences observed with regards to the mobility of various spinal segments prior to and after the intervention point to better therapeutic outcome of the combined methods. Noticeably, improved mobility was documented not only in the lumbar spine but also in the cervical and thoracic segment. Therefore, the implementation of MET improved the scope of the combined method (McKenzie + MET) as compared to the classical McKenzie method. Our findings suggest that musculofascial disorders may to a large extent be responsible for limited spinal mobility in patients with chronic LBP. In their papers on the therapeutic effects of manual therapy, Pool et al. [12] and Zaproudina et al. [47] emphasize the importance of limitations in spinal mobility as a sensitive marker of pathological changes.

 

The magnetic resonance findings documented in patients treated with combined McKenzie method and MET suggest that this combination has no negative effect on the size of spinal disc herniation (Figure 7). This confirms the safety of MET and plausibility of its application in patients with spinal disc pathologies [26]. Of note, relatively large subjective and objective improvements were achieved despite the short duration of the treatment, which included only 10 sessions throughout a 2-week period.

 

Figure 7 Magnetic Resonance Images of the Structural Changes of the L5 - S1 Spinal Disc | El Paso, TX Chiropractor

Figure 7: Magnetic resonance images of the structural changes of the L5�S1 spinal disc: (A) prior to, and (B) after the combined therapy (McKenzie method + MET).

 

Furthermore, control electrogoniometry conducted 3 months after the intervention confirmed the persistent effect of the combined treatment. Moreover, a slight improvement was documented in the case of some functional parameters examined immediately after the intervention and 3 months thereafter. Perhaps, this phenomenon reflected proper education of our patients and further prophylactic self-exercising according to McKenzie method.

 

Chronic low back pain (CLBP) has a multifactorial etiology [18], and as such requires multimodal treatment. The evidence of therapeutic effects should not be limited to the diagnostic imaging, but mostly be reflected by functionality of a patient, level of experienced pain, extent of movements, and normalization of motor function.

 

Conclusions

 

The following conclusions can be formulated on the basis of our findings:

 

  1. Comparison of the subjective and objective outcomes of 3 therapeutic methods � standard physiotherapy, McKenzie method alone, and McKenzie method combined with MET � in patients with chronic low back pain suggests that the combined method is the most effective.
  2. The use of the combined method (McKenzie + MET) exerts a positive effect on structural (resolution of spinal disc herniation documented on MRI) and functional parameters (improved mobility of various spinal segments), improves the quality of life, and reduces the level of experienced pain.

 

Acknowledgements

 

The study was conducted under the auspices of the University School of Physical Education in Poznan. The authors express their gratitude to the owners of the Private Rehabilitation Practice �Antidotum� for consent to perform the study in their facility.

 

Footnotes

 

  • Source of support: The study was supported by the resources from the Ministry of Science and Higher Education for the statutory activity of the Department of Anatomy of the University School of Physical Education in Poznan
  • Conflict of interest: None declared.

 

In conclusion, the research study demonstrating clinical and experimental evidence on the impact of the McKenzie method with METs for low back pain, one of the most common complaints affecting spine health, concluded that the combined treatment modalities were effectively used in the improvement of chronic low back pain. The purpose of the article was to educate and advice patients with low back pain on the use of METs with the McKenzie method. Furthermore, the use of the combined treatment modalities demonstrated a positive effect on structural and functional parameters, improving the patient’s quality of life and reducing the level of pain they experienced. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

[accordions title=”References”]
[accordion title=”References” load=”hide”]1. Drozda K, Lewandowski J, G�rski P. Back pain in lower and upper secondary school pupils living in urban areas of Poland. The case of Poznan. Ortopedia, Traumatologia, Rehabilitacja. 2011;13(5(6)):489�503. [PubMed]
2. Drozda K, Lewandowski J. Epidemiology of back pain among secondary school pupils in Poznan. Fizjoterapia Polska. 2011;4(1):31�40.
3. Dunsford A, Kumar S, Clarke S. Integrating evidence into practice: use of McKenzie-based treatment for mechanical low back pain. J Multidiscip Healthc. 2011;4:393�402. [PMC free article] [PubMed]
4. Joud A, Petersson IF, Englund M. Low back pain: epidemiology of consultations. Arthritis Care Res (Hoboken) 2012;64:b1084�88. [PubMed]
5. Lewandowski J, Szulc P, Boch-Kmieciak J, et al. Epidemiology of low back pain in students of physical education and physiotherapy. Studies in Physical Culture and Tourism. 2011;18(3):265�69.
6. Pereira LM, Obara K, Dias JM, et al. Comparing the Pilates method with no exercise or lumbar stabilization for pain and functionality in patients with chronic low back pain: systematic review and meta-analysis. Clin Rehabil. 2012;26:10�20. [PubMed]
7. Werneke MW, Hart D, Oliver D, et al. Prevalence of classification methods for patients with lumbar impairments using the McKenzie syndromes, pain pattern, manipulation, and stabilization clinical prediction rules. J Man Manip Ther. 2010;18:197�204. [PMC free article] [PubMed]
8. da C Menezes Costa L, Maher CG, Hancock MJ, et al. The prognosis of acute and persistent low-back pain: a meta-analysis. CMAJ. 2012;184:E613�24. [PMC free article] [PubMed]
9. Borges TP, Greve JM, Monteiro AP, et al. Massage application for occupational low back pain in nursing staff. Rev Lat Am Enfermagem. 2012;20:511�19. [PubMed]
10. Cherkin DC, Sherman KJ, Kahn J, et al. A comparison of the effects of 2 types of massage and usual care on chronic low back pain: a randomized, controlled trial. Ann Intern Med. 2011;155:1�9. [PMC free article] [PubMed]
11. Kilpikoski S, Al�n M, Paatelma M, et al. Outcome comparison among working adults with centralizing low back pain: Secondary analysis of a randomized controlled trial with 1-year follow-up. Adv Physiother. 2009;11:210�17.
12. Pool JJ, Ostelo RW, Knol DL, et al. Is a behavioral graded activity program more effective than manual therapy in patients with subacute neck pain? Results of a randomized clinical trial. Spine. 2010;35:1017�24. [PubMed]
13. Frankel BS, Moffett JK, Keen S, et al. Guidelines for low back pain: changes in GP management. Fam Pract. 1999;16:216�22. [PubMed]
14. McKenzie R, May S. The lumbar spine: mechanical diagnosis and therapy. 2nd ed. Waikanae: Spinal Publications; 2003.
15. Kanpandji AI. Anatomia funkcjonalna staw�w. Tom 3.6 ed. Wroc?aw: Elsevier Urban & Partners; 2010. [in Polish]
16. Alexander LA, Hancock E, Agouris I, et al. The response of the nucleus pulposus of the lumbar intervertebral discs to functionally loaded positions. Spine. 2007;32(14):1508�12. [PubMed]
17. Chaitow L. Muscle energy techniques. 3rd ed. Edinburgh: Churchill Livingstone; 2006.
18. O�Sullivan P. It�s time for change with the management of non-specific chronic low back pain. Br J Sports Med. 2012;46:224�27. [PubMed]
19. Boocock MG, Jackson JA, Burton AK, et al. Continuous measurement of lumbar posture using flexible electrogoniometers. Ergonomics. 1994;37:175�85. [PubMed]
20. Lewandowski J. Formation of physiological curvatures and segmental mobility of the human spine aged from 3 to 25 years in electrogoniometric studies. 1st ed. Poznan: AWF Poznan; 2006.
21. Szulc P, Lewandowski J, Marecki B. Verification of selected anatomic landmarks used as reference points for universal goniometer positioning during knee joints mobility range measurements. Med Sci Monit. 2001;7:312�15. [PubMed]
22. Fairbank JC, Pynsent PB. The Oswestry disability index. Spine. 2000;25:2940�52. [PubMed]
23. Hicks GE, Manal TJ. Psychometric properties of commonly used low back disability questionnaires: are they useful for older adults with low back pain? Pain Med. 2009;10:85�94. [PMC free article] [PubMed]
24. Mudgalkar N, Bele SD, Valsangkar S, et al. Utility of numerical and visual analog scales for evaluating the post-operative pain in rural patients. Indian J Anaesth. 2012;56:553�57. [PMC free article] [PubMed]
25. Fazey PJ, Takasaki H, Singer KP. Nucleus pulposus deformation in response to lumbar spine lateral flexion: an in vivo MRI investigation. Eur Spine J. 2010;19(11):1115�20. [PMC free article] [PubMed]
26. Wilson E, Payton O, Donegan-Shoaf L, et al. Muscle energy technique in patients with acute low back pain: a pilot clinical trial. J Orthop Sports Phys Ther. 2003;33:502�12. [PubMed]
27. Bronfort G, Goldsmith CH, Nelson CF, et al. Trunk exercise combined with spinal manipulative or NSAID therapy for chronic low back pain: a randomized, observer-blinded clinical trial. J Manipulative Physiol Ther. 1996;19:570�82. [PubMed]
28. Bybee RF, Olsen DL, Cantu-Boncser G, et al. Centralization of symptoms and lumbar range of motion in patients with low back pain. Physiother Theory Pract. 2009;25:257�67. [PubMed]
29. Chen J, Phillips A, Ramsey M, et al. A case study examining the effectiveness of mechanical diagnosis and therapy in a patient who met the clinical prediction rule for spinal manipulation. J Man Manip Ther. 2009;17:216�20. [PMC free article] [PubMed]
30. Garcia AN, Gondo FL, Costa RA, et al. Effects of two physical therapy interventions in patients with chronic non-specific low back pain: feasibility of a randomized controlled trial. Rev Bras Fisioter. 2011;15:420�27. [PubMed]
31. Hosseinifar M, Akbari M, Behtash H, et al. The effects of stabilization and Mckenzie exerciseson transverse abdominis and multifidus muscle thickness, pain, and disability: A randomized controlled trial in nonspecific chronic low back pain. J Phys Ther Sci. 2012;25:1541�45. [PMC free article] [PubMed]
32. Mbada CE, Ayanniyi O, Ogunlade SO, et al. Influence of Mckenzie protocol and two modes of endurance exercises on health-related quality of life of patients with long-term mechanical low-back pain. Pan Afr Med J. 2014;17(Supp 1):5. [PMC free article] [PubMed]
33. Garcia AN, da Cunha Menezes Costa L, Hancock MJ, et al. Efficacy of the McKenzie method in patients with chronic nonspecific low back pain: a protocol of randomized placebo-controlled trial. Phys Ther. 2015;95:267�73. [PubMed]
34. Schenk RJ, Jozefczyk C, Kopf A. A randomized trial comparing interventions in patients with lumbar posterior derangement. J Man Manip Ther. 2003;11:95�102.
35. Takasaki H, May S, Fazey PJ, et al. Nucleus pulposus deformation following application of mechanical diagnosis and therapy: a single case report with magnetic resonance imaging. J Man Manip Ther. 2010;18:153�58. [PMC free article] [PubMed]
36. Williams B, Vaughn D, Holwerda T. A mechanical diagnosis and treatment (MDT) approach for a patient with discogenic low back pain and a relevant lateral component: a case report. J Man Manip Ther. 2011;19:113�18. [PMC free article] [PubMed]
37. Chugh R, Kalra S, Sharma N, et al. Effects of muscle energy techniques and its comparison to self stretch of bilateral ankle plantarflexors on performance of balance scores in healthy elderly subjects. Physiother Occup Ther J. 2011;4:61�71.
38. Fryer G, Ruszkowski W. The influence of contraction duration in muscle energy technique applied to the atlanto-axial joint. J Osteopath Med. 2004;7:79�84.
39. Fryer G, Pearce AJ. The effect of muscle energy technique on corticospinal and spinal reflex excitability in asymptomatic participants. J Bodyw Mov Ther. 2013;17(4):440�47. [PubMed]
40. Gugliotti M. The use of mobilization, muscle energy technique, and soft tissue mobilization following a modified radical neck dissection of a patient with head and neck cancer. Rehabil Oncol. 2011;29:3�8.
41. K???k?en S, Yilmaz H, Sall? A, U?urlu H. Muscle energy technique versus corticosteroid injection for management of chronic lateral epicondylitis: Randomized controlled trial with 1-year follow-up. Arch Phys Med Rehabil. 2013;94:2068�74. [PubMed]
42. Moore SD, Laudner KG, McLoda TA, et al. The immediate effects of muscle energy technique on posterior shoulder tightness: a randomized controlled trial. J Orthop Sports Phys Ther. 2011;41:400�7. [PubMed]
43. Rajadurai V. The effect of muscle energy technique on temporomandibular joint dysfunction: a randomized clinical trail. Asian J Sci Res. 2011;4:71�77.
44. Shadmehr A, Hadian MR, Naiemi SS, et al. Hamstring flexibility in young women following passive stretch and muscle energy technique. J Back Musculoskelet Rehabil. 2009;22:143�48. [PubMed]
45. Day JM, McKeon P, Nitz A. The efficacy of cervical/thoracic active range of motion for detecting changes associated with individuals receiving muscle energy techniques. Phys Ther Rev. 2010;15:453�61.
46. Day JM, Nitz AJ. The effect of muscle energy techniques on disability and pain scores in individuals with low back pain. J Sport Rehabil. 2012;21:194�98. [PubMed]
47. Zaproudina N, Hietikko T, Hanninen OO, et al. Effectiveness of traditional bone setting in treating chronic low back pain: a randomised pilot trial. Complement Ther Med. 2009;17:23�28. [PubMed][/accordion]
[/accordions]

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Sciatica

 

Sciatica is referred to as a collection of symptoms rather than a single type of injury or condition. The symptoms are characterized as radiating pain, numbness and tingling sensations from the sciatic nerve in the lower back, down the buttocks and thighs and through one or both legs and into the feet. Sciatica is commonly the result of irritation, inflammation or compression of the largest nerve in the human body, generally due to a herniated disc or bone spur.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: Treating Sciatica Pain

 

 

Evaluation of the McKenzie Method for Low Back Pain

Evaluation of the McKenzie Method for Low Back Pain

Acknowledging statistical data, low back pain can be the result of a variety of injuries and/or conditions affecting the lumbar spine and its surrounding structures. Most cases of low back pain, however, will resolve on their own in a matter of weeks. But when symptoms of low back pain become chronic, its essential for the affected individual to seek treatment from the most appropriate healthcare professional. The McKenzie method has been used by many healthcare specialists in the treatment of low back pain and its effects have been recorded widely throughout various research studies. The following two articles are being presented to evaluate the McKenzie method in the treatment of LBP in comparison to other types of treatment options.

 

Efficacy of the McKenzie Method in Patients With Chronic Nonspecific Low Back Pain: A Protocol of Randomized Placebo-Controlled Trial

 

Presented Abstract

 

  • Background: The McKenzie method is widely used as an active intervention in the treatment of patients with nonspecific low back pain. Although the McKenzie method has been compared with several other interventions, it is not yet known whether this method is superior to placebo in patients with chronic low back pain.
  • Objective: The purpose of this trial is to assess the efficacy of the McKenzie method in patients with chronic nonspecific low back pain.
  • Design: An assessor-blinded, 2-arm, randomized placebo-controlled trial will be conducted.
  • Setting: This study will be conducted in physical therapy clinics in S�o Paulo, Brazil.
  • Participants: The participants will be 148 patients seeking care for chronic nonspecific low back pain.
  • Intervention: Participants will be randomly allocated to 1 of 2 treatment groups: (1) McKenzie method or (2) placebo therapy (detuned ultrasound and shortwave therapy). Each group will receive 10 sessions of 30 minutes each (2 sessions per week over 5 weeks).
  • Measurements: The clinical outcomes will be obtained at the completion of treatment (5 weeks) and at 3, 6, and 12 months after randomization. The primary outcomes will be pain intensity (measured with the Pain Numerical Rating Scale) and disability (measured with the Roland-Morris Disability Questionnaire) at the completion of treatment. The secondary outcomes will be pain intensity; disability and function; kinesiophobia and global perceived effect at 3, 6, and 12 months after randomization; and kinesiophobia and global perceived effect at completion of treatment. The data will be collected by a blinded assessor.
  • Limitations: Therapists will not be blinded.
  • Conclusions: This will be the first trial to compare the McKenzie method with placebo therapy in patients with chronic nonspecific low back pain. The results of this study will contribute to better management of this population.
  • Subject: Therapeutic Exercise, Injuries and Conditions: Low Back, Protocols
  • Issue Section: Protocol

 

Low back pain is a major health condition associated with a high rate of absenteeism from work and a more frequent use of health services and work leave entitlements.[1] Low back pain recently was rated by the Global Burden of Disease Study as one of the 7 health conditions that most affect the world’s population,[2] and it is considered a debilitating health condition that affects the population for the greatest number of years over a lifetime.[2] The point prevalence of low back pain in the general population is reported to be up to 18%, increasing to 31% in the last 30 days, 38% in the last 12 months, and 39% at any point in life.[3] Low back pain also is associated with high treatment costs.[4] It is estimated that in European countries, the direct and indirect costs vary from �2 to �4 billion a year.[4] The prognosis of low back pain is directly related to the duration of the symptoms.[5,6] Patients with chronic low back pain have a less favorable prognosis compared with patients with acute low back pain[5,7] and are responsible for most of the costs for management of back pain, generating the need for research aimed at finding better treatments for these patients.

 

There is a great variety of interventions for the treatment of patients with chronic low back pain, including the McKenzie method developed by Robin McKenzie in New Zealand in 1981.[8] The McKenzie method (also known as Mechanical Diagnosis and Therapy [MDT]) is an active therapy that involves repeated movements or sustained positions and has an educational component with the purpose of minimizing pain and disability and improving spinal mobility.[8] The McKenzie method involves the assessment of symptomatic and mechanical responses to repeated movements and sustained positions. Patients’ responses to this assessment are used to classify them into subgroups or syndromes called derangement, dysfunction, and posture.[8�10] Classification according to one of these groups guides the treatment principles.

 

 

Derangement syndrome is the largest group and characterized by patients who demonstrate centralization (transition of pain from distal to proximal) or disappearance of pain[11] with repeated movement testing in one direction. These patients are treated with repeated movements or sustained positions that could reduce pain. Patients classified as having dysfunction syndrome are characterized by pain that occurs only at the end of the range of motion of only one movement.[8] The pain does not change or centralize with repeated movement testing. The treatment principle for patients with dysfunction is repeated movements in the direction that generated the pain. Finally, patients classified as having postural syndrome experience intermittent pain only during sustained positioning at the end of the range of motion (eg, sustained slumped sitting).[8] The treatment principle for this syndrome consists of posture correction.[11]

 

The McKenzie method also includes a strong educational component based on the books titled The Lumbar Spine: Mechanical Diagnosis & Therapy: Volume Two[11] and Treat Your Own Back.[12] This method, unlike other therapeutic methods, aims to make the patients as independent of the therapist as possible and thus capable of controlling their pain through postural care and the practice of specific exercises for their problem.[11] It encourages patients to move the spine in the direction that is not harmful to their problem, thus avoiding movement restriction due to kinesiophobia or pain.[11]

 

Two previous systematic reviews have analyzed the effects of the McKenzie method[9,10] in patients with acute, subacute, and chronic low back pain. The review by Clare et al[9] demonstrated that the McKenzie method showed better results in short-term pain relief and improvement of disability compared with active interventions such as physical exercise. The review by Machado et al[10] showed that the McKenzie method reduced pain and disability in the short term when compared with passive therapy for acute low back pain. For chronic low back pain, the 2 reviews were unable to draw conclusions about the effectiveness of the McKenzie method due to the lack of appropriate trials. The randomized controlled trials that have investigated the McKenzie method in patients with chronic low back pain[13�17] compared the method with other interventions such as resistance training,[17] the Williams method,[14] unsupervised exercises,[16] trunk strengthening,[15] and stabilization exercises.[13] Better results in reducing pain intensity were obtained with the McKenzie method compared with resistance training,[17] the Williams method,[14] and supervised exercise.[16] However, the methodological quality of these trials[13�17] is suboptimal.

 

It is known from the literature that the McKenzie method yields beneficial results when compared with some clinical interventions in patients with chronic low back pain; however, to date, no studies have compared the McKenzie method against a placebo treatment in order to identify its actual efficacy. Clare et al[9] highlighted the need to compare the McKenzie method with placebo therapy and to study the effects of the method in the long term. In other words, it is not known whether the positive effects of the McKenzie method are due to its real efficacy or simply to a placebo effect.

 

The objective of this study will be to assess the efficacy of the McKenzie method in patients with chronic nonspecific low back pain using a high-quality randomized placebo-controlled trial.

 

Method

 

Study Design

 

This will be an assessor-blinded, 2-arm, randomized placebo-controlled trial.

 

Study Setting

 

This study will be conducted in physical therapy clinics in S�o Paulo, Brazil.

 

Eligibility Criteria

 

The study will include patients seeking care for chronic nonspecific low back pain (defined as pain or discomfort between the costal margins and the inferior gluteal folds, with or without referred symptoms in the lower limbs, for at least 3 months[18]), with a pain intensity of at least 3 points as measured with the 0- to 10-point Pain Numerical Rating Scale, aged between 18 and 80 years, and able to read Portuguese. Patients will be excluded if they have any contraindication to physical exercise[19] or ultrasound or shortwave therapy, evidence of nerve root compromise (ie, one or more motor, reflex, or sensation deficits), serious spinal pathology (eg, fracture, tumor, inflammatory and infectious diseases), serious cardiovascular and metabolic diseases, previous back surgery, or pregnancy.

 

Procedure

 

First, the patients will be interviewed by the study’s blinded assessor, who will determine eligibility. Eligible patients will be informed about the objectives of the study and asked to sign a consent form. Next, the patient’s sociodemographic data and medical history will be recorded. The assessor will then collect the data related to the study outcomes at the baseline assessment, after completion of 5 weeks of treatment, and 3, 6, and 12 months after randomization. With the exception of baseline measurements, all other assessments will be collected over the telephone. All data entry will be coded, entered into an Excel (Microsoft Corporation, Redmond, Washington) spreadsheet, and double-checked prior to the analysis.

 

Evaluation of the McKenzie Method for Low Back Pain Body Image 3 | El Paso, TX Chiropractor

 

Outcome Measures

 

The clinical outcomes will be measured at the baseline assessment, after treatment, and 3, 6, and 12 months after random allocation. The primary outcomes will be pain intensity (measured with the Pain Numerical Rating Scale)[20] and disability (measured with the Roland-Morris Disability Questionnaire)[21,22] after completion of 5 weeks of treatment. The secondary outcomes will be pain intensity and disability 3, 6, and 12 months after randomization and disability and function (measured by the Patient-Specific Functional Scale),[20] kinesiophobia (measured with the Tampa Scale of Kinesiophobia),[23] and global perceived effect (measured with the Global Perceived Effect Scale)[20] after treatment and 3, 6, and 12 months after randomization. On the day of the baseline assessment, each patient’s expectancy for improvement also will be assessed using the Expectancy of Improvement Numerical Scale,[24] followed by assessment using the McKenzie method.[8] Patients may experience an exacerbation of symptoms after the baseline assessment due to the MDT physical examination. All measurements were previously cross-culturally adapted into Portuguese and clinimetrically tested and are described below.

