ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page
Whiplash Rehabilitation | Video | El Paso, TX.

Whiplash Rehabilitation | Video | El Paso, TX.

Gale Grijalva was a victim of a car crash. As a result, she started to experience severe pain symptoms which tremendously affected her ability to perform her regular tasks. Gale Grijalva describes the conditions that resulted in the auto accident as well as how her symptoms that are specific began to manifest after the incident. Gale Grijalva visited Dr. Alex Jimenez, chiropractor, to receive chiropractic care for her car crash injuries and she was grateful to get the pain relief she deserved. Chiropractic care is an effective and secure, alternative treatment option which focuses on the identification, prevention, and treatment of many different injuries and/or conditions. Gale Grijalva highly recommends Dr. Alex Jimenez as the noninvasive choice for car accident injuries and whiplash, among other problems.

Chiropractic Treatment

whiplash rehabilitation el paso, tx.

We are blessed to present to you�El Paso�s Premier Wellness & Injury Care Clinic.

Our services are specialized and focused on injuries and the complete recovery process.�Our areas of practice includeWellness & Nutrition, Chronic Pain,�Personal Injury,�Auto Accident Care, Work Injuries, Back Injury, Low�Back Pain, Neck Pain, Migraine Treatment, Sports Injuries,�Severe Sciatica, Scoliosis, Complex Herniated Discs,�Fibromyalgia, Chronic Pain, Stress Management, and Complex Injuries.

As El Paso�s Chiropractic Rehabilitation Clinic & Integrated Medicine Center,�we passionately are focused on treating patients after frustrating injuries and chronic pain syndromes. We focus on improving your ability through flexibility, mobility and agility programs tailored for all age groups and disabilities.

We want you to live a life that is fulfilled with more energy, positive attitude, better sleep, less pain, proper body weight and educated on how to maintain this way of life. I have made a life of taking care of every one of my patients.

I assure you, I will only accept the best for you�

If you have enjoyed this video and we have helped you in any way, please feel free to subscribe and recommend�us.

Recommend: Dr. Alex Jimenez � Chiropractor

Health Grades: www.healthgrades.com/review/3SDJ4

Facebook Clinical Page: www.facebook.com/dralexjimene…

Facebook Sports Page: www.facebook.com/pushasrx/

Facebook Injuries Page: www.facebook.com/elpasochirop…

Facebook Neuropathy Page: www.facebook.com/ElPasoNeurop…

Yelp: goo.gl/pwY2n2

Clinical Testimonies: www.dralexjimenez.com/categor…

Information: Dr. Alex Jimenez � Chiropractor

Clinical Site: www.dralexjimenez.com

Injury Site: personalinjurydoctorgroup.com

Sports Injury Site: chiropracticscientist.com

Back Injury Site: elpasobackclinic.com

Linked In: www.linkedin.com/in/dralexjim…

Pinterest: www.pinterest.com/dralexjimenez/

Twitter: twitter.com/dralexjimenez

Twitter: twitter.com/crossfitdoctor

Recommend: PUSH-as-Rx ��

Rehabilitation Center: www.pushasrx.com

Facebook: www.facebook.com/PUSHftinessa…

PUSH-as-Rx: www.push4fitness.com/team/

Exercise and Disease Progression in Multiple Sclerosis

Exercise and Disease Progression in Multiple Sclerosis

Can exercise slow down the progression of multiple sclerosis? Multiple sclerosis, or MS, is a chronic, neurological disease characterized by damage to the myelin sheaths of nerve cells in the central nervous system, or CNS. Common symptoms of multiple sclerosis include pain, fatigue, vision loss and impaired coordination. Exercise is frequently recommended as a form of treatment for several types of injuries and/or conditions, including MS. While exercise has been determined to help improve the management of symptoms of multiple sclerosis as well as decrease the progression of the disease, further evidence is still required. The purpose of the following article is to demonstrate how exercise can affect disease progression of multiple sclerosis and improve quality of life in patients.

Abstract

It has been suggested that exercise (or physical activity) might have the potential to have an impact on multiple sclerosis (MS) pathology and thereby slow down the disease process in MS patients. The objective of this literature review was to identify the literature linking physical exercise (or activity) and MS disease progression. A systematic literature search was conducted in the following databases: PubMed, SweMed+, Embase, Cochrane Library, PEDro, SPORTDiscus and ISI Web of Science. Different methodological approaches to the problem have been applied including (1) longitudinal exercise studies evaluating the effects on clinical outcome measures, (2) cross-sectional studies evaluating the relationship between fitness status and MRI findings, (3) cross-sectional and longitudinal studies evaluating the relationship between exercise/physical activity and disability/relapse rate and, finally, (4) longitudinal exercise studies applying the experimental autoimmune encephalomyelitis (EAE) animal model of MS. Data from intervention studies evaluating disease progression by clinical measures (1) do not support a disease-modifying effect of exercise; however, MRI data (2), patient-reported data (3) and data from the EAE model (4) indicate a possible disease-modifying effect of exercise, but the strength of the evidence limits definite conclusions. It was concluded that some evidence supports the possibility of a disease-modifying potential of exercise (or physical activity) in MS patients, but future studies using better methodologies are needed to confirm this.

Keywords: disease activity, exercise therapy, physical activity, training

Introduction

Multiple sclerosis (MS) is a clinically and pathologically complex and heterogeneous disease of unknown etiology [Kantarci, 2008]. In 28 European countries with a total population of 466 million people, it is estimated that 380,000 individuals are affected with MS [Sobocki et al. 2007]. The disorder is progressive but more than 80% of all MS patients have the disease for more than 35 years [Koch-Henriksen et al. 1998], the number of years of life lost to the disease being 5 to 10 [Ragonese et al. 2008]. The fact that MS is a chronic, long-lasting and disabling disease makes MS rehabilitation an important discipline in maintaining an independent lifestyle and the associated level of quality of life [Takemasa, 1998]. Despite the fact that MS patients for many years were advised not to participate in physical exercise because it was reported to lead to worsening of symptoms or fatigue, it has become generally accepted to recommend physical exercise for MS patients during the last two decades [Sutherland and Andersen, 2001]. Exercise is well tolerated and induces relevant improvements in both physical and mental functioning of persons with MS [Dalgas et al. 2008]. It is an open question whether exercise can reverse impairments caused by the disease per se, or whether exercise simply reverses the effects caused by inactivity secondary to the disease. However, most likely exercise may reverse the effects of an inactive lifestyle adopted by many patients [Garner and Widrick, 2003; Kent-Braun et al. 1997; Ng and Kent-Braun, 1997; Stuifbergen, 1997]. Nonetheless, it has been suggested that exercise might have the potential to have an impact on MS disease progression by slowing down the disease process itself [Heesen et al. 2006; Le-Page et al. 1994; White and Castellano, 2008b]. In other disorders exercise has been shown to pose the potential to have an impact on brain function and, as recently summarized by Motl and colleagues, exercise in older adults with or without dementia leads to cognitive improvement relative to a control condition [Motl et al. 2011b]. Based on this and the few existing findings in MS patients, Motl and colleagues suggested that exercise may similarly improve cognitive functioning in MS patients. However, in MS it has not been reviewed whether physical exercise has a more general disease-modifying effect.

To gain more insight on this important topic, we therefore conducted a systematic literature search aiming at identifying studies linking exercise (or physical activity) to disease progression in MS patients or in the experimental autoimmune encephalomyelitis (EAE) animal model of MS. A secondary purpose of the review was to discuss possible mechanisms explaining this link if it does exist and to discuss future study directions within this field.

Methods

The included literature was identified through a comprehensive literature search (PubMed, SweMed+, Embase, Cochrane Library, PEDro, SPORTDiscus and ISI Web of Science) that was performed in order to identify relevant articles regarding MS and exercise up to 4 September 2011. The search was performed using the subject headings �exercise�, �exercise therapy�, �physical education and training�, �physical fitness�, �motor activity� or �training� in combination with �multiple sclerosis� or �experimental autoimmune encephalomyelitis�. No limitations regarding publication year and age of subjects were entered. If possible, abstracts, comments and book chapters were excluded when performing the search in the different databases. This search yielded 547 publications. A screening of these publications based on title and abstract revealed 133 publications relevant for further reading. The reference lists of these 133 publications were checked for further relevant publications that were not captured by the search. This resulted in further six publications and in a total of 139 closely read publications. Studies that turned out to be nonrelevant (n = 65), meta-analyses (n = 3), reviews (n = 22), conference abstracts (n = 8) and articles not written in English (n = 2) were excluded from the final analysis (see Figure 1). Relevant cross- sectional and longitudinal studies were included.

According to Goldman and colleagues measures thought to reflect disease progression (or activity) in MS can be evaluated with objective or subjective outcome measures [Goldman et al. 2010]. Objective measures include (1) clinical outcome measures such as the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC) and (2) nonclinical measures such as MRI. The subjective measures include (3) patient-reported measures thought to reflect disease progression or disability such as the Late-Life Function and Disability Inventory. Studies applying patient-reported measures that included a measure of physical activity were also included in this category. Furthermore, we added a category containing studies applying (4) the EAE animal model of MS as study population. Based on this framework the localized articles were divided into the following four groups (see Table 1):

  1. disease progression evaluated with clinical outcome measures (n = 12);
  2. disease progression evaluated with nonclinical measures (n = 2);
  3. disease progression evaluated with patient-reported measures (n = 10);
  4. disease progression evaluated in animal studies (n = 3).

