ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page

Sciatica

Back Clinic Sciatica Chiropractic Team. Dr. Alex Jimenez organized a variety of article archives associated with sciatica, a common and frequently reported series of symptoms affecting a majority of the population. Sciatica pain can vary widely. It may feel like a mild tingling, dull ache, or burning sensation. In some cases, the pain is severe enough to make a person unable to move. The pain most often occurs on one side.

Sciatica occurs when there is pressure or damage to the sciatic nerve. This nerve starts in the lower back and runs down the back of each leg as it controls the muscles of the back of the knee and lower leg. It also provides sensation to the back of the thigh, part of the lower leg, and the sole of the foot. Dr. Jimenez explains how sciatica and its symptoms can be relieved through the use of chiropractic treatment. For more information, please feel free to contact us at (915) 850-0900 or text to call Dr. Jimenez personally at (915) 540-8444.


Understanding Sciatica: Causes and Symptom Overview

Understanding Sciatica: Causes and Symptom Overview

Lower back pain is a common symptoms frequently reported among a majority of the population in the United States. While low back pain generally resolves on its own, constant discomfort could signal the presence of a more serious injury or condition. A variety of factors can lead to spinal damage or injury, manifesting as low back pain, however, when the pain and discomfort includes tingling sensations, numbness and even burning sensations along the lower extremities, damage or injury to the sciatic nerve may have occurred.

Over-exercising, lifting, bending, or twisting abruptly into awkward positions, and even driving for extended periods of time, can strain the sciatic nerve, leading to lower back pain which radiates into the back of the legs as well as other numerous symptoms, known as sciatica.

What is Sciatica?

Approximately 5 to 10 percent of individuals experience some form of low back pain from sciatic nerve pain. Most commonly seen in people ranging from 18 to 35 years of age, the prevalence of sciatic symptoms varies tremendously from 1.6 percent throughout the general population to 43 percent in a selected working population. Unfortunately, only 30 percent of individuals suffering from sciatica seek medical attention only after experiencing these painful symptoms for a year or more. In a majority of cases, sciatica is caused by a herniated disc involving nerve root compression.

Not all individuals with lower back pain have sciatica. Lower back pain could result from a variety of factors, most frequently seen in sedentary workers who sit behind a desk for an extended period of time with improper posture while not following ergonomics.

Causes for Sciatica

Several causes of sciatica include trauma from an injury, spondylolisthesis, piriformis syndrome, spinal tumors and obesity. �Sciatica can be debilitating at times when the episode is acute. At that time, it is very difficult to carry out day-to-day activities. Some patients are advised bed rest for three to four weeks so that their condition improves. Majority of the symptoms settle down with non-operative management, which involves extensive rest,� Dr. Sunil Dachepalli, senior orthopedic and joint replacement surgeon and sports medicine expert at Yashoda Hospitals quoted.

For long-distance drivers, they are at a higher risk of developing sciatica because of the constant jolts on bumpy roads which have been known to weaken the discs of the spine. Smooth roads can prevent this though. The individual�s height can also be a component towards the development of sciatica as most discs rupture backwards when the person bends forward. Taller people tend to slouch forward more often and also, when they bend, their center of gravity moves further away from the spine. The pressure on the spine is multiplied by the distance of the force, resulting in more pressure on discs of taller people when they bend forward.

It�s essential to properly diagnose the presence of sciatica and determine the source of the pain and other symptoms. Sciatica caused by a common back complication, such as a spinal misalignment, may require a combination of treatments to relieve an individual�s symptoms as well as treat the underlying cause of the sciatica. Dr. N. Somasekhar Reddy, senior consultant orthopedic surgeon stated, �In 80 percent of the cases where people treat their sciatica on time, it is found that these simple methods can help them get better with time.�

Symptoms of Sciatica

Sciatica is characterized by a sharp pain along with numbness on the leg. The affected leg may also feel weak and appear thinner than the other leg. Additionally, many individuals experience a mild tingling, dull ache, or burning sensation that can also be felt on the back of the calf or on the sole of the foot. The pain and discomfort usually worsens when one lies down and can often make getting enough rest difficult. Occasionally, redness and swelling may appear on the back. An episode of back pain that has lasted continuously for more than four weeks could suggest the presence of sciatica.

Home Remedies for Sciatica

If you�ve been diagnosed with sciatica, there are a several remedies that can help ease the pain. Foremost, ice therapy can be used on the affected are of the back to reduce the swelling. Participating on regular physical activity and exercise can help strengthen the muscles and improve flexibility to prevent degenerative wear and tear changes associated with age. In addition, avoid sitting or standing for prolonged periods of time by taking several breaks to stand, stretch, and walk around. If you must be on your feet, rest one foot on a small stool or footrest and then switch feet throughout the day. Individuals with sciatica symptoms should also avoid wearing high heels. This type of footwear alters the body�s natural posture, adding pressure to the spine which could aggravate your sciatica. And finally, take pressure off your back by sleeping on your side or on your back with a pillow under your knees.

While these remedies can relieve symptoms of sciatica, their effects may only be temporary and it�s still crucial to receive immediate medical attention to diagnose any possible underlying conditions or injuries that could have developed your complications and follow with proper treatment. Chiropractic care focuses on realigning the spine through the use of spinal adjustments and manual manipulation to decrease the stress on the spine as well as strengthen the structures around the vertebra and restore the body�s natural health.

Back pain is a common symptom affecting a wide range of individuals. Various factors can cause back complications but when a person’s lower back pain begins to radiate down into the back of the legs, it could be another issue. Approximately 5 to 10 percent of individuals experience low back pain due to sciatica. Characterized as a group of symptoms rather than a single condition, sciatica can often make an individual’s lifestyle more difficult than a simple low back problem.

When the constant symptoms of low back pain are attributed to sciatica, the radiating pain and discomfort can greatly restrict an individual’s everyday lifestyle, altering their daily activities. After identifying the collection of symptoms associated with sciatica, it’s important for the individual’s to seek a professional medical diagnosis to determine the source of their symptoms. Once diagnosed, following treatment with a qualified healthcare specialist can help them recover from their symptoms and improve their overall health and wellness.

For more information, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

By Dr. Alex Jimenez

Additional Topics: Low Back Pain After Auto Injury

After being involved in an automobile accident, the sheer force of the impact can cause damage or injury to the body, primarily to the structures surrounding the spine. An auto collision can ultimately affect the bones, muscles, tendons, ligaments and other tissues surrounding the spine, commonly the lumbar region of the spine, causing symptoms such as low back pain. Sciatica is a common set of symptoms after an automobile accident, which may require immediate medical attention to determine its source and follow through with treatment.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

 

Low Back Pain Caused by Lumbar Spinal Stenosis

Low Back Pain Caused by Lumbar Spinal Stenosis

Chronic low back pain as well as radiating discomfort down one or both legs could indicate the presence of an injury or condition, such as lumbar stenosis. Spinal stenosis in the lumbar spine commonly develops with age, characterized as the narrowing of the spinal canal in the lower back. When this reduction in the vertebrae occurs, extra pressure is placed on the nerves as well as the spinal cord. Because these nerves run from the lower back to the legs, symptoms of leg pain, heaviness and/or cramping may also develop.

Anatomy of the Spinal Canal

The spinal canal located in the region of the lumbar spine is the most frequent section affected by spinal stenosis. The lumbar spine is made up of five vertebrae extending between the ribcage and pelvis, medically labelled from top to bottom as L1 through L5. Each of these vertebrae are properly separated by intervertebral discs which function as shock absorbers, cushioning and distributing the pressure being exerted onto the spine.