 

Pain Numerical Rating Scale

 

The Pain Numerical Rating Scale is a scale that assesses the levels of pain intensity perceived by the patient using an 11-point scale (varying from 0 to 10), in which 0 represents �no pain� and 10 represents the �worst possible pain.�[20] The participants will be instructed to select the average of pain intensity based on the last 7 days.

 

Roland-Morris Disability Questionnaire

 

This questionnaire consists of 24 items that describe daily activities that patients have difficulty performing due to low back pain.[21,22] The higher the number of affirmative answers, the higher the level of disability associated with low back pain.[21,22] The participants will be instructed to complete the questionnaire based on the last 24 hours.

 

Patient-Specific Functional Scale

 

The Patient-Specific Functional Scale is a global scale; therefore, it can be used for any part of the body.[25,26] The patients will be asked to identify up to 3 activities that they feel unable to perform or that they have difficulty performing due to their low back pain.[25,26] Measurement will be taken using Likert-type, 11-point scales for each activity, with higher average scores (ranging from 0 to 10 points) representing better ability to perform the tasks.[25,26] We will calculate the average of these activities based on the last 24 hours, with a final score ranging from 0 to 10.

 

Global Perceived Effect Scale

 

The Global Perceived Effect Scale is a Likert-type, 11-point scale (ranging from ?5 to +5) that compares the patient’s current condition with his or her condition at the onset of symptoms.[20] Positive scores apply to patients who are better and negative scores apply to patients who are worse in relation to the onset of symptoms.[20]

 

Tampa Scale of Kinesiophobia

 

This scale assesses the level of kinesiophobia (fear of moving) by means of 17 questions that deal with pain and intensity of symptoms.[23] The scores from each item vary from 1 to 4 points (eg, 1 point for �strongly disagree,� 2 points for �partially disagree,� 3 points for �agree,� and 4 points for �strongly agree�).[23] For the total score, it is necessary to invert the scores of questions 4, 8, 12, and 16.[23] The final score can vary from 17 to 68 points, with higher scores representing a higher degree of kinesiophobia.[23]

 

Expectancy of Improvement Numerical Scale

 

This scale assesses the patient’s expectancy for improvement after treatment in relationship to a specific treatment.[24] It consists of an 11-point scale varying from 0 to 10, in which 0 represents �no expectancy for improvement� and 10 represents �expectancy for the greatest possible improvement.�[24] This scale will be administered only on the first day of assessment (baseline) before the randomization. The reason for including this scale is to analyze whether the expectation of improvement will influence the outcomes.

 

Random Allocation

 

Before the treatment begins, the patients will be randomly allocated to their respective intervention groups. The random allocation sequence will be implemented by one of the researchers not involved with recruiting and assessing the patients and will be generated on Microsoft Excel 2010 software. This random allocation sequence will be inserted into sequentially numbered, opaque, sealed envelopes (to ensure that allocation is concealed from the assessor). The envelopes will be opened by the physical therapist who will treat the patients.

 

Blinding

 

Given the nature of the study, it is not possible to blind the therapists to the conditions of treatment; however, the assessor and the patients will be blinded to the treatment groups. At the end of the study, the assessor will be asked whether the patients were allocated to the real treatment group or to the placebo group in order to measure assessor blinding. A visual representation of the study design is presented in the Figure.

 

Figure 1 Flow Diagram of the Study

Figure 1: Flow Diagram of the Study.

 

Interventions

 

The participants will be allocated to groups receiving 1 of 2 interventions: (1) placebo therapy or (2) MDT. Participants in each group will receive 10 sessions of 30 minutes each (2 sessions per week over 5 weeks). The studies on the McKenzie method do not have a standard number of sessions given that some studies propose low doses of treatment,[16,17,27] and others recommend higher doses.[13,15]

 

For ethical reasons, on the first day of treatment, patients from both groups will receive an information booklet called The Back Book,[28] based on the same recommendations as the existing guidelines.[29,30] This booklet will be translated into Portuguese so that it can be completely understood by the study’s participants, who will receive additional explanations regarding the content of the booklet, if needed. Patients will be asked in each session if they have felt any different symptom. The chief investigator of the study will periodically audit the interventions.

 

Placebo Group

 

The patients allocated to the placebo group will be treated with detuned pulsed ultrasound for 5 minutes and detuned shortwave diathermy in pulsed mode for 25 minutes. The devices will be used with the internal cables disconnected to obtain the placebo effect; however, it will be possible to handle them and adjust doses and alarms as if they were connected to simulate the pragmatism of clinical practice as well as to increase credibility of use of these devices on the patients. This technique has been used successfully in previous trials with patients with low back pain.[31�35]

 

McKenzie Group

 

The patients of the McKenzie group will be treated according to the principles of the McKenzie method,[8] and the choice of therapeutic intervention will be guided by the physical examination findings and classification. Patients also will receive written instructions from the Treat Your Own Back[12] book and will be asked to perform home exercises based on the principles of McKenzie method.[11] The descriptions of the exercises that will be prescribed in this study are published elsewhere.[27] Adherence to home exercises will be monitored by means of a daily log that the patient will fill in at home and bring to the therapist at each subsequent session.

 

Evaluation of the McKenzie Method for Low Back Pain Body Image 2 | El Paso, TX Chiropractor

 

Statistical Methods

 

Sample Size Calculation

 

The study was designed to detect a difference of 1 point in pain intensity measured with the Pain Numerical Rating Scale[20 ](estimate for standard deviation=1.84 points)[31] and a difference of 4 points in disability associated with low back pain measured with the Roland-Morris Disability Questionnaire[21,22] (estimate for standard deviation=4.9 points).[31] The following specifications were considered: statistical power of 80%, alpha level of 5%, and follow-up loss of 15%. Therefore, the study will require a sample of 74 patients per group (148 in total).

 

Analysis of the Effects of Treatment

 

The statistical analysis of our study will follow intention-to-treat principles.[36] The normality of the data will be tested by visual inspection of histograms, and the characterization of the participants will be calculated using descriptive statistical tests. The between-group differences (effects of treatment) and their respective 95% confidence intervals will be calculated by constructing mixed linear models[37] using interaction terms of treatment groups versus time. We will conduct a secondary exploratory analysis to assess whether patients classified as having derangement syndrome have a better response to the McKenzie method (compared with placebo) than those with other classifications. For this assessment, we will use a 3-way interaction for group, time, and classification. For all of these analyses, we will use the IBM SPSS software package, version 19 (IBM Corp, Armonk, New York).

 

Ethics

 

This study was approved by the Research Ethics Committee of the Universidade Cidade de S�o Paulo (#480.754) and prospectively registered at ClinicalTrials.gov (NCT02123394). Any protocol modifications will be reported to the Research Ethics Committee as well as to the trial registry.

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

Low back pain is one of the most common reasons people seek immediate medical attention for every year. Although many healthcare professionals are qualified and experienced in the diagnosis of the source of the patient’s low back pain, finding the right healthcare specialist who can provide the proper treatment for the individual’s LBP can be the real challenge. A variety of treatments can be used to treat low back pain, however, a wide array of healthcare professionals have started utilizing the McKenzie method in the treatment of patients with nonspecific low back pain. The purpose of the following article is to evaluate the effectiveness of the McKenzie method for low back pain, carefully analyzing the data of the research study.

 

Discussion

 

Potential Impact and Significance of the Study

 

The existing randomized controlled trials investigating the McKenzie method in patients with chronic low back pain have all used an alternative intervention as the comparison group.[14�17] To date, no study has compared the McKenzie method with a placebo treatment in patients with low back pain in order to identify its real efficacy, which is an important gap in the literature.[9] Interpretation of the previous comparative effectiveness studies is limited by the lack of knowledge of the efficacy of the McKenzie method for people with chronic low back pain. This study will be the first to compare McKenzie method with placebo therapy in patients with chronic nonspecific low back pain. A proper comparison against a placebo group will provide more unbiased estimates of the effects of this intervention. This type of comparison has already been done in trials aiming to assess the efficacy of motor control exercises for patients with chronic low back pain,[31] spinal manipulative therapy and diclofenac for patients with acute low back pain,[38] and exercise and advice for patients with subacute low back pain.[39]

 

Contribution to the Physical Therapy Profession and for Patients

 

The McKenzie method is one of the few methods used in physical therapy that advocates for the independence of patients.[8,12] This method also provides patients with tools to promote their autonomy in managing the current pain and even future recurrences.[12] We expect that patients treated with the McKenzie method will benefit more than the patients treated with the placebo treatment. If this hypothesis is confirmed in our study, the results will contribute to better clinical decision making of physical therapists. Moreover, the approach has the potential to reduce the burden associated with the recurrent nature of low back pain if patients can better self-manage future episodes.

 

Strengths and Weaknesses of the Study

 

This trial contemplates a substantial number of patients to minimize bias, and it was prospectively registered. We will use true randomization, concealed allocation, blinded assessment, and an intention-to-treat analysis. The treatments will be conducted by 2 therapists who were extensively trained to perform the interventions. We will monitor the home exercise program. Unfortunately, due to the interventions, we will not be able to blind the therapists to the treatment allocation. It is known from the literature that the McKenzie method yields beneficial results when compared with some clinical interventions in patients with chronic low back pain.[14�17] To date, however, no studies have compared the McKenzie method with a placebo treatment in order to identify its actual efficacy.

 

Future Research

 

The intention of this study group is to submit the results of this study to a top-level, international peer-reviewed journal. These published results may provide a basis for future trials that investigate the effectiveness of the McKenzie method when delivered at different doses (different numbers of sets, repetitions, and sessions), which is still unclear in the literature. Our secondary exploratory analysis aims to assess whether patients classified as having derangement syndrome have a better response to the McKenzie method (compared with placebo treatment) than those with other classifications. This assessment will contribute to a better understanding of possible subgroups of patients with chronic low back pain who respond best to specific interventions. This is an important issue, as exploring subgroups is currently considered the most important research priority in the field of low back pain.[40]

 

This study was fully funded by S�o Paulo Research Foundation (FAPESP) (grant number 2013/20075-5). Ms Garcia is funded by a scholarship from the Coordination for the Improvement of Higher Education Personnel/Brazilian Government (CAPES/Brazil).

 

The study was prospectively registered at ClinicalTrials.gov (trial registration: NCT02123394).

 

Predicting a Clinically Important Outcome in Patients with Low Back Pain Following McKenzie Therapy or Spinal Manipulation: A Stratified Analysis in a Randomized Controlled Trial

 

Presented Abstract

 

  • Background: Reports vary considerably concerning characteristics of patients who will respond to mobilizing exercises or manipulation. The objective of this prospective cohort study was to identify characteristics of patients with a changeable lumbar condition, i.e. presenting with centralization or peripheralization, that were likely to benefit the most from either the McKenzie method or spinal manipulation.
  • Methods: 350 patients with chronic low back pain were randomized to either the McKenzie method or manipulation. The possible effect modifiers were age, severity of leg pain, pain-distribution, nerve root involvement, duration of symptoms, and centralization of symptoms. The primary outcome was the number of patients reporting success at two months follow-up. The values of the dichotomized predictors were tested according to the prespecified analysis plan.
  • Results: No predictors were found to produce a statistically significant interaction effect. The McKenzie method was superior to manipulation across all subgroups, thus the probability of success was consistently in favor of this treatment independent of predictor observed. When the two strongest predictors, nerve root involvement and peripheralization, were combined, the chance of success was relative risk 10.5 (95% CI 0.71-155.43) for the McKenzie method and 1.23 (95% CI 1.03-1.46) for manipulation (P?=?0.11 for interaction effect).
  • Conclusions: We did not find any baseline variables which were statistically significant effect modifiers in predicting different response to either McKenzie treatment or spinal manipulation when compared to each other. However, we did identify nerve root involvement and peripheralization to produce differences in response to McKenzie treatment compared to manipulation that appear to be clinically important. These findings need testing in larger studies.
  • Trial registration: Clinicaltrials.gov: NCT00939107
  • Electronic supplementary material: The online version of this article (doi:10.1186/s12891-015-0526-1) contains supplementary material, which is available to authorized users.
  • Keywords: Low back pain, McKenzie, Spinal manipulation, Predictive value, Effect modification

 

Background

 

The most recent published guidelines for the treatment of patients with persistent non-specific low back pain (NSLBP) recommend a program focusing on self-management after initial advice and information. These patients should also be offered structured exercises tailored to the individual patient and other modalities such as spinal manipulation [1,2].

 

Previous studies have compared the effect of the McKenzie-method, also known as Mechanical Diagnosis and Therapy (MDT), with that of spinal manipulation (SM) in heterogeneous populations of patients with acute and subacute NSLBP and found no difference in outcome [3,4].

 

Evaluation of the McKenzie Method for Low Back Pain Body Image 4 | El Paso, TX Chiropractor

 

Recently, the need for studies testing the effect of treatment strategies for subgroups of patients with NSLBP in primary care has been emphasized in consensus-papers [5,6] as well as the current European guidelines [7], based on the hypothesis that subgroup analyses, preferably complying with the recommendations of �Prognostic Factor Research�[8], will improve decision making towards the most effective management strategies. Although initial data show promising results, there is presently insufficient evidence to recommend specific methods of subgrouping in primary care [1,9].

 

Three randomized studies, comprising patients with predominantly acute or subacute low back pain (LBP), have tested the effects of MDT versus SM in a subgroup of patients that presented with centralization of symptoms or directional preference (favorable response to end range motions) during physical examination [10-12]. The conclusions drawn from these studies were not in concurrence and the usefulness was limited by a low methodological quality.

 

Our recent randomized study, comprising patients with predominantly chronic LBP (CLBP), found a marginally better overall effect of MDT versus SM in an equivalent group [13]. In order to pursue the idea of subgrouping further, it was part of the study plan to explore predictors based on patient characteristics that could assist the clinician in targeting the most favorable treatment to the individual patient.

 

The objective of this study was to identify subgroups of patients with predominantly CLBP, presenting with centralization or peripheralization, which were likely to benefit from either MDT or SM two months after the completion of treatment.

 

Methods

 

Data Collection

 

The present study is a secondary analysis of a previously published randomized controlled trial [13]. We recruited 350 patients from September 2003 through May 2007 at an outpatient back care centre in Copenhagen, Denmark.

 

Patients

 

Patients were referred from primary care physicians for treatment of persistent LBP. Eligible patients were between 18 and 60 years of age, suffering from LBP with or without leg pain for a period of more than 6 weeks, able to speak and understand the Danish language, and fulfilled the clinical criteria for centralization or peripheralization of symptoms during initial screening. Centralization was defined as the abolition of symptoms in the most distal body region (such as the foot, lower leg, upper leg, buttocks, or lateral low back) and peripheralization was defined as the production of symptoms in a more distal body region. These findings have previously been found to have acceptable degree of inter-tester reliability (Kappa value 0.64) [14]. The initial screening was performed prior to randomization by a physical therapist with a diploma in the MDT examination system. Patients were excluded if they were free of symptoms at the day of inclusion, demonstrated positive non-organic signs [15], or if serious pathology, i.e. severe nerve root involvement (disabling back or leg pain in combination with progressive disturbances in sensibility, muscle strength, or reflexes), osteoporosis, severe spondylolisthesis, fracture, inflammatory arthritis, cancer, or referred pain from the viscera, was suspected based on physical examination and/or magnetic resonance imaging. Other exclusion criteria were application for disability pension, pending litigation, pregnancy, co-morbidity, recent back surgery, language problems, or problems with communication including abuse of drugs or alcohol.

 

The trial population had predominantly CLBP lasting on average 95 weeks (SD 207), mean age was 37 years (SD10), mean level of back and leg pain was 30 (SD 11.9) on a Numeric Rating Scale ranging from 0 to 60, and mean level of disability was 13 (SD 4.8) on Roland Morris Disability Questionnaire (0-23). Our method of pain measurement reflects that back pain is often a fluctuating condition where pain location and severity might vary on a daily basis. Therefore, a validated comprehensive pain questionnaire [16] was used in order to guarantee that all aspects of back and leg pain intensity were recorded. The scales are outlined in the legend to Table 1.

 

Table 1 Comparison of Distribution of Baseline Variables Between Groups

 

After baseline measures were obtained, randomisation was carried out by a computer-generated list of random numbers in blocks of ten using sealed opaque envelopes.

 

Ethics

 

Ethical approval of the study was granted by Copenhagen Research Ethics Committee, file no 01-057/03. All patients received written information about the study and gave their written consent prior to participation.

 

Treatments

 

The practitioners performing the treatments had no knowledge of the results of the initial screening. The treatment programs were designed to reflect daily practice as much as possible. Detailed information on these programs have been published earlier [13].

 

The MDT treatment was planned individually following the therapist�s pre-treatment physical assessment. Specific manual vertebral mobilization techniques including high velocity thrust were not allowed. An educational booklet describing self care [17] or a �lumbar roll� for correction of the seated position was sometimes provided to the patient at the discretion of the therapist. In the SM treatment, high velocity thrust was used in combination with other types of manual techniques. The choice of combination of techniques was at the discretion of the chiropractor. General mobilizing exercises, i.e. self-manipulation, alternating lumbar flexion/extension movements, and stretching, were allowed but not specific exercises in the directional preference. An inclined wedged pillow for correction of the seated position was available to the patients if the chiropractor believed this to be indicated.

 

In both treatment groups, patients were informed thoroughly of the results of the physical assessment, the benign course of back pain, and the importance of remaining physically active. Guidance on proper back care was also given. In addition, all patients were provided with a Danish version of �The Back Book� which previously has been shown to have beneficial effect on patients� beliefs about back pain [18]. A maximum of 15 treatments for a period of 12 weeks were given. If considered necessary by the treating clinician, patients were educated in an individual program of self-administered mobilizing, stretching, stabilizing, and/or strengthening exercises at the end of the treatment period. Treatments were performed by clinicians with several years of experience. Patients were instructed to continue their individual exercises at home or at a gym for a minimum of two months after completion of the treatment at the back center. Because the patients suffered predominantly from CLBP we expected this period of self administered exercises to be necessary for the patients to experience the full effect of the intervention. Patients were encouraged not to seek any other kind of treatment during this two months period of self-administered exercises.

 

Evaluation of the McKenzie Method for Low Back Pain Body Image 5 | El Paso, TX Chiropractor

 

Outcome Measures

 

The primary outcome was the proportion of patients reporting success at follow-up two months after end of treatment. Treatment success was defined as a reduction of at least 5 points or a final score below 5 points on the 23-item modified Roland Morris Disability Questionnaire (RMDQ) [19]. A validated Danish version of RMDQ was used [20]. The definition of treatment success was based on the recommendations by others [21,22]. A sensitivity analysis using 30% relative improvement on RMDQ as definition of success was also performed. In accordance with the protocol [13], we considered a relative between-group difference of 15% in the number of patients with successful outcome to be minimal clinically important in our analysis of interaction.

 

Prespecified Predictor Variables

 

In order to reduce the likelihood of spurious findings [23], we restricted the number of candidate effect modifiers in the dataset to six. To increase the validity of our findings, a directional hypothesis was established for each variable according to the recommendations of Sun et al. [24] Four baseline variables have previously been suggested in randomized studies to be predictive of long term good outcome in patients with persistent LBP following MDT in comparison with strengthening training: centralization [25,26], or following SM in comparison to physiotherapy or treatment chosen by a general practitioner: age below 40 years [27,28], duration of symptoms more than 1 year [27], and pain below the knee [29]. As recommended by others [30], another two variables were added based on the participating experienced clinicians� judgments of which characteristics they would expect to predict good outcome from their treatment compared to the other. The additional variables prioritized by the physiotherapists in the MDT group were signs of nerve root involvement and substantial leg pain. The additional variables prioritized by the chiropractors in the SM group were no signs of nerve root involvement and not substantial leg pain.

 

In a supplementary analysis, we took the opportunity to explore whether the inclusion of further six baseline variables, assumed to have prognostic value for good outcome in either of the treatment groups, would appear to have an effect modifying effect as well. To our knowledge, no further variables from previous one arm studies have been reported to have prognostic value of long term good outcome in patients with persistent LBP following MDT, whereas three variables have been reported to have prognostic value following SM: male gender [28], mild disability [28], and mild back pain [28]. Another three variables were agreed upon by the clinicians to be included in the supplementary analysis as they were assumed by experience from clinical practice to have prognostic value for good outcome regardless of treatment with MDT or SM: low number of days on sick leave past year, high patient expectations to recovery, and high patient expectations about coping with work tasks six weeks after initiation of treatment.

 

Dichotomization of possible predictor variables were made to allow for comparisons to be made with those of earlier studies. In cases where no cut off values could be found in the literature, dichotomization was performed above/below the median found in the sample. Definitions of variables are presented in the legend to Table 1.

 

Statistics

 

The entire intention-to-treat (ITT) population was used in all the analyses. The last score was carried forward for subjects with missing two months RMDQ scores (7 patients in the MDT group and 14 patients in the SM group). In addition, a post hoc per protocol analysis was carried out comprising only those 259 patients that completed the full treatment. The analysis plan was agreed in advance by the trial management group.

 

The possible predictors were dichotomized and the chance of success was investigated by estimating the relative risk (RR) of success in each of the two strata. The impact of the investigated predictors was estimated by comparing the chance of success between the treatment groups when divided into the two strata. To test for treatment effect modification of the predictors we performed chi-squared tests for interaction between intervention and the two different strata for each of the predictors. This is basically the same as an interaction from a regression model. Confidence intervals were also inspected for potential clinically important effects.

 

Following the univariate analysis, a multivariate analysis was planned including effect modifiers with a p-value below 0.1.

 

Dr. Alex Jimenez’s Insight

Low back pain can occur due to several types of injuries and/or conditions and its symptoms may be acute and/or chronic. Patients with low back pain can benefit from a variety of treatments, including chiropractic care. Chiropractic treatment is one of the most common alternative treatment options utilized to treat low back pain. According to the article, the results of the improvement of LBP with spinal adjustments and manual manipulations, along with the use of exercise, vary considerably among the participants. The focus of the following research study is to determine which patients are most likely to benefit from the McKenzie method as compared to spinal adjustments and manual manipulations.

 

Results

 

Participants were similar with respect to socio-demographic and clinical characteristics at baseline in the treatment groups. An overview of the distribution of the included dichotomized variables at baseline is provided in Table 1. No differences were found between the treatment groups.

 

Overall, the post hoc per protocol analysis did not produce outcome results that were different from the results of the ITT analysis and therefore only the results of the ITT analysis will be reported.