Results

Disease Progression Evaluated with Clinical Measures

A number of studies evaluating structured exercise interventions lasting from 3 to 26 weeks have included clinical scales reflecting disease progression as an outcome measure. The applied clinical scales include the EDSS [Bjarnadottir et al. 2007; Dalgas et al. 2009; Fimland et al. 2010; Golzari et al. 2010; Petajan et al. 1996; Pilutti et al. 2011; Rodgers et al. 1999; Romberg et al. 2004; White et al. 2004], the MSFC [Pilutti et al. 2011; Romberg et al. 2005], the Guys Neurological Disability Scale (GNDS) [Kileff and Ashburn, 2005; van den Berg et al. 2006] and the Functional Independence Measure (FIM) [Romberg et al. 2005]. Studies applying the EDSS have generally not found any change after either endurance training [Petajan et al. 1996; Pilutti et al. 2011; Rodgers et al. 1999], resistance training [Dalgas et al. 2009; Fimland et al. 2010; White et al. 2004] or combined training interventions [Bjarnadottir et al. 2007; Romberg et al. 2004]. Only one study by Golzari and colleagues evaluating the effects of 8 weeks of combined training (3 days/week) reported an improvement in EDSS score [Golzari et al. 2010]. This finding was not confirmed in a long-term study (26 weeks) [Romberg et al. 2005] also evaluating the effects of combined training. In the study by Romberg and colleagues no effect on EDSS and FIM were found, but a small positive effect was seen in the MSFC. A few studies applied the GNDS with one reporting an improvement after 12 weeks of biweekly endurance training [Kileff and Ashburn, 2005] and one reporting no effects of 4 weeks endurance training completed 3 days a week [van den Berg et al. 2006].

In summary, structured exercise intervention studies of different exercise modalities lasting 3�26 weeks have generally found no effects on EDSS scores. A few exercise studies have shown positive effects when applying other clinical scales (MSFC and GNDS).

Disease Progression Evaluated with Non-Clinical Measures

Two studies by Prakash and colleagues have evaluated the effects of cardiorespiratory fitness on brain function and structure by applying (functional) MRI [Prakash et al. 2007, 2009]. One study [Prakash et al. 2007] investigated the impact of cardiorespiratory fitness on cerebrovascular functioning of MS patients. Twenty-four female participants with relapsing�remitting MS were recruited for the study and all participants went through fitness assessment (VO2 peak) and were scanned in a 3-T MRI system while performing the Paced Visual Serial Addition Test (PVSAT). Higher fitness levels were associated with faster performance during the PVSAT that could be related to greater recruitment of a specific region of the cerebral cortex (right inferior frontal gyrus [IFG] and middle frontal gyrus [MFG]) known to be recruited by MS patients during performance of PVSAT to purportedly compensate for the cognitive deterioration attributable to MS. In contrast, lower levels of fitness were associated with enhanced activity in the anterior cingulate cortex (ACC), thought to reflect the presence of a larger amount of conflict increasing the potential for error in lower fit MS participants. The authors interpreted the results as supporting aerobic training as an intervention to support the development of additional cortical resources in an attempt to counter the cognitive decline resulting from MS. Among a number of cognitive tests, only the Paced Auditory Serial Addition Test (PASAT) showed a weak correlation (p = 0.42) to VO2 peak leading the authors to suggest that fitness does not have an influence on measures of general cognitive functioning.

In another study by Prakash and colleagues the relationship between cardiorespiratory fitness (VO2 max) and measures of gray matter atrophy and white matter integrity (both of which have been associated with the disease process) were studied [Prakash et al. 2009]. A voxel-based approach to analysis of gray matter and white matter was applied on brainscans from a 3-T MRI system. More specifically it was examined whether higher levels of fitness in 21 female MS patients were associated with preserved gray matter volume and integrity of white matter. A positive association between cardiorespiratory fitness and regional gray matter volumes and higher focal fractional anisotropy values were reported. Both preserved gray matter volume and white matter tract integrity were associated with better performance on measures of processing speed. Recognizing the cross-sectional nature of the data, the authors suggested that fitness exerts a prophylactic influence on the structural decline observed early on, preserving neuronal integrity in MS, thereby reducing long-term disability.

In summary, (f)MRI studies suggesting a protective effect of cardiorespiratory fitness on brain function and structure in MS patients have started to emerge. However, the cross-sectional nature of the few existing studies limit conclusions regarding the existence of a causal relationship.

Disease Progression Evaluated with Patient-Reported Measures

A number of studies have addressed the relationship between exercise or physical activity and disease progression in large-scale questionnaire studies applying patient-reported measures.

In a large descriptive longitudinal survey study, Stuifbergen and colleagues examined the correlations between the change in functional limitations, exercise behaviors and quality of life [Stuifbergen et al. 2006]. More than 600 MS patients completed a number of questionnaires every year for a period of 5 years. The self-reported longitudinal measures were analyzed by applying latent curve modeling. The Incapacity Status Scale provided a measure of functional limitations due to MS, whereas the Health Promoting Lifestyle Profile II provided a measure of exercise behavior. At the first test point (baseline test) cross-sectional data showed a significant negative correlation (r = ?0.34) between functional limitations and exercise behaviors, suggesting that at the start of the study higher levels of functional limitations were associated with lower levels of exercise. Longitudinal data from the study showed that increasing rates of changes in functional limitations correlated with decreasing rates of change in exercise behaviors (r = ?0.25). In other words these findings are suggesting that increases in exercise behaviors correspond with decreased rates of change in functional limitations. No correlation between the initial degree of limitation and continuing rate of exercise was found which led the authors to suggest that persons with MS with varied levels of limitations might slow the trajectory of increasing limitations over the long term with consistent exercise participation.

A series of studies from Motl and colleagues have addressed the relationship between physical activity, symptoms, functional limitations and disability in MS patients. In a cross-sectional study [Motl et al. 2006] in 196 MS patients, the number of symptoms within 30 days (MS-related Symptom Checklist) and physical activity (Godin Leisure-Time Exercise Questionnaire and 7-day accelerometer data) were collected. After modeling data a direct relationship between symptoms and physical activity were found (r = ?0.24) indicating that a greater number of symptoms resulted in lower amounts of physical activity. However, the authors noted that the cross-sectional design precludes inferences about the direction of causality, and physical activity might affect symptoms as symptoms affect physical activity participation. When modeled this way a moderate inverse correlation between physical activity and symptoms was found (r = ?0.42) indicating fewer symptoms when the physical activity level is high. This led the authors to suggest the existence of a bi-directional relationship between physical activity and symptoms.

In a following questionnaire study Motl and colleagues examined physical activity (Godin Leisure-Time Exercise Questionnaire and 7 day accelerometer data) and symptoms (Symptom Inventory and MS-related Symptom Checklist) as correlates of functional limitations and disability (Late-Life Function and Disability Inventory) in 133 MS patients [Motl et al. 2007, 2008b]. A model based on the disablement model proposed by Nagi (1976) was tested as the primary model and this showed that physical activity and symptoms were negatively correlated (r = ?0.59) and those who were more physically active had better function (r = 0.4). Furthermore, those with better function had less disability (r = 0.63) which led the authors to conclude that the findings indicate that physical activity is associated with reduced disability (through an association with function) consistent with Nagi�s disablement model (Nagi 1976), but again the cross-sectional design limited definite conclusions on the direction of the relationships.

Motl and colleagues then published a longitudinal (case report) study examining the relationship between worsening of symptoms and the level of physical activity throughout a 3- to 5-year period [Motl et al. 2008a]. The study showed that worsening of symptoms (interview) was significantly associated with lower levels of self-reported physical activity (International Physical Activity Questionnaire [IPAQ]) in a group of 51 subjects with MS. The study supports symptoms as a possible explanation for the rate of physical inactivity among MS patients but the direction of the cause and effect relationship could still not be established. Based on the results the authors suggest that managing symptoms might be important for the promotion of physical activity, but also that symptoms may be both an antecedent and consequence of physical activity.

After that Motl and colleagues published a cross-sectional study examining the correlation between physical activity and neurological impairment and disability in a group of 80 MS patients [Motl et al. 2008c]. Physical activity (7-day accelerometer day), impairment and disability (Symptom Inventory and self-reported EDSS) was measured and significant correlations were found between physical activity and both EDSS (r = ?0.60) and Symptom Inventory (r = ?0.56). The authors concluded that physical activity was associated with reduced neurological impairment and disability, but also stated that no causal relationship could be established due to the cross-sectional nature of the study.

Motl and McAuley then published a large-scale longitudinal questionnaire study examining the changes in physical activity (Godin Leisure-Time Exercise Questionnaire and 7-day accelerometer data) and symptoms (Symptom Inventory and MS-related Symptom Checklist) as correlates of changes in functional limitations and disability (Late-Life Function and Disability Inventory) [Motl and McAuley, 2009]. A total of 292 MS patients were followed for 6 months. Again a model based on the disablement model proposed by Nagi (1976) was tested as the primary model and this showed that change in physical activity was associated with residual change in function (r = 0.22) and change in function was associated with residual change in disability (r = 0.20). This led the authors to conclude that the findings indicate that change in physical activity is associated with change in disability (through an association with function) consistent with Nagi�s disablement model, but other models may be applied during analysis and a causal interpretation, therefore, still could not be adopted.