Each vertebrae of the spine contain what is identified as vertebral arches, protruding arch-shaped bones which create the necessary space within the spinal bones for the spinal cord. That space is referred to as the spinal canal. When the structure of the spine is healthy and it functions effectively, the spinal canal should properly be capable of protecting the spinal cord, providing the necessary and safest space required to maintain overall wellness.

Symptoms of Lumbar Spinal Stenosis

Individuals suffering from spinal stenosis in the lumbar spine commonly describe experiencing symptoms of pain and discomfort along the lower back, hips, buttocks and/or legs. Other prevalent symptoms of the condition include: lower back pain that radiated down one or both buttocks, legs, and/or feet; worsening pain in the lower extremities when walking; tingling sensations or numbness in one or both legs or feet; weakness in one or both legs or feet; restricted mobility or difficulty walking; and issues controlling bladder or bowel movements, a complication which may require immediate medical care.

Sciatica, best known as a set of symptoms rather than a single condition or disorder, can be a common diagnosis for determining the presence of an issue affecting the lower spine. Symptoms of sciatica include a collection of pain and discomfort, tingling sensations and numbness, burning sensations, and muscle weakness. Symptoms of sciatica can indicate a serious complication along the lumbar spine.

For individuals experiencing spinal stenosis in the upper back, referred to as cervical stenosis, the symptoms will be similar along the neck, shoulders, arms and/or hands.

Causes of Lumbar Spinal Stenosis

The gradual degeneration of the spine caused by the natural changes that come with age are the most common cause for the narrowing of the spinal canal, mostly due to the repetitive stress and pressure of the surrounding tissues over the course of several years. As the spinal canal becomes narrower over time, a number of conditions and disorders can develop, causing the compression or impingement of the spinal cord and leading to the irritation and inflammation of the nerve roots. This process will ultimately cause symptoms to manifest along the lower back, buttocks, and/or legs.

Lumbar spinal stenosis can also be caused by the degeneration of the intervertebral discs found between each vertebrae of the spine. Spinal disc shrinkage can impede the disc�s ability to properly separate the individual bones of the spine. This problem can generally lead to a much more severe condition referred to as a lumbar disc herniation. Also, if the spinal cord ligaments have expanded due to the natural wear and tear alteration of the structures of the body, lumbar stenosis can develop. Consequently, the degeneration of the vertebrae in the spine is the most common cause for lumbar spinal stenosis.

Diagnosing Lumbar Stenosis

When visiting a healthcare professional, such as a chiropractor, for the diagnosis of lumbar spinal stenosis, the doctor will primarily conduct a thorough physical examination of the patient to determine the source of the issue. The doctor of chiropractic, or other healthcare specialist, may also extensively review the individual�s medical history, referring them to receive other necessary or additional X-rays or MRI scans. By examining the patient�s symptoms as well as analyzing the test results, a chiropractor will be able to diagnose the individual�s injury or condition to discuss the best possible treatment options for you, including the thorough discussion of the benefits and risks of each option. Finally, the healthcare professional and patient can decide together on the preferred treatment procedure to follow to begin the rehabilitation process and restore their original health and wellness.

Treating Lumbar Spinal Stenosis

Chiropractic focuses on the diagnosis, treatment and prevention of injuries and/or conditions of the musculoskeletal and nervous system. A chiropractor may commonly utilize spinal adjustments and manual manipulations to carefully correct any misalignments in the spine that may be causing the impingement or compression of the spinal nerves. The chiropractic adjustments can help decrease the stress and pressure being placed against the structures and other tissues of the spine, reducing the symptoms of pain and discomfort associated with spinal stenosis along the different regions of the spine. Furthermore, the chiropractor may recommend a series of stretches and exercises according to the individual�s complications to speed up the rehabilitation process and help them regain their original strength, flexibility and mobility.

In the case that other forms of treatment are required to treat the individual�s injuries and/or conditions, the healthcare specialist will refer the patient to other professionals for treatment. A modification of the patient�s physical activities may be recommended as well. Other healthcare providers may provide the use of medications and other treatment methods or techniques, including physical therapy, to help improve the symptoms. While many individuals may try a number of conservative treatments to solve the issue, if the individual�s condition is severe enough to require spinal surgery, a healthcare provider may refer the patient to the appropriate doctor for treatment.

For more information, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

By Dr. Alex Jimenez

Additional Topics: Low Back Pain After Auto Injury

After being involved in an automobile accident, the sheer force of the impact can cause damage or injury to the body, primarily to the structures surrounding the spine. An auto collision can ultimately affect the bones, muscles, tendons, ligaments and other tissues surrounding the spine, commonly the lumbar region of the spine, causing symptoms such as low back pain. Sciatica is a common set of symptoms after an automobile accident, which may require immediate medical attention to determine its source and follow through with treatment.

 

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

Low Back Pain & Sciatica Caused by a Broken Pelvis

Low Back Pain & Sciatica Caused by a Broken Pelvis

Athletes are specially trained to exercise and compete vigorously without experiencing injury or aggravating a previously existing condition. However, accidents and direct trauma during their specific sport or physical activity can inevitably result in damage or injury to the individual. Muscle or tissue damage are common in sports and can be dealt with accordingly but when a bone fracture occurs, these may be more delicate and may require additional diagnosis and care in order to properly help an athlete recover.

Among the general population of athletes, stress fractures can be a rare cause of pain, accounting for only 2 percent of all reported sports injuries. However, a considerably higher number of stress fractures are diagnosed in long distance runners and triathletes.

Stress fractures occurring around the pelvis are significantly uncommon although, a majority of them are often considered a differential diagnosis when athletes, specifically long distance runners and triathletes, report hip, groin or buttock pain during and after running. Because stress fractures around the pelvic/hip region, including the sacral, pubic rami and femoral neck region, are rarely diagnosed, understanding and discussing the anatomy of the injury, their clinical presentation, diagnosis and treatment for each of these types of stress fractures is important for an athlete in order to find a solution for those who do encounter it.

How Stress Fractures Occur

Stress fractures occur over a determined period of time when the bone is no longer capable of withstanding submaximal, repetitive forces. They frequently result when normal stresses cause bone fracture with decreased bone density, such as in an elderly osteoporotic individual, or as a result of an abnormal stress being placed against a normal bone and causing a fracture, such as in a long distance runner.

When the bones are exposed to loading, the introductory physiological response is a respective increase in osteoclastic activity, or bone resorption, leading to temporary structural weakening before new bone formation. If these stresses continue to occur without having the bone properly adjust to this additional, ongoing osteoclastic activity, the pressure may exceed bone regeneration, causing microfractures to occur.

The first characteristic of a stress reaction observed through the use of MRI is bone oedema as well as increased activity on bone scan. Bone scan in the acute phase has high sensitivity but an increased uptake may also be due to infection, bone infarction or neoplastic activity. Researchers from previous studies stated that 60 to 70 percent of X-rays in the acute phase of stress fractures, approximately less than 2 weeks after the injury, have a negative result. Due to its high sensitivity as well as a lack of radiation and high specificity, even despite its elevated cost, MRI is often the preferred procedure to identify stress fractures in their early phases.

Various distinct intrinsic and extrinsic elements have been determined as risk factors for stress fractures. These include but are not limited to: biomechanics, strength and flexibility, nutrition, hormonal and menstrual disturbances, and footwear. These must all be considered prior to assessing an individual with a suspected stress fracture. During an analysis of 8 female athletes with sacral stress fractures, the most significant risk factor for these types of fractures was the rapid increase in impact activity during more intense exercise programs. An increase in workload should thus be considered a significant risk factor for stress fractures.

Anatomy of Sacral Stress Fractures

Structure of the Sacrum Diagram - El Paso Chiropractor

The sacrum consists of 5 fused vertebrae, S1 to S5, and is triangular in shape. It connects with the ilium at the sacroiliac joint and, due to its shape and function to distribute forces, it�s often described as the foundation to the arch of the pelvis. The sacrum, much like an inverted arch, supports the entire weight of the upper body and transfers force to the pelvis.