 

Figure 1 presents the distribution of predictors with regards to effect modification in the MDT group versus SM. In all subgroups, the probability of success with MDT was superior to that of SM. Because of low sample size, confidence intervals were wide and none of the predictors had a statistically significant treatment modifying effect. The predictors with a clinically important potential effect in favor of MDT compared to SM were nerve root involvement (28% higher proportion of patients with success when nerve root involvement was present than when absent) and peripheralization of symptoms (17% higher proportion of patients with success in case of peripheralization than in case of centralization). If present, nerve root involvement increased the chance of success following MDT 2.31 times compared to that of SM and 1.22 times if not present. This means that for the subgroup of patients with nerve root involvement receiving MDT, compared to those receiving SM, the relative effect appeared to be 1.89 times (2.31/1.22, P?= 0.118) higher than for the subgroup with no nerve root involvement.

 

Figure 1 Treatment Effect Modified by Predictors

Figure 1: Treatment effect modified by predictors. The top point estimate and confidence intervals indicate overall effect without subgrouping. Subsequent pairs of point estimates and confidence intervals show the chances of treatment success.

 

Figure 2 presents the modifying effect of a composite of the two predictors with a clinically important potential effect. If signs of nerve root involvement and peripheralization were present at baseline, the chance of success with MDT compared to SM appeared 8.5 times higher than for the subgroup with no centralization and nerve root involvement. The number of patients was very small and the differences were not statistically significant (P?=?0.11).

 

Figure 2 Impact of the Two Clinically Important Predictors Combined on Treatment Effect

Figure 2: Impact of the two clinically important predictors combined on treatment effect. RR?=?Relative Risk with Yates correction.

 

None of the prognostic candidate variables explored in the supplementary analysis appeared to have any clinically important modifying effect (Additional file 1: Table S1).

 

The results from the sensitivity analysis using 30% relative improvement on RMDQ as definition of success were not markedly different from those presented above (Additional file 2: Table S2).

 

Discussion

 

To our knowledge, this is the first study trying to identify effect modifiers when two mobilizing strategies, i.e. MDT and SM, are compared in a sample of patients with as changeable condition characterized by centralization or peripheralization.

 

Our study found that none of the potential effect modifiers were able to statistically significantly increase the overall effect of MDT compared to that of SM. However, the between-group difference for two of the variables exceeded our clinically important success-rate of 15% in number of patients with successful outcome, so our study is likely to have missed a true effect and, in that sense, did not have a large enough sample size.

 

The most apparent finding is that in our small subgroup of patients with signs of nerve root involvement, the relative chance of success appeared 1.89 times (2.31/1.22) higher than in patients with no nerve root involvement when treated with MDT, compared to those treated with SM. The difference was in the expected direction.

 

Evaluation of the McKenzie Method for Low Back Pain Body Image 7 | El Paso, TX Chiropractor

 

Although not statistically significant in our small sample, the variable peripheralization exceeded our clinically important success-rate of 15%, but was found not to be in the expected direction. No previous studies have assessed the effect modification of centralization or peripheralization in patients with CLBP. The RCT by Long et al. [25,26] concluded that patients with directional preference, including centralization, fared better 2 weeks after baseline than patients with no directional preference when treated with MDT in comparison with strengthening training. However, the outcome among peripheralizers was not reported, so the poor outcome reported in patients with no directional preference might be related to the subgroup of patients who responded with no change in symptoms during initial examination and not to those that responded with peripheralization. An alternative explanation might be that the effect modifying impact of centralization or peripheralization on MDT is dependent on the control treatment. Our findings suggest that future studies in this area need to involve predictive value of peripheralization as well as centralization.

 

When a composite of the two most promising predictors, peripheralization and signs of nerve root involvement, were present at baseline, the relative chance of success with MDT compared to SM appeared 8.5 times higher than for the subgroup with no centralization and nerve root involvement. The number of patients was very small and the confidence interval was wide. Therefore only a preliminary conclusion about interaction can be drawn and it calls for a validation in future studies.

 

In our study, there appeared to be no characteristic by which SM had better results compared to MDT. Thus, we could not support the results of two studies with a similar design as ours (two arms, sample of patients with persistent LBP, and outcome reported in terms of reduction of disability at long term follow up) [27,29]. In those studies, Nyiendo et al. [29] found a modifying effect of leg pain below knee on treatment by SM compared to that of the general practitioner six months after baseline, and Koes et al. [27] found a modifying effect of age below 40 years and symptom duration more than a year on treatment by SM compared to that of physiotherapy 12 months after baseline. However, results from those, as well as other previous RCTs comprising patients with persistent LBP, have supported our findings regarding the lack of effect modification of age [27,29,31], sex [29,31], baseline disability [27,29,31], and duration of symptoms [31], on SM when measured on reduction of disability 6-12 months after randomization. So, although evidence is emerging in patients with acute LBP regarding subgroup characteristics predictive of better results from SM compared to other types of treatment [32], we are still in the dark with respect to patients with persistent LBP.

 

The usefulness of choosing a criterion for success by combining an improvement of at least 5 points or an absolute score below 5 points on RMDQ is debatable. A total of 22 patients were considered successful based on score below 5 at follow up without having an improvement of at least 5 points. We therefore performed a sensitivity analysis using a relative improvement of at least 30% as criterion of success as recommended by others [22] (see Additional file 2: Table S2). As a result, the percentage of patients with successful outcome in the MDT group remained the same whereas 4 more patients were defined as successes in the SM group. Overall the sensitivity analysis did not produce outcome results that were markedly different from those of the primary analysis and therefore only those have been discussed above.

 

Strengths and Limitations

 

This study used data from a RCT, whereas many others have used single arm designs not suitable for the purpose of evaluating treatment effect modification [33]. In accordance with the recommendations by the PROGRESS group [8] we prespecified the possible predictors and also the direction of the effect. Furthermore, we limited the number of predictors included in order to minimize the chance of spurious findings.

 

The main limitation in secondary studies to previously conducted RCTs is that they are powered to detect overall treatment effect rather that effect modification. In recognition of the post hoc nature of our analysis, reflected in wide confidence intervals, we must emphasize that our findings are exploratory and require formal testing in a larger sample size.

 

Evaluation of the McKenzie Method for Low Back Pain Body Image 6 | El Paso, TX Chiropractor

 

Conclusions

 

In all subgroups, the probability of success with MDT was superior to that of SM. Although not statistically significant, the presence of nerve root involvement and peripheralization appear promising effect modifiers in favour of MDT. These findings need testing in larger studies.

 

Acknowledgements

 

The authors thank Jan Nordsteen and Steen Olsen for clinical expert advice, and Mark Laslett for comments and language correction.

 

This study was in part supported by grants from The Danish Rheumatism Association, The Danish Physiotherapy Organization, The Danish Foundation for Chiropractic Research and Continuous Education, and The Danish Institute for Mechanical Diagnosis and Therapy. RC/The Parker Institute acknowledge the funding support from the Oak Foundation. The funds were independent of the management, analyses, and interpretation of the study.

 

Footnotes

 

Competing interests: The authors declare that they have no competing interests.

 

Authors� contributions: All authors were involved in the data analysis and the writing process, and the requirements for authorship have been met. All analyses were conducted by TP, RC, and CJ. TP conceived and led the study and was responsible for writing the first draft of the paper, but the other authors have participated throughout the writing process and have read and approved the final version.

 

In conclusion,�the above two articles were presented in order to evaluate the McKenzie method in the treatment of LBP in comparison to other types of treatment options. The first research study compared the McKenzie method with placebo therapy in patients with low back pain, however, the results of the study still need additional evaluations. In the second research study, no significant results could predict a different response in the use of the McKenzie method. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

[accordions title=”References”]
[accordion title=”References” load=”hide”]1
Waddell
G
. The Back Pain Revolution
. 2nd ed
. New York, NY
: Churchill Livingstone
; 2004
.
2
Murray
CJ
, Lopez
AD
. Measuring the global burden of disease
. N Engl J Med
. 2013
;369
:448
�457
.
Google Scholar
CrossRef
PubMed

3
Hoy
D
, Bain
C
, Williams
G
, et al.
. A systematic review of the global prevalence of low back pain
. Arthritis Rheum
. 2012
;64
:2028
�2037
.
Google Scholar
CrossRef
PubMed

4
van Tulder
MW
. Chapter 1: European guidelines
. Eur Spine J
. 2006
;15
:134
�135
.
Google Scholar
CrossRef

5
Costa Lda
C
, Maher
CG
, McAuley
JH
, et al.
. Prognosis for patients with chronic low back pain: inception cohort study
. BMJ
. 2009
;339
:b3829
.
Google Scholar
CrossRef
PubMed

6
da C Menezes Costa
, Maher
CG
, Hancock
MJ
, et al.
. The prognosis of acute and persistent low-back pain: a meta-analysis
. CMAJ
. 2012
;184
:E613
�E624
.
Google Scholar
CrossRef
PubMed

7
Henschke
N
, Maher
CG
, Refshauge
KM
, et al.
. Prognosis in patients with recent onset low back pain in Australian primary care: inception cohort study
. BMJ
. 2008
;337
:154
�157
.
Google Scholar
CrossRef

8
McKenzie
R
, May
S
. The Lumbar Spine: Mechanical Diagnosis & Therapy: Volume One
. 2nd ed
. Waikanae, New Zealand
: Spinal Publications
; 2003
.
9
Clare
HA
, Adams
R
, Maher
CG
. A systematic review of efficacy of McKenzie therapy for spinal pain
. Aust J Physiother
. 2004
;50
:209
�216
.
Google Scholar
CrossRef
PubMed

10
Machado
LA
, de Souza
MS
, Ferreira
PH
, Ferreira
ML
. The McKenzie method for low back pain: a systematic review of the literature with a meta-analysis approach
. Spine (Phila Pa 1976)
. 2006
;31
:254
�262
.
Google Scholar
CrossRef
PubMed

11
McKenzie
R
, May
S
. The Lumbar Spine: Mechanical Diagnosis & Therapy: Volume Two
. 2nd ed
. Waikanae, New Zealand
: Spinal Publications
; 2003
.
12
McKenzie
R
. Trate Noc� Mesmo a sua Coluna [Treat Your Own Back]
. Crichton, New Zealand
: Spinal Publications New Zealand Ltd
; 1998
.
13
Miller
ER
, Schenk
RJ
, Karnes
JL
, Rousselle
JG
. A comparison of the McKenzie approach to a specific spine stabilization program for chronic low back pain
. J Man Manip Ther
. 2005
;13
:103
�112
.
Google Scholar
CrossRef

14
Nwuga
G
, Nwuga
V
. Relative therapeutic efficacy of the Williams and McKenzie protocols in back pain management
. Physiother Theory Pract
. 1985
;1
:99
�105
.
Google Scholar
CrossRef

15
Petersen
T
, Larsen
K
, Jacobsen
S
. One-year follow-up comparison of the effectiveness of McKenzie treatment and strengthening training for patients with chronic low back pain: outcome and prognostic factors
. Spine (Phila Pa 1976)
. 2007
;32
:2948
�2956
.
Google Scholar
CrossRef
PubMed

16
Sakai
Y
, Matsuyama
Y
, Nakamura
H
, et al.
. The effect of muscle relaxant on the paraspinal muscle blood flow: a randomized controlled trial in patients with chronic low back pain
. Spine (Phila Pa 1976)
. 2008
;33
:581
�587
.
Google Scholar
CrossRef
PubMed

17
Udermann
BE
, Mayer
JM
, Donelson
RG
, et al.
. Combining lumbar extension training with McKenzie therapy: effects on pain, disability, and psychosocial functioning in chronic low back pain patients
. Gunders Lutheran Medical Journal
. 2004
;3
:7
�12
.
18
Airaksinen
O
, Brox
JI
, Cedraschi
C
, et al.
. Chapter 4: European guidelines for the management of chronic nonspecific low back pain
. Eur Spine J
. 2006
;15
:192
�300
.
Google Scholar
CrossRef

19
Kenney
LW
, Humphrey
RH
, Mahler
DA
. ACSM’s Guidelines for Exercise Testing and Prescription
. Baltimore, MD
: Williams & Wilkins
; 1995
.
20
Costa
LO
, Maher
CG
, Latimer
J
, et al.
. Clinimetric testing of three self-report outcome measures for low back pain patients in Brazil: which one is the best?
Spine (Phila Pa 1976)
. 2008
;33
:2459
�2463
.
Google Scholar
CrossRef
PubMed

21
Costa
LO
, Maher
CG
, Latimer
J
, et al.
. Psychometric characteristics of the Brazilian-Portuguese versions of the Functional Rating Index and the Roland-Morris Disability Questionnaire
. Spine (Phila Pa 1976)
. 2007
;32
:1902
�1907
.
Google Scholar
CrossRef
PubMed

22
Nusbaum
L
, Natour
J
, Ferraz
MB
, Goldenberg
J
. Translation, adaptation and validation of the Roland-Morris questionnaire: Brazil Roland-Morris
. Braz J Med Biol Res
. 2001
;34
:203
�210
.
Google Scholar
CrossRef
PubMed

23
de Souza
FS
, Marinho Cda
S
, Siqueira
FB
, et al.
. Psychometric testing confirms that the Brazilian-Portuguese adaptations, the original versions of the Fear-Avoidance Beliefs Questionnaire, and the Tampa Scale of Kinesiophobia have similar measurement properties
. Spine (Phila Pa 1976)
. 2008
;33
:1028
�1033
.
Google Scholar
CrossRef
PubMed

24
Devilly
GJ
, Borkovec
TD
. Psychometric properties of the credibility/expectancy questionnaire
. J Behav Ther Exp Psychiatry
. 2000
;31
:73
�86
.
Google Scholar
CrossRef
PubMed

25
Chatman
AB
, Hyams
SP
, Neel
JM
, et al.
. The Patient-Specific Functional Scale: measurement properties in patients with knee dysfunction
. Phys Ther
. 1997
;77
:820
�829
.
Google Scholar
PubMed

26
Pengel
LH
, Refshauge
KM
, Maher
CG
. Responsiveness of pain, disability, and physical impairment outcomes in patients with low back pain
. Spine (Phila Pa 1976)
. 2004
;29
:879
�883
.
Google Scholar
CrossRef
PubMed

27
Garcia
AN
, Costa
LCM
, da Silva
TM
, et al.
. Effectiveness of Back School versus McKenzie exercises in patients with chronic nonspecific low back pain: a randomized controlled trial
. Phys Ther
. 2013
;93
:729
�747
.
Google Scholar
CrossRef
PubMed

28
Manchester
MR
, Glasgow
GW
, York
JKM
, et al.
. The Back Book: Clinical Guidelines for the Management of Acute Low Back Pain
. London, United Kingdom
: Stationery Office Books
; 2002
:1
�28
.
29
Delitto
A
, George
SZ
, Van Dillen
LR
, et al.
. Low back pain
. J Orthop Sports Phys Ther
. 2012
;42
:A1
�A57
.
Google Scholar
CrossRef
PubMed

30
van Tulder
M
, Becker
A
, Bekkering
T
, et al.
. Chapter 3: European guidelines for the management of acute nonspecific low back pain in primary care
. Eur Spine J
. 2006
;15
:169
�191
.
Google Scholar
CrossRef

31
Costa
LO
, Maher
CG
, Latimer
J
, et al.
. Motor control exercise for chronic low back pain: a randomized placebo-controlled trial
. Phys Ther
. 2009
;89
:1275
�1286
.
Google Scholar
CrossRef
PubMed

32
Balthazard
P
, de Goumoens
P
, Rivier
G
, et al.
. Manual therapy followed by specific active exercises versus a placebo followed by specific active exercises on the improvement of functional disability in patients with chronic non specific low back pain: a randomized controlled trial
. BMC Musculoskelet Disord
. 2012
;13
:162
.
Google Scholar
CrossRef
PubMed

33
Kumar
SP
. Efficacy of segmental stabilization exercise for lumbar segmental instability in patients with mechanical low back pain: a randomized placebo controlled crossover study
. N Am J Med Sci
. 2012
;3
:456
�461
.
34
Ebadi
S
, Ansari
NN
, Naghdi
S
, et al.
. The effect of continuous ultrasound on chronic non-specific low back pain: a single blind placebo-controlled randomized trial
. BMC Musculoskelet Disord
. 2012
;13
:192
.
Google Scholar
CrossRef
PubMed

35
Williams
CM
, Latimer
J
, Maher
CG
, et al.
. PACE�the first placebo controlled trial of paracetamol for acute low back pain: design of a randomised controlled trial
. BMC Musculoskelet Disord
. 2010
;11
:169
.
Google Scholar
CrossRef
PubMed

36
Hollis
S
, Campbell
F
. What is meant by intention to treat analysis? Survey of published randomised controlled trials
. BMJ
. 1999
;319
:670
�674
.
Google Scholar
CrossRef
PubMed

37
Twisk
JWR
. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide
. New York, NY
: Cambridge University Press
; 2003
.
38
Hancock
MJ
, Maher
CG
, Latimer
J
, et al.
. Assessment of diclofenac or spinal manipulative therapy, or both, in addition to recommended first-line treatment for acute low back pain: a randomised controlled trial
. Lancet
. 2007
;370
:1638
�1643
.
Google Scholar
CrossRef
PubMed

39
Pengel
LH
, Refshauge
KM
, Maher
CG
, et al.
. Physiotherapist-directed exercise, advice, or both for subacute low back pain: a randomized trial
. Ann Intern Med
. 2007
;146
:787
�796
.
Google Scholar
CrossRef
PubMed

40
Costa Lda
C
, Koes
BW
, Pransky
G
, et al.
. Primary care research priorities in low back pain: an update
. Spine (Phila Pa 1976)
. 2013
;38
:148
�156
.
Google Scholar
CrossRef
PubMed[/accordion]
[accordion title=”References” load=”hide”]1. Chou R, Qaseem A, Snow V, Casey D, Cross JT, Jr, Shekelle P, et al. Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann Intern Med. 2007;147(7):478�91. doi: 10.7326/0003-4819-147-7-200710020-00006. [PubMed] [Cross Ref]
2. NHS Early management of persistent non-specific low back pain. NICE Clinical Guideline. 2009;88:1�30.
3. Cherkin DC, Battie MC, Deyo RA, Street JH, Barlow W. A comparison of physical therapy, chiropractic manipulation, and provision of an educational booklet for the treatment of patients with low back pain. N Engl J Med. 1998;339(15):1021�9. doi: 10.1056/NEJM199810083391502. [PubMed] [Cross Ref]
4. Paatelma M, Kilpikoski S, Simonen R, Heinonen A, Alen M, Videman T. Orthopaedic manual therapy, McKenzie method or advice only for low back pain in working adults. A randomized controlled trial with 1 year follow-up. J Rehabil Med. 2008;40(10):858�63. doi: 10.2340/16501977-0262. [PubMed] [Cross Ref]
5. Foster NE, Dziedzic KS, van Der Windt DA, Fritz JM, Hay EM. Research priorities for non-pharmacological therapies for common musculoskeletal problems: nationally and internationally agreed recommendations. BMC Musculoskelet Disord. 2009;10:3. doi: 10.1186/1471-2474-10-3. [PMC free article] [PubMed] [Cross Ref]
6. Kamper SJ, Maher CG, Hancock MJ, Koes BW, Croft PR, Hay E. Treatment-based subgroups of low back pain: a guide to appraisal of research studies and a summary of current evidence. Best Pract Res Clin Rheumatol. 2010;24(2):181�91. doi: 10.1016/j.berh.2009.11.003. [PubMed] [Cross Ref]
7. Airaksinen O, Brox JI, Cedraschi C, Hildebrandt J, Klaber-Moffett J, Kovacs F, et al. Chapter 4. European guidelines for the management of chronic nonspecific low back pain. Eur Spine J. 2006;15(Suppl 2):S192�300. doi: 10.1007/s00586-006-1072-1. [PMC free article] [PubMed] [Cross Ref]
8. Hingorani AD, Windt DA, Riley RD, Abrams K, Moons KG, Steyerberg EW, et al. Prognosis research strategy (PROGRESS) 4: Stratified medicine research. BMJ. 2013;346:e5793. doi: 10.1136/bmj.e5793. [PMC free article] [PubMed] [Cross Ref]
9. Fersum KV, Dankaerts W, O�Sullivan PB, Maes J, Skouen JS, Bjordal JM, et al. Integration of sub-classification strategies in RCTs evaluating manual therapy treatment and exercise therapy for non-specific chronic low back pain (NSCLBP): a systematic review. Br J Sports Med. 2010;44(14):1054�62. doi: 10.1136/bjsm.2009.063289. [PubMed] [Cross Ref]
10. Erhard RE, Delitto A, Cibulka MT. Relative effectiveness of an extension program and a combined program of manipulation and flexion and extension exercises in patients with acute low back syndrome. Phys Ther. 1994;74(12):1093�100. [PubMed]
11. Schenk RJ, Josefczyk C, Kopf A. A randomized trial comparing interventions in patients with lumbar posterior derangement. J Man Manipul Ther. 2003;11(2):95�102. doi: 10.1179/106698103790826455. [Cross Ref]
12. Kilpikoski S, Alen M, Paatelma M, Simonen R, Heinonen A, Videman T. Outcome comparison among working adults with centralizing low back pain: Secondary analysis of a randomized controlled trial with 1-year follow-up. Adv Physiol Educ. 2009;11:210�7. doi: 10.3109/14038190902963087. [Cross Ref]
13. Petersen T, Larsen K, Nordsteen J, Olsen S, Fournier G, Jacobsen S. The McKenzie method compared with manipulation when used adjunctive to information and advice in low back pain patients presenting with centralization or peripheralization. A randomized controlled trial. Spine (Phila Pa 1976) 2011;36(24):1999�2010. doi: 10.1097/BRS.0b013e318201ee8e. [PubMed] [Cross Ref]
14. Petersen T, Olsen S, Laslett M, Thorsen H, Manniche C, Ekdahl C, et al. Inter-tester reliability of a new diagnostic classification system for patients with non-specific low back pain. Aust J Physiother. 2004;50:85�94. doi: 10.1016/S0004-9514(14)60100-8. [PubMed] [Cross Ref]
15. Waddell G, McCulloch JA, Kummel E, Venner RM. Nonorganic physical signs in low-back pain. Spine. 1980;5(2):117�25. doi: 10.1097/00007632-198003000-00005. [PubMed] [Cross Ref]
16. Manniche C, Asmussen K, Lauritsen B, Vinterberg H, Kreiner S, Jordan A. Low Back Pain Rating scale: validation of a tool for assessment of low back pain. Pain. 1994;57(3):317�26. doi: 10.1016/0304-3959(94)90007-8. [PubMed] [Cross Ref]
17. McKenzie RA. Treat your own back. Waikanae: Spinal Publications New Zealand Ltd; 1997.
18. Burton AK, Waddell G, Tillotson KM, Summerton N. Information and advice to patients with back pain can have a positive effect. A randomized controlled trial of a novel educational booklet in primary care. Spine. 1999;24(23):2484�91. doi: 10.1097/00007632-199912010-00010. [PubMed] [Cross Ref]
19. Patrick DL, Deyo RA, Atlas SJ, Singer DE, Chapin A, Keller RB. Assessing health-related quality of life in patients with sciatica. Spine. 1995;20(17):1899�908. doi: 10.1097/00007632-199509000-00011. [PubMed] [Cross Ref]
20. Albert H, Jensen AM, Dahl D, Rasmussen MN. Criteria validation of the Roland Morris questionnaire. A Danish translation of the international scale for the assessment of functional level in patients with low back pain and sciatica [Kriterievalidering af Roland Morris Sp�rgeskemaet – Et oversat internationalt skema til vurdering af �ndringer i funktionsniveau hos patienter med l�ndesmerter og ischias] Ugeskr Laeger. 2003;165(18):1875�80. [PubMed]
21. Bombardier C, Hayden J, Beaton DE. Minimal clinically important difference. Low back pain: outcome measures. J Rheumatol. 2001;28(2):431�8. [PubMed]
22. Ostelo RW, Deyo RA, Stratford P, Waddell G, Croft P, Von KM, et al. Interpreting change scores for pain and functional status in low back pain: towards international consensus regarding minimal important change. Spine. 2008;33(1):90�4. doi: 10.1097/BRS.0b013e31815e3a10. [PubMed] [Cross Ref]
23. Moons KG, Royston P, Vergouwe Y, Grobbee DE, Altman DG. Prognosis and prognostic research: what, why, and how? BMJ. 2009;338:1317�20. doi: 10.1136/bmj.b1317. [PubMed] [Cross Ref]
24. Sun X, Briel M, Walter SD, Guyatt GH. Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses. BMJ. 2010;340:c117. doi: 10.1136/bmj.c117. [PubMed] [Cross Ref]
25. Long A, Donelson R, Fung T. Does it matter which exercise? A randomized control trial of exercise for low back pain. Spine. 2004;29(23):2593�602. doi: 10.1097/01.brs.0000146464.23007.2a. [PubMed] [Cross Ref]
26. Long A, May S, Fung T. The comparative prognostic value of directional preference and centralization: a useful tool for front-line clinicians? J Man Manip Ther. 2008;16(4):248�54. doi: 10.1179/106698108790818332. [PMC free article] [PubMed] [Cross Ref]
27. Koes BW, Bouter LM, van Mameren H, Essers AH, Verstegen GJ, Hofhuizen DM, et al. A randomized clinical trial of manual therapy and physiotherapy for persistent back and neck complaints: subgroup analysis and relationship between outcome measures. J Manipulative Physiol Ther. 1993;16(4):211�9. [PubMed]
28. Leboeuf-Yde C, Gronstvedt A, Borge JA, Lothe J, Magnesen E, Nilsson O, et al. The nordic back pain subpopulation program: demographic and clinical predictors for outcome in patients receiving chiropractic treatment for persistent low�back pain. J Manipulative Physiol Ther. 2004;27(8):493�502. doi: 10.1016/j.jmpt.2004.08.001. [PubMed] [Cross Ref]
29. Nyiendo J, Haas M, Goldberg B, Sexton G. Pain, disability, and satisfaction outcomes and predictors of outcomes: a practice-based study of chronic low back pain patients attending primary care and chiropractic physicians. J Manipulative Physiol Ther. 2001;24(7):433�9. doi: 10.1016/S0161-4754(01)77689-0. [PubMed] [Cross Ref]
30. Foster NE, Hill JC, Hay EM. Subgrouping patients with low back pain in primary care: are we getting any better at it? Man Ther. 2011;16(1):3�8. doi: 10.1016/j.math.2010.05.013. [PubMed] [Cross Ref]
31. Underwood MR, Morton V, Farrin A. Do baseline characteristics predict response to treatment for low back pain? Secondary analysis of the UK BEAM dataset. Rheumatology (Oxford) 2007;46(8):1297�302. doi: 10.1093/rheumatology/kem113. [PubMed] [Cross Ref]
32. Slater SL, Ford JJ, Richards MC, Taylor NF, Surkitt LD, Hahne AJ. The effectiveness of sub-group specific manual therapy for low back pain: a systematic review. Man Ther. 2012;17(3):201�12. doi: 10.1016/j.math.2012.01.006. [PubMed] [Cross Ref]
33. Stanton TR, Hancock MJ, Maher CG, Koes BW. Critical appraisal of clinical prediction rules that aim to optimize treatment selection for musculoskeletal conditions. Phys Ther. 2010;90(6):843�54. doi: 10.2522/ptj.20090233. [PubMed] [Cross Ref][/accordion]
[/accordions]