In a 6-month longitudinal study Motl and colleagues then tested the hypothesis that a change in physical activity (Godin Leisure-Time Exercise Questionnaire and International Physical Activity Questionnaire) would be inversely associated with a change in walking impairment (Multiple Sclerosis Walking Scale-12) in patients with relapsing�remitting MS [Motl et al. 2011a]. Data from 263 MS patients were analyzed using linear panel analysis and covariance modeling. Findings showed that a standard deviation unit change of 1 in physical activity was associated with a standard deviation unit residual change of 0.16 in walking impairment. These findings, therefore, support physical activity as an important approach, when trying to avoid walking impairments.

Finally, Motl and McAuley published a paper on longitudinal data (6 months) from 292 MS patients evaluating the relationship between a change in physical activity (7-day accelerometer data) and change in disability progression (Patient Determined Disease Steps Scale) [Motl and McAuley, 2011]. Panel analysis showed that a change in physical activity was associated with a change in disability progression (path coefficient: �0.09). This led the authors to conclude that a reduction in physical activity is a behavioral correlate (but not necessarily a cause) of short-term disability progression in persons with MS.

Recently, Tallner and colleagues evaluated the relationship between sports activity (Baecke Questionnaire � sports index) and MS relapses during the last 2 years (based on self-reports) in 632 German MS patients [Tallner et al. 2011]. Patients were divided into four groups based on their sports index. The study showed no overall differences between the four groups concerning the number of relapses within the last 2 years. However, the most active group had the lowermost mean and standard deviation of all groups. Consequently, these data suggest that exercise does not negatively influence relapse rate and the data further indicate that exercise actually reduce relapse rate.

In summary, patient-reported measures of the association between exercise or physical activity and disease progression (expressed as symptoms, functional limitations or disability) or activity (relapse rate) provide evidence of an association with more physical activity providing protection. However, due to the nature of the studies the causality of this association has not been established.

Disease Progression Evaluated in Animal Studies

Some obvious methodological difficulties exists in designing a human study clarifying whether or not exercise has an impact on disease progression in MS patients. Therefore, the question has been addressed in the EAE animal model of MS.

In a preliminary study by Le-Page and colleagues four groups of EAE rats were followed from day 1 to day 10 after injection with an agent inducing EAE [Le-Page et al. 1994]. The injection resulted in three different disease courses in the rats, namely acute (rats rapidly developed serious clinical signs and died without signs of recovery), monophasic (rats developed only one bout of disease followed by complete recovery) and chronic relapsing (CR-EAE, more than one bout of disease followed by remission). The CR-EAE disease course is characterized by the development of an initial acute paralytic attack 10�20 days after immunization with neuroantigens and the development of spontaneous relapses thereafter. A female and a male group of rats exercised and a female and male group served as control. Exercise consisted of running on a treadmill from day 1 to day 10 after injection. The protocol was progressively adjusted with the duration increasing from 60 min towards 120 min and the running speed increasing from 15 to 30 m/min. The study showed that in the exercised CR-EAE rats of both sexes the onset of the disease was significantly delayed compared with the onset in control CR-EAE rats. Also, the duration of the first relapse was significantly reduced in exercised CR-EAE rats compared with control rats whereas no effect was seen on the peak severity of the disease. No effects of exercise were observed in the acute and monophasic EAE rats. The authors concluded that endurance exercise during the phase of induction of EAE diminished lightly one type of EAE (CR-EAE) but also that exercise did not exacerbate the disease.

In a complementary study Le-Page and colleagues conducted further four experiments in the monophasic EAE model [Le-Page et al. 1996]. Experiments 1 and 2 showed that 2 consecutive days of intensive exercise (250�300 min/day) performed just after injection had a lowering effect on the course of the clinical signs of disease as compared with control rats. Also, the onset of the disease and the day of maximal severity were both delayed in the exercising rats, whereas no change was observed in disease duration. When the 2 consecutive days of exercise were performed before injection no effects were observed. In experiments 3 and 4 it was tested how 5 days of more moderate exercise at either constant (15�25 m/min for 2 hours) or variable speed (3 min at 2 m/min and then 2 min at 35 m/min for a total of 1 hour) affected the course of the disease and the clinical parameters. No effects were observed on the disease course and on the clinical parameters. The authors concluded that severe exercise contrary to more moderate exercise slightly influenced the effector phase of monophasic EAE, and confirmed that physical exercise performed before onset of EAE did not exacerbate the clinical signs.

More recently, Rossi and colleagues further explored the effects of physical activity on disease progression in the CR-EAE mice model [Rossi et al. 2009]. In this study one group of mice had their cage equipped with a running wheel on the day of immunization, while the control group had no running wheel. The amount of physical activity was not controlled and it was therefore the amount of voluntary physical activity in the running wheel that constituted the intervention. In a further experiment EAE mice in standard cages were compared with EAE mice in cages equipped with a blocked wheel. This was done to dissect the role of physical activity from that of sensory enrichment caused by the wheel itself, and showed not to influence the clinical course of the disease. During the initial phase (13 days after injection) of the disease the exercising mice ran spontaneously an average of 760 turns/day in the running wheel which dropped to 18 turns/day when motor impairment peaked (20�25 days after injection). The study showed that the severity of EAE-induced clinical disturbances was attenuated in both acute and chronic phases of EAE in the physically active mice, who consistently exhibited less severe neurological deficits compared with control EAE animals during a time period of 50 days after EAE induction. Furthermore, it was shown that both synaptic and dendritic defects caused by EAE were attenuated by physical activity.

In summary, aerobic exercise (or voluntary physical activity) has the potential to influence the clinical course of the disease in the EAE animal model of MS.

Dr Jimenez White Coat
Participating in physical activities and exercise can be beneficial for anyone, especially for people with multiple sclerosis, or MS. Exercise can help ease multiple sclerosis symptoms, however, patients have to be careful with the amount of physical activity they engage in. Several research studies like the one discussed in this article have determined that physical activities and exercises can help improve symptoms as well as slow down the progression of multiple sclerosis. It’s essential to talk to a healthcare professional to discuss the details of each workout program in order to make the best of the benefits of exercise for MS. Dr. Alex Jimenez D.C., C.C.S.T.

Discussion

Recent evidence from studies applying nonclinical and patient-reported measures as well as from studies applying the EAE animal model of MS indicate a possible disease-modifying effect of exercise (or physical activity) but the strength of the evidence limits definite conclusions. Furthermore, these findings are not confirmed in intervention studies evaluating disease progression by clinical outcome measures. Despite the obvious associated difficulties future long-term exercise intervention studies in a large group of MS patients are needed within this field.

MS Disease Progression

Some major methodological problems arise when trying to measure MS disease progression. The ideal MS outcome measure would quantify irreversible sustained disease progression, but in MS this has proven difficult. The pleiotropic expression of MS makes it challenging to measure all facets of the disease and it may be necessary to focus on specific symptoms. Furthermore, great patient heterogeneity, population variability in the disease course and tempo of progression, subclinical MRI changes of uncertain impact on delayed disability progression, multifaceted neurological deficits with varied abilities for individual patients to compensate and patient comorbidities complicate things further [Goldman et al. 2010].

Clinical Outcome Measures

EDSS, MSFC and relapse rate are the standard clinical outcome measures for MS therapeutic trials and the most widely used measure of disease progression is the EDSS [Goldman et al. 2010]. Our literature review shows that exercise studies (resistance, endurance and combined training) applying EDSS generally do not report any change after an exercise intervention. In medical studies applying EDSS, large sample sizes and interventions lasting 2�3 years are typically required to measure changes in exacerbation rates between treatment and placebo [Bates, 2011]. This corresponds poorly to the short intervention periods (3�26 weeks) and the small sample sizes applied in most exercise studies. This is due to the overall low responsiveness and sensitivity to change of the EDSS as reported in a number of studies (for references see Goldman et al. [2010]). Also, the EDSS have been criticized for its noninterval scaling, emphasis on ambulation status and absence of adequate cognitive and visual components [Balcer, 2001]. Despite the emphasis on ambulation and that a recent meta-analysis concluded that exercise impacts walking positively [Snook and Motl, 2009], no changes were seen in the EDSS in most of the reviewed studies, indicating low scale responsiveness towards exercise interventions. In clinical trials the MSFC is claimed to be more sensitive to change than the EDSS [Goldman et al. 2010]. This suggestion is supported by the finding from one exercise study applying both the EDSS and the MSFC. In this long-term study (26 weeks) [Romberg et al. 2005] the effects of combined training on EDSS and MSFC were evaluated. Only the MSFC showed a significant effect which led the authors to conclude that the MSFC was more sensitive than the EDSS in the detection of improvement of functional impairment as a result of combined exercise. In future exercise studies evaluating disease progression it should therefore be considered to add the MSFC as a clinical outcome measure.