Sacral stress fractures most commonly occur in the lateral portion of the sacrum and are more frequently diagnosed in women. It�s been hypothesized that the shape of the female pelvis can lead create difficulty when distributing weight through the sacrum than the average male pelvis. However, it�s also been reported that several male elite Australian triathletes have experienced sacral stress fractures in recent years.

Anatomy of Pelvis and Force Distribution Diagram - El Paso Chiropractor

Symptoms

An athlete with a sacral stress fracture will often manifest acute onset back, buttock or hip pain which is generally described to occur suddenly during a run, making them incapable of continuing at the time. The individual may also experience limited mobility and they could or could not suffer pain on the palpation of the sacrum. Additionally, they may not experience any neurological symptoms but symptoms of sciatica may be common during this type of stress fracture. Sciatica can include pain, weakness or numbness and burning or tingling sensations along the lower back, buttock or hip, often radiating down the thigh. The individual may suffer pain or tightness when walking and they will experience symptoms when hopping on the affected side. Athletes with sacral stress fractures also frequently report pain during single leg loading tasks, for example, when putting pants on.

Diagnosis

Due to the extreme overlying soft tissue and complex bone anatomy, simple radiographs can rarely conclude the presence of a sacral stress fracture. Bone scan, MRI or CT can be utilized to effectively diagnose a sacral stress fracture. CT and MRI findings suggest that sacral stress fractures occur as a result of constant compressive forces which lead to microfractures of the trabecular bone. These fractures infrequently develop a visible callus on plain radiograph, therefore, MRI or CT scans should be utilized as a follow up imaging if poor healing is detected.

CT Scan of Stress Fracture - El Paso Chiropractor

Treatment

The progression of treatment for an athlete with a sacral stress fracture broadly depends on the athlete�s symptoms as these are generally stable fractures. Rehabilitation procedures will progress from non-weight bearing to weight bearing to progressive return to running activities as the symptoms decrease. In most cases, a period of 6 weeks with no running followed by a 6 to 8-week period of a return to running progression may be required. A majority of published works indicate athletes may have a full return to activity by 4 months with rare cases taking up to 14 months.

Repeated CT scans approximately 4 and 8 months after the individual�s original diagnosis can often display no signs of previous fractures which demonstrate a quicker and fuller healing of the well-vascularized trabeculae microfractures when compared to fractures involving the less well-vascularized cancellous bone. Researchers concluded that women with sacral stress fractures who had the best diets and fewer prior stress injuries or menstrual irregularities, healed the fastest.

Anatomy of Pubic Rami Stress Fractures

Anatomy of Pubic Rami Diagram - El Paso Chiropractor

The inferior pubic ramus slopes downward and medial from the superior ramus, narrowing as it goes down and it is the region where the adductor magnus, brevis and gracilis connect, including the obturator internus and externus. Pubic Rami stress fractures have been diagnosed among runners, triathletes and military service members. These generally occur in the inferior pubic rami next to the pubic symphysis. Researchers proposed that these fractures are a result of repetitive forces being applied to and transmitted to the bone through muscle contraction or fatigue. In a study on female military service members, it was suggested that over-striding during marching procedures was a potential factor contributing to pubic rami stress fractures.

Adductor Anatomy of Pubic Rami Diagram - El Paso Chiropractor

Symptoms

Pubic rami stress fractures are generally detected either in competitive races or during intensive training sessions. These frequently occur at the insertion of the adductors and/or external rotators of the hip. Athletes with pubic rami stress fractures commonly suffer from pain in the hip, buttock, inguinal or adductor region which increases with activity and decreases with rest. It�s important to remember that pain caused by irritation and swelling along these regions may also cause symptoms similar to sciatica. It�s important to receive a proper diagnosis to rule out a compression of the sciatic nerve which could be causing neurological symptoms. Athletes with this type of injury often limp and on clinical testing, they may experience symptoms with passive hip abduction, resisted hip adduction and resisted hip external rotation. Stress fractures of the pelvis can be determined even without radiographic evidence if the following criteria are met by an individual. First, running will be impossible for the athlete as a result of severe discomfort in the groin area. Then, the individual will experience discomfort in the groin with an unsupported stance on the affected leg. And last, an athlete may suffer symptoms of pain and tenderness after deep palpation procedures.

Diagnosis

Simple radiographs may demonstrate displaced fracture lines but a lack of radiographic evidence in the early phases of injury is not uncommon. Bone scan, CT or MRI may be used to determine the presence of fracture and bone oedema may be evident on MRI.

Treatment

These fractures tend to have a high rate for healing following 6 to 10 weeks of rest, however, they have a small risk of non-union and re-fracture if the appropriate amount of rest is not followed. Fractures that display delayed union will likely demonstrate full recovery when further conservative procedures are followed. Progression of treatment should be guided by pain and at first, the individual may require the utilization of crutches as walking may be painful.

Anatomy of Femoral Neck Stress Fractures

The femoral neck is the flattened, pyramid shaped piece of bone which connects the femoral head to the femoral shaft.

Athletes with femoral neck stress fractures generally report hip or groin pain when running. This pain usually has an insidious onset and the symptoms may become significantly worse depending on the intensity or duration of a run. At first, symptoms may occur at the end of a run but as the stress reaction worsens, the pain may begin showing earlier in the run where gradually more time may be required to relieve the pain and discomfort. Athletes with femoral neck stress fractures may experience hip and/or groin pain while resting and may suffer restless nights of sleep due to the symptoms. Often, individuals will also report pain while rolling in bed, single leg stance and during active straight leg raise.

Femoral neck stress fractures are described as either tension or compression stress fractures. Fracture displacement determines the outcome of an injury and tension stress fractures generally have a higher rate of displacement as a result of non-union, malunion or osteonecrosis. Due to this fact, tension stress fractures are considered more serious than compression fractures and may require surgical fixation.

Diagnosis

Conventional radiographs are often negative in the acute setting but may shown signs during instances where symptoms have been present for 2 weeks or more. MRI is the favored standard for diagnosis and should be ordered when a stress fracture of the femoral neck is suspected.

Treatment

Tension side stress fractures require diagnosis from a healthcare professional immediately after its occurred due to their risk of displacement. Compression side fractures are often managed conservatively with protected weight bearing and ongoing monitoring to keep track of the individual�s healing process. Initial phases of management should include non-weight bearing on crutches until there are no symptoms at rest, then progress to partial weight bearing to full weight bearing over a period of 4-6 weeks. A gradual return to run program can be started at 8 to 12-weeks of treatment, once the individual is able to properly walk without experiencing pain and other symptoms.

Return to Activity Plan

With all stress fractures located around the pelvis, a careful, gradual return to activity plan can be an essential element of the rehabilitation process. To make sure the athlete receives progressive loading without sudden increases in workload, the return to activity plan should be at least as long as the time off the individual�s specific activity. For instance, if the athlete had a sacral stress fracture which required 6 weeks of no running, then that athlete needs at least a 6-week gradual return to running plan before they can return to their previous running load.

Hip Strengthening Exercises

A strengthening program of the lower extremities can additionally be implemented early in the rehabilitation process, first beginning with non-weight bearing exercises, which can gradually change as the individual becomes able to weight bear without pain. Early strengthening can also help decrease muscle loss and address any biomechanical complications the athlete might be facing. As the stress fractures heal and the tolerance for load improves, these exercises can be progressed to other higher-load exercises to provide the athlete�s body for the return of their specific sports activity.

Proper stretching and exercising techniques are effective methods and techniques that can help increase an athlete’s strength, mobility and flexibility to prevent experiencing an injury or aggravating a condition. Bone fractures, in this case, pelvic stress fractures, can be challenging to heal but with proper treatment, an athlete will be able to return-to-play in no time.