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Sciatica

 

Sciatica is referred to as a collection of symptoms rather than a single type of injury or condition. The symptoms are characterized as radiating pain, numbness and tingling sensations from the sciatic nerve in the lower back, down the buttocks and thighs and through one or both legs and into the feet. Sciatica is commonly the result of irritation, inflammation or compression of the largest nerve in the human body, generally due to a herniated disc or bone spur.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: Treating Sciatica Pain

 

 

Comparison of Chiropractic & Hospital Outpatient Care for Back Pain

Comparison of Chiropractic & Hospital Outpatient Care for Back Pain

Back pain is one of the most common causes people visit their healthcare professional every year. A primary care physician is often the first doctor who can provide treatment for a variety of injuries and/or conditions, however, among those individuals seeking complementary and alternative treatment options for back pain, most people choose chiropractic care. Chiropractic care focuses on the diagnosis, treatment and prevention of trauma and disease of the musculoskeletal and nervous systems, by correcting misalignments of the spine through the use of spinal adjustments and manual manipulations.

 

Approximately 35% of individuals seek chiropractic treatment for back pain caused by automobile accidents, sports injuries, and a variety of muscle strains. When people suffer an trauma or injury as a result of an accident, however, they may first receive treatment for their symptoms of back pain in a hospital. Hospital outpatient care describes treatment which does not require an overnight stay at a medical facility. A research study conducted an analysis comparing the effects of chiropractic care and hospital outpatient management for back pain. The results are described in detail below.

 

Abstract

 

Objective: To compare the effectiveness over three years of chiropractic and hospital outpatient management for low back pain.

 

Design: Randomised allocation of patients to chiropractic or hospital outpatient management.

 

Setting: Chiropractic clinics and hospital outpatient departments within reasonable travelling distance of each other in I I centres.

 

Subjects: 741 men and women aged 18-64 years with low back pain in whom manipulation was not contraindicated.

 

Outcome measures: Change in total 0swestry questionnaire score and in score for pain and patient satisfaction with allocated treatment.

 

Results: According to total 0swestry scores improvement in all patients at three years was about 291/6 more in those treated by chiropractors than in those treated by the hospitals. The beneficial effect of chiropractic on pain was particularly clear. Those treated by chiropractors had more further treatments for back pain after the completion of trial treatment. Among both those initially referred from chiropractors and from hospitals more rated chiropractic helpful at three years than hospital management.

 

Conclusions: At three years the results confirm the findings of an earlier report that when chiropractic or hospital therapists treat patients with low back pain as they would in day to day practice those treated by chiropractic derive more benefit and long term satisfaction than those treated by hospitals.

 

Introduction

 

In 1990 we reported greater improvement in patients with low back pain treated by chiropractic compared with those receiving hospital outpatient management. The trial was “pragmatic” in allowing the therapists to treat patients as they would in day to day practice. At the time of our first report not all patients had been in the trial for more than six months. This paper presents the full results up to three years for all patients for whom follow up information from Oswestry questionnaires and for other outcomes was available for analysis. We also present data on pain from the questionnaire, which is by definition the main complaint prompting referral or self referral.

 

Image 1 Comparison of Chiropractic & Hospital Outpatient Care for Back Pain

 

Methods

 

Methods were fully described in our first report. Patients initially referred or presenting either to a chiropractic clinic or in hospital were randomly allocated to be treated either by chiropractic or in hospital. A total of 741 patients started treatment. Progress was measured with the Oswestry questionnaire on back pain, which gives scores for I 0 sections for example, intensity of pain and difficulty with lifting, walking, and travelling. The result is expressed on a scale ranging from 0 (no pain or difficulties) to 100 (highest score for pain and greatest difficulty on all items). For an individual item, such as pain, scores range from 0 to 10. The main outcome measures are the changes in Oswestry score from before treatment to each follow up. At one, two, and three years patients were also asked about further treatment since the completion of their trial treatment or since the previous annual questionnaire. At the three year follow up patients were asked whether they thought their allocated trial treatment had helped their back pain.

 

In the random allocation of treatment minimisation was used within each centre to establish groups for the analysis of results according to initial referral clinic, length of current episode (more or less than ‘a month), presence or absence of a history of back pain, and an Oswestry score at entry of > 40 or <=40%.

 

Results were analysed on an intention to treat basis (subject to the availability of data at follow up as well as at entry for individual patients). Differences between mean changes were tested by unpaired t tests, and X2 tests were used to test for differences in proportions between the two treatment groups.

 

dr-jimenez_white-coat_no-background.png

Dr. Alex Jimenez’s Insight

Chiropractic is a natural form of health care which purpose is to restore and maintain the function of the musculoskeletal and nervous systems, promoting spinal health and allowing the body to heal itself naturally. Our philosophy emphasizes on the treatment of the human body as a whole, rather than on the treatment of a single injury and/or condition. As an experienced chiropractor, my goal is to properly assess patients in order to determine which type of treatment will most effectively heal their individual type of health issue. From spinal adjustments and manual manipulations to physical activity, chiropractic care can help correct spinal misalignments that cause back pain.

 

Results

 

Follow up Oswestry questionnaires were returned by a consistently higher proportion of patients allocated to chiropractic than to hospital treatment. At six weeks, for example, they were returned by 95% and 89% of chiropractic and hospital patients, respectively and at three years by 77% and 70%.

 

Mean (SD) scores before treatment were 29-8 (14-2) and 28-5 (14-1) in the chiropractic and hospital treatment groups, respectively. Table I shows the differences between the mean changes in total Oswestry scores according to randomly allocated treatment group. The difference at each follow up is the mean change for the chiropractic group minus the mean change for the hospital group.

 

Table 1 Differences Between Mean Changes in Oswestry Scores

 

Positive differences therefore reflect more improvement (due to a greater change in score) in those treated by chiropractic than in hospital (negative differences the reverse). The 3-18 percentage point difference at three years in table I represents a 29% greater improvement in patients treated with chiropractic compared with hospital treatment, the absolute improvement in the two groups at this time being 14-1 and 10-9 percentage points, respectively. As in the first report those with short current episodes, a history of back pain, and initially high Oswestry scores tended to derive most benefit from chiropractic. Those referred by chiropractors consistently derived more benefit from chiropractic than those referred by hospitals.

 

Table II shows changes between the scores on pain intensity before treatment and the corresponding scores at the various follow up intervals. All these changes were positive that is, indicated improvement but were all significantly greater in those treated by chiropractic, including the changes early on that is, at six weeks and six months, when the proportions returning questionnaires were high. As with the results based on the full Oswestry score the improvement due to chiropractic was greatest in those initially referred by chiropractors, although there was also a non-significant improvement (ranging from 9% at six months to 34% at three years) due to chiropractic at each follow up interval in those referred by hospitals.

 

Table 2 Changes in Scores from Section on Pain Intensity in Oswestry Questionnaire

 

Other scores for individual items on the Oswestry index to show significant improvement attributable to chiropractic were ability to sit for more than a short time and sleeping (P=0’004 and 0 03, respectively, at three years), though the differences were not as consistent as for pain. Other scores (personal care, lifting, walking, standing, sex life, social life, and travelling) also nearly all improved more in the patients treated with chiropractic, though most of the differences were small compared with the differences for pain.

 

Higher proportions of patients allocated to chiropractic sought further treatment (of any kind) for back pain after completion of trial treatment than those managed in hospital. For example, between one and two years after trial entry 122/292 (42%) patients treated with chiropractic compared with 80/258 (3 1%) of hospital treated patients did so (Xl=6 8, P=0 0 1).

 

Table III shows the proportions of patients at three years who thought their allocated trial treatment had helped their back pain. Among those initially referred by hospitals as well as among those initially referred by chiropractors higher proportions treated by chiropractic considered that treatment had helped compared with those treated in hospital.

 

Table 3 Number of Patients at Three Year Follow Up

 

Key Messages

 

  • Back pain often remits spontaneously
  • Effective treatments for non-remitting episodes need to be more clearly identified
  • Chiropractic seems to be more effective than hospital management, possibly because more treatments are spread over longer time periods
  • A growing number of NHS purchasers are making complementary treatments, including chiropractic, available
  • Further trials to identify the effective components of chiropractic are needed

 

Discussion

 

The results at six weeks and six months shown in table I are identical with those in our first report, as all patients had then been followed up for six months. The findings at one year are similar as many patients had also been followed up then. The considerably larger numbers of patients with data now available at two and three years show smaller benefits at these intervals than previously, though these still significantly favour chiropractic. The substantial benefit of chiropractic on intensity of pain is evident early on and then persists. The consistently larger proportions lost to follow up throughout the trial in those treated in hospital than in those treated by chiropractic suggests greater satisfaction with chiropractic. This conclusion is supported (table III) by the higher proportions in each referral group considering chiropractic helpful by comparison with hospital treatment.

 

Image of medical researchers recording clinical findings on the results of low back pain treatment.

 

The main criticism of the trial after our first report centred on its “pragmatic” nature, particularly the larger number of chiropractic than hospital treatments and the longer period over which the chiropractic treatments were spread and which were deliberately allowed. These considerations and any consequences of the higher proportions of patients allocated to chiropractic who received further treatment in the later stages of follow up, however, do not apply to the results at six weeks and only apply to a limited extent at six months, when the proportions followed up were high and extra treatment had either not occurred at all or was not yet extensive. Benefits atributable to chiropractic were already evident (especially on pain, table II) at these shorter intervals.

 

We believe there is now more support for the need for “fastidious” trials focusing on specific components of management and on their feasibility. Meanwhile, the results of our trial show that chiropractic has a valuable part to play in the management of low back pain.

 

We thank Dr Iain Chalmers for commenting on an earlier draft of the paper. We thank the nurse coordinators, medical staff, physiotherapists, and chiropractors in the 11 centres for their work, and Dr Alan Breen of the British Chiropractic Association for his help. The centres were in Harrow Taunton, Plymouth, Bournemouth and Poole, Oswestry, Chertsey, Liverpool, Chelmsford, Birmingham, Exeter, and Leeds. Without the assistance of many staff members in each the trial could not have been completed.

 

Funding: Medical Research Council, the National Back Pain Association, the European Chiropractors Union, and the King Edward’s Hospital Fund for London.

 

Conflict of interest: None.

 

In conclusion,�after three years, the results of the research study comparing chiropractic care and hospital outpatient management for low back pain determined that people treated by chiropractic experienced more benefits as well as long-term satisfaction than those treated by hospitals. Because back pain is one of the most common�causes people visit their healthcare professional every year, its essential to seek the most effective type of health care. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

References

 

  1. Meade TW, Dyer S, Browne W, Townsend J, Frank AO. Low back pain of mechanical origin: randomised comparison of chiropractic and hospital outpatient treatment.�BMJ.�1990 Jun 2;300(6737):1431�1437.�[PMC free article][PubMed]
  2. Fairbank JC, Couper J, Davies JB, O’Brien JP. The Oswestry low back pain disability questionnaire.�Physiotherapy.�1980 Aug;66(8):271�273.�[PubMed]
  3. Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial.�Biometrics.�1975 Mar;31(1):103�115.�[PubMed]

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Sciatica

 

Sciatica is referred to as a collection of symptoms rather than a single type of injury or condition. The symptoms are characterized as radiating pain, numbness and tingling sensations from the sciatic nerve in the lower back, down the buttocks and thighs and through one or both legs and into the feet. Sciatica is commonly the result of irritation, inflammation or compression of the largest nerve in the human body, generally due to a herniated disc or bone spur.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: Treating Sciatica Pain

 

 

Non-Invasive Treatment Modalities for Back Pain

Non-Invasive Treatment Modalities for Back Pain

Attributed from a personal perspective, as a practicing chiropractor with experience on a variety of spinal injuries and conditions, back pain is one of the most common health issues reported among the general population, affecting about 8 out of 10 individuals at some point throughout their lives. While many different types of treatments are currently available to help improve the symptoms of back pain, health care based on clinical and experimental evidence has caused an impact on the type of treatment individuals will receive for their back pain. Many patients in health care are turning to non-invasive treatment modalities for their back pain as a result of growing evidence associated with its safety and effectiveness.

 

On a further note, non-invasive treatment modalities are defined as conservative procedures which do not require incision into the body, where no break in the skin is created and there is no contact with the mucosa or internal body cavity beyond a natural or artificial body orifice, or the removal of tissue. The clinical and experimental methods and results of a variety of non-invasive treatment modalities on back pain have been described and discussed in detail below.

 

Abstract

 

At present, there is an increasing international trend towards evidence-based health care. The field of low back pain (LBP) research in primary care is an excellent example of evidence-based health care because there is a huge body of evidence from randomized trials. These trials have been summarized in a large number of systematic reviews. This paper summarizes the best available evidence from systematic reviews conducted within the framework of the Cochrane Back Review Group on non-invasive treatments for non-specific LBP. Data were gathered from the latest Cochrane Database of Systematic Reviews 2005, Issue 2. The Cochrane reviews were updated with additional trials, if available. Traditional NSAIDs, muscle relaxants, and advice to stay active are effective for short-term pain relief in acute LBP. Advice to stay active is also effective for long-term improvement of function in acute LBP. In chronic LBP, various interventions are effective for short-term pain relief, i.e. antidepressants, COX2 inhibitors, back schools, progressive relaxation, cognitive�respondent treatment, exercise therapy, and intensive multidisciplinary treatment. Several treatments are also effective for short-term improvement of function in chronic LBP, namely COX2 inhibitors, back schools, progressive relaxation, exercise therapy, and multidisciplinary treatment. There is no evidence that any of these interventions provides long-term effects on pain and function. Also, many trials showed methodological weaknesses, effects are compared to placebo, no treatment or waiting list controls, and effect sizes are small. Future trials should meet current quality standards and have adequate sample size.

 

Keywords: Non-specific low back pain, Non-invasive treatment, Primary care, Effectiveness, Evidence review

 

Introduction

 

Low back pain is most commonly treated in primary health care settings. Clinical management of acute as well as chronic low back pain (LBP) varies substantially among health care providers. Also, many different primary health care professionals are involved in the management of LBP, such as general practitioners, physical therapists, chiropractors, osteopaths, manual therapists, and others. There is a need to increase consistency in the management of LBP across professions.

 

At present, there is an increasing international trend towards evidence-based health care. Within the framework of evidence-based health care, clinicians should conscientiously, explicitly, and judiciously use the best current evidence in making decisions about the care of individual patients. The field of LBP research in primary care is an excellent example of evidence-based health care because there is a huge body of evidence. At present, more than 500 randomized controlled trials (RCTs) have been published, evaluating all types of conservative and alternative treatments for LBP that are commonly used in primary care. These trials have been summarized in a large number of systematic reviews. The Cochrane Back Review Group (CBRG) offers a framework for conducting and publishing systematic reviews in the fields of back and neck pain. However, method guidelines have also been developed and published by the CBRG to improve the quality of reviews in this field and to facilitate comparison across reviews and enhance consistency among reviewers. This paper summarizes the best available evidence from systematic reviews conducted within the framework of the CBRG on non-invasive treatments for non-specific LBP.

 

Objectives

 

To determine the effectiveness of non-invasive (pharmaceutical and non-pharmaceutical) interventions compared to placebo (or sham treatment, no intervention and waiting list control) or other interventions for acute, subacute, and chronic non-specific LBP. Trials comparing various types of the same interventions (e.g. various types of NSAIDs or various types of exercises) were excluded. The evidence on complementary and alternative medicine interventions (acupuncture, botanical medicines, massage, and neuroreflexotherapy) has been published elsewhere. Evidence on surgical and other invasive interventions for LBP will be presented in another paper in the same issue of the European Spine Journal.

 

Methods

 

The results of systematic reviews conducted within the framework of the CBRG were used. Most of these reviews were published, but preliminary results from one Cochrane review on patient education (A. Engers et al., submitted for publication) that has been submitted for publication were also used. Because no Cochrane review was available, we used two recently published systematic reviews for the evidence summary on antidepressants. The Cochrane review on work conditioning, work hardening, and functional restoration was not taken into account because all trials included in this review were also included in the reviews on exercise therapy and multidisciplinary treatment. The Cochrane reviews were updated with additional trials, if available, using Clinical Evidence as source (www.clinicalevidence.com). This manuscript consists of two parts: one on evidence of pharmaceutical interventions and the other on evidence of non-pharmaceutical interventions for non-specific LBP.

 

Search Strategy and Study Selection

 

The following search strategy was used in the Cochrane reviews:

 

  1. A computer aided search of the Medline and Embase databases since their beginning.
  2. A search of the Cochrane Central Register of Controlled Trials (Central).
  3. Screening references given in relevant systematic reviews and identified trials.
  4. Personal communication with content experts in the field.

 

Two reviewers independently applied the inclusion criteria to select the potentially relevant trials from the titles, abstracts, and keywords of the references retrieved by the literature search. Articles for which disagreement existed, and articles for which title, abstract, and keywords provided insufficient information for a decision on selection were obtained to assess whether they met the inclusion criteria. A consensus method was used to resolve disagreements between the two reviewers regarding the inclusion of studies. A third reviewer was consulted if disagreements were not resolved in the consensus meeting.

 

Inclusion Criteria

 

Study design. RCTs were included in all reviews.

 

Participants. Participants of trials that were included in the systematic reviews usually had acute (less than 6 weeks), subacute (6�12 weeks), and/or chronic (12 weeks or more) LBP. All reviews included patients with non-specific LBP.

 

Interventions. All reviews included one specific intervention. Typically any comparison group was allowed, but comparisons with no treatment/placebo/waiting list controls and other interventions were separately presented.

 

Outcomes. The outcome measures included in the systematic reviews were outcomes of symptoms (e.g. pain), overall improvement or satisfaction with treatment, function (e.g. back-specific functional status), well-being (e.g. quality of life), disability (e.g. activities of daily living, work absenteeism), and side effects. Results were separately presented for short-term and long-term follow-up.

 

Methodological Quality Assessment

 

In most reviews, the methodological quality of trials included in the reviews was assessed using the criteria recommended by the CBRG. The studies were not blinded for authors, institutions, or the journals in which the studies were published. The criteria were: (1) adequate allocation concealment, (2) adequate method of randomization, (3) similarity of baseline characteristics, (4) blinding of patients, (5) blinding of care provider, (6) equal co-interventions, (7) adequate compliance, (8) identical timing of outcome assessment, (9) blinded outcome assessment, (10) withdrawals and drop outs adequate, and (11) intention-to-treat analysis. All items were scored as positive, negative, or unclear. High quality was typically defined as fulfilling 6 or more of the 11 quality criteria. We refer readers to the original Cochrane reviews for details of the quality of trials.