In addition to low scale responsiveness, short-term interventions and small sample sizes other explanations for the general lack of effects on clinical outcome measures can be hypothesized. Despite no clear pattern in the existing data, the type of exercise (e.g. endurance versus resistance training) may influence the effect captured by clinical scales. Also, most studies have evaluated mild to moderately impaired (EDSS <6) MS patients. Perhaps the clinical scales would be more sensitive to change in more severely impaired patients. Finally, findings can be biased if it is generally more physically fit patients that accept to be enrolled in exercise studies. If so, the baseline fitness level may be above average in these patients further lowering the possibility of a change on clinical scales with low responsiveness.

Only a few studies [Bjarnadottir et al. 2007; Petajan et al. 1996; Romberg et al. 2004; White et al. 2004] present clear data on relapse rate but due to the short intervention periods and the small sample sizes in most studies changes in the relapse rate, would not be expected to be evident. However, Romberg and colleagues found a total of 11 relapses (five in the combined training group and six in the control group) during a 6-month intervention period [Romberg et al. 2004]. Similarly, Petajan and colleagues (endurance training group four relapses and control group three relapses) [Petajan et al. 1996] and Bjarnadottir and colleagues (combined training group one relapse and control group one relapse) [Bjarnadottir et al. 2007] reported identical relapse rates in exercise and control groups. In the study by White and colleagues no participants experienced relapses during the 8-week intervention evaluating resistance training [White et al. 2004]. Recently, Tallner and colleagues collected self-report questionnaires on relapse rates and physical activity from MS patients to examine the relationship of different levels of sports activity and relapses [Tallner et al. 2011]. Based on these data the authors concluded that exercise had no significant influence on clinical disease activity. Taken together the few existing data do not indicate that any type of exercise increases relapse rate among MS patients. However, these data should be interpreted with caution due to the small number of participants (not stratified according to disease type or severity) and the short intervention periods in most studies. Consequently, future long-term studies with a large number of participants should, therefore, include relapse rate as an outcome measure.

Nonclinical Measures

Application of MRI has revolutionized the diagnosis and management of patients with MS [Bar-Zohar et al. 2008]. In regard to clinical trials, MRI offers several advantages over the accepted clinical outcome measures for MS, including an increased sensitivity to disease activity and a better association with histopathology findings. Also, MRI provides highly reproducible measures on ordinal scales, and the assessment of MRI can be performed at the highest degree of blinding [Bar-Zohar et al. 2008]. Consequently, a surrogate MRI measure reflecting disease progression such as lesion activity (gadolinium-enhanced lesions and new or enlarged T2-hyperintense lesions) or disease severity (total T2-hyperintense lesion volume, total T1-hypointense lesion volume and whole-brain atrophy) [Bermel et al. 2008] may reduce the required sample sizes needed to evaluate the effects of exercise therapy on disease progression considerably. Until now only two cross-sectional studies have evaluated the effects of exercise (expressed as the current cardiorespiratory fitness level) on different MRI measures limiting the conclusions that can be drawn from this type of study. However, the promising findings do encourage the inclusion of MRI as an outcome measure, in future longitudinal trials evaluating the effects of exercise on disease progression.

Patient-Reported Measures

Patient-reported measures of the association between exercise or physical activity and disease progression (expressed as symptoms, functional limitations or disability) provide evidence of an association with more physical activity providing protection. However, the nature of the studies does not allow conclusions on the causality of this association. In the group of studies applying patient-reported measures we decided to include not only measures of exercise, but also measures of physical activity. It is acknowledged that a measure of physical activity is not necessarily a surrogate measure of exercise, but the many interesting findings from particularly the group of Motl and colleagues caused this. In a recent paper, based on their own studies, Motl and colleagues concludes that recent research has identified physical activity as a behavioral correlate of disability in MS. This made the authors suggest, that physical activity might attenuate the progression of what they call �mobility disability� by improving physiological function in persons with MS, particularly those who have achieved a benchmark of irreversible disability (EDSS >4) [Motl, 2010]. It might be more cost effective to offer the more disabled (EDSS >4) MS patients exercise therapy, but it must be noted that most exercise studies do not indicate that a relationship between the degree of training adaptation and neurological disability exist. In fact, studies indicate that MS patients with an EDSS score below 4.5 experience the largest improvements after a period of endurance training as compared with more disabled MS patients [Ponichtera-Mulcare et al. 1997; Schapiro et al. 1988] or that no differences exists [Petajan et al. 1996]. It must be noted that none of these studies were powered to evaluate the effects of exercise in MS patients with different levels of disability. However, a recent study by Filipi and colleagues specifically evaluated whether 6 months of resistance training improves strength in MS patients with different levels of disability (EDSS 1�8) and concluded that all individuals with MS, despite different disability levels, showed parallel improvement in muscle strength [Filipi et al. 2011]. This leads to the suggestion, that exercise may be equally important during the early phases of the disease, also in regard to impact on disease progression.

An important advantage of applying patient-reported measures is the opportunity to collect data from large sample sizes in longitudinal studies. Furthermore, it seems important to collect data on patient perspective when evaluating the effects of exercise on disease progression. Future studies including patient-reported measures should also include clinical and/or nonclinical outcome measures if possible.

Animal Studies

Our review showed that aerobic exercise (or activities) has the potential to influence the clinical course of the disease in the EAE animal model of MS. The obvious question is whether or not the findings from the EAE animal model of MS can be extrapolated to humans. At the moment no clear answer can be given to this question. A recent review summarized whether the current disease-modifying treatments are justified on the basis of the results of EAE studies. Here it was concluded that although EAE is certainly an imperfect mirror of MS, many clinical, immunopathological and histological findings are impressively replicated by animal models, making EAE invaluable in elucidating the basic immunopathological mechanisms of MS and providing a testing ground for novel therapies [Farooqi et al. 2010]. Consequently, a direct transfer of findings into human subjects cannot be made, but testing of difficult hypotheses can start here. Also, it should be noted that in EAE you cannot control the relative exercise intensity since no maximal exercise test (such as a VO2 max test) can be performed. As a consequence the applied relative exercise intensity may differ between animals. This is also why it is very difficult to evaluate the effects of aerobic exercise on aerobic capacity in EAE. Nonetheless, the EAE model offers a number of advantages compared to human studies. In addition lower costs, easy control with adherence to the intervention and controlled environmental and genetic factors the EAE model also allows evaluation of possible mechanisms located in the central nervous system (CNS), which should have attention in future studies. Another review stated that the genetic heterogeneity, which is so critical in the MS population, is only reflected when multiple different models of EAE are studied in parallel [Gold et al. 2006]. This aspect should also be incorporated in future studies.

Possible Mechanisms

Several mechanisms have been proposed as a possible link between exercise and disease status in MS. Some of the most promising candidates include cytokines and neurotrophic factors [White and Castellano, 2008a].

Cytokines. Cytokines play an important role in the pathogenesis of MS and are a major target for treatment interventions. In particular, interleukin (IL)-6, interferon (IFN)-? and tumor necrosis factor (TNF)-? have a prominent role in the process of demyelination and axonal damage experienced by persons with MS [Compston and Coles, 2008].

Changes in the concentrations of certain cytokines, in particular IFN-? and TNF-?, have been associated with changes in disease status in MS, and elevated concentrations of pro-inflammatory Th-1 cytokines (such as TNF-?, IFN-?, IL-2 and IL-12) may contribute to neurodegeneration and disability [Ozenci et al. 2002]. This has led to the suggestion that exercise may counteract imbalances between the pro-inflammatory Th1 cytokines and the anti-inflammatory Th2 cytokines (such as IL-4 and IL-10) by enhancing anti-inflammatory mechanisms, and thereby potentially be able to alter the disease activity in MS patients [White and Castellano, 2008b].

In MS both the acute and/or chronic effects of resistance [White et al. 2006], endurance [Castellano et al. 2008; Heesen et al. 2003; Schulz et al. 2004] and combined training [Golzari et al. 2010] on several cytokines have been evaluated. A study by White and colleagues reported that resting levels of IL-4, IL-10, C-reactive protein (CRP) and IFN-? were reduced, while TNF-?, IL-2 and IL-6 levels remained unchanged after 8 weeks of biweekly resistance training [White et al. 2006]. These results suggest that progressive resistance training may have an impact on resting cytokine concentrations and, thus, could have an impact on overall immune function and disease course in individuals with MS. However, the study was not controlled and only 10 participants were included obviously limiting the strength of the evidence. Heesen and colleagues evaluated the acute effects of 8 weeks of endurance training on IFN-?, TNF-? and IL-10 and compared this to both a waitlist MS control group and a group of matched healthy subjects [Heesen et al. 2003]. After completing 30 minutes of endurance training (cycling) an increase in IFN-? were induced similarly in all groups while trends towards smaller increases in TNF-? and IL-10 were observed in the two groups of MS patients. Based on these data the authors concluded, that no deviation in pro-inflammatory immune response to physical stress could be demonstrated in MS patients. These findings, therefore, supports that a single bout of endurance training can influence the cytokine profile at least for a period of time in MS patients. In another publication from the same study Schulz and colleagues were not able to demonstrate any differences between the resting level or the acute IL-6 response after 30 minutes of endurance exercise in the MS training group (8 weeks of bicycling) and the MS control group [Schulz et al. 2004].