For more information, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .Featured Provider - Wellness.com

By Dr. Alex Jimenez

Additional Topics: Low Back Pain After Auto Injury

After being involved in an automobile accident, the sheer force of the impact can cause damage or injury to the body, primarily to the structures surrounding the spine. An auto collision can ultimately affect the bones, muscles, tendons, ligaments and other tissues surrounding the spine, commonly the lumbar region of the spine, causing symptoms such as low back pain. Sciatica is a common set of symptoms after an automobile accident, which may require immediate medical attention to determine its source and follow through with treatment.

 

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center�

Symptoms of Sciatica in Athletes Due to Shin Splints

Symptoms of Sciatica in Athletes Due to Shin Splints

Athletes who perform daily rigorous training and/or participate in regular competitions can often be at a higher risk of suffering an injury or developing an injury. Because most sports or physical activities require the repetitive and constant use of the lower extremities, experiencing a complication which affects the lower back, buttocks, thighs and even the feet of the athlete can ultimately alter their performance.

Medial tibial stress syndrome, commonly referred to as shin splints, is not considered to be a medically serious condition, however, it can challenge an athlete�s performance. Approximately 5 percent of all sports injuries are diagnosed as medial tibial stress syndrome, or MTSS for short.

Shin splints, or MTSS, occurs most frequently in specific groups of the athletic population, accounting for 13-20 percent of injuries in runners and up to 35 percent in military service members. Medial tibial stress syndrome is characterized as pain along the posterior-medial border of the lower half of the tibia, which is active during exercise and generally inactive during rest. Athletes describe feeling discomfort along the lower front half of the leg or shin. Palpation along the medial tibia can usually recreate the pain.

Causes of Medial Tibial Stress Syndrome

There are two main speculated causes for medial tibial stress syndrome. The first is that contracting leg muscles place a repeated strain upon the medial portion of the tibia, producing inflammation of the periosteal outer layer of bone, commonly known as periostitis. While the pain of a shin splint is felt along the anterior leg, the muscles located around this region are the posterior calf muscles. The tibialis posterior, flexor digitorum longus, and the soleus all emerge from the posterior-medial section of the proximal half of the tibia. As a result, the traction force from these muscles on the tibia probably aren�t the cause of the pain generally experienced on the distal portion of the leg.

Anatomy of the Lower Leg and MTSS - El Paso Chiropractor

Another theory of this tension is that the deep crural fascia, or the DCF, the tough, connective tissue which surrounds the deep posterior muscles of the leg, may pull excessively on the tibia, causing trauma to the bone. Researchers at the University of Honolulu evaluated a single leg from 5 male and 11 female adult cadavers. Through the study, they confirmed that in these specimens, the muscles of the posterior section of muscles was introduced above the portion of the leg that is usually painful in medial tibial stress syndrome and the deep crural fascia did indeed attach on the entire length of the medial tibia.

Doctors at the Swedish Medical Centre in Seattle, Washington believed that, given the anatomy, the tension from the posterior calf muscles could produce a similar strain on the tibia at the insertion of the DCF, causing injury.

In a laboratory study conducted using three fresh cadaver specimens, researchers concluded that strain at the insertion site of the DCF along the medial tibia advanced linearly as tension increased in the posterior leg muscles. The study confirmed that an injury caused by tension at the medial tibia was possible. However, studies of bone periosteum on individuals with MTSS have yet to find inflammatory indicators to confirm the periostitis theory.

The second theory believed to cause medial tibial stress syndrome is that repetitive or excessive loading may cause a bone-stress reaction in the tibia. When the tibia is unable to properly bear the load being applied against it, it will bend during weight bearing. The overload results in micro damage within the bone, not just along the outer layer. If the repetitive loading exceeds the bone�s ability to repair, localized osteopenia can occur. Because of this, some researchers consider a tibial stress fracture to be the result of a continuum of bone stress reactions that include MTSS.

Utilizing magnetic resonance imaging, or MRI, on the affected leg can often display bone marrow edema, periosteal lifting, and areas of increased bony resorption in athletes with medial tibial stress syndrome. This supports the bone-stress reaction theory. An MRI of an athlete with a diagnosis of MTSS can also help rule out other causes of lower leg pain, such as a tibial stress fracture, deep posterior compartment syndrome, and popliteal artery entrapment syndrome.

Risk factors for MTSS

While the cause, set of causes or manner of causation of MTSS is still only a hypothesis, the risk factors for athletes developing it are well-known. As determined by the navicular drop test, or NDT, a large navicular drop considerably corresponds with a diagnosis of medial tibial stress syndrome. The NDT measures the difference in height position of the navicular bone, from a neutral subtalar joint position in supported non-weight bearing, to full weight bearing. The NDT explains the degree of arch collapse during weight bearing. Results of more than 10 mm is considered excessive and can be a considerable risk factor for the development of MTSS.

Navicular Drop Test - El Paso Chiropractor

Research studies have proposed that athletes with MTSS are most frequently female, have a higher BMI, less running experience, and a previous history of MTSS. Running kinematics for females can be different from that of males and has often been demonstrated to leave individuals vulnerable to suffer anterior cruciate ligament tears and patellofemoral pain syndrome. This same biomechanical pattern may also incline females to develop medial tibial stress syndrome. Hormonal considerations and low bone density are believed to be contributing factors, increasing the risk of MTSS in the female athlete as well.

Palpating Medial Talar Head - El Paso Chiropractor

A higher BMI in an athlete demonstrates that they have more muscle mass rather than being overweight. The end result, however, is the same in that the legs bear a considerably heavy load. It�s been hypothesized that in these cases, the bone growth accelerated by the tibial bowing may not advance quickly enough and injury to the bone may occur. Therefore, those with a higher BMI may need to continue their training programs gradually in order to allow the body to adapt accordingly.

Athletes with less running experience are more likely to make training errors, which may be a common cause for medial tibial stress syndrome. These include but are not limited to: increasing distance too quickly, changing terrain, overtraining, poor equipment or footwear, etc. Inexperience may also lead the athlete to return to activity before the recommended time, accounting for the higher prevalence of MTSS in those who had previously experienced MTSS. A complete recovery from MTSS can take from six months up to ten months, and if the original injury does not properly heal or the athlete returns to training too soon, chances are, their pain and symptoms may return promptly.

Biomechanical Analysis

The NDT is used as a measurable indication of foot pronation. Pronation is described as a tri-planar movement consisting of eversion at the hindfoot, abduction of the forefoot and dorsiflexion of the ankle. Pronation is a normal movement of the body and it is absolutely essential in walking and running. When the foot impacts the ground at the initial contact phase of running, the foot begins to pronate and the joints of the foot acquire a loose-packed position. This flexibility helps the foot absorb ground reaction forces.

Phases of Running - El Paso Chiropractor

During the loading response phase, the foot further pronates, reaching peak pronation by approximately 40 percent during stance phase. In mid stance, the foot moves out of pronation and back to a neutral position. During terminal stance, the foot supinates, moving the joints into a fastened position, creating a rigid lever arm from which to generate the forces for toe off.

Starting with the loading response phase and throughout the rest of the single leg stance phase of running, the hip is stabilized and supported as it is extended, abducted and externally rotated by the concentric contraction of the hip muscles of the stance leg, including the gluteals, piriformis, obturator internus, superior gemellus and inferior gemellus. Weakness or fatigue in any of these muscles can develop an internal rotation of the femur, adduction of the knee, internal rotation of the tibia, and over-pronation. Overpronation therefore, can be a result of muscle weakness or fatigue. If this is the case, the athlete may have a completely normal NDT and yet, when the hip muscles don�t function as needed, these can overpronate.