 

Data Extraction

 

The data that were extracted and presented in tables included characteristics of participants, interventions, outcomes, and results. We refer readers to the original Cochrane reviews for summaries of trial data.

 

Data Analysis

 

Some reviews conducted a meta-analysis using statistical methods to analyse and summarize the data. If relevant valid data were lacking (data were too sparse or of inadequate quality) or if data were statistically too heterogeneous (and the heterogeneity could not be explained), statistical pooling was avoided. In these cases, reviewers performed a qualitative analysis. In the qualitative analyses, various levels of evidence were used that took into account the participants, interventions, outcomes, and methodological quality of the original studies. If only a subset of available trials provided sufficient data for inclusion in a meta-analysis (e.g. only some trials reported standard deviations), both a quantitative and qualitative analysis was used.

 

Dr. Alex Jimenez’s Insight

The purpose of the following research study was to determine which of the various non-invasive treatment modalities used could be safe and most effective towards the prevention, diagnosis and treatment of acute, subacute and chronic non-specific low back pain, as well as general back pain. All of the systematic reviews included participants with some type of non-specific low back pain, or LBP, where each received health care for one specific intervention. The outcome measures included in the systematic reviews were based on symptoms, overall improvement or satisfaction with treatment, function, well-being, disability and side effects. The data of the results was extracted and presented in Tables 1 and 2. The researchers of the study performed a qualitative analysis of all the presented clinical and experimental data before demonstrating it in this article. As a healthcare professional, or patient with back pain, the information in this research study may help determine which non-invasive treatment modality should be considered to achieve the desired recovery outcome measures.

 

Results

 

Pharmaceutical Interventions

 

Antidepressants

 

There are three reasons for using antidepressants in the treatment of LBP. The first reason is that chronic LBP patients often also cope with depression, and treatment with antidepressants may elevate mood and increase pain tolerance. Second, many antidepressant drugs are sedating, and it has been suggested that part of their value for managing chronic pain syndromes simply could be improving sleep. The third reason for the use of antidepressants in chronic LBP patients is their supposed analgesic action, which occurs at lower doses than the antidepressant effect.

 

Effectiveness of antidepressants for acute LBP No trials were identified.

 

Effectiveness of antidepressants for chronic LBP Antidepressants versus placebo. We found two systematic reviews including a total of nine trials. One review found that antidepressants significantly increased pain relief compared with placebo but found no significant difference in functioning [pain: standardized mean difference (SMD) 0.41, 95% CI 0.22�0.61; function: SMD 0.24, 95% CI -0.21 to +0.69]. The other review did not statistically pool data but had similar results.

 

Adverse effects Adverse effects of antidepressants include dry mouth, drowsiness, constipation, urinary retention, orthostatic hypotension, and mania. One RCT found that the prevalence of dry mouth, insomnia, sedation, and orthostatic symptoms was 60�80% with tricyclic antidepressants. However, rates were only slightly lower in the placebo group and none of the differences were significant. In many trials, the reporting of side effects was insufficient.

 

Muscle Relaxants

 

The term �muscle relaxants� is very broad and includes a wide range of drugs with different indications and mechanisms of action. Muscle relaxants can be divided into two main categories: antispasmodic and antispasticity medications.

 

Antispasmodics are used to decrease muscle spasm associated with painful conditions such as LBP. Antispasmodics can be subclassified into benzodiazepines and non-benzodiazepines. Benzodiazepines (e.g. diazepam, tetrazepam) are used as anxiolytics, sedatives, hypnotics, anticonvulsants, and/or skeletal muscle relaxants. Non-benzodiazepines include a variety of drugs that can act at the brain stem or spinal cord level. The mechanisms of action with the central nervous system are still not completely understood.

 

Antispasticity medications are used to reduce spasticity that interferes with therapy or function, such as in cerebral palsy, multiple sclerosis, and spinal cord injuries. The mechanism of action of the antispasticity drugs with the peripheral nervous system (e.g. dantrolene sodium) is the blockade of the sarcoplasmic reticulum calcium channel. This reduces calcium concentration and diminishes actin�myosin interaction.

 

Effectiveness of muscle relaxants for acute LBP Benzodiazepines versus placebo. One study showed that there is limited evidence (one trial; 50 people) that an intramuscular injection of diazepam followed by oral diazepam for 5 days is more effective than placebo for patients with acute LBP on short-term pain relief and better overall improvement, but is associated with substantially more central nervous system side effects.

 

Non-benzodiazepines versus placebo. Eight studies were identified. One high quality study on acute LBP showed that there is moderate evidence (one trial; 80 people) that a single intravenous injection of 60 mg orphenadrine is more effective than placebo in immediate relief of pain and muscle spasm for patients with acute LBP.

 

Three high quality and one low quality trial showed that there is strong evidence (four trials; 294 people) that oral non-benzodiazepines are more effective than placebo for patients with acute LBP on short-term pain relief, global efficacy, and improvement of physical outcomes. The pooled RR and 95% CIs for pain intensity was 0.80 (0.71�0.89) after 2�4 days (four trials; 294 people) and 0.58 (0.45�0.76) after 5�7 days follow-up (three trials; 244 people). The pooled RR and 95% CIs for global efficacy was 0.49 (0.25�0.95) after 2�4 days (four trials; 222 people) and 0.68 (0.41�1.13) after 5�7 days follow-up (four trials; 323 people).

 

Antispasticity drugs versus placebo. Two high quality trials showed that there is strong evidence (two trials; 220 people) that antispasticity muscle relaxants are more effective than placebo for patients with acute LBP on short-term pain relief and reduction of muscle spasm after 4 days. One high quality trial also showed moderate evidence on short-term pain relief, reduction of muscle spasm, and overall improvement after 10 days.

 

Effectiveness of muscle relaxants for chronic LBP Benzodiazepines versus placebo. Three studies were identified. Two high quality trials on chronic LBP showed that there is strong evidence (two trials; 222 people) that tetrazepam 50 mg t.i.d. is more effective than placebo for patients with chronic LBP on short-term pain relief and overall improvement. The pooled RRs and 95% CIs for pain intensity were 0.82 (0.72�0.94) after 5�7 days follow-up and 0.71 (0.54�0.93) after 10�14 days. The pooled RR and 95% CI for overall improvement was 0.63 (0.42�0.97) after 10�14 days follow-up. One high quality trial showed that there is moderate evidence (one trial; 50 people) that tetrazepam is more effective than placebo on short-term decrease of muscle spasm.

 

Non-benzodiazepines versus placebo. Three studies were identified. One high quality trial showed that there is moderate evidence (one trial; 107 people) that flupirtin is more effective than placebo for patients with chronic LBP on short-term pain relief and overall improvement after 7 days, but not on reduction of muscle spasm. One high quality trial showed that there is moderate evidence (one trial; 112 people) that tolperisone is more effective than placebo for patients with chronic LBP on short-term overall improvement after 21 days, but not on pain relief and reduction of muscle spasm.

 

Adverse effects Strong evidence from all eight trials on acute LBP (724 people) showed that muscle relaxants are associated with more total adverse effects and central nervous system adverse effects than placebo, but not with more gastrointestinal adverse effects; RRs and 95% CIs were 1.50 (1.14�1.98), 2.04 (1.23�3.37), and 0.95 (0.29�3.19), respectively. The most commonly and consistently reported adverse events involving the central nervous system were drowsiness and dizziness. For the gastrointestinal tract this was nausea. The incidence of other adverse events associated with muscle relaxants was negligible.

 

NSAIDs

 

The rationale for the treatment of LBP with NSAIDs is based both on their analgesic potential and their anti-inflammatory action.

 

Effectiveness of NSAIDs for acute LBP NSAIDs versus placebo. Nine studies were identified. Two studies reported on LBP without radiation, two on sciatica, and the other five on a mixed population. There was conflicting evidence that NSAIDs provide better pain relief than placebo in acute LBP. Six of the nine studies which compared NSAIDs with placebo for acute LBP reported dichotomous data on global improvement. The pooled RR for global improvement after 1 week using the fixed effects model was 1.24 (95% CI 1.10�1.41), indicating a statistically significant effect in favour of NSAIDs compared to placebo. The pooled RR (three trials) for analgesic use using the fixed effects model was 1.29 (95% CI 1.05�1.57), indicating significantly less use of analgesics in the NSAIDs group.

 

NSAIDs versus paracetamol/acetaminophen. There were no differences between NSAIDs and paracetamol reported in two studies, but one study reported better outcomes for two of the four types of NSAIDs. There is conflicting evidence that NSAIDs are more effective than paracetamol for acute LBP.

 

NSAIDs versus other drugs. Six studies reported on acute LBP, of which five did not find any differences between NSAIDs and narcotic analgesics or muscle relaxants. Group sizes in these studies ranged from 19 to 44 and, therefore, these studies simply may have lacked power to detect a statistically significant difference. There is moderate evidence that NSAIDs are not more effective than other drugs for acute LBP.

 

Effectiveness of NSAIDs for chronic LBP NSAIDs versus placebo. One small cross-over study (n=37) found that naproxen sodium 275 mg capsules (two capsules b.i.d.) decreased pain more than placebo at 14 days.

 

COX2 inhibitors versus placebo. Four additional trials were identified. There is strong evidence that COX2 inhibitors (etoricoxib, rofecoxib and valdecoxib) decreased pain and improved function compared with placebo at 4 and 12 weeks, but effects were small.

 

Adverse effects NSAIDs may cause gastrointestinal complications. Seven of the nine studies which compared NSAIDs with placebo for acute LBP reported data on side effects. The pooled RR for side effects using the fixed effects model was 0.83 (95% CI 0.64�1.08), indicating no statistically significant difference. One systematic review of the harms of NSAIDs found that ibuprofen and diclofenac had the lowest gastrointestinal complication rate, mainly because of the low doses used in practice (pooled OR for adverse effects vs. placebo 1.30, 95% CI 0.91�1.80). COX2 inhibitors have been shown to have less gastrointestinal side effects in osteoarthritis and rheumatoid arthritis studies. However, increased cardiovascular risk (myocardial infarction and stroke) has been reported with long-term use.

 

Non-Pharmaceutical Interventions

 

Advice to Stay Active

 

Effectiveness of advice to stay active for acute LBP Stay active versus bed rest. The Cochrane review found four studies that compared advice to stay active as single treatment with bed rest. One high quality study showed that advice to stay active significantly improved functional status and reduced sick leave after 3 weeks compared with advice to rest in bed for 2 days. It also found a significant reduction of pain intensity in favour of the stay active group at intermediate follow-up (more than 3 weeks). The low quality studies showed conflicting results. The additional trial (278 people) found no significant differences in pain intensity and functional disability between advice to stay active and bed rest after 1 month. However, it found that advice to stay active significantly reduced sick leave compared with bed rest up to day 5 (52% with advice to stay active vs. 86% with bed rest; P<0.0001).

 

Stay active versus exercise. One trial found short-term improvement in functional status and reduction in sick leave in favour of advice to stay active. A significant reduction in sick leave in favour of the stay active group was also reported at long-term follow-up.

 

Effectiveness of advice to stay active for chronic LBP No trials identified.

 

Adverse effects No trials reported side effects.

 

Back Schools

 

The original �Swedish back school� was introduced by Zachrisson Forsell in 1969. It was intended to reduce the pain and prevent recurrences. The Swedish back school consisted of information on the anatomy of the back, biomechanics, optimal posture, ergonomics, and back exercises. Four small group sessions were scheduled during a 2-week period, with each session lasting 45 min. The content and length of back schools has changed and appears to vary widely today.

 

Effectiveness of back schools for acute LBP Back schools versus waiting list controls or �placebo� interventions. Only one trial compared back school with placebo (shortwaves at the lowest intensity) and showed better short-term recovery and return to work for the back school group. No other short- or long-term differences were found.

 

Back schools versus other interventions. Four studies (1,418 patients) showed conflicting evidence on the effectiveness of back schools compared to other treatments for acute and subacute LBP on pain, functional status, recovery, recurrences, and return to work (short-, intermediate-, and long-term follow-up).

 

Effectiveness of back schools for chronic LBP Back schools versus waiting list controls or �placebo� interventions. There is conflicting evidence (eight trials; 826 patients) on the effectiveness of back schools compared to waiting list controls or placebo interventions on pain, functional status, and return to work (short-, intermediate-, and long-term follow-up) for patients with chronic LBP.

 

Back schools versus other treatments. Six studies were identified comparing back schools with exercises, spinal or joint manipulation, myofascial therapy, and some kind of instructions or advice. There is moderate evidence (five trials; 1,095 patients) that a back school is more effective than other treatments for patients with chronic LBP for pain and functional status (short- and intermediate-term follow-up). There is moderate evidence (three trials; 822 patients) that there is no difference in long-term pain and functional status.

 

Adverse effects None of the trials reported any adverse effects.

 

Bed Rest

 

One rationale for bed rest is that many patients experience relief of symptoms in a horizontal position.

 

Effectiveness of bed rest for acute LBP Twelve trials were included in the Cochrane review. Some trials were on a mixed population of patients with acute and chronic LBP or on a population of patients with sciatica.

 

Bed rest versus advice to stay active. Three trials (481 patients) were included in this comparison. The results of two high quality trials showed small but consistent and significant differences in favour of staying active, at 3- to 4-week follow-up [pain: SMD 0.22 (95% CI 0.02�0.41); function: SMD 0.31 (95% CI 0.06�0.55)], and at 12-week follow-up [pain: SMD 0.25 (95% CI 0.05�0.45); function: SMD 0.25 (95% CI 0.02�0.48)]. Both studies also reported significant differences in sick leave in favour of staying active. There is strong evidence that advice to rest in bed is less effective than advice to stay active for reducing pain and improving functional status and speeding-up return to work.

 

Bed rest versus other interventions. Three trials were included. Two trials compared advice to rest in bed with exercises and found strong evidence that there was no difference in pain, functional status, or sick leave at short- and long-term follow-up. One study found no difference in improvement on a combined pain, disability, and physical examination score between bed rest and manipulation, drug therapy, physiotherapy, back school, or placebo.

 

Short bed rest versus longer bed rest. One trial in patients with sciatica reported no significant difference in pain intensity between 3 and 7 days of bed rest, measured 2 days after the end of treatment.

 

Effectiveness of bed rest for chronic LBP There were no trials identified.

 

Adverse effects No trials reported adverse effects.

 

Behavioural Treatment

 

The treatment of chronic LBP not only focuses on removing the underlying organic pathology, but also tries to reduce disability through the modification of environmental contingencies and cognitive processes. In general, three behavioural treatment approaches can be distinguished: operant, cognitive, and respondent. Each of these approaches focus on the modification of one of the three response systems that characterize emotional experiences: behaviour, cognition, and physiological reactivity.

 

Operant treatments include positive reinforcement of healthy behaviours and consequent withdrawal of attention towards pain behaviours, time-contingent instead of pain-contingent pain management, and spousal involvement. The operant treatment principles can be applied by all health care disciplines involved with the patient.

 

Cognitive treatment aims to identify and modify patients� cognitions regarding their pain and disability. Cognition (the meaning of pain, expectations regarding control over pain) can be modified directly by cognitive restructuring techniques (such as imagery and attention diversion), or indirectly by the modification of maladaptive thoughts, feelings, and beliefs.

 

Respondent treatment aims to modify the physiological response system directly, e.g. by reduction of muscular tension. Respondent treatment includes providing the patient with a model of the relationship between tension and pain, and teaching the patient to replace muscular tension by a tension-incompatible reaction, such as the relaxation response. Electromyographic (EMG) biofeedback, progressive relaxation, and applied relaxation are frequently used.

 

Behavioural techniques are often applied together as part of a comprehensive treatment approach. This so-called cognitive�behavioural treatment is based on a multidimensional model of pain that includes physical, affective, cognitive, and behavioural components. A large variety of behavioural treatment modalities are used for chronic LBP because there is no general consensus about the definition of operant and cognitive methods. Furthermore, behavioural treatment often consists of a combination of these modalities or is applied in combination with other therapies (such as medication or exercises).

 

Effectiveness of behavioural therapy for acute LBP One RCT (107 people) identified by the review found that cognitive�behavioural therapy reduced pain and perceived disability after 9�12 months compared with traditional care (analgesics plus back exercises until pain had subsided).

 

Effectiveness of behavioural therapy for chronic LBP Behavioural treatment versus waiting list controls. There is moderate evidence from two small trials (total of 39 people) that progressive relaxation has a large positive effect on pain (1.16; 95% CI 0.47�1.85) and behavioural outcomes (1.31; 95% CI 0.61�2.01) in the short-term. There is limited evidence that progressive relaxation has a positive effect on short-term back-specific and generic functional status.

 

There is moderate evidence from three small trials (total of 88 people) that there is no significant difference between EMG biofeedback and waiting list control on behavioural outcomes in the short-term. There is conflicting evidence (two trials; 60 people) on the effectiveness of EMG versus waiting list control on general functional status.

 

There is conflicting evidence from three small trials (total of 153 people) regarding the effect of operant therapy on short-term pain intensity, and moderate evidence that there is no difference [0.35 (95% CI -0.25 to 0.94)] between operant therapy and waiting list control for short-term behavioural outcomes. Five studies compared combined respondent and cognitive therapy with waiting list controls. There is strong evidence from four small trials (total of 134 people) that combined respondent and cognitive therapy has a medium sized, short-term positive effect on pain intensity. There is strong evidence that there are no differences [0.44 (95% CI -0.13 to 1.01)] on short-term behavioural outcomes.

 

Behavioural treatment versus other interventions. There is limited evidence (one trial; 39 people) that there are no significant differences between behavioural treatment and exercise on pain intensity, generic functional status and behavioural outcomes, either post-treatment, or at 6- or 12-month follow-up.

 

Adverse effects None reported in the trials.

 

Exercise Therapy

 

Exercise therapy is a management strategy that is widely used in LBP; it encompasses a heterogeneous group of interventions ranging from general physical fitness or aerobic exercise, to muscle strengthening, to various types of flexibility and stretching exercises.

 

Effectiveness of exercise therapy for acute LBP Exercise versus no treatment. The pooled analysis failed to show a difference in short-term pain relief between exercise therapy and no treatment, with an effect of -0.59 points/100 (95% CI -12.69 to 11.51).

 

Exercise versus other interventions. Of 11 trials involving 1,192 adults with acute LBP, 10 had non-exercise comparisons. These trials provide conflicting evidence. The pooled analysis showed that there was no difference at the earliest follow-up in pain relief when compared to other conservative treatments: 0.31 points (95% CI -0.10 to 0.72). Similarly, there was no significant positive effect of exercise on functional outcomes. Outcomes show similar trends at short-, intermediate-, and long-term follow-up.

 

Effectiveness of exercise therapy for subacute LBP Exercise versus other interventions. Six studies involving 881 subjects had non-exercise comparisons. Two trials found moderate evidence of reduced work absenteeism with a graded activity intervention compared to usual care. The evidence is conflicting regarding the effectiveness of other exercise therapy types in subacute LBP compared to other treatments.

 

Effectiveness of exercise therapy for chronic LBP Exercise versus other interventions. Thirty-three exercise groups in 25 trials on chronic LBP had non-exercise comparisons. These trials provide strong evidence that exercise therapy is at least as effective as other conservative interventions for chronic LBP. Two exercise groups in high quality studies and nine groups in low quality studies found exercise more effective than comparison treatments. These studies, mostly conducted in health care settings, commonly used exercise programs that were individually designed and delivered (as opposed to independent home exercises). The exercise programs commonly included strengthening or trunk stabilizing exercises. Conservative care in addition to exercise therapy was often included in these effective interventions, including behavioural and manual therapy, advice to stay active, and education. One low quality trial found a group-delivered aerobics and strengthening exercise program resulted in less improvement in pain and function outcomes than behavioural therapy. Of the remaining trials, 14 (2 high quality and 12 low quality) found no statistically significant or clinically important differences between exercise therapy and other conservative treatments; 4 of these trials were inadequately powered to detect clinically important differences on at least one outcome. Trials were rated low quality most commonly because of inadequate assessor blinding.

 

Meta-analysis of pain outcomes at the earliest follow-up included 23 exercise groups with an independent comparison and adequate data. Synthesis resulted in a pooled weighted mean improvement of 10.2 points (95% CI 1.31�19.09) for exercise therapy compared to no treatment, and 5.93 points (95% CI 2.21�9.65) compared to other conservative treatment [vs. all comparisons 7.29 points (95% CI 3.67�0.91)]. Smaller improvements were seen in functional outcomes with an observed mean positive effect of 3.15 points (95% CI -0.29 to 6.60) compared to no treatment, and 2.37 points (95% CI 0.74�4.0) versus other conservative treatment at the earliest follow-up [vs. all comparisons 2.53 points (95% CI 1.08�3.97)].

 

Adverse effects Most trials did not report any side effects. Two studies reported cardiovascular events that were considered not to be caused by the exercise therapy.

 

Lumbar Supports

 

Lumbar supports are provided as treatment to people suffering from LBP with the aim of making the impairment and disability vanish or decrease. Different desired functions have been suggested for lumbar supports: (1) to correct deformity, (2) to limit spinal motion, (3) to stabilize part of the spine, (4) to reduce mechanical uploading, and (5) miscellaneous effects: massage, heat, placebo. However, at the present time the putative mechanisms of action of a lumbar support remain a matter of debate.

 

Effectiveness of lumbar supports for acute LBP No trials were identified.

 

Effectiveness of lumbar supports for chronic LBP No RCT compared lumbar supports with placebo, no treatment, or other treatments for chronic LBP.

 

Effectiveness of lumbar supports for a mixed population of acute, subacute, and chronic LBP Four studies included a mix of patients with acute, subacute, and chronic LBP. One study did not give any information about the duration of the LBP complaints of the patients. There is moderate evidence that a lumbar support is not more effective in reducing pain than other types of treatment. Evidence on overall improvement and return to work was conflicting.

 

Adverse effects Potential adverse effects associated with prolonged lumbar support use include decreased strength of the trunk musculature, a false sense of security, heat, skin irritation, skin lesions, gastrointestinal disorders and muscle wasting, higher blood pressure and higher heart rates, and general discomfort.

 

Multidisciplinary Treatment Programmes

 

Multidisciplinary treatments for back pain evolved from pain clinics. Initially, multidisciplinary treatments focused on a traditional biomedical model and in the reduction of pain. Current multidisciplinary approaches to chronic pain are based on a multifactorial biopsychosicial model of interrelating physical, psychological, and social/occupational factors. The content of multidisciplinary programs varies widely and, at present, it is unclear what the optimal content is and who should be involved.

 

Effectiveness of multidisciplinary treatment for subacute LBP No trials identified.