A study by Castellano and colleagues evaluated the effects of 8 weeks of endurance training (cycling, 3 days/week) on IL-6, TNF-? and IFN-? in 11 MS patients and 11 healthy matched controls. In MS patients both resting IFN-? and TNF-? was elevated after endurance training whereas no changes were observed in healthy controls [Castellano et al. 2008]. Like in the study by Heesen and colleagues [Heesen et al. 2003], Castellano and colleagues also studied the acute effects of a single bout of endurance training and similarly found no differences when compared to the healthy controls, but in this study no increase in IFN-? and TNF-? were observed in any of the groups contrasting the findings by Heesen and colleagues.

In the most recent study Golzari and colleagues performed a randomized controlled trial (RCT) evaluating the effects of 8 weeks of combined endurance and resistance training on IFN-?, IL-4 and IL-17 [Golzari et al. 2010]. The study showed significant reductions in the resting concentrations of IFN-? and IL-17 in the exercise group, whereas no changes were seen in the control group, but no group comparisons were made.

In summary, no clear pattern can be seen in the reported cytokine responses to exercise probably reflecting large methodological differences between the studies (study type, type of exercise intervention, time of measurements, standardizations, etc.) and a low statistical power which is critical due to the great variation in this type of measurements. Nonetheless, a single bout of exercise have been reported to influence a number of (pro-inflammatory) cytokines in MS patients and also chronic changes in the resting concentration of several cytokines have been reported after a training period. Furthermore, the response seems to be comparable to that of healthy subjects. Cytokines, therefore, may link exercise and disease progression in MS, but large-scale future RCTs have to evaluate this further.

Neurotrophic factors. Neurotrophic factors are a family of proteins that are thought to play a role in preventing neural death and in favoring the recovery process, neural regeneration and remyelination throughout life [Ebadi et al. 1997]. Some of the more well-characterized neurotrophic factors include brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) [White and Castellano, 2008b].

Gold and colleagues evaluated the acute effects of a single exercise bout (30 min cycling at 60% VO2 max) on NGF and BDNF in 25 MS patients and compared this with a group of matched healthy controls [Gold et al. 2003]. The study showed that baseline concentrations of NGF were significantly higher in MS patients compared with controls. Thirty minutes after exercise a significant increase was observed in BDNF while a trend towards an increase in NGF was observed. However, the changes did not differ from the changes observed in the healthy subjects. This made the authors conclude that moderate exercise can be used to induce neutrophin production in subjects with MS possibly mediating the beneficial effects of physical exercise. In a study from the same group Schulz and colleagues evaluated the effects of biweekly cycling for 8 weeks on BDNF and NGF in a RCT in MS patients [Schulz et al. 2004]. The study showed no effects on the resting concentration and on the response to acute exercise after the intervention period, and only a trend towards lower resting NGF levels was found. Castellano and White also evaluated whether 8 weeks of cycling (three times a week), would affect serum concentrations of BDNF in MS patients and in healthy controls [Castellano and White, 2008]. In contrast to the findings of Gold and colleagues, resting BDNF was lower at baseline in MS patients as compared with controls, but no difference (a trend) between groups was found after 8 weeks. In MS patients BDNF concentration at rest was significantly elevated between weeks 0 and 4 and then tended to decrease between weeks 4 and 8, whereas resting BDNF concentration remained unchanged at 4 and 8 weeks of training in controls. Also, the response to a single bout of exercise was evaluated showing a significant reduction in BDNF 2 and 3 hours after exercise in both groups again contrasting with the findings by Gold and colleagues. The authors concluded that their findings provided preliminary evidence showing that exercise may influence BDNF regulation in humans.

In summary contrasting findings on the effects of exercise on neurotrophic factors exists in MS patients, making more studies warranted. However, findings do imply that exercise may influence several neurotrophic factors known to be involved in neuroprotective processes.

Conclusions

It cannot be clearly stated whether exercise has a disease-modifying effect or not in MS patients but studies indicating this do exist. Future long-term intervention studies in a large group of MS patients are therefore needed to address this important question.

Acknowledgments

The authors would like to thank research Librarian Edith Clausen for a substantial contribution to the comprehensive literature search.

Footnotes

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

UD has received travel grants and/or honorary from Biogen Idec, Merck Serono and Sanofi Aventis. ES has received research support and travel grants from Biogen Idec, Merck Serono and Bayer Schering and travel grants from Sanofi Aventis.

Multiple sclerosis, or MS, is a chronic disease identified by symptoms of by pain, fatigue, vision loss and impaired coordination caused by damage to the myelin sheaths of nerve cells in the central nervous system, or CNS. Exercise has been demonstrated to help improve the management of symptoms of multiple sclerosis as well as decrease the progression of the disease, although further evidence is still required, the article above summarizes these outcome measures. The purpose of the article above demonstrates how exercise can change the progression of multiple sclerosis and improve overall health and wellness. The scope of our information is limited to chiropractic and spinal health issues. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

Curated by Dr. Alex Jimenez

Referenced from: Ncbi.nlm.nih.gov/pmc/articles/PMC3302199/

Green Call Now Button H .png

Additional Topic Discussion:�Acute Back Pain

Back pain�is one of the most prevalent causes of disability and missed days at work worldwide. Back pain attributes to the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments, and muscles, among other soft tissues. Injuries and/or aggravated conditions, such as�herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief. �

blog picture of cartoon paper boy

EXTRA EXTRA | IMPORTANT TOPIC: Recommended El Paso, TX Chiropractor

***

What Is De Quervain’s Tenosynovitis & Can Chiropractic Help

What Is De Quervain’s Tenosynovitis & Can Chiropractic Help

De Quervain’s Tenosynovitis, also called �washerwoman sprain,� is a condition of the hand that typically affects people who do continuous, fast, repetitive movements. The patient can experience a sudden onset of the condition or it can be gradual, beginning with tenderness in the thumb area and slowly progressing. It can restrict activity, but it doesn�t have to be a long-term disability. Chiropractic care can help relieve the symptoms of De Quervain�s Tenosynovitis and the hand can return to normal function.

What Is De Quervain’s Tenosynovitis?

De Quervain’s Tenosynovitis is a condition affecting the thumb side of the wrist. It is a very painful condition that makes many everyday activities difficult or impossible. Many activities like playing golf, lifting a child, garden work, and racket sports can worsen the condition.

What are the Symptoms of De Quervain’s Tenosynovitis?

There are several distinctive symptoms of De Quervain�s tenosynovitis which include:

  • Pain near or at the base of the thumb
  • Difficulty moving or controlling the thumb and wrist when doing activities that involve pinching or grasping
  • Swelling near or at the base of the thumb
  • A �catch� or �sticking� sensation when moving the thumb

If the condition is allowed to progress or goes untreated it can involve the forearm and entire thumb, causing pain and swelling in those areas. The pain and symptoms can be exacerbated by movements that involve the wrist and thumb. The symptoms can last for a long time, weeks or even months.

de quervain's sprain chiropractic therapy el paso tx.

What causes De Quervain’s Tenosynovitis?

The exact cause of De Quervain�s Tenosynovitis is not known, but the condition is commonly associated with chronic overuse of the wrist. There are tendons that connect the wrist and lower thumb, enabling movement like grasping, gripping, pinching, and wringing. The tendons slide through a sheath as they facilitate the movement. Over time, the sheath can swell and thicken which inhibits the amount of the tendon�s movement. When the movements are repetitive, it can cause irritation of the sheath, resulting in inflammation.

Who is at Risk for De Quervain’s Tenosynovitis?

Research has identified several groups that are at risk for developing De Quervain�s Tenosynovitis:

  • 30 to 50 years of age with a higher concentration statistically around 40
  • Female
  • African ethnicity or descent
  • Pregnant
  • Caring for a child or baby
  • Works at a job that involves repetitive wrist and hand motions
  • Excessive text messaging on a smartphone or cell phone (can include younger

This condition has typically been considered to be one that affects people who are middle-aged. However, with the popularity of texting, many young people experience symptoms of De Quervain�s. In one study, more than half of students who texted extensively were labeled positive for De Quervain�s.

What are the Treatments for De Quervain’s Tenosynovitis?

Treatment for De Quervain�s Tenosynovitis include:

  • Resting the affected thumb and wrist
  • Bracing or immobilization
  • Ice to the affected area
  • Anti-inflammatory medications like ibuprofen and naproxen

If standard treatment is not effective it may be necessary to seek medical attention. If the condition is severe or chronic, the doctor may inject corticosteroid directly into the tendon sheath. Surgery for De Quervain�s is not common, but it may be deemed necessary in order to release the thumb. The speed of healing and the�degree of normal use of the thumb depends on the treatment chosen and if the activity that exacerbates the condition is stopped.

Can Chiropractic Help De Quervain’s Tenosynovitis?

A chiropractor may recommend rest, ice, and bracing for a patient with De Quervain�s Tenosynovitis. Upon reviewing the patient�s lifestyle and habits, he or she may also advise ergonomic changes, modification of activity, and reduce exposure to positions that exacerbate the symptoms. Soft tissue therapies may be used to quickly bring relief to the soft tissue, minimizing the inflammation and pain. As the pain decreases, the chiropractor will recommend specific strengthening and stretching exercises that involve the wrist, thumb, and forearm.

With regular care and modification to activities, the condition can be healed and full mobility of the thumb and wrist can be restored.

Chronic Hand Pain Treatment

Shoulder Pain Rehabilitation | Video | El Paso, TX.