Stance Phase Kinetic Chain - El Paso Chiropractor

In a runner who has considerable overpronation, the foot may continue to pronate into mid stance, resulting in a delayed supination response, causing for there to be less power generation at toe off. The athlete can make the effort to apply two biomechanical fixes here that could contribute to the development of MTSS. First of all, the tibialis posterior will strain to prevent the overpronation. This can add tension to the DCF and strain the medial tibia. Second, the gastroc-soleus complex will contract more forcefully at toe off to improve the generation of power. However, it�s hypothesized that the increased force within these muscle groups can add further tension to the medial tibia through the DCF and possibly irritate the periosteum.

Evaluating Injury in Athletes

Once understood that overpronation is one of the leading risk factors for medial tibial stress syndrome, the athlete should begin their evaluation slowly and gradually progress through the procedure. Foremost, the NDT must be performed, making sure if the difference is more than 10mm. Then, it�s essential to analyze the athlete�s running gait on a treadmill, preferably when the muscles are fatigued, such as at the end of a training run. Even with a normal NDT, there may be evidence of overpronation in running.

Overponation During Running - El Paso Chiropractor

Next, the athlete�s knee should be evaluated accordingly. The specialist performing the evaluation should note whether the knee is adducted, whether the hip is leveled or if either hip is more than 5 degrees from level. These can be clear indications that there is probably weakness at the hip. Traditional muscle testing may not reveal the weakness; therefore, functional muscle testing may be required.

Additionally, it should be observed whether the athlete can perform a one-legged squat with arms in and arms overhead. The specialist must also note if the hip drops, the knee adducts and the foot pronates. Furthermore, the strength of the hip abductors should be tested in side lying, with the hip in a neutral, extended, and flexed position, making sure the knee is straight. All three positions with the hip rotated in a neutral position and at end ranges of external and internal rotation should also be tested. Hip extensions in prone with the knee straight and bent, in all three positions of hip rotation: external, neutral and internal can also be analyzed and observed to determine the presence of medial tibial stress syndrome, or MTSS. The position where a healthcare professional finds weakness after the evaluation is where the athlete should begin strengthening activities.

Testing Hip Abduction Strength - El Paso Chiropractor

Treating the Kinetic Chain

In the presence of hip weakness, the athlete should begin the strengthening process by performing isometric exercises in the position of weakness. For example, if there is weakness during hip abduction with extension, then the athlete should begin isolated isometrics in this position. Until the muscles consistently activate isometrically in this position for 3 to 5 sets of 10 to 20 seconds should the individual progress to adding movement. Once the athlete achieves this level, begin concentric contractions, in that same position, against gravity. Some instances are unilateral bridging and side lying abduction. Eccentric contractions should follow, and then sport specific drills.

In the case that other biomechanical compensations occur, these must also be addressed accordingly. If the tibialis posterior is also displaying weakness, the athlete should begin strengthening exercises in that area. If the calf muscles are tight, a stretching program must be initiated. Utilizing any modalities possible might be helpful towards the rehabilitation process. Last but not least, if the ligaments in the foot are over stretches, the athlete should consider stabilizing footwear. Using a supported shoe for a temporary period of time during rehabilitation can be helpful to notify the athlete to embrace new movement patterns.

MTSS and Sciatica

Medial tibial stress syndrome, otherwise known as shin splints, ultimately is a painful condition that can greatly restrict an athlete�s ability to walk or run. As mentioned above, several evaluations can be performed by a healthcare professional to determine the presence of MTSS in an athlete, however, other conditions aside from shin splints may be causing the individuals leg pain and hip weakness. That is why it�s important to also visit additional specialists to ensure the athlete has received the correct diagnosis for their injuries or conditions.

Sciatica is best referred to as a set of symptoms that originate from the lower back and is caused by an irritation of the sciatic nerve. The sciatic nerve is the single, largest nerve in the human body, communicating with many different areas of the upper and lower leg. Because leg pain can occur without the presence of low back pain, an athlete�s medial tibial stress syndrome could really be sciatica originating from the back. Most commonly, MTSS can be characterized by pain that is generally worse when walking or running while sciatica is generally worse when sitting with an improper posture.

Regardless of the symptoms, it�s essential for an athlete to seek proper diagnosis to determine the cause of their pain and discomfort. Chiropractic care is a popular form of alternative treatment which focuses on musculoskeletal injuries and conditions as well as nervous system disorders. A chiropractor can help diagnose an athlete�s MTSS as well as overrule the presence of sciatica as a cause of the symptoms. In addition, chiropractic care can help restore and improve an athlete�s performance. By utilizing careful spinal adjustments and manual manipulations, a chiropractor can help strengthen the structures of the body and increase the individual�s mobility and flexibility. After suffering an injury, an athlete should receive the proper care and treatment they need and require to return to their specific sport activity as soon as possible.

Chiropractic and Athletic Performance

In conclusion, the best way to prevent pain from MTSS is to decrease the athlete�s risk factors. An athlete should have a basic running gait analysis and proper shoe fitting as well as include hip strengthening in functional positions as part of the strengthening program. Furthermore, one must ensure the athletes fully rehabilitate before returning to play because the chances of recurrence of medial tibial stress syndrome can be high.

Chiropractic care is an effective form of alternative treatment which is commonly preferred by many athletes as it can help with the recovery of an injury and/or condition without the need for medications or surgery. Most athletes are specially trained to prevent injuries, however, the constant and repetitive overworking of the structures of the body can gradually begin to degenerate, leading to issues like shin splints which may potentially manifest symptoms of sciatica if left untreated for an extended period of time.

For more information, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�Featured Provider - Wellness.com

By Dr. Alex Jimenez

Additional Topics: Low Back Pain After Auto Injury

After being involved in an automobile accident, the sheer force of the impact can cause damage or injury to the body, primarily to the structures surrounding the spine. An auto collision can ultimately affect the bones, muscles, tendons, ligaments and other tissues surrounding the spine, commonly the lumbar region of the spine, causing symptoms such as low back pain. Sciatica is a common set of symptoms after an automobile accident, which may require immediate medical attention to determine its source and follow through with treatment.

 

blog picture of cartoon paper boy

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

youtu.be/2H1nahnr-Rg%20

Basic Overview Pertaining to the Signs of Sciatica

Basic Overview Pertaining to the Signs of Sciatica

Complications affecting the lumbar region of the spine can affect a wide amount of the population at least once throughout their lifetime. Low back pain is one of the most frequently reported symptoms, together with various other symptoms, causing pain and discomfort. Although low back pain can include several other symptoms, a collection of specific symptoms could signal the presence of another disorder: sciatica.

Affecting millions among the American population, sciatica can be characterized within a range of minor irritation to a severe, disabling complication. Despite how frequently its diagnosed and treated, there�s an assortment of information about the condition that many individuals do not yet understand and its often a topic of confusion among the general population.

What is Sciatica?

First of all, sciatica can best be described as a group of symptoms from an injury or an underlying medical condition rather than a singular disorder. The term is used to specify symptoms of pain, tingling and numbness sensations, or weakness that often originates on the lower back and radiates through the sciatic nerve found in either leg.

Also, when it comes to sciatica, the common injuries or underlying conditions causing the symptoms differ greatly based on age. Adults under the age of 60 frequently develop sciatica as a result of a lower back, or lumbar, herniated disc, degenerative disc disease, and isthmic spondylolisthesis. Adults over the age of 60 frequently develop sciatica as a result of degenerative changes, such as lumbar spinal stenosis and degenerative spondylolisthesis. Occasionally, pregnancy, or injuries such as muscle strains and bone fractures, which may create scar tissue, can also begin to develop sciatica symptoms.