 

Effectiveness of multidisciplinary treatment for subacute LBP Multidisciplinary treatment versus usual care. Two RCTs on subacute LBP were included. The study population in both studies consisted of workers on sick leave. In one study the patients in the intervention group returned to work sooner (10 weeks) compared with the control group (15 weeks) (P=0.03). The intervention group also had fewer sick leave during follow-up than the control group (mean difference=-7.5 days, 95% CI -15.06 to 0.06). There was no statistically significant difference in pain intensity between the intervention and control group, but subjective disability had decreased significantly more in the intervention group than in the control group (mean difference=-1.2, 95% CI -1.984 to -0.416). In the other study, the median duration of absence from regular work was 60 days for the group with a combination of occupational and clinical intervention, 67 days with the occupational intervention group, 131 days with the clinical intervention group, and 120.5 days with the usual care group (P=0.04). Return to work was 2.4 times faster in the group with both an occupational and clinical intervention (95% CI 1.19�4.89) than the usual care group, and 1.91 times faster in the two groups with occupational intervention than the two groups without occupational interventions (95% CI 1.18�3.1). There is moderate evidence that multidisciplinary treatment with a workplace visit and comprehensive occupational health care intervention is effective with regard to return to work, sick leave, and subjective disability for patients with subacute LBP.

 

Effectiveness of multidisciplinary treatment for chronic LBP Multidisciplinary treatment versus other interventions. Ten RCTs with a total of 1,964 subjects were included in the Cochrane review. Three additional papers reported on long-term outcomes of two of these trials. All ten trials excluded patients with significant radiculopathy or other indication for surgery. There is strong evidence that intensive multidisciplinary treatment with a functional restoration approach improves function when compared with inpatient or outpatient non-multidisciplinary treatments. There is moderate evidence that intensive multidisciplinary treatment with a functional restoration approach reduces pain when compared with outpatient non-multidisciplinary rehabilitation or usual care. There is contradictory evidence regarding vocational outcomes. Five trials evaluating less intensive multidisciplinary treatment programmes could not demonstrate beneficial effects on pain, function, or vocational outcomes when compared with non-multidisciplinary outpatient treatment or usual care. One additional RCT was found that showed no difference between multidisciplinary treatment and usual care on function and health related quality of life after 2 and 6 months.

 

The reviewed studies provide evidence that intensive (>100 h of therapy) MBPSR with a functional restoration approach produces greater improvements in pain and function for patients with disabling chronic LBP than non-multidisciplinary rehabilitation or usual care. Less intensive treatments did not seem effective.

 

Adverse effects No adverse effects were reported.

 

Spinal Manipulation

 

Spinal manipulation is defined as a form of manual therapy which involves movement of a joint past its usual end range of motion, but not past its anatomic range of motion. Spinal manipulation is usually considered as that of long lever, low velocity, non-specific type manipulation as opposed to short lever, high velocity, specific adjustment. Potential hypotheses for the working mechanism of spinal manipulation are: (1) release for the entrapped synovial folds, (2) relaxation of hypertonic muscle, (3) disruption of articular or periarticular adhesion, (4) unbuckling of motion segments that have undergone disproportionate displacement, (5) reduction of disc bulge, (6) repositioning of miniscule structures within the articular surface, (7) mechanical stimulation of nociceptive joint fibres, (8) change in neurophysiological function, and (9) reduction of muscle spasm.

 

Effectiveness of spinal manipulation for acute LBP Spinal manipulation versus sham. Two trials were identified. Patients receiving treatment that included spinal manipulation had statistically significant and clinically important short-term improvements in pain (10-mm difference; 95% CI 2�17 mm) compared with sham therapy. However, the improvement in function was considered clinically relevant but not statistically significant (2.8-mm difference on the Roland Morris scale; 95% CI -0.1 to 5.6).

 

Spinal manipulation versus other therapies. Twelve trials were identified. Spinal manipulation resulted in statistically significant more short-term pain relief compared with other therapies judged to be ineffective or possibly even harmful (4-mm difference; 95% CI 1�8 mm). However, the clinical significance of this finding is questionable. The point estimate of improvement in short-term function for treatment with spinal manipulation compared with the ineffective therapies was considered clinically significant but was not statistically significant (2.1-point difference on the Roland Morris scale; 95% CI -0.2 to 4.4). There were no differences in effectiveness between patients treated with spinal manipulation and those treated with any of the conventionally advocated therapies.

 

Effectiveness of spinal manipulation for chronic LBP Spinal manipulation versus sham. Three trials were identified. Spinal manipulation was statistically significantly more effective compared with sham manipulation on short-term pain relief (10 mm; 95% CI 3�17 mm) and long-term pain relief (19 mm; 95% CI 3�35 mm). Spinal manipulation was also statistically significantly more effective on short-term improvement of function (3.3 points on the Roland and Morris Disability Questionnaire (RMDQ); 95% CI 0.6�6.0).

 

Spinal manipulation versus other therapies. Eight trials were identified. Spinal manipulation was statistically significantly more effective compared with the group of therapies judged to be ineffective or perhaps harmful on short-term pain relief (4 mm; 95% CI 0�8), and short-term improvement in function (2.6 points on the RMDQ; 95% CI 0.5�4.8). There were no differences in short- and long-term effectiveness compared with other conventionally advocated therapies such as general practice care, physical or exercise therapy, and back school.

 

Adverse effects In the RCTs identified by the review that used a trained therapist to select people and perform spinal manipulation, the risk of serious complications was low. An estimate of the risk of spinal manipulation causing a clinically worsened disk herniation or cauda equina syndrome in a patient presenting with lumbar disk herniation is calculated from published data to be less than 1 in 3.7 million.

 

Traction

 

Lumbar traction uses a harness (with velcro strapping) that is put around the lower rib cage and around the iliacal crest. Duration and level of force exerted through this harness can be varied in a continuous or intermittent mode. Only in motorized and bed rest traction can the force be standardized. With other techniques total body weight and the strength of the patient or therapist determine the forces exerted. In the application of traction force, consideration must be given to counterforces such as lumbar muscle tension, lumbar skin stretch and abdominal pressure, which depend on the patient�s physical constitution. If the patient is lying on the traction table, the friction of the body on the table provides the main counterforce during traction. The exact mechanism through which traction might be effective is unclear. It has been suggested that spinal elongation, through decreasing lordosis and increasing intervertebral space, inhibits nociceptive impulses, improves mobility, decreases mechanical stress, reduces muscle spasm or spinal nerve root compression (due to osteophytes), releases luxation of a disc or capsule from the zygo-apophysial joint, and releases adhesions around the zygo-apophysial joint and the annulus fibrosus. So far, the proposed mechanisms have not been supported by sufficient empirical information.

 

Thirteen of the studies identified in the Cochrane review included a homogeneous population of LBP patients with radiating symptoms. The remaining studies included a mix of patients with and without radiation. There were no studies exclusively involving patients who had no radiating symptoms.

 

Five studies included solely or primarily patients with chronic LBP of more than 12 weeks; in one study patients were all in the subacute range (4�12 weeks). In 11 studies the duration of LBP was a mixture of acute, subacute, and chronic. In four studies duration was not specified.

 

Effectiveness of traction for acute LBP No RCTs included primarily people with acute LBP. One study was identified that included patients with subacute LBP, but this population consisted of a mix of patients with and without radiation.

 

Effectiveness of traction for chronic LBP One trial found that continuous traction is not more effective on pain, function, overall improvement, or work absenteeism than placebo. One RCT (42 people) found no difference in effectiveness between standard physical therapy including continuous traction and the same program without traction. One RCT (152 people) found no significant difference between lumbar traction plus massage and interferential treatment in pain relief, or improvement of disability 3 weeks and 4 months after the end of treatment. This RCT did not exclude people with sciatica, but no further details of the proportion of people with sciatica were reported. One RCT (44 people) found that autotraction is more effective than mechanical traction on global improvement, but not on pain and function, in chronic LBP patients with or without radiating symptoms. However, this trial had several methodological problems that may be associated with biased results.

 

Adverse effects Little is known about the adverse effects of traction. Only a few case reports are available, which suggest that there is some danger for nerve impingement in heavy traction, i.e. lumbar traction forces exceeding 50% of the total body weight. Other risks described for lumbar traction are respiratory constraints due to the traction harness or increased blood pressure during inverted positional traction. Other potential adverse effects of traction include debilitation, loss of muscle tone, bone demineralization, and thrombophlebitis.

 

Transcutaneous Electrical Nerve Stimulation

 

Transcutaneous electrical nerve stimulation (TENS) is a therapeutic non-invasive modality mainly used for pain relief by electrically stimulating peripheral nerves via skin surface electrodes. Several types of TENS applications, differing in intensity and electrical characteristics, are used in clinical practice: (1) high frequency, (2) low frequency, (3) burst frequency, and (4) hyperstimulation.

 

Effectiveness of TENS for acute LBP: No trials were identified.

 

Effectiveness of TENS for chronic LBP The Cochrane review included two RCTs of TENS for chronic LBP. The results of one small trial (N=30) showed a significant decrease in subjective pain intensity with active TENS treatment compared to placebo over the course of the 60-min treatment session. The pain reduction seen at the end of stimulation was maintained for the entire 60-min post-treatment time interval assessed (data not shown). Longer term follow-up was not conducted in this study. The second trial (N=145) demonstrated no significant difference between active TENS and placebo for any of the outcomes measured, including pain, functional status, range of motion, and use of medical services.

 

Adverse effects In a third of the participants in one trial, minor skin irritation occurred at the site of electrode placement. These adverse effects were observed equally in the active TENS and placebo groups. One participant randomized to placebo TENS developed severe dermatitis 4 days after beginning therapy and was required to withdraw (Tables 1, ?2).

 

Table 1 Effectiveness of Conservative Interventions for Acute Non Specific Low Back Pain

Table 1: Effectiveness of conservative interventions for acute non-specific low back pain.

 

Table 2 Effectiveness of Conservative Interventions for Chronic Non Specific Low Back Pain

Table 2: Effectiveness of conservative interventions for chronic non-specific low back pain.

 

Discussion

 

The best available evidence for conservative treatments for non-specific LBP summarized in this paper shows that some interventions are effective. Traditional NSAIDs, muscle relaxants, and advice to stay active are effective for short-term pain relief in acute LBP. Advice to stay active is also effective for long-term improvement of function in acute LBP. In chronic LBP, various interventions are effective for short-term pain relief, i.e. antidepressants, COX2 inhibitors, back schools, progressive relaxation, cognitive�respondent treatment, exercise therapy, and intensive multidisciplinary treatment. Several treatments are also effective for short-term improvement of function in chronic LBP, namely COX2 inhibitors, back schools, progressive relaxation, exercise therapy, and multidisciplinary treatment. There is no evidence that any of these interventions provides long-term effects on pain and function. Also, many trials showed methodological weaknesses, effects are compared to placebo, no treatment or waiting list controls, and effect sizes are small. Future trials should meet current quality standards and have adequate sample size. However, in summary, there is evidence that some interventions are effective while evidence for many other interventions is lacking or there is evidence that they are not effective.

 

During the last decade, various clinical guidelines on the management of acute LBP in primary care have been published that have used this evidence. At present, guidelines exist in at least 12 different countries: Australia, Denmark, Finland, Germany, Israel, the Netherlands, New Zealand, Norway, Sweden, Switzerland, the United Kingdom, and the United States. Since the available evidence is international, one would expect that each country�s guidelines would give more or less similar recommendations regarding diagnosis and treatment. Comparison of clinical guidelines for the management of LBP in primary care from 11 different countries showed that the content of the guidelines regarding therapeutic interventions is quite similar. However, there were also some discrepancies in recommendations across guidelines. Differences in recommendations between guidelines may be due to incompleteness of the evidence, different levels of evidence, magnitude of effects, side effects and costs, differences in health care systems (organization/financial), or differences in membership of guidelines committees. More recent guidelines may have included more recently published trials and, therefore, may end up with slightly different recommendations. Also, guidelines may have been based on systematic reviews that included trials in different languages; the majority of existing reviews have considered only studies published in a few languages, and several, only those published in English. Recommendations in guidelines are not only based on scientific evidence, but also on consensus. Guideline committees may consider various arguments differently, such as the magnitude of the effects, potential side effects, cost-effectiveness, and current routine practice and available resources in their country. Especially as we know that effects in the field of LBP, if any, are usually small and short-term effects only, interpretation of effects may vary among guideline committees. Also, guideline committees may differently weigh other aspects such as side effects and costs. The constitution of the guideline committees and the professional bodies they represent may introduce bias�either for or against a particular treatment. This does not necessarily mean that one guideline is better than the other or that one is right and the other is wrong. It merely shows that when translating the evidence into clinically relevant recommendations more aspects play a role, and that these aspects may vary locally or nationally.

 

Recently European guidelines for the management of LBP were developed to increase consistency in the management of non-specific LBP across countries in Europe. The European Commission has approved and funded this project called �COST B13�. The main objectives of this COST action were developing European guidelines for the prevention, diagnosis and treatment of non-specific LBP, ensuring an evidence-based approach through the use of systematic reviews and existing clinical guidelines, enabling a multidisciplinary approach, and stimulating collaboration between primary health care providers and promoting consistency across providers and countries in Europe. Representatives from 13 countries participated in this project that was conducted between 1999 and 2004. The experts represented all relevant health professions in the field of LBP: anatomy, anaesthesiology, chiropractic, epidemiology, ergonomy, general practice, occupational care, orthopaedic surgery, pathology, physiology, physiotherapy, psychology, public health care, rehabilitation, and rheumatology. Within this COST B13 project four European guidelines were developed on: (1) acute LBP, (2) chronic LBP, (3) prevention of LBP, and (4) pelvic girdle pain. The guidelines will soon be published as a supplement to the European Spine Journal.

 

Contributor Information

 

Maurits W. van Tulder, Bart Koes, Antti Malmivaara: Ncbi.nlm.nih.gov

 

In conclusion,�the clinical and experimental evidence above for non-invasive treatment modalities on back pain demonstrated that several of the treatments are safe and effective. While the results of a variety of the methods used to improve back pain symptoms were proven to be efficient, many other treatment modalities requires additional evidence and others were reported to not be effective towards improving symptoms of back pain.�The main objective of the research study was to determine the safest and most effective guideline for the prevention, diagnosis and treatment of non-specific back pain.�Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Sciatica

 

Sciatica is referred to as a collection of symptoms rather than a single type of injury or condition. The symptoms are characterized as radiating pain, numbness and tingling sensations from the sciatic nerve in the lower back, down the buttocks and thighs and through one or both legs and into the feet. Sciatica is commonly the result of irritation, inflammation or compression of the largest nerve in the human body, generally due to a herniated disc or bone spur.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: Treating Sciatica Pain

 

 