Shoulder Pain Rehabilitation | Video | El Paso, TX.

Daniel Alvarado, owner of PUSH Fitness, in order to participate in his activities that are physical, he depends on his health. After fighting with shoulder pain during the course of several months, Daniel Alvarado went to visit Dr. Alex Jimenez, chiropractor, to receive shoulder pain rehabilitation. Chiropractic care is a treatment for subluxations, which might be causing symptoms, or an alternative treatment option used to cautiously help restore any misalignments. Dr. Alex Jimenez assisted Daniel Alvarado to enhance his strength, flexibility, and freedom through using spinal adjustments and manual manipulations. Daniel Alvarado was able to come back to his daily physical tasks after receiving shoulder pain rehabilitation together with Dr. Alex Jimenez, chiropractor. Daniel Alvarado highly recommends Dr. Alex Jimenez because he is the non-surgical pick for shoulder pain.

Chiropractic Rehab

shoulder pain chiropractic care el paso, tx.

We are blessed to present to you�El Paso�s Premier Wellness & Injury Care Clinic.

Our services are specialized and focused on injuries and the complete recovery process.�Our areas of practice includeWellness & Nutrition, Chronic Pain,�Personal Injury,�Auto Accident Care, Work Injuries, Back Injury, Low�Back Pain, Neck Pain, Migraine Treatment, Sports Injuries,�Severe Sciatica, Scoliosis, Complex Herniated Discs,�Fibromyalgia, Chronic Pain, Stress Management, and Complex Injuries.

As El Paso�s Chiropractic Rehabilitation Clinic & Integrated Medicine Center,�we passionately are focused on treating patients after frustrating injuries and chronic pain syndromes. We focus on improving your ability through flexibility, mobility and agility programs tailored for all age groups and disabilities.

We want you to live a life that is fulfilled with more energy, positive attitude, better sleep, less pain, proper body weight and educated on how to maintain this way of life. I have made a life of taking care of every one of my patients.

I assure you, I will only accept the best for you�

If you have enjoyed this video and we have helped you in any way, please feel free to subscribe and recommend�us.

Recommend: Dr. Alex Jimenez � Chiropractor

Health Grades: www.healthgrades.com/review/3SDJ4

Facebook Clinical Page: www.facebook.com/dralexjimene…

Facebook Sports Page: www.facebook.com/pushasrx/

Facebook Injuries Page: www.facebook.com/elpasochirop…

Facebook Neuropathy Page: www.facebook.com/ElPasoNeurop…

Yelp: goo.gl/pwY2n2

Clinical Testimonies: www.dralexjimenez.com/categor…

Information: Dr. Alex Jimenez � Chiropractor

Clinical Site: www.dralexjimenez.com

Injury Site: personalinjurydoctorgroup.com

Sports Injury Site: chiropracticscientist.com

Back Injury Site: elpasobackclinic.com

Linked In: www.linkedin.com/in/dralexjim…

Pinterest: www.pinterest.com/dralexjimenez/ Twitter: twitter.com/dralexjimenez

Twitter: twitter.com/crossfitdoctor

Recommend: PUSH-as-Rx ��

Rehabilitation Center: www.pushasrx.com

Facebook: www.facebook.com/PUSHftinessa…

PUSH-as-Rx: www.push4fitness.com/team/

Diseases Of The Chest Approach To Diagnostic Imaging

Diseases Of The Chest Approach To Diagnostic Imaging

Core Anatomy

  • Note generations of the tracheal-bronchial tree, lobes, segments, and fissures. Note secondary pulmonary lobule (1.5-2-cm)-the basic functional unit of lungs observed on HRCT. Note important structural organization of the alveolar spaces with communications in between (pores of Kohn & canals of Lambert) that permit air drift and by the same mechanism allow exudative or transudative fluid to spread through the lung and stopped at the fissure. Note the anatomy of the pleura: parietal that is a part of the endothoracic fascia and the visceral that forms a lung edge � pleural space in between.

 

chest diagnostic imaging el paso tx.

 

  • Mediastinum: surrounded by the pleura and the lung. Accommodates major structures contains numerous lymph nodes (see diagramme showing mediastinal nodes and their involvement in Lymphoma

 

chest diagnostic imaging el paso tx.

 

General Approach to Investigating Chest Complaints

  • Radiographic examination (Chest X-ray CXR); excellent 1st step. Low cost, low radiation exposure, multiple clinical complaints evaluation
  • CT scanning: chest CT, High-Resolution CT (HRCT)
  • Chest pathology approach:
  • Trauma
  • Infection
  • Neoplasms
  • Pulmonary edema
  • Pulmonary emphysema
  • Atelectasis
  • Pleural pathology
  • Mediastinum

PA & Lateral CXR

chest diagnostic imaging el paso tx.

 

  • Additional views may be used:
  • Lordotic view: helps to evaluate apical regions
  • Decubitus views right and left: help to evaluate subtle pleural effusion, pneumothorax and other pathology

 

chest diagnostic imaging el paso tx.

 

chest diagnostic imaging el paso tx.

 

  • Normal CXR PA & Lateral views. Ensure good exposure: T-spine discs and vessels through the heart are visualized on PA view. Count 9-10 right posterior ribs to confirm adequate inspiratory effort. Begin a thorough survey using the following approach: Are There Many Lung Lesions A-abdomen/diaphragm, T-thorax wall, M-mediastinum, L-lungs individually, Lungs-both. Develop a good search pattern

 

chest diagnostic imaging el paso tx.

 

  • 1) Airspace disease aka alveolar lung disease? Filling of the lung’s alveoli, acini and subsequently the entire lobe with fluid or substance of any composition (blood, pus, water, proteinaceous material or even cells) Radiographically: lobar or segmental distribution, airspace nodules may be noted, tendency to coalesce, air bronchograms and silhouette sign present. Batwing (butterfly) distribution noted as in (CHF). Rapidly changing over time, i.e., increase or decrease (days)
  • 2) Interstitial disease: infiltration of pulmonary interstitium (alveoli septum, lung parenchyma, vessel walls, etc.) by for example by viruses, small bacteria, protozoans. Also infiltration by cells such as inflammatory/malignant cells (e.g., lymphocytes) Presented as an accentuation of lung interstitium with a reticular, nodular, mixed reticulonodular pattern. Different etiologies: inflammatory autoimmune diseases, fibrosing lung disease, occupational lung disease, viral/mycoplasma infection, TB, sarcoidosis lymphoma/leukemia and many other.

 

chest diagnostic imaging el paso tx.

 

  • Recognizing different patterns of pulmonary disease can help with DDx. Mass vs. Consolidation (left). Note different patterns of pulmonary disease: airspace disease as lobar consolidation indicative of pneumonia, diffuse consolidation indicative of pulmonary edema. Atelectasis (collapse and volume loss). Interstitial patterns of pulmonary disease: reticular, nodular or mixed. SPN vs. Multiple focal consolidations (nodules) likely representing mets infiltrates vs. septic infiltrates

 

chest diagnostic imaging el paso tx.

 

  • A = intraparenchymal
  • B = pleural
  • C = extrapleura
  • Recognize important location of chest lesions

 

chest diagnostic imaging el paso tx.

 

  • Important signs: Silhouette sign: help with localization and DDx. Example: Bottom left image: radiopacity in the right lung, where is it located? Right MM because the right heart border that is adjacent to right middle lobe is not seen (silhouetted) Air bronchograms: air containing bronchi/bronchioles surrounded by fluid

 

chest diagnostic imaging el paso tx.

 

Chest Trauma

  • Pneumothorax (PTX): air (gas) in the pleural space. Many causes. Complications:
  • Tension PTX: continuous increase of air in the pleural space that rapidly compresses mediastinum and lung rapidly reducing venous return to the heart. It can be fatal if not treated rapidly
  • Spontaneous PTX: primary (young adults (30 -40) especially tall, thin men. Additional causes: Marfan�s syndrome, EDS, Homocystinuria, a – 1 -antitrypsin deficiency. Secondary: older pts with parenchymal disease: neoplasms, abscess, emphysema, lung fibrosis and honeycombing, catamenial PTX d/t endometriosis and others.
  • Traumatic pneumothorax: lung laceration, blunt trauma, iatrogenic (chest tubes, etc.) acupuncture, etc.
  • CXR: note visceral pleural line aka lung edge. An Absence of pulmonary tissue/vessels beyond the visceral pleural line. Subtle pneumothorax can be missed. On erect position, air rises and PTX should be sought at the top.
  • Rib fractures: v.common. Traumatic or pathological (e.g., mets, MM) Rib series x – rays are not very useful because CXR and/or CT scanning are more important to evaluate posttraumatic PTX (bottom left) lung laceration and another major path

 

chest diagnostic imaging el paso tx.

 

Infection

  • Pneumonia: bacterial vs. viral or fungal or in the immunocompromised host (e.g., Cryptococcus in HIV/AIDS) Pulmonary TB

 

chest diagnostic imaging el paso tx.