In addition, the initial location of the nerve compression can affect the overall symptoms of sciatica as well as create new ones. Five nerve roots found on the low back region connect to form the large sciatic nerve. Symptoms can generally be defined by which of these five nerve roots becomes compressed or irritated. For example, numbness on the feet is common when the nerve root near the L5 vertebra in the lumbar region is pinched. Then, it�s also possible to experience multiple symptoms. Various nerve roots can become compressed at the same time, causing a combination of symptoms, such as pain or a tingling sensation on the outside area of the foot while simultaneously causing stiffness on the leg.

Treatment for Sciatica

When seeking treatment, an individual�s source of their sciatica symptoms can help determine the appropriate care plan in order to relieve pain and discomfort. A chiropractor for example, will diagnose an individual for any injuries or underlying conditions that could be causing their sciatica symptoms as well as determine the location of the nerve impingement to recommend a proper set of stretches and exercises. The specific exercises can vary depending on the location of the nerve damage or injury. Certain symptoms of sciatica may require immediate medical attention. It is rare for sciatica symptoms to require immediate surgery but if an individual experiences worsening neurological symptoms that begin to affect both legs, if there is bladder or bowel incontinence, or if symptoms occur directly after trauma from an accident, its essential for the individual to seek immediate medical attention.

Chiropractic and Sciatica

Sciatica is also known as lumbar radiculopathy or may often be referred to as pinched or compressed nerve pain. Many individuals may find these terms confusing when they are used interchangeably but these refer to the same diagnosis. Furthermore, sciatica is a frequent term used to describe a variety of symptoms on the legs, however, leg pain may not always be due to sciatica. A piriformis muscle complication or a sacroiliac joint issue can also cause pain and discomfort that travels down the leg similar to sciatica.

A majority of individuals whom experience sciatica can achieve relief from their symptoms within 6 to 12 weeks without relying on surgery. In fact, studies have shown that the long-term results of surgery and non-surgical treatments are similar. Faster pain relief may occur through surgery but, after a year, both surgical and non-surgical approaches produce identical outcomes. Throughout an individual�s treatment for sciatica, the application of ice and/or heat therapy, gentle stretching, and low-impact exercises, such as walking, can help ease sciatic nerve pain during the process of rehabilitation.

The symptoms of sciatica can manifest due to a broad variety of factors, including trauma from an injury or an aggravated condition. It’s essential to be able to identify these signs in order to seek the proper care and treatment for the specific complication. Chiropractic care is a common form of treatment utilized to help reduce and improve the symptoms of sciatica.

For more information, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

By Dr. Alex Jimenez

Additional Topics: Low Back Pain After Auto Injury

After being involved in an automobile accident, the sheer force of the impact can cause damage or injury to the body, primarily to the structures surrounding the spine. An auto collision can ultimately affect the bones, muscles, tendons, ligaments and other tissues surrounding the spine, commonly the lumbar region of the spine, causing symptoms such as low back pain. Sciatica is a common set of symptoms after an automobile accident, which may require immediate medical attention to determine its source and follow through with treatment.

 

blog picture of cartoon paper boy

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center

 

Pregnant Women Can Use Kinesiotape 5 Ways

Pregnant Women Can Use Kinesiotape 5 Ways

5 Ways to Use Kinesiotape for Pregnant�Women

Women often seek out chiropractic care during their pregnancies. One of the main reasons for this is that if they are having musculoskeletal pain, their Obstetrician or Midwife generally has very limited options for conventional medical treatment. They are less likely to prescribe medication, which presents an amazing opportunity for us as chiropractors. What initially began as a strange combination of a sports certification and a prenatal/pediatric certification has created a successful and in-demand niche for us. For the most part, I cannot imagine treating prenatal patients without having the sports background. First, most women at some point in their lives have been or currently are an athlete. And second, one of the most common complaints women have during pregnancy is myofascial pain, and who better to treat that than a sports chiropractor? Here are 5 common and easy-to-treat complaints during pregnancy:

blog infographic of how to use kinesiotape during pregnancy

One: Pubic Bone Pain

This pain is very common during the second and third trimesters of pregnancy. Women will often describe it as exquisitely tender, worse with rolling over in bed at night, walking or climbing stairs. Conventional medical opinion is that the ligaments during pregnancy are much more relaxed (due to the hormone, relaxin) causing separation of the pubic symphysis and thus inflammation and pain. Sports chiropractors are uniquely qualified to assess this joint, and the common causes of pain can include:

1. Adductor hypertonicity easily addressed with myofascial release or techniques such as Graston, which can be done over leggings or on skin.

2. SI Joint fixation or Pubic Symphysis fixation. While I am generally a diversified adjuster, an activator adjustment to the superior or more-tender pubic rami will go a long way in terms of providing relief. I strongly discourage any audible manipulation of the pubic symphysis.

3.�Kinesiology taping�of a �RockTape Baby Belt� or modified version of this can provide significant relief and is much more comfortable than a pelvic support belt.

4. Using an ice pack for 15 minutes prior to going to bed at night will decrease pain and inflammation while sleeping.

Two: Rib Pain

Rib pain, especially in the lower and floating ribs, is common as the weight of the abdomen is pulling on the oblique abdominal muscles and their attachments at the ribs. Adjusting the ribs at the thoracic spine and incorporating myofascial release or Graston Technique will work quickly (often in just 1 treatment). Finish up with a few strips of kinesiology tape and your patient will feel significantly better.

Three: Upper Abdominal Numbness

Upper abdominal numbness is a common symptom during the later stage of pregnancy. It often presents as numbness but can also be painful and worse with sitting. One of the easiest ways to provide relief is with one simple strip of kinesiology tape over the top of the abdomen directly under the rib cage.

Four: Swelling in the arms and legs

Swelling in the arms and legs is very common and can lead to numbness, tingling or pain. Before beginning treatment, be sure to assess if the swelling in the feet is significant and test for pitting edema which can be a warning sign of preeclampsia. This can be corroborated with a high blood pressure reading and is very dangerous. Two very effective sports techniques for use with lower extremity swelling include 1.�NormaTec PULSE Recovery System�which is not contraindicated in pregnancy. Patients can do a few 20-30 minutes sessions per week to promote circulation and decrease swelling. 2. Kinesiology taping for edema on the ankles.

Five: Lower Back Pain

Lower back pain in pregnancy is very common. Evaluating a pregnant patient prone is very easy if you have pregnancy cushion that sits on top of your table. If you do not, you can evaluate the lower back in the seated or side lying position. Lower back pain can generally be addressed with diversified adjustments (without any rotation as to not stress the abdomen). In addition, the Webster Technique for pregnancy is a valuable tool for assessing and treating lower back pain during all stages of pregnancy. There are also valuable kinesiology tape applications for lower back pain,�RockTape features a pregnancy taping pdf online. In addition, there are no contraindications to using the Graston Technique to address myofascial pain in the lower back.�blog picture of pregnant lady's stomach with kinesiotape strips around belly

Most of the taping techniques discussed above can be done by patients themselves after a one-time demonstration. Have an assistant or patient�s family member take a video of the application for reference at home. Many sports chiropractic techniques can be used very effectively on prenatal patients.

Sourced through Scoop.it from: Dr. Alex Jimenez

The Relation Between Sciatica and Thigh Pain

The Relation Between Sciatica and Thigh Pain

Sciatica is a frequent diagnosis among the general population of individuals who report low back pain as well as pain and discomfort along their buttocks, thighs, and legs. While these set of symptoms are the most prevalent cause for painful symptoms in the thighs of athletes and others alike, thigh pain can also be attributed to other factors and causes. As a matter of fact, injury or complications affecting the tensor fascia latae muscle found within the thigh has been known to cause issues among the population.