Blank
References
1.�Alaranta H, Rytokoski U, Rissanen A, Talo S, Ronnemaa T, Puukka P, Karppi SL, Videman T, Kallio V, Slatis P. Intensive physical and psychosocial training program for patients with chronic low back pain.�A controlled trial. Spine.�1994;19:1340�1349.�[PubMed]
2.�Alcoff J, Jones E, Rust P, Newman R. Controlled trial of imipramine for chronic low back pain.�J Fam Pract.�1982;14:841�846.�[PubMed]
3.�Alexandre NM, Moraes MA, Correa Filho HR, Jorge SA. Evaluation of a program to reduce back pain in nursing personnel.�Rev Salud Publica.�2001;35:356�361.�[PubMed]
4.�Amlie E, Weber H, Holme I. Treatment of acute low back pain with piroxicam: results of a double-blind placebo-controlled trial.�Spine.�1987;12:473�476. doi: 10.1097/00007632-198706000-00010.�[PubMed][Cross Ref]
5.�Arbus L, Fajadet B, Aubert D, Morre M, Goldfinger E. Activity of tetrazepam in low back pain.�Clin Trials J.�1990;27:258�267.
6.�Assendelft WJ, Morton SC, Yu EI, Suttorp MJ, Shekelle P. Spinal manipulative therapy for low back pain. A meta-analysis of effectiveness relative to other therapies.�Ann Intern Med.�2003;138:871�881.[PubMed]
7.�Atkinson JH, Slater MA, Williams RA. A placebo-controlled randomized clinical trial of nortriptyline for chronic low back pain.�Pain.�1998;76:287�296. doi: 10.1016/S0304-3959(98)00064-5.�[PubMed][Cross Ref]
8.�Atkinson JH, Slater MA, Wahlgren DR. Effects of noradrenergic and serotonergic antidepressants on chronic low back pain intensity.�Pain.�1999;83:137�145. doi: 10.1016/S0304-3959(99)00082-2.�[PubMed][Cross Ref]
9.�Babej-Dolle R, Freytag S, Eckmeyer J, Zerle G, Schinzel S, Schmeider G, Stankov G. Parenteral dipyrone versus diclofenac and placebo in patients with acute lumbago or sciatic pain: randomized observer-blind multicenter study.�Int J Clin Pharmacol Ther.�1994;32:204�209.�[PubMed]
10.�Baptista R, Brizzi J, Dutra F, Josef H, Keisermann M, de Lucca R (1988) Terapeutica da lombalgia com a tizanidina (DS 103-282), un novo agente mioespasmolitico. Estudo multicentrico, duplo-cego e comparativo. Folha Medica
11.�Barrata R. A double-blind study of cyclobenzaprine and placebo in the treatment of acute muskuloskeletal conditions of the low back.�Curr Ther Res.�1982;32:646�652.
12.�Basler H, Jakle C, Kroner-Herwig B. Incorporation of cognitive�behavioral treatment into the medical care of chronic low back patients: a controlled randomized study in German pain treatment centers.�Patient Educ Couns.�1997;31:113�124. doi: 10.1016/S0738-3991(97)00996-8.�[PubMed][Cross Ref]
13.�Basmajian J. Cyclobenzaprine hydrochloride effect on skeletal muscle spasm in the lumbar region and neck: two double-blind controlled clinical and laboratory studies.�Arch Phys Med Rehabil.�1978;59:58�63.[PubMed]
14.�Basmajian JV. Acute back pain and spasm: a controlled multicenter trial of combined analgesic and antispasm agents.�Spine.�1989;14:438�439. doi: 10.1097/00007632-198904000-00019.�[PubMed][Cross Ref]
15.�Bendix AF, Bendix T, Ostenfeld S, Bush E, Andersen A. Active treatment programs for patients with chronic low back pain: a prospective randomized, observer-blinded study.�Eur Spine J.�1995;4:148�152. doi: 10.1007/BF00298239.�[PubMed][Cross Ref]
16.�Bendix AF, Bendix T, Vaegter KV, Lund C, Frolund L, Holm L. Multidisciplinary intensive treatment for chronic low back pain: a randomized, prospective study.�Cleve Clin J Med.�1996;63:62�69.�[PubMed]
17.�Bendix AE, Bendix T, Lund C, Kirkbak S, Ostenfeld S. Comparison of three intensive programs for chronic low back pain patients: a prospective, randomized, observer-blinded study with one-year follow-up.�Scand J Rehabil Med.�1997;29:81�89.�[PubMed]
18.�Bendix AE, Bendix T, Haestrup C, Busch E. A prospective, randomized 5-year follow-up study of functional restoration in chronic low back pain patients.�Eur Spine J.�1998a;7:111�119. doi: 10.1007/s005860050040.�[PubMed][Cross Ref]
19.�Bendix AE, Bendix T, Labriola M, Boekgaard P. Functional restoration for chronic low back pain. Two-year follow-up of two randomized clinical trials.�Spine.�1998b;23:717�725. doi: 10.1097/00007632-199803150-00013.�[PubMed][Cross Ref]
20.�Bendix T, Bendix A, Labriola M, Haestrup C, Ebbehoj N. Functional restoration versus outpatient physical training in chronic low back pain: a randomized comparative study.�Spine.�2000;25:2494�2500. doi: 10.1097/00007632-200010010-00012.�[PubMed][Cross Ref]
21.�Bergquist-Ullman M, Larsson U. Acute low-back pain in industry.�Acta Orthop Scand.�1977;170(Suppl.):1�117.�[PubMed]
22.�Berry H, Hutchinson D. A multicentre placebo-controlled study in general practice to evaluate the efficacy and safety of tizanidine in acute low-back pain.�J Int Med Res.�1988;16:75�82.�[PubMed]
23.�Berry H, Bloom B, Hamilton EBD, Swinson DR. Naproxen sodium, diflunisal, and placebo in the treatment of chronic back pain.�Ann Rheum Dis.�1982;41:129�132. doi: 10.1136/ard.41.2.129.[PMC free article][PubMed][Cross Ref]
24.�Beurskens AJ, Vet HC, K�ke AJ, Lindeman E, Regtop W, Heijden GJ, Knipschild PG. Efficacy of traction for non-specific low back pain: a randomised clinical trial.�Lancet.�1995;346:1596�1600. doi: 10.1016/S0140-6736(95)91930-9.�[PubMed][Cross Ref]
25.�Beurskens AJ, Vet HC, K�ke AJ, Regtop W, Heijden GJ, Lindeman E, Knipschild PG. Efficacy of traction for nonspecific low back pain. 12-week and 6-month results of a randomized clinical trial.�Spine.�1997;22:2756�2762. doi: 10.1097/00007632-199712010-00011.�[PubMed][Cross Ref]
26.�Bianchi M.�Evaluation of cyclobenzaprine for skeletal muscle spasm of local origin. Clinical evaluation of flexeril (cyclobenzaprine HCL/MSD)�Minneapolis: Postgraduate Medicine Communications; 1978. pp. 25�29.
27.�Bigos S, Bowyer O, Braen G (1994) Acute low back problems in adults. Clinical Practice Guideline No. 14. AHCPR Publication No. 95-0642. Agency for Health Care Policy and Research, Public Health Service, US Department of Health and Human Services, Rockville
28.�Bihaug O. Autotraksjon for ischialgpasienter. En kontrollert sammenlikning mellom effekten av Auto-traksjon-B og isometriske ovelser ad modum Hume endall og Jenkins.�Fysioterapeuten.�1978;45:377�379.
29.�Birbara CA, Puopolo AD, Munoz DR. Treatment of chronic low back pain with etoricoxib, a new cyclo-oxygenase-2 selective inhibitor: improvement in pain and disability: a randomised, placebo-controlled, 3-month trial.�J Pain.�2003;4:307�315. doi: 10.1016/S1526-5900(03)00633-3.�[PubMed][Cross Ref]
30.�Blomberg S, Hallin G, Grann K, Berg E, Sennerby U. Manual therapy with steroid injections�a new approach to treatment of low back pain. A controlled multicenter trial with an evaluation by orthopedic surgeons.�Spine.�1994;19:569�577. doi: 10.1097/00007632-199403000-00013.�[PubMed][Cross Ref]
31.�Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-Vargas R, Davis B, Day R, Ferraz MB, Hawkey CJ, Hochberg MC, Kvien TK, Schnitzer TJ, Study Group VIGOR. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group.�N Engl J Med.�2000;343:1520�1528. doi: 10.1056/NEJM200011233432103.�[PubMed][Cross Ref]
32.�Borman P, Keskin D, Bodur H. The efficacy of lumbar traction in the management of patients with low back pain.�Rheumatol Int.�2003;23:82�86.�[PubMed]
33.�Bouter LM, Pennick V, Bombardier C, Editorial Board of the Back Review Group Cochrane Back Review Group.�Spine.�2003;28:1215�1218. doi: 10.1097/00007632-200306150-00002.�[PubMed][Cross Ref]
34.�Braun H, Huberty R. Therapy of lumbar sciatica. A comparative clinical study of a corticoid-free monosubstance and a corticoid containing combination drug.�Med Welt.�1982;33:490�491.�[PubMed]
35.�Bronfort G, Goldsmith CH, Nelson CF, Boline PD, Anderson AV. Trunk exercise combined with spinal manipulative or NSAID therapy for chronic low back pain: a randomized, observer-blinded clinical trial.�J Manipulative Physiol Ther.�1996;19:570�582.�[PubMed]
36.�Brown FL, Bodison S, Dixon J, Davis W, Nowoslawski J. Comparison of diflunisal and acetaminophen with codeine in the treatment of initial or recurrent acute low back pain.�Clin Ther.�1986;9(Suppl. c):52�58.[PubMed]
37.�Bru E, Mykletun R, Berge W, Svebak S. Effects of different psychological interventions on neck, shoulder and low back pain in female hospital staff.�Psychol Health.�1994;9:371�382. doi: 10.1080/08870449408407495.�[Cross Ref]
38.�Calmels P, Fayolle-Minon I. An update on orthotic devices for the lumbar spine based on a review of the literature.�Rev Rhum.�1996;63:285�291.�[PubMed]
39.�Casale R. Acute low back pain: symptomatic treatment with a muscle relaxant drug.�Clin J Pain.�1988;4:81�88.
40.�Cherkin DC, Deyo RA, Battie M, Street J, Barlow W. A comparison of physical therapy, chiropractic manipulation, and provision of an educational booklet for the treatment of patients with low back pain.�N Engl J Med.�1998;339:1021�1029. doi: 10.1056/NEJM199810083391502.�[PubMed][Cross Ref]
41.�Chok B, Lee R, Latimer J, Seang BT. Endurance training of the trunk extensor muscles in people with subacute low back pain.�Phys Ther.�1999;79:1032�1042.�[PubMed]
42.�Clarke J, van Tulder M, Blomberg S, Bronfort G, van der Heijden G, de Vet HCW (2005) Traction for low back pain: a systematic review within the framework of the Cochrane Collaboration. In: The Cochrane Library, Issue 3. Update Software, Oxford
43.�Coats TL, Borenstein DG, Nangia NK, Brown MT. Effects of valdecoxib in the treatment of chronic low back pain: results of a randomized, placebo-controlled trial.�Clin Ther.�2004;26:1249�1260. doi: 10.1016/S0149-2918(04)80081-X.�[PubMed][Cross Ref]
44.�Coomes NE. A comparison between epidural anaesthesia and bed rest in sciatica.�Br Med J.�1961;Jan:20�24.�[PMC free article][PubMed]
45.�Coxhead CE, Inskip H, Meade TW, North WRS, Troup JDG. Multicentre trial of physiotherapy in the management of sciatic symptoms.�Lancet.�1981;1:1065�1068. doi: 10.1016/S0140-6736(81)92238-8.[PubMed][Cross Ref]
46.�Cramer GD, Humphreys CR, Hondras MA, McGregor M, Triano JJ. The Hmax/Mmax ratio as an outcome measure for acute low back pain.�J Manipulative Physiol Ther.�1993;16:7�13.�[PubMed]
47.�Dalichau S, Scheele K. Effects of elastic lumbar belts on the effect of a muscle training program for patients with chronic back pain [German]�Zt Orthop Grenzgeb.�2000;138:8�16. doi: 10.1055/s-2000-10106.�[PubMed][Cross Ref]
48.�Dalichau S, Scheele K, Perrey RM, Elliehausen H-J, Huebner J. Ultraschallgest�tzte Haltungs- und Bewegungsanalyse der Lendenwirbels�ule zum Nachweis der Wirksamkeit einer R�ckenschule.�Zbl Arbeitsmedizin.�1999;49:148�156.
49.�Dapas F. Baclofen for the treatment of acute low-back syndrome.�Spine.�1985;10:345�349. doi: 10.1097/00007632-198505000-00010.�[PubMed][Cross Ref]
50.�Davies JE, Gibson T, Tester L. The value of exercises in the treatment of low back pain.�Rheumatol Rehabil.�1979;18:243�247.�[PubMed]
51.�Deyo RA, Diehl AK, Rosenthal M. How many days of bed rest for acute low back pain? A randomized clinical trial.�N Engl J Med.�1986;315:1064�1070.�[PubMed]
52.�Deyo RA, Walsh NE, Martin DC, Schoenfeld LS, Ramamurthy S. A controlled trial of transcutaneous electrical nerve stimulation (TENS) and exercise for chronic low back pain.�N Engl J Med.�1990;322:1627�1634.�[PubMed]
53.�Dickens C, Jayson M, Sutton C. The relationship between pain and depression in a trial using paroxetine in sufferers of chronic low back pain.�Psychosomatics.�2000;41:490�499. doi: 10.1176/appi.psy.41.6.490.�[PubMed][Cross Ref]
54.�Donchin M, Woolf O, Kaplan L, Floman Y. Secondary prevention of low-back pain.�A clinical trial. Spine.�1990;15:1317�1320.�[PubMed]
55.�Doran DML, Newell DJ. Manipulation in treatment of low back pain: a multicentre study.�Br Med J.�1975;2:161�164.�[PMC free article][PubMed]
56.�Evans DP, Burke MS, Lloyd KN, Roberts EE, Roberts GM. Lumbar spinal manipulation on trial. Part 1: clinical assessment.�Rheumatol Rehabil.�1978;17:46�53.�[PubMed]
57.�Evans DP, Burke MS, Newcombe RG. Medicines of choice in low back pain.�Curr Med Res Opin.�1980;6:540�547.�[PubMed]
58.�Faas A, Chavannes AW, Eijk JTM, Gubbels JW. A randomized placebo-controlled trial of exercise therapy in patients with acute low back pain.�Spine.�1993;18:1388�1395.�[PubMed]
59.�Faas A, Eijk JTM, Chavannes AW, Gubbels JW. A randomized trial of exercise therapy in patients with acute low back pain.�Spine.�1995;20:941�947. doi: 10.1097/00007632-199504150-00012.�[PubMed][Cross Ref]
60.�Farrell JP, Twomey LT. Acute low back pain: comparison of two conservative treatment approaches.�Med J Aust.�1982;1:160�164.�[PubMed]
61.�Fordyce WE, Brockway JA, Bergman JA, Spengler D. Acute back pain: a control group comparison of behavioural versus traditional management methods.�J Behav Med.�1986;9:127�140. doi: 10.1007/BF00848473.�[PubMed][Cross Ref]
62.�Frost H, Klaber Moffett JA, Moser JS, Fairbank JCT. Randomised controlled trial for evaluation of fitness programme for patients with chronic low back pain.�Br Med J.�1995;310:151�154.[PMC free article][PubMed]
63.�Frost H, Lamb SE, Klaber Moffett JA, Fairbank JCT, Moser JS. A fitness programme for patients with chronic low back pain: 2-year follow-up of a randomised controlled trial.�Pain.�1998;75:273�279. doi: 10.1016/S0304-3959(98)00005-0.�[PubMed][Cross Ref]
64.�Frost H, Lamb SE, Doll HA, Taffe Carver P, Stewart-Brown S. Randomized controlled trial of physiotherapy compared with advice for low back pain.�Br Med J.�2004;329:708�711. doi: 10.1136/bmj.38216.868808.7C.�[PMC free article][PubMed][Cross Ref]
65.�Galantino ML, Bzdewka TM, Eissler-Russo JL, Holbrook ML, Mogck EP, Geigle P. The impact of modified hatha yoga on chronic low back pain: a pilot study.�Altern Ther Health Med.�2004;10:56�59.[PubMed]
66.�Gemignani G, Olivieri I, Ruju G, Pasero G. Transcutaneous electrical nerve stimulation in ankylosing spondylitis: a double-blind study.�Arthritis Rheum.�1991;34:788�789. doi: 10.1002/art.1780340624.[PubMed][Cross Ref]
67.�Gibson T, Grahame R, Harkness J, Woo P, Blagrave P, Hills R (1985) Controlled comparison of short-wave diathermy treatment with osteopathic treatment in non-specific low back pain. Lancet 1258�1261[PubMed]
68.�Gilbert JR, Taylor DW, Hildebrand A, Evans C. Clinical trial of common treatments for low back pain in family practice.�Br Med J Clin Res Ed.�1985;291:791�794.�[PMC free article][PubMed]
69.�Glomsr�d B, L�nn JH, Soukup MG, B� K, Larsen S. Active back school, prophylactic management for low back pain: three-year follow-up of a randomized controlled trial.�J Rehabil Med.�2001;33:26�30. doi: 10.1080/165019701300006506.�[PubMed][Cross Ref]
70.�Glover JR, Morris JG, Khosla T. Back pain: a randomized clinical trial of rotational manipulation of the trunk.�Br J Ind Med.�1974;31:59�64.�[PMC free article][PubMed]
71.�Godfrey CM, Morgan PP, Schatzker J. A randomized trial of manipulation for low-back pain in a medical setting.�Spine.�1984;9:301�304. doi: 10.1097/00007632-198404000-00015.�[PubMed][Cross Ref]
72.�Gold R. Orphenadrine citrate: sedative or muscle relaxant?�Clin Ther.�1978;1:451�453.
73.�Goldie I. A clinical trial with indomethacin (indomee) in low back pain and sciatica.�Acta Orthop Scand.�1968;39:117�128.�[PubMed]
74.�Goodkin K, Gullion CM, Agras WS. A randomised double blind, placebo-controlled trial of trazodone hydrochloride in chronic low back pain syndrome.�J Clin Psychopharmacol.�1990;10:269�278. doi: 10.1097/00004714-199008000-00006.�[PubMed][Cross Ref]
75.�Gur A, Karakoc M, Cevik R, Nas K, Sarac AJ, Karakoc M. Efficacy of low power laser therapy and exercise on pain and functions in chronic low back pain.�Lasers Surg Med.�2003;32:233�238. doi: 10.1002/lsm.10134.�[PubMed][Cross Ref]
76.�Guzman J, Esmail R, Karjalainen K. Multidisciplinary rehabilitation for chronic low back pain: systematic review.�Br Med J.�2001;322:1511�1516. doi: 10.1136/bmj.322.7301.1511.�[PMC free article][PubMed][Cross Ref]
77.�Hadler NM, Curtis P, Gillings DB, Stinnett S. A benefit of spinal manipulation as adjunctive therapy for acute low-back pain: a stratified controlled trial.�Spine.�1987;12:703�705. doi: 10.1097/00007632-198709000-00012.�[PubMed][Cross Ref]
78.�Hagen KB, Hilde G, Jamtvedt G (2003) Bed rest for acute low back pain and sciatica (Cochrane Review). In: The Cochrane Library, Issue 1. Update Software, Oxford
79.�Hameroff SR, Weiss JL, Lerman JC. Doxepin�s effects on chronic pain and depression: a controlled study.�J Clin Psychiatry.�1984;45:47�52.�[PubMed]
80.�Hansen FR, Bendix T, Skov P, Jensen CV, Kristensen JH, Krohn L. Intensive, dynamic back-muscle exercises, conventional physiotherapy, or placebo-control treatment of low back pain: a randomized, observer-blind trial.�Spine.�1993;18:98�107. doi: 10.1097/00007632-199301000-00015.�[PubMed][Cross Ref]
81.�H�rk�p�� K, J�rvikoski A, Mellin G, Hurri H. A controlled study on the outcome of inpatient and outpatient treatment of low-back pain. Part I.�Scand J Rehabil Med.�1989;21:81�89.�[PubMed]
82.�H�rk�p�� K, Mellin G, J�rvikoski A, Hurri H. A controlled study on the outcome of inpatient and outpatient treatment of low-back pain. Part III.�Scand J Rehabil Med.�1990;22:181�188.�[PubMed]
83.�Hayden JA, Tulder MW, Malmivaara AV, Koes BW. Meta-analysis: exercise therapy for nonspecific low back pain.�Ann Intern Med.�2005;142:765�775.�[PubMed]
84.�Hemmila HM, Keinanen-Kiukaanniemi SM, Levoska S. Does folk medicine work? A randomized clinical trial on patients with prolonged back pain.�Arch Phys Med Rehabil.�1997;78:571�577. doi: 10.1016/S0003-9993(97)90420-2.�[PubMed][Cross Ref]
85.�Hemmila H, Keinanen-Kiukaanniemi SM, Levoska S, Puska P. Long-term effectiveness of bone-setting, light exercise therapy, and physiotherapy for prolonged back pain: a randomized controlled trial.�J Manipulative Physiol Ther.�2002;25:99�104. doi: 10.1067/mmt.2002.122329.�[PubMed][Cross Ref]
86.�Henry D, Lim LLY, Rodriguez LAG. Variability in risk of gastrointestinal complications with individual non-steroidal anti-inflammatory drugs: results of a collaborative meta-analysis.�Br Med J.�1996;312:1563�1566.�[PMC free article][PubMed]
87.�Herzog W, Conway PJW, Willcox BJ. Effects of different treatment modalities on gait symmetry and clinical measures for sacroiliac joint patients.�J Manipulative Physiol Ther.�1991;14:104�109.�[PubMed]
88.�Heymans MW, Tulder MW, Esmail R, Bombardier C, Koes BW. Back schools for nonspecific low back pain: a systematic review within the framework of the Cochrane Collaboration Back Review Group.�Spine.�2005;30:2153�2163. doi: 10.1097/01.brs.0000182227.33627.15.�[PubMed][Cross Ref]
89.�Hides JA, Jull GA, Richardson CA. Long-term effects of specific stabilizing exercises for first-episode low back pain.�Spine.�2001;26:E243�E248. doi: 10.1097/00007632-200106010-00004.�[PubMed][Cross Ref]
90.�Hilde G, Hagen KB, Jamtvedt G (2003) Advice to stay active as a single treatment for low back pain and sciatica (Cochrane Review). In: The Cochrane Library, Issue 1. Update Software, Oxford�[PubMed]
91.�Hildebrandt VH, Proper KI, van den BR, Douwes M, Heuvel SG, Buuren S. Cesar therapy is temporarily more effective in patients with chronic low back pain than the standard treatment by family practitioner: randomized, controlled and blinded clinical trial with 1 year follow-up [Dutch]�Ned Tijdschr Geneesk.�2000;144:2258�2264.�[PubMed]
92.�Hindle T. Comparison of carisoprodol, butabarbital, and placebo in treatment of the low back syndrome.�Calif Med.�1972;117:7�11.�[PMC free article][PubMed]
93.�Hofstee DJ, Gutenbeek JMM, Hoogland PH, Houwelingen HC, Kloet A, L�tters F, Tans JTJ. Westeinde sciatica trial: randomized controlled study of bed rest and physiotherapy for acute sciatica.�J Neurosurg.�2002;96:45�49.�[PubMed]
94.�Hsieh CJ, Phillips RB, Adams AH, Pope MH. Functional outcomes of low back pain: comparison of four treatment groups in a randomized controlled trial.�J Manipulative Physiol Ther.�1992;15:4�9.[PubMed]
95.�Hurri H. The Swedish back school in chronic low-back pain. Part I. Benefits.�Scand J Rehabil Med.�1989;21:33�40.�[PubMed]
96.�Indahl A, Velund L, Reikeraas O. Good prognosis for low back pain when left untampered. A randomized clinical trial.�Spine.�1995;20:473�477.�[PubMed]
97.�Indahl A, Haldorsen EH, Holm S, Reikeras O, Ursin H. Five-year follow-up study of a controlled clinical trial using light mobilization and an informative approach to low back pain.�Spine.�1998;23:2625�2630. doi: 10.1097/00007632-199812010-00018.�[PubMed][Cross Ref]
98.�Jacobs JH, Grayson MF. Trial of anti-inflammatory agent (indomethacin) in low back pain with and without redicular involvement.�Br Med J.�1968;3:158�160.�[PMC free article][PubMed]
99.�Jenkins DG, Ebbutt AF, Evans CD. Tofranil in the treatment of low back pain.�J Int Med Res.�1976;4:28�40.�[PubMed]
100.�J�ckel WH, Cziske R, Gerdes N, Jacobi E. �berpr�fung der Wirksamkeit station�rer Rehabilitationsma�nahmen bei Patienten mit chronishen Kreuzschmerzen: eine prospective randomisierte, kontrollierte Studie.�Rehabilitation.�1990;29:129�133.�[PubMed]
101.�Kankaanpaa M, Taimela S, Airaksinen O, Hanninen O. The efficacy of active rehabilitation in chronic low back pain. Effect on pain intensity, self-experienced disability, and lumbar fatigability.�Spine.�1999;24:1034�1042. doi: 10.1097/00007632-199905150-00019.�[PubMed][Cross Ref]
102.�Katz N, Ju WD, Krupa DA. Efficacy and safety of rofecoxib in patients with chronic low back pain: results from two 4-week, randomised, placebo-controlled, parallel-group. Double-blind trials.�Spine.�2003;28:851�859. doi: 10.1097/00007632-200305010-00002.�[PubMed][Cross Ref]
103.�Keijsers JFEM, Groenman NH, Gerards FM, Oudheusden E, Steenbakkers M. A back school in the Netherlands: evaluating the results.�Patient Educ Couns.�1989;14:31�44. doi: 10.1016/0738-3991(89)90005-0.�[PubMed][Cross Ref]
104.�Keijsers JFME, Steenbakkers WHL, Meertens RM, Bouter LM, Kok GJ. The efficacy of the back school: a randomized trial.�Arthritis Care Res.�1990;3:204�209.
105.�Klaber Moffett JA, Chase SM, Portek I, Ennis JR. A controlled prospective study to evaluate the effectiveness of a back school in the relief of chronic low-back pain.�Spine.�1986;11:120�122. doi: 10.1097/00007632-198603000-00003.�[PubMed][Cross Ref]
106.�Klaber Moffett J, Torgerson D, Bell-Syer S, Jackson D, Llewlyn-Phillips H, Farrin A. Randomised controlled trial of exercise for low back pain: clinical outcomes, costs, and preferences.�Br Med J.�1999;319:279�283.�[PMC free article][PubMed]
107.�Klinger N, Wilson R, Kanniainen C., Wagenknecht K, Re O, Gold R. Intravenous orphenadrine for the treatment of lumbar paravertebral muscle strain.�Curr Ther Res.�1988;43:247�254.