 

  • Pneumonia: community-acquired vs. hospital-acquired. Typical bacterial pneumonia or Lobar (non-segmental) pneumonia with purulent material filling the alveoli and spreading to the entire lobe. M/C organismStreptococcus Pneumonia or the Pneumococcus
  • Others: (Staph, Pseudomonas, Klebsiella esp. in alcoholics potentially leading to necroSIS/lung gangrene) Mycoplasma (20-30s) aka walking pneumonia, etc.
  • Clinically: a productive cough, fever, pleuritic chest pain sometimes hemoptysis.
  • CXR: confluent airspace opacity confined to the entire lobe. Air bronchograms. Silhouette sign help with location.
  • Viral: Influenza, VZV, HSV, EBV, RSV, etc. presents as interstitial lung disease that can be bilateral. May lead to respiratory compromise
  • Atypical pneumonia and Fungal Pneumonia: Mycoplasma, Legionnaire’s disease, and some fungal/Cryptococcus pneumonia may present with interstitial lung disease.
  • Pulmonary abscess: an infectious collection of purulent material in the lungs that often necrotizes. May lead to significant pulmonary and system complications/life-threatening.
  • On CXR or CT: round collection with thick borders and central necrosis containing air-fluid level. DDx from empyema that distorts the lung and pleural-based
  • Rx: antibiotics, antifungal, antiviral agents.
  • Pneumonia needs to be followed up with repeat CXR to ensure complete resolution
  • Lack of radiographic improvement of pneumonia may represent declined immunity, antibiotic resistance, underlying lung carcinoma or other complicating factors

Pulmonary TB

chest diagnostic imaging el paso tx.

 

  • Common infection worldwide (3rd world countries). 1 in 3 persons worldwide is affected by TB. TB is caused by Mycobacterium TB or Mycobacterium Bovis. Intracellular bacillus. Macrophage plays a key role.
  • Primary Pulmonary TB & Post-primary TB. Requires repeated exposure through inhalation. In most immunocompetent hosts, the active infection does not develop
  • TB presents as 1) cleared by the host, 2) suppressed into Latent Tuberculosis Infection (LTBI) 3) cause active disease TB. Patients with LTBI are not spreading TB.
  • Imaging: CXR, HRCT. Primary TB: pulmonary airspace consolidation (60%) lower lobes, lymphadenopathy (95%- hilar & paratracheal), pleural effusion (10%). The Spread of primary TB most likely in immunocompromised and children.
  • Milliary TB: pulmonary and system complication dissemination that can be fatal
  • Post-primary (secondary) or reactivation infection: Mostly in the Apices and posterior segments of the upper lobes )high PO2), 40%-cavitating lesions, patchy or confluent airspace disease, fibrocalcific. Latent features: nodal calcifications.
  • Dx: Acid-fast bacilli (AFB) smear and culture (sputum). HIV serology in all patients with TB and unknown HIV status
  • Rx: 4-drug regimen: isoniazid, rifampin, pyrazinamide, and either ethambutol or streptomycin.

Pulmonary Neoplasms (primary lung cancer vs. pulmonary metastasis)

  • Lung cancer: m/c cancer in men and 6th most frequent cancer in women. Strong association with carcinogens inhalation. Clinically: late discovery, depending on the location of the tumor. Pathology (types): Small cell (SCC) vs. Non-small cell carcinoma
  • Small cell: (20%) develops from neuroendocrine aka Kultchitsky cell, thus may secrete biologically active substances presenting with paraneoplastic syndrome. Typically located centrally (95%) at or near the mainstem/lobar bronchus. Most show poor prognosis and unresectable.
  • Non-small cell: Lung adenocarcinoma (40%) (M/C lung cancer), M/C in women and non-smokers. Others: Squamous cell (may present with cavitating lesion), Large cell and some others
  • Plain film (CXR): new or enlarged focal lesion, widened mediastinum suggestive of lymph node involvement, pleural effusion, atelectasis, and consolidation. SPN-may represents potential lung cancer especially if it contains irregular borders, feeding vessels, thick wall, in the upper lungs. Multiple lung nodules are likely to represent metastasis.
  • Best Modality: HRCT with contrast.
  • Other chest neoplasms: Lymphoma is v. common in the chest especially in mediastinal and internal mammary notes.
  • Overall M/C pulmonary neoplasms are a metastasis. Some tumors show a higher predilection for lung mets, e.g., Melanoma, but any cancer can metastasize to the lungs. Some mets referred as �Cannonball� metastasis
  • Rx: radiation, chemotherapy, resection

 

chest diagnostic imaging el paso tx.

 

  • Pulmonary edema: a general term defines abnormal fluid accumulation outside vascular structures. Broadly divided into Cardiogenic (e.g., CHF, mitral regurgitation) and Non-cardiogenic with a multitude of causes (e.g., fluid overload, post-transfusion, neurological causes, ARDS, near drowning/asphyxiation, heroin overdose, and others)
  • Causes: increased in Hydrostatic pressure vs. decreased in oncotic pressure.
  • Imaging: CXR and CT: 2-types Interstitial and Alveolar flooding. Imaging presentation depends on stages
  • In CHF: Stage 1: redistribution of vascular flow (10- 18-mm Hg) noted as �cephalization� of the pulmonary vasculature. Stage 2: Interstitial edema (18-25-mm Hg) Interstitial edema: peribronchial cuffing, Kerley lines (lymphatics filled with fluid) A, B, C lines. Stage 3: Alveolar edema: airspace disease: patchy consolidations developing into diffuse airspace disease: Batwing edema, air bronchograms
  • Rx: 3 main goals: Initial O2 to keep O2 at 90% saturation
  • Next: (1) reduction of pulmonary venous return (preload reduction), (2) reduction of systemic vascular resistance (afterload reduction), and (3) inotropic support. Treat underlying causes (e.g., CHF)

 

chest diagnostic imaging el paso tx.

 

  • Lung atelectasis: incomplete expansion of pulmonary parenchyma. The term “collapsed lung” is typically reserved for when the entire lung is collapsed
  • 1) Resorptive (obstructive) atelectasis occurs as a result of complete obstruction of an airway (e.g. tumor, inhaled objects, etc.)
  • 2) Passive (relaxation) atelectasis occurs when contact between the parietal and visceral pleura is disrupted (pleural effusion & pneumothorax)
  • 3) Compressive atelectasis occurs as a result of any thoracic space-occupying lesion compressing the lung and forcing air out of the alveoli
  • 4) Cicatricial atelectasis: occur as a result of scarring or fibrosis that reduces lung expansion as in granulomatous disease, necrotizing pneumonia, and radiation fibrosis
  • 5) Adhesive lung atelectasis occurs from surfactant deficiency and alveolar collapse
  • 6) Plate-like or discoid often developed after following general anesthesia
  • 7) Imaging features: lung collapse, migration of lung fissures, deviation of the mediastinum, rising of the diaphragm, hyperinflation of adjacent unaffected lung

 

chest diagnostic imaging el paso tx.

 

  • Mediastinum: pathology can be divided into those that result in a focal mass or those that result in diffuse disease involving the mediastinum. Additionally, air may track into the mediastinum in pneumomediastinum. Knowledge of mediastinal anatomy helps the Dx.
  • Anterior mediastinal masses: thyroid, thymus, teratoma/germ cell tumors, lymphoma, lymphadenopathy, ascending aortic aneurysms
  • Middle mediastinal masses: lymphadenopathy, vascular, bronchial lesions etc.
  • Posterior mediastinal masses: neurogenic tumours, aortic aneurysms, esophageal masses, spinal masses, aortic chain adenopathy

 

chest diagnostic imaging el paso tx.

 

  • Pulmonary emphysema: loss of normal elastic tissue/elastic recoil of the lung with the destruction of capillaries and alveolar septum/interstitium.
  • Destruction of lung parenchyma due to chronic inflammation. Protease-mediated destruction of elastin. Air trapping/airspace enlargement, hyperinflation, pulmonary hypertension, and other changes. Clinical: progressive dyspnea, irreversible. By the time the forced expiratory volume in 1 second (FEV1 ) has fallen to 50% the patient is breathless upon minimal exertion and adapts to lifestyles.
  • COPD is the third leading cause of global death. Affects 1.4% of adults in the US. M:F = 1 : 0.9. Pts 45 years and older
  • Causes: Smoking and a-1-Antitrypsin deficiency (divided into centrilobular (smoking) and panacinar.
  • Imaging; signs of hyperinflation, air trapping, bullae, pulmonary hypertension.

 

chest diagnostic imaging el paso tx.

 

Terapia Para Dolor De Nervio Ci�tico | El Paso, TX.

Terapia Para Dolor De Nervio Ci�tico | El Paso, TX.

Truide Torres recibe atenci�n quiropr�ctica con el Dr. Alex Jimenez por su dolor en el nervio ci�tico. La ci�tica es una colecci�n de s�ntomas caracterizados por dolor lumbar que se irradia a trav�s de los muslos hacia las piernas, rodillas y pies. El dolor del nervio ci�tico puede afectar uno o ambos lados de las extremidades inferiores. Truide Torres luch� para participar en sus actividades f�sicas diarias debido a sus s�ntomas de ci�tica. A trav�s de ajustes espinales y manipulaciones manuales, el Dr. Alex Jimenez restaur� cuidadosamente la alineaci�n original de su columna, aliviando sus s�ntomas dolorosos. Truide Torres recomienda al Dr. Alex Jimenez y su personal como la opci�n no quir�rgica para la ci�tica.