The tensor fascia latae, or TFL, is a well-known hip muscle among healthcare professionals and rehabilitation specialists. Because of its function, this muscle may be responsible for pain and dysfunction in the lower extremities, pelvis and spine. Research studies conclude however, that this muscle is poorly understood and needs further examination. Furthermore, the majority of research which has been already conducted have in fact simplified the accurate anatomy of, not only the TFL, but also its anatomical relationship to the iliotibial band, or ITB.

The TFL, or tensor fascia latae, is a complex muscle which is intricately arrangement anatomically with the ITB, or iliotibial band, and it performs various essential functions, such as allowing hip mobility as well as transmitting fascial tension through the fascia latae located in the thigh and the iliotibial band. The TFL also provides postural support during one-legged stance and limits the tensile stress on the femur caused by the combination of bodyweight, ground reaction force and how these create individual bending forces against the femur.

Anatomy of the Tensor Fascia Latae and the ITB

When one discusses the anatomy of the TFL, the anatomy of the ITB should also be discussed as these serve a conjoined role in order to function. A study conducted to compare the TFL and ITB in humans to other primates and mammals determined that human beings are the only mammals to have a defined ITB. The study also further regarded the anatomy and function of both the tensor fascia latae and the iliotibial band. Additional studies via cadaveric and biomechanical modelling research added a substantial amount of knowledge about this often misunderstood muscle, the TFL, and its relationship to the ITB.

The general agreement is that the tensor fascia latae begins on the iliac crest which starts just lateral to the origin of the sartorious, or ASIS, and extends posteriorly along the iliac crest to combine several types of tissue into the iliac crest and onto the gluteal fascia. It�s been highlighted that the muscle provides multiple functions and contains anatomically distinct heads: the anteromedial, or AM, and the posterolateral, or PM, head.

Available research describes that the muscle has both a bony insertion onto the femur and a fascial insertion onto the iliotibial band, or more specifically, onto the region of the middle longitudinal layer of the fascia latae of the thigh, the iliotibial band.

 

TFL and ITB Anatomy Diagram - El Paso Chiropractor

 

Early studies perceived the ITB to be a ligament that connected the ilium with the knee in order to help maintain the balance of the body while in motion or when standing. Later studies demonstrated that human beings are the only mammals to own a distinct fascial lateral band down the thigh, indicating that the ITB may play a role in bipedal balance and stance.

Other studies demonstrated that the fascia latae of the thigh contains a multifaceted array of layers which all attach. The middle longitudinal layer, or MLL, of the fascia latae is a thick, connective tissue that originates on the iliac crest and extends downwards into various insertions. A large part of the MLL blends with the inner transverse layer of the fascia latae and is introduced directly onto the femur. The middle longitudinal layer also has superficial fibres that extend all the way down and insert into the knee.

Anteriorly at the hip, the MLL surrounds the TFL to ensure the muscle is effectively joined between the superficial and deep middle longitudinal layer. It also contains fibres which directly combines the superficial fibres of the gluteus maximus The MLL is joined in part to the gluteus maximus and in part to the TFL. As well as being enveloped by the middle longitudinal layer, some of the distal fibres of both heads of the TFL then insert into the MLL. The anteromedial fibres of the TFL fuse with the MLL and course down the thigh to introduce onto the lateral patella retinaculum. This is believed to influence the position of the patella in relation to the femoral trochlear groove.

Nevertheless, none of these tissues cross the knee joint, therefore they have no effect on motion at the tibia. According to research, the primary function of the muscles and tissues appears to be at the hip. Some of the fibres of the posterolateral tensor fascia latae together with the tissues of the gluteus maximus, contribute function for the MLL and attach all the way down onto the lateral tubercle of the tibia. These do cross the knee joint and may ultimately help stabilize the pelvis and the lower extremities.

Essentially, the MLL travels down the thigh and heavily combines with the inner transverse layer of the fascia latae as it is largely developed and dense within the upper third of the thigh. These transverse fibres run obliquely to anchor strongly to the femur, making up the deep and thick intermuscular septum of the femur. The septum effectively forms an osteo-fascial wall between the anterior quadriceps muscle group and the posterior hamstring muscle group.

Fibres from the inner transverse layer also allow the superior fibres of the gluteus maximus to develop an ascending tendon. The part of the tensor fascia latae that did not combine with the middle longitudinal layer of the tissue also combines with this rising tendon to insert directly onto the intermuscular septum and the femur. In other words, the majority of the TFL indirectly inserts onto the femur via the ascending gluteal tendon and indirectly via the blending of the MLL to the thick transverse layer.

Further down the thigh, the iliotibial band continues as a thickened section of the fascia latae, creating the fascial barrier between the anterior quadriceps and the posterior hamstrings. It then completely envelops the thigh, holding to the distal lateral femoral shaft through strong obliquely directed fibrous strands and follows the patellar retinaculum. Because these fibrous tissues divide the ITB into a proximal tendinous portion and a distal ligamentous portion, it�s been concluded that the tensor fascia latae has very little involvement in the mobility of the tibia and knee and its primary function is directed at the hip.

Function of the Tensor Fascia Latae

Anteromedial fibres (AM)

The main function of the anteromedial fibres is to flex the hip during open kinetic chain movements, such as hip flexion over the swing phase of gait, as confirmed through EMG and electrical stimulation experiments. The muscle is restricted upon heel strike which suggests that the muscle is required to be inactive to allow hip extension to occur during stance phase. The muscle is most active during the acceleration phase of running which also demonstrates its main role as a powerful hip flexor.

During pure open kinetic-chain movement, the AM fibres are most active in hip flexion movements as well as in abduction movements. It becomes restricted though, if the hip is externally rotated whilst abducting. This should be an important consideration when a healthcare professional is recommending specific hip rehabilitation exercises for the gluteal muscles and other hip external rotators.

Posterolateral fibres (PL)

The posterolateral fibres are most active during the stance phase of gait. This suggests that the muscle acts as a major hip stabilizer during single leg stance as it activates its role as a hip abductor. In this process, the superior portion of the gluteus maximus is also active during walking phase. Considering that the PL head has fibres that join the tendon from the superior gluteus maximus, this proposes that the posterolateral fibres and superior gluteus maximus cooperate to control the stability of the pelvis during stance phase.

Both the tensor fascia latae and gluteus maximus apply their role as a hip muscle through the contribution they have with the MLL, the deep transverse layer of the fascia latae and the intermuscular septum. They effectively insert onto the femur through this complex system of fascia and are considered muscles which begin at the pelvis which are introduced onto the femur. In pure open kinetic chain movements, the PL, or posterolateral fibres, are active in all hip internal rotation movements and in abduction movements. Similar to the AM fibres, the PL fibres remain restricted if the hip is abducting whilst in external rotation.

Function of the TFL at the Knee

A majority of the comprehensive studies examining the role of TFL in relation to the movements of the knee and the stability of the patella find it challenging to identify a direct function for the TFL in knee function. It almost certainly does not contribute to knee extension, flexion or rotation. As a result, all previous descriptions of the TFL being a synergistic knee extender with the quadriceps or an externally rotator of the tibia can almost certainly be rejected. It�s also been concluded that the TFL does not play an active role in pulling the patella laterally. The most likely role the TFL has in knee patella stability is indirectly, through maintaining the tension in the fascia latae and the distal portion of the ITB that combines with the patella retinaculum.

The TFL as a Fascial Tensioner

Several studies have demonstrated that the tensor fascia latae also functions to maintain fascia tension during movement. This is primarily due to a complex arrangement of fascial planes of various thicknesses which have development over the thigh. It has a loose anterior and posterior layer which cover the quadriceps and hamstrings. The loose anterior superficial layer of the TFL would gather during knee extension movements if there did not exist some manner of tensioning system for the fascia to maintain the fascial envelope. In the same manner, the posterior fascia latae would most likely gather during knee flexion movements.