108.�Koes BW, Bouter LM, Mameren H, Essers AHM, Verstegen CMJR, Hofhuizen DM, Houben JP, Knipschild PG. Randomised clinical trial of manual therapy and physiotherapy for persistent back and neck complaints: results of one year follow-up.�Br Med J.�1992;304:601�605.�[PMC free article][PubMed]
109.�Koes BW, Tulder MW, Ostelo R, Kim Burton A, Waddell G. Clinical guidelines for the management of low back pain in primary care: an international comparison.�Spine.�2001;26:2504�2513. doi: 10.1097/00007632-200111150-00022.�[PubMed][Cross Ref]
110.�Konrad K, Tatrai T, Hunka A, Vereckei E, Korondi L. Controlled trial of balneotherapy in treatment of low back pain.�Ann Rheum Dis.�1992;51:820�822. doi: 10.1136/ard.51.6.820.�[PMC free article][PubMed][Cross Ref]
111.�Kuukkanen TM, Malkia EA. An experimental controlled study on postural sway and therapeutic exercise in subjects with low back pain.�Clin Rehabil.�2000;14:192�202. doi: 10.1191/026921500667300454.�[PubMed][Cross Ref]
112.�Lacey PH, Dodd GD, Shannon DJ. A double-blind placebo controlled study of piroxicam in the management of acute musculoskeletal disorders.�Eur J Rheumatol Inflamm.�1984;7:95�104.�[PubMed]
113.�Lankhorst GJ, Stadt RJ, Vogelaar TW, Korst JK, Prevo AJH. The effect of the Swedish back school in chronic idiopathic low-back pain.�Scand J Rehabil Med.�1983;15:141�145.�[PubMed]
114.�Larsson U, Ch�ler U, Lindstr�m A. Auto-traction for treatment of lumbago-sciatica. A multicenter controlled investigation.�Acta Orthop Scand.�1980;51:791�798. doi: 10.3109/17453678008990875.[PubMed][Cross Ref]
115.�Leclaire R, Esdaile JM, Suissa S, Rossignol M, Proulx R, Dupuis M. Back school in a first episode of compensated acute low back pain: a clinical trial to assess efficacy and prevent relapse.�Arch Phys Med Rehabil.�1996;77:673�679. doi: 10.1016/S0003-9993(96)90007-6.�[PubMed][Cross Ref]
116.�Lepisto P. A comparative trial of dS 103-282 and placebo in the treatment of acute skeletal muscle spasms due to disorders of the back.�Ther Res.�1979;26:454�459.
117.�Letchuman R, Deusinger RH. Comparison of sacrospinalis myoelectric activity and pain levels in patients undergoing static and intermittent lumbar traction.�Spine.�1993;18:1361�1365. doi: 10.1097/00007632-199308000-00017.�[PubMed][Cross Ref]
118.�Lidstrom A, Zachrisson M. Physical therapy on low back pain and sciatica.�Scand J Rehabil Med.�1970;2:37�42.�[PubMed]
119.�Lindequist SL, Lundberg B, Wikmark R, Bergstad B, Loof G, Ottermark AC. Information and regime at low-back pain.�Scand J Rehabil Med.�1984;16:113�116.�[PubMed]
120.�Lindstrom I, Ohlund C, Eek C, Wallin L, Peterson LE, Fordyce WE. The effect of graded activity on patients with subacute low back pain: a randomized prospective clinical study with an operant-conditioning behavioural approach.�Phys Ther.�1992;72:279�293.�[PubMed]
121.�Linton SJ, Bradley LA, Jensen I, Spangfort E, Sundell L. The secondary prevention of low back pain: a controlled study with follow-up.�Pain.�1989;36:197�207. doi: 10.1016/0304-3959(89)90024-9.�[PubMed][Cross Ref]
122.�Ljunggren E, Weber H, Larssen S. Autotraction versus manual traction in patients with prolapsed lumbar intervertebral discs.�Scand J Rehabil Med.�1984;16:117�124.�[PubMed]
123.�Loisel P, Abenhaim L, Durand P, Esdaile J, Suissa S, Gosselin L, Simard R, Turcotte J, Lemaire J. A population-based, randomized clinical trial on back pain management.�Spine.�1997;22:2911�2918. doi: 10.1097/00007632-199712150-00014.�[PubMed][Cross Ref]
124.�L�nn JH, Glomsr�d B, Soukup MG, B� K, Larsen S. Active back school: prophylactic management for low back pain. A randomized controlled 1-year follow-up study.�Spine.�1999;24:865�871. doi: 10.1097/00007632-199905010-00006.�[PubMed][Cross Ref]
125.�Lukinmaa�Kansanelakelaitoksen julkaisuja.�1989;ML:90.
126.�McGill SM. Abdominal belts in industry: a position paper on their assets, liabilities and use.�Am Ind Hyg Assoc.�1993;54:752�754.�[PubMed]
127.�Malmivaara A, H�kkinen U, Aro T, Heinrichs M-L, Koskenniemi L, Kuosma E, Lappi S, Paloheimo R, Servo C, Vaaranen V, Hernberg S. The treatment of acute low back pain�bed rest, exercises, or ordinary activity.�N Eng J Med.�1995;332:351�355. doi: 10.1056/NEJM199502093320602.�[PubMed][Cross Ref]
128.�Marchand S, Charest J, Li J, Chenard JR, Lavignolle B, Laurencelle L. Is TENS purely a placebo effect? A controlled study on chronic low back pain.�Pain.�1993;54:99�106. doi: 10.1016/0304-3959(93)90104-W.�[PubMed][Cross Ref]
129.�Mathews JA, Hickling J. Lumbar traction: a double-blind controlled study for sciatica.�Rheumatol Rehabil.�1975;14:222�225. doi: 10.1093/rheumatology/14.4.222.�[PubMed][Cross Ref]
130.�Mathews JA, Mills SB, Jenkins VM. Back pain and sciatica: controlled trials of manipulation, traction, sclerosant and epidural injections.�Br J Rheumatol.�1987;26:416�423. doi: 10.1093/rheumatology/26.6.416.�[PubMed][Cross Ref]
131.�Mathews W, Morkel M, Mathews J. Manipulation and traction for lumbago and sciatica: physiotherapeutic techniques used in two controlled trials.�Physiother Pract.�1988;4:201�206.
132.�Mellin G, Hurri H, H�rk�p�� K, J�rvikoski A. A controlled study on the outcome of inpatient and outpatient treatment of low back pain. Part II.�Scand J Rehabil Med.�1989;21:91�95.�[PubMed]
133.�Mellin G, H�rk�p�� K, Hurri H, J�rvikoski A. A controlled study on the outcome of inpatient and outpatient treatment of low back pain. Part IV.�Scand J Rehabil Med.�1990;22:189�194.�[PubMed]
134.�Milgrom C, Finestone A, Lev B, Wiener M, Floman Y. Overexertional lumbar and thoracic back pain among recruits: a prospective study of risk factors and treatment regimens.�J Spinal Disord.�1993;6:187�193. doi: 10.1097/00002517-199306030-00001.�[PubMed][Cross Ref]
135.�Milne S, Welch V, Brosseau L (2004) Transcutaneous electrical nerve stimulation (TENS) for chronic low back pain. In: The Cochrane Library, Issue 4. Update Software, Oxford
136.�Mitchell RI, Carmen GM. The functional restoration approach to the treatment of chronic pain in patients with soft tissue and back injuries.�Spine.�1994;19:633�642. doi: 10.1097/00007632-199403001-00001.�[PubMed][Cross Ref]
137.�Moll W. Zur therapie akuter lumbovertebraler syndrome durch optimale medikamentose muskelrelaxation mittels diazepam.�Med Welt.�1973;24:1747�1751.�[PubMed]
138.�Moseley L. Combined physiotherapy and education is efficacious for chronic low back pain.�Aust J Physiother.�2002;48:297�302.�[PubMed]
139.�Newton-John TR, Spence SH, Schotte D. Cognitive�behavioural therapy versus EMG biofeedback in the treatment of chronic low back pain.�Behav Res Ther.�1995;33:691�697. doi: 10.1016/0005-7967(95)00008-L.�[PubMed][Cross Ref]
140.�Niemist� L, Lahtinen-Suopanki T, Rissanen P, Lindgren K-A, Sarna S, Hurri H. A randomized trial of combined manipulation, stabilizing exercises, and physician consultation compared to physician consultation alone for chronic low back pain.�Spine.�2003;28:2185�2191. doi: 10.1097/01.BRS.0000085096.62603.61.�[PubMed][Cross Ref]
141.�Nicholas MK, Wilson PH, Goyen J. Operant�behavioural and cognitive�behavioural treatment for chronic low back pain.�Behav Res Ther.�1991;29:225�238. doi: 10.1016/0005-7967(91)90112-G.[PubMed][Cross Ref]
142.�Nicholas MK, Wilson PH, Goyen J. Comparison of cognitive�behavioral group treatment and an alternative non-psychological treatment for chronic low back pain.�Pain.�1992;48:339�347. doi: 10.1016/0304-3959(92)90082-M.�[PubMed][Cross Ref]
143.�Nouwen A. EMG biofeedback used to reduce standing levels of paraspinal muscle tension in chronic low back pain.�Pain.�1983;17:353�360. doi: 10.1016/0304-3959(83)90166-5.�[PubMed][Cross Ref]
144.�Oliphant D. Safety of spinal manipulation in the treatment of lumbar disk herniations: a systematic review and risk assessment.�J Manipulative Physiol Ther.�2004;27:197�210. doi: 10.1016/j.jmpt.2003.12.023.�[PubMed][Cross Ref]
145.�Ongley MJ, Klein RG, Dorman TA, Eek BC, Hubert LJ. A new approach to the treatment of chronic low back pain.�Lancet.�1987;2:143�146. doi: 10.1016/S0140-6736(87)92340-3.�[PubMed][Cross Ref]
146.�Ostelo RW, van Tulder MW, Vlaeyen JW, Linton SJ, Morley SJ, Assendelft WJ (2005) Behavioural treatment for chronic low-back pain. In: The Cochrane Library, Issue 1. Update Software, Oxford[PubMed]
147.�Pal P, Mangion P, Hossian MA, Diffey L. A controlled trial of continuous lumbar traction in the treatment of back pain and sciatica.�Br J Rheumatol.�1986;25:181�183. doi: 10.1093/rheumatology/25.2.181.�[PubMed][Cross Ref]
148.�Pallay RM, Seger W, Adler JL, Ettlinger RE, Quaidoo EA, Lipetz R, O�Brien K, Mucciola L, Skalky CS, Petruschke RA, Bohidar NR, Geba GP. Etoricoxib reduced pain and disability and improved quality of life in patients with chronic low back pain: a 3 month, randomized, controlled trial.�Scand J Rheumatol.�2004;33:257�266. doi: 10.1080/03009740410005728.�[PubMed][Cross Ref]
149.�Penrose KW, Chook K, Stump JL. Acute and chronic effects of pneumatic lumbar support on muscular strength, flexibility, and functional impairment index.�Sports Train Med Rehabil.�1991;2:121�129.
150.�Penttinen J, Nevala-Puranen N, Airaksinen O, Jaaskelainen M, Sintonen H, Takala J. Randomized controlled trial of back school with and without peer support.�J Occup Rehabil.�2002;12:21�29. doi: 10.1023/A:1013594103133.�[PubMed][Cross Ref]
151.�Pheasant H, Bursk A, Goldfarb J, Azen SP, Weiss JN, Borelli L. Amitriptyline and chronic low back pain: a randomised double-blind crossover study.�Spine.�1983;8:552�557. doi: 10.1097/00007632-198307000-00012.�[PubMed][Cross Ref]
152.�Postacchini F, Facchini M, Palieri P. Efficacy of various forms of conservative treatment in low-back pain. A comparative study�. Neuro-Orthopedics.�1988;6:28�35.
153.�Pratzel HG, Alken R-G, Ramm S. Efficacy and tolerance of repeated oral doses of tolperisone hydrochloride in the treatment of painful reflex muscle spasm: results of a prospective placebo-controlled double-blind trial.�Pain.�1996;67:417�425. doi: 10.1016/0304-3959(96)03187-9.�[PubMed][Cross Ref]
154.�Preyde M. Effectiveness of massage therapy for subacute low-back pain: a randomized controlled trial.�Can Med Assoc J.�2000;162:1815�1820.�[PMC free article][PubMed]
155.�Rasmussen GG. Manipulation in treatment of low back pain: a randomized clinical trial.�Man Med.�1979;1:8�10.
156.�Rasmussen-Barr E, Nilsson-Wikmar L, Arvidsson I. Stabilizing training compared with manual treatment in sub-acute and chronic low-back pain.�Man Ther.�2003;8:233�241. doi: 10.1016/S1356-689X(03)00053-5.�[PubMed][Cross Ref]
157.�Reust P, Chantraine A, Vischer TL. Traitement par tractions mecaniques des lombosciatalgies avec ou sans d�ficit neurologique.�Schweiz Med Wochenschr.�1988;118:271�274.�[PubMed]
158.�Risch SV, Norvell NK, Pollock Ml, Risch ED, Langer H, Fulton M. Lumbar strengthening in chronic low back pain patients: physiologic and psychological benefits.�Spine.�1993;18:232�238. doi: 10.1097/00007632-199302000-00010.�[PubMed][Cross Ref]
159.�Rozenberg S, Delval C, Rezvani Y. Bed rest or normal activity for patients with acute low back pain: a randomized controlled trial.Spine.�2002;27:1487�1493. doi: 10.1097/00007632-200207150-00002.[PubMed][Cross Ref]
160.�Sackett D (1997) Evidence based medicine. Churchill Livingstone
161.�Salerno SM, Browning R, Jackson JL. The effect of antidepressant treatment in chronic back pain: a meta-analysis.�Arch Intern Med.�2002;162:19�24. doi: 10.1001/archinte.162.1.19.�[PubMed][Cross Ref]
162.�Salzmann E, Pforringer W, Paal G, Gierend M. Treatment of chronic low-back syndrome with tetrazepam in a placebo controlled double-blind trial.�J Drug Dev.�1992;4:219�228.
163.�Schonstein E, Kenny D, Keating J, Koes B, Herbert RD. Physical conditioning programs for workers with back and neck pain: a Cochrane systematic review.�Spine.�2003;28:E391�E395. doi: 10.1097/01.BRS.0000092482.76386.97.�[PubMed][Cross Ref]
164.�Serferlis T, Lindholm L, Nemeth G. Cost-minimization analysis of three conservative treatment programmes in 180 patients sick-listed for acute low-back pain.�Scand J Prim Health Care.�2000;18:53�57. doi: 10.1080/02813430050202578.�[PubMed][Cross Ref]
165.�Silverstein FE, Faich G, Goldstein JL, Simon LS, Pincus T, Whelton A, Makuch R, Eisen G, Agrawal NM, Stenson WF, Burr AM, Zhao WW, Kent JD, Lefkowith JB, Verburg KM, Geis GS. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study. A randomized controlled trial. Celecoxib long-term arthritis safety study.�JAMA.�2000;284:1247�1255. doi: 10.1001/jama.284.10.1247.�[PubMed][Cross Ref]
166.�Skargren EI, Oberg BE, Carlsson PG, Gade M. Cost and effectiveness analysis of chiropractic and physiotherapy treatment for low back and neck pain.�Six-month follow-up. Spine.�1997;22:2167�2177.[PubMed]
167.�Soukup MG, Glomsrod B, Lonn JH, Bo K, Larsen S, Fordyce WE. The effect of a Mensendieck exercise program as secondary prophylaxis for recurrent low back pain: a randomized, controlled trial with 12-month follow-up.�Spine.�1999;24:1585�1592. doi: 10.1097/00007632-199908010-00013.�[PubMed][Cross Ref]
168.�Soukup M, Lonn J, Glomsrod B, Bo K, Larsen S. Exercises and education as secondary prevention for recurrent low back pain.�Physiother Res Int.�2001;6:27�39. doi: 10.1002/pri.211.�[PubMed][Cross Ref]
169.�Staal JB, Hlobil H, Twisk JWR, Smid T, K�ke AJA. Graded activity for low back pain in occupational health care: a randomized controlled trial.�Ann Intern Med.�2004;140:77�84.�[PubMed]
170.�Staiger O, Barak G, Sullivan MD, Deyo RA. Systematic review of antidepressants in the treatment of chronic low back pain.�Spine.�2003;28:2540�2545. doi: 10.1097/01.BRS.0000092372.73527.BA.[PubMed][Cross Ref]
171.�Stankovic R, Johnell O. Conservative treatment of acute low back pain. A prospective randomized trial: McKenzie method of treatment versus patient education in �Mini Back School��Spine.�1990;15:120�123. doi: 10.1097/00007632-199002000-00014.�[PubMed][Cross Ref]
172.�Stankovic R, Johnell O. Conservative treatment of acute low-back pain: a 5-year follow-up study of two methods of treatment.�Spine.�1995;20:469�472. doi: 10.1097/00007632-199502001-00010.�[PubMed][Cross Ref]
173.�Storheim K, Brox JI, Holm I, Koller AK, Bo K. Intensive group training versus cognitive intervention in sub-acute low back pain: short-term results of a single-blind randomized controlled trial.�J Rehabil Med.�2003;35:132�140. doi: 10.1080/16501970310010484.�[PubMed][Cross Ref]
174.�Stuckey SJ, Jacobs A, Goldfarb J. EMG biofeedback training, relaxation training, and placebo for the relief of chronic back pain.�Percept Mot Skills.�1986;63:1023�1036.�[PubMed]
175.�Sweetman BJ, Baig A, Parsons DL. Mefenamic acid, chlormezanone-paracetamol, ethoheptazine-aaspirin-meprobamate: a comparative study in acute low back pain.�Br J Clin Pract.�1987;41:619�624.[PubMed]
176.�Sweetman BJ, Heinrich I, Anderson JAD. A randomized controlled trial of exercises, short wave diathermy, and traction for low back pain, with evidence of diagnosis-related response to treatment.�J Ortho Rheumatol.�1993;6:159�166.
177.�Szpalski M, Hayez JP. How many days of bed rest for acute low back pain? Objective assessment of trunk function.�Eur Spine J.�1992;1:29�31. doi: 10.1007/BF00302139.�[PubMed][Cross Ref]
178.�Szpalski M, Hayez JP. Objective functional assessment of the efficacy of tenoxicam in the treatment of acute low back pain: a double blind placebo-controlled study.�Br J Rheumatol.�1994;33:74�78. doi: 10.1093/rheumatology/33.1.74.�[PubMed][Cross Ref]
179.�Tesio L, Merlo A. Autotraction versus passive traction: an open controlled study in lumbar disc herniation.�Arch Phys Med Rehabil.�1993;74:871�876. doi: 10.1016/0003-9993(93)90015-3.�[PubMed][Cross Ref]
180.�Topol EJ. Failing the public health�rofecoxib, Merck, and the FDA.�N Engl J Med.�2004;351:1707�1709. doi: 10.1056/NEJMp048286.�[PubMed][Cross Ref]
181.�Torstensen TA, Ljunggren AE, Meen HD, Odland E, Mowinckel P, Geijerstam SA. Efficiency and costs of medical exercise therapy, conventional physiotherapy, and self-exercise in patients with chronic low back pain: a pragmatic, randomized, single-blinded, controlled trial with 1-year follow-up.�Spine.�1998;23:2616�2624. doi: 10.1097/00007632-199812010-00017.�[PubMed][Cross Ref]
182.�Triano JJ, McGregor M, Hondras MA, Brennan PC. Manipulative therapy versus education in chronic low back pain.�Spine.�1995;20:948�955. doi: 10.1097/00007632-199504150-00013.�[PubMed][Cross Ref]
183.�Turner JA. Comparison of group progressive-relaxation training and cognitive�behavioral group therapy for chronic low back pain.�J Consult Clin Psychol.�1982;50:757�765. doi: 10.1037/0022-006X.50.5.757.�[PubMed][Cross Ref]
184.�Turner JA, Clancy S. Comparison of operant�behavioral and cognitive�behavioral group treatment for chronic low back pain.�J Consult Clin Psychol.�1988;56:261�266. doi: 10.1037/0022-006X.56.2.261.[PubMed][Cross Ref]
185.�Turner JA, Jensen MP. Efficacy of cognitive therapy for chronic low back pain.�Pain.�1993;52:169�177. doi: 10.1016/0304-3959(93)90128-C.�[PubMed][Cross Ref]
186.�Turner JA, Clancy S, McQuade KJ, Cardenas DD. Effectiveness of behavioral therapy for chronic low back pain: a component analysis.�J Consult Clin Psychol.�1990;58:573�579. doi: 10.1037/0022-006X.58.5.573.�[PubMed][Cross Ref]
187.�Underwood MR, Morgan J. The use of a back class teaching extension exercises in the treatment of acute low back pain in primary care.�Fam Pract.�1998;15:9�15. doi: 10.1093/fampra/15.1.9.�[PubMed][Cross Ref]
188.�Valle-Jones JC, Walsh H, O�Hara J, O�Hara H, Davey NB, Hopkin-Richards H. Controlled trial of a back support in patients with non-specific low back pain.�Curr Med Res Opin.�1992;12:604�613.[PubMed]
189.�Heijden GJMG, Beurskens AJHM, Dirx MJM, Bouter LM, Lindeman E. Efficacy of lumbar traction: a randomised clinical trial.�Physiotherapy.�1995;81:29�35. doi: 10.1016/S0031-9406(05)67032-0.[Cross Ref]
190.�Tulder MW, Scholten RJPM, Koes BW, Deyo RA. Non-steroidal anti-inflammatory drugs for low back pain: a systematic review within the framework of the Cochrane Collaboration.�Spine.�2000;25:2501�2513. doi: 10.1097/00007632-200010010-00013.�[PubMed][Cross Ref]
191.�Tulder M, Furlan A, Bombardier C, Bouter L. Updated method guidelines for systematic reviews in the Cochrane Collaboration Back Review Group.�Spine.�2003a;28:1290�1299. doi: 10.1097/00007632-200306150-00014.�[PubMed][Cross Ref]
192.�Tulder MW, Touray T, Furlan AD, Solway S, Bouter LM. Muscle relaxants for nonspecific low back pain: a systematic review within the framework of the Cochrane Collaboration.�Spine.�2003b;28:1978�1992. doi: 10.1097/01.BRS.0000090503.38830.AD.�[PubMed][Cross Ref]
193.�Tulder M, Furlan A, Gagnier J. Complementary and alternative therapies for low back pain.�Ballieres Best Pract Rheumatol.�2005;19:639�654. doi: 10.1016/j.berh.2005.03.006.�[PubMed][Cross Ref]
194.�Videman T, Heikkila J, Partanen T. Double-blind parallel study of meptazinol versus diflunisal in the treatment of lumbago.�Curr Med Res Opin.�1984;9:246�252.�[PubMed]
195.�Vollenbroek-Hutten MMR, Hermens HJ, Wever D, Gorter M, Rinket J, IJzerman MJ. Differences in outcome of a multidisciplinary treatment between subgroups of chronic low back pain patients defined using two multiaxial assessment instruments: the multidimensional pain inventory and lumbar dynamometry.�Clin Rehabil.�2004;18:566�579. doi: 10.1191/0269215504cr772oa.�[PubMed][Cross Ref]
196.�Vroomen PJAJ, Marc CTFM, Wilmink JT, Kester ADM, Knottnerus JA. Lack of effectiveness of bed rest for sciatica.�N Engl J Med.�1999;340:418�423. doi: 10.1056/NEJM199902113400602.�[PubMed][Cross Ref]
197.�Waagen GN, Haldeman S, Cook G, Lopez D, DeBoer KF. Short term trial of chiropractic adjustments for the relief of chronic low back pain.�Manual Med.�1986;2:63�67.
198.�Waddell G. A new clinical model for the treatment of low-back pain.�Spine.�1987;12:632�644. doi: 10.1097/00007632-198709000-00002.�[PubMed][Cross Ref]
199.�Walker L, Svenkerud T, Weber H. Traksjonsbehandling ved lumbago-ischias. En kontrollert undersolske med Spina-trac.�Fysioterapeuten.�1982;49:161�163.
200.�Ward N, Bokan JA, Phillips M, Benedetti C, Butler S, Spengler D. Antidepressants in concomitant chronic back pain and depression: doxepin and desipramine compared.�J Clin Psychiatry.�1984;45:54�57.[PubMed]
201.�Waterworth RF, Hunter A. An open study of diflunisal, conservative and manipulative therapy in the management of acute mechanical low back pain.�N Z Med J.�1985;95:372�375.�[PubMed]
202.�Weber H. Traction therapy in sciatica due to disc prolapse.�J Oslo City Hosp.�1973;23:167�176.[PubMed]
203.�Weber H, Aasand G. The effect of phenylbutazone on patients with acute lumbago-sciatica: a double blind trial.�J Oslo City Hosp.�1980;30:69�72.�[PubMed]
204.�Weber H, Ljunggren E, Walker L. Traction therapy in patients with herniated lumbar intervertebral discs.�J Oslo City Hosp.�1984;34:61�70.�[PubMed]
205.�Weber H, Holme I, Amlie E. The natural course of acute sciatica with nerve root symptoms in a double-blind placebo-controlled trial evaluating the effect of piroxicam.�Spine.�1993;18:1433�1438. doi: 10.1097/00007632-199312000-00021.�[PubMed][Cross Ref]
206.�Werners R, Pynsent PB, Bulstrode CJK. Randomized trial comparing interferential therapy with motorized lumbar traction and massage in the management of low back pain in a primary care setting.�Spine.�1999;24:1579�1584. doi: 10.1097/00007632-199908010-00012.�[PubMed][Cross Ref]
207.�Wiesel SW, Cuckler JM, Deluca F, Jones F, Zeide MS, Rothman RH. Acute low back pain: an objective analysis of conservative therapy.�Spine.�1980;5:324�330. doi: 10.1097/00007632-198007000-00006.�[PubMed][Cross Ref]
208.�Wilkinson MJ. Does 48 hours� bed rest influence the outcome of acute low back pain?�Br J Gen Pract.�1995;45:481�484.�[PMC free article][PubMed]
209.�W�rz R, Bolten W, Heller J, Krainick U, Pergande G. Flupirtin im vergleich zu chlormezanon und placebo bei chronische muskuloskelettalen ruckenschmerzen.�Fortschritte der Therapie.�1996;114(35�36):500�504.�[PubMed]
210.�Wreje U, Nordgren B, Aberg H. Treatment of pelvic joint dysfunction in primary care�a controlled study.�Scand J Prim Health Care.�1992;10:310�315. doi: 10.3109/02813439209014080.�[PubMed][Cross Ref]
211.�Yelland MJ, Glasziou PP, Bogduk N, Schluter PJ, McKernon M. Prolotherapy injections, saline injections, and exercises for chronic low-back pain: a randomized trial.�Spine.�2004;29:9�16. doi: 10.1097/01.BRS.0000105529.07222.5B.�[PubMed][Cross Ref]
212.�Zachrisson Forsell M. The back school.�Spine.�1981;6:104�106. doi: 10.1097/00007632-198101000-00022.�[PubMed][Cross Ref]
213.�Zylbergold RS, Piper MC. Lumbar disc disease: comparative analysis of physical therapy treatments.�Arch Phys Med Rehabil.�1981;62:176�179.�[PubMed]
Close Accordion