Terapia

terapia nervio ciatico el paso, tx.

Nos complace presentarle a la Cl�nica Premier de Atenci�n de Lesiones y Bienestar de El Paso.

Nuestros servicios est�n especializados y enfocados en lesiones y en el proceso completo de recuperaci�n. Nuestras �reas de pr�ctica incluyen Bienestar y nutrici�n, Dolor cr�nico, Lesiones personales, Cuidado de accidentes automovil�sticos, Lesiones en el trabajo, Lesi�n en la espalda, Dolor en la espalda baja, Dolor en el cuello, Tratamiento de migra�a, Lesiones deportivas, Ci�tica severa, Escoliosis, Discos herniados complejos, Fibromialgia, Cr�nica Dolor, manejo del estr�s y lesiones complejas.

Como Cl�nica de Rehabilitaci�n Quiropr�ctica y Centro de Medicina Integrada de El Paso, nos enfocamos apasionadamente en el tratamiento de pacientes despu�s de lesiones frustrantes y s�ndromes de dolor cr�nico. Nos enfocamos en mejorar su capacidad a trav�s de programas de flexibilidad, movilidad y agilidad dise�ados para todas las edades y discapacidades.

Queremos que viva una vida que se cumpla con m�s energ�a, actitud positiva, mejor sue�o, menos dolor, peso corporal adecuado y educaci�n sobre c�mo mantener esta forma de vida. He hecho una vida cuidando a cada uno de mis pacientes.

Te aseguro que solo aceptar� lo mejor para ti …

Si ha disfrutado de este video y le hemos ayudado de alguna manera, no dude en suscribirse y recomendarnos.

Recomendar: Dr. Alex Jimenez – Quiropr�ctico.

Health Grades: www.healthgrades.com/review/3SDJ4

Facebook Clinical Page: www.facebook.com/dralexjimene…

Facebook Sports Page: www.facebook.com/pushasrx/

Facebook Injuries Page: www.facebook.com/elpasochirop…

Facebook Neuropathy Page: www.facebook.com/ElPasoNeurop…

Yelp: goo.gl/pwY2n2

Clinical Testimonies: www.dralexjimenez.com/categor…

Information: Dr. Alex Jimenez � Chiropractor

Clinical Site: www.dralexjimenez.com Injury Site: personalinjurydoctorgroup.com

Sports Injury Site: chiropracticscientist.com

Back Injury Site: elpasobackclinic.com

Linked In: www.linkedin.com/in/dralexjim…

Pinterest: www.pinterest.com/dralexjimenez/

Twitter: twitter.com/dralexjimenez

Twitter: twitter.com/crossfitdoctor

Recommend: PUSH-as-Rx ��

Rehabilitation Center: www.pushasrx.com

Facebook: www.facebook.com/PUSHftinessa…

PUSH-as-Rx: www.push4fitness.com/team/

Benefits of Exercise for Multiple Sclerosis

Benefits of Exercise for Multiple Sclerosis

Are you struggling with your symptoms of MS on a regular basis? Multiple sclerosis, or MS, is a disease where the human body’s own immune system attacks the fatty myelin coating which surrounds and insulates nerve cells, a process called demyelination. Common symptoms of multiple sclerosis include fatigue, muscle spasms, walking problems, and tingling sensations and numbness.

According to various research studies, improved strength, flexibility, and mobility from participating in physical activities and exercises help decrease the risk of bone fractures and other ailments in people with MS. One research study also indicates that improper nutrition and a lack of physical activity and exercise are the most frequent risk factors for people with multiple sclerosis.

Another research study on the benefits of exercise for multiple sclerosis was printed by researchers from the University of Utah in 1996. The participants of the research study developed a more positive mindset, increased their strength, flexibility, and mobility, experienced less fatigue, improved their bowel, bladder, and cardiovascular function, and developed fewer symptoms of depression.

Exercises for Multiple Sclerosis

A fitness program ought to be designed under medical supervision and may be adjusted as MS symptoms change. Patients with MS should engage in physical activities and exercises several times each week and avoid workouts for extended periods of time. Patients with MS can still do tasks around the home. Examples of everyday tasks include cooking, gardening, and�other household tasks.

Exercises that can help manage MS symptoms include:

  • Yoga. This type of physical activity/exercise features becoming aware of your breathing to help relax your body and mind. Benefits of yoga include enhancing the human body’s alignment, improving your own balance. Yoga also teaches you relaxing techniques, like meditation, which you could use during a magnetic resonance imaging, or MRI scan, or receiving an injection.
  • Tai Chi. This Chinese martial art teaches you how to breathe, relax and slow down your movements. Furthermore, Tai Chi can also help improves your balance, further helping to manage and support muscle tone, as well as help relieves stress.
  • Water exercises. Physical activities/exercises performed in water require less effort. This helps people with MS move in ways that they would otherwise not be able to perform properly. Benefits of water exercises include muscle relaxation, enhanced flexibility, better movement, improved strength, and reduced pain. These concentrate on improving aerobic resistance.

Healthcare professional used to recommend that people with MS avoid exercise entirely for fear of aggravating their symptoms. Now, evidence indicates that regular exercise not only improves quality of life for people with MS, but it might also help alleviate symptoms and decrease the risk of complications in the future. Exercise can be beneficial for anyone, even for people with multiple sclerosis.

Dr Jimenez White Coat
According to many healthcare professionals, physical activity and exercise are one of the most essential elements of treatment for multiple sclerosis or MS. While many patients with MS often avoid exercise, thinking it will aggravate their symptoms, research studies have demonstrated that exercise can actually help improve symptoms. As described in the following article, physical activity can help improve strength, mobility, and flexibility. Furthermore, physical activity can have various other health benefits for MS, including improved bowel and bladder function as well as enhanced mood and decreased fatigue. Dr. Alex Jimenez D.C., C.C.S.T. Insight

Getting Started with Exercise for MS

Kathleen Costello, a nurse practitioner and associate vice president of medical care for the National Multiple Sclerosis Society, recommends seeking the support of a healthcare professional, such as a chiropractor or physical therapist, to determine which physical activities or exercises would be beneficial for patients with MS. Benefits of exercise for multiple sclerosis include:

Less Fatigue

Various kinds of physical activities and exercise can improve fatigue. This is a frequent complaint among individuals with MS. A research study on yoga for people with MS discovered that yoga is as superior as other kinds of exercise in lowering fatigue. Another research study discovered that eight months of water exercise decreased fatigue and improved quality of life in women with MS.

Better Mood

Moderate-intensity exercise, such as brisk walking, dancing, or bicycling, has been shown in several research studies to enhance mood in people who are depressed. One research study discovered that the benefits also apply to adults with neurological disorders, including multiple sclerosis, especially when physical activity guidelines are met. The Centers for Disease Control and Prevention currently recommends that adults get at least 150 minutes, or 2 hours and 30 minutes, of moderate-intensity physical activities or exercises each week, in addition to including at least two workout routines involving muscle strengthening exercises for MS.

Better Bladder Control

Among the research studies on the benefits of exercise in people with MS, one review found that 15 months of aerobic exercise helped to enhance bowel and bladder function in people with MS. A small pilot research study published in the Journal of Alternative and Complementary Medicine in 2014 discovered that a yoga program also afforded better bladder control among individuals with MS.

Stronger Bones

Weight-bearing physical activities and exercise, such as walking, running, or using an elliptical machine, can help strengthen bones and may protect against osteoporosis, a bone-thinning disease that raises the possibility of fracturing bones. A lot of people with MS, or multiple sclerosis, are at risk of developing osteoporosis due to a combination of factors, including:

  • Low blood levels of vitamin D, the nutritional supplement that works with calcium to protect bone health
  • A history of taking corticosteroids, drugs used to treat MS flares that can lead to low calcium levels in the bloodstream
  • Mobility difficulties, which might make a person least likely to engage in different forms of exercise
  • Low body weight

At the same time, people with MS occasionally have balance conditions which make them more vulnerable to falling, a significant cause of broken bones. Finding a means to take part in exercises and physical activities which can help strengthen the bones is therefore important for preserving bone density and helping to prevent fractures, especially in people diagnosed with MS.

Weight Management

If symptoms of MS result in decreased physical activity or exercise, among one of the consequences, may include weight gain, which can make it even harder for you to get around. The use of corticosteroids can also lead to weight gain. Engaging in physical activities or exercise can help slow down or stop weight gain. Regular exercise can also benefit people who are underweight. Along with other benefits described above, physical activity or exercise may also increase appetite in people who are underweight.

For a lot of people, MS means changes in the physical activities or exercises they can perform and in how they will be able to execute them, however, it doesn’t imply that their lifestyle will come to a standstill. Work with your healthcare professional to discover the actions that suit you best and the assistive devices that could keep you moving with MS. The scope of our information is limited to chiropractic and spinal health issues. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

Curated by Dr. Alex JimenezR

Green Call Now Button H .png

Additional Topic Discussion:�Acute Back Pain

Back pain�is one of the most prevalent causes of disability and missed days at work worldwide. Back pain attributes to the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments, and muscles, among other soft tissues. Injuries and/or aggravated conditions, such as�herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief. �

blog picture of cartoon paper boy

EXTRA EXTRA | IMPORTANT TOPIC: Recommended El Paso, TX Chiropractor

***