Based on their anatomical arrangement with the fascia latae, the muscles which can maintain this fascial tension during knee movements include the TFL anteriorly and the superior gluteus maximus posteriorly. The TFL must then become slightly active during knee extensions to progressively shorten the fascia upwards whilst the knee is extended, to prevent the anterior fascia from creasing and twisting. Similarly, the gluteus maximus can maintain fascial tension during knee flexion movements.

The Tensile Force of the Femur

One of the most extraordinary roles assigned to the ITB is the role it has in reducing the bending and tensile force on the lateral femur. Humans walk on two feet, which means that during a section of the gait cycle, they are in a one-leg stance. This can create large lateral femur tensile forces and medial femur compression forces which, if not properly monitored, could develop a varus effect of the femur and essentially bend the femur.

During a study, researchers investigated the function of the ITB and concluded that the varus bending forces on the femur could be partially relieved by tensioning the iliotibial band. Other studies analyzed the stresses on the femur caused by the varus force on the bone and also found that by increasing the tension in the ITB, the lateral tension force and the medial compression force on the femur would both ultimately limited. The study also suggests that the TFL and gluteus maximus may add further tension to the ITB and lessen this lateral tension force on the femur.

TFL Complications

For all the TFL issues that affect many individuals, almost nothing exists in the literature that highlights the role this muscle has in dysfunction. All theories and ideas are based on clinical reasoning and assumptions. The most interesting observation regarding TFL complications is the role it has in causing hip internal rotation/flexion during the stance phase of gait.

Frequently, many individuals who report lower limb injuries caused by overuse or low back and sacroiliac joint pain are commonly diagnosed with an exaggerated hip flexion/internal rotation position during the functional movements of a single extremity. The stance suggests an internally rotated and flexed position.

This complication then develops what is known as a valgus collapse at the joint of the knee, directly affecting the Q angle of the knee. With an increase in the Q angle, the patella often tends to drag laterally and compress against the lateral femoral condyle. This may then lead to patellofemoral pain at the knee. This is believed to occur because the TFL maintains the stability of the pelvis during one-leg stance by beginning its abduction role. The tensor fascia latae may also display its hip flexion/internal rotation role. The gluteus maximus, and other hip external rotators, should provide and equal opposite external rotation/extension role.

The gluteus medius and minimus primarily function on the hip joint by contributing a compressive and stabilizing role. These work little to assist in maintaining a stable pelvic position. Instead, this role is assigned to the tensor fascial latae and gluteus maximus.

The TFL is a significant muscle in pelvic dysfunction because it has the greatest mechanical advantage to influence the pelvis and hip joint. It is the most anterior muscle at the front of the hip, as a result, it�s believed to have the greatest leverage advantage to encourage a flexion posture or an anterior tilt of the ilium. Observing the hip from the front, the tensor fascia latae is also the most lateral muscle on the hip. Therefore, it has the greatest leverage to affect abduction of the hip. This explains how such a small muscle can have such a large influence.

Furthermore, because the complex structures surrounding the lower back, buttocks, hip/pelvis and leg can become directly affected causing pain, irritation and inflammation as a result of TFL complications, other structures of the body can be greatly affected as well. The sciatic nerve is the largest single nerve found in the body and it runs through, the lower back, buttocks and leg. The nerve is tightly surrounded by muscles and other tissues. When these surrounding tissues are altered, the sciatic nerve can be easily compressed, causing symptoms of sciatica. Sciatica is described as a set of symptoms rather than a single condition. The most common symptoms of sciatica include: lower back/buttock/hip/leg pain, burning and tingling sensations, and numbness.

While the following tests can be used to determine the presence of TFL complications, a proper diagnosis can help differentiate whether the individual is experiencing sciatica as a result of tensor fascia latae dysfunction or due to another serious complication. Chiropractors are healthcare professionals who specialize in musculoskeletal and nervous system injuries and conditions. Chiropractic care offers a form of alternative treatment which uses spinal adjustments and manual manipulations to carefully diagnose a variety of injuries or conditions and decrease or eliminate the symptoms of sciatica which may also be associated with TFL. In addition, an individual may follow through with chiropractic treatment to also find relief from their tensor fascia latae dysfunction after determining its presence with the next set of tests.

Chiropractic for Sciatica Symptoms

Assessing TFL Issues

To properly assess the tightness in the TFL, utilizing an Ober Test or a Thomas test can help.

Ober test

Start position

 

Ober Test Start - El Paso Chiropractor

 

The individual must be positioned on their side with the unaffected side facing down. The pelvis and spine should be in neutral alignment with the bottom leg flexed for support. The uppermost leg is extended above the horizontal. The hip is then laterally rotated and extended, as long as no lumbar extension occurs.

 

Ober Test Finish - El Paso Chiropractor

 

Movement

The individual must actively flatten their waist towards the floor and hold their leg in slight abduction and lateral rotation. The individual will then be instructed to slowly and carefully lower their leg towards the floor until the tensor fascia latae and the iliotibial band hangs on the greater trochanter and cannot lower any further. The key to an accurate test is to not allow the pelvis to move, either into a lateral tilt, anterior tilt or rotation. As the leg lowers, the hip should not flex or medially rotate. It�s essential for the individual to maintain the laterally rotated position of the hip. Ideally, the leg should lower into at least 10 to 15-degree adduction without losing the proximal control of the pelvis or hip. The tensor fascia latae and iliotibial band may lack elasticity if the leg does not adduct sufficiently.

Thomas test

 

Thomas Test - El Paso Chiropractor

 

On a plinth, the individual should lie supine with the untested leg held in hip flexion. The tested leg is then forced into extension and adduction. If the tested leg is unable to attain a horizontal alignment and is held in flexion and/or abduction, this is indicative of tightness in the tensor fascia latae.

Managing TFL Issues

To manage the overactive or tight tensor fascia latae, 2 important criteria must be met. First, it must be stretched and then, it must be massaged and manipulated. The most effective stretch for the TFL is the knee-down hip flexor stretch.

 

TFL Stretch - El Paso Chiropractor

 

To stretch the left TFL, first, the individual should kneel on the left knee with the right leg at 90-degrees hip flexion and knee flexion. Second, the individual must push their left hip forward until the slack is taken up. Third, by placing the hands on the right thigh, the individual will follow by twisting the trunk around to the right whilst the pelvis remains facing forward, inducing an external rotation of the hip to add to the rotation component of the stretch. Then, if the individual has any slack left, they must push their left leg outwards. Finally, the individual must isometrically contract the right hamstring by attempting to drag the left heel backwards. To stretch the right TFL, the same procedures should be followed but using the opposite leg.

 

TFL Massage - El Paso Chiropractor

 

To self-massage or trigger the TFL, the individual should lie on their side and place a trigger ball/Muscle Mate/Posture Pro under the tensor fascia latae in order to apply gentle pressure. The hip, knee and ankle should remain in a straight line with the body. This can be performed as a rolling type movement or as sustained pressure to relieve the trigger points within the muscle, ultimately helping to reduce the painful symptoms associated with TFL dysfunction, among other serious complications which may need medical attention as soon as possible.

Treating Sciatica

 

 

They symptoms of sciatica can greatly restrict an individual’s ability to function properly throughout their everyday lives and, as for athletes who participate in rigorous training and competitions, healing the symptoms can be utterly important in order for them to perform effectively in their specific sport or physical activity. There are numerous ways to treat sciatica, however, chiropractic care is among one of the most popular and effective forms of alternative treatment to help individuals recover from their specific injuries and/or conditions.�Featured Provider - Wellness.com

For more information, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

By Dr. Alex Jimenez

 

blog picture of cartoon paper boy

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center