ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page

Chiropractic

Back Clinic Chiropractic. This is a form of alternative treatment that focuses on the diagnosis and treatment of various musculoskeletal injuries and conditions, especially those associated with the spine. Dr. Alex Jimenez discusses how spinal adjustments and manual manipulations regularly can greatly help both improve and eliminate many symptoms that could be causing discomfort to the individual. Chiropractors believe among the main reasons for pain and disease are the vertebrae’s misalignment in the spinal column (this is known as a chiropractic subluxation).

Through the usage of manual detection (or palpation), carefully applied pressure, massage, and manual manipulation of the vertebrae and joints (called adjustments), chiropractors can alleviate pressure and irritation on the nerves, restore joint mobility, and help return the body’s homeostasis. From subluxations, or spinal misalignments, to sciatica, a set of symptoms along the sciatic nerve caused by nerve impingement, chiropractic care can gradually restore the individual’s natural state of being. Dr. Jimenez compiles a group of concepts on chiropractic to best educate individuals on the variety of injuries and conditions affecting the human body.


What is Functional Neurology?

What is Functional Neurology?

Functional neurology primarily focuses on the fundamentals of neuron health and it is mainly based on neuroplasticity theories. It’s believed that the brain and the nervous system are capable of changing, and can become malleable, due to a reaction to certain stimulation. The brain can be shaped by sensory, motor, cognitive, or emotional experiences. �

The creation of synapses in the nervous system depends on the stimulation they receive. Neurons which receive too much stimulation are the ones which become stronger and those which don’t receive stimulation become weaker and eventually diminish. It is believed that it is possible to create new neurons even after there has been damage to the nervous system. �

 

The Role of Functional Neurology

 

Functional neurology evaluates changes in the nervous system before these become severe health issues. The practice of functional neurology has been adopted by several modalities of practice, such as chiropractic, psychology, occupational therapy and even by conventional healthcare professionals. Functional neurology is commonly practiced by chiropractors. �

 

The practice of neurology involves applying neuroscience research from laboratory studies to determine how it can be practically applied in health care. The brain is protected by supporting the nervous system. The ultimate goal of functional neurology is to treat brain and nervous system health issues without the utilization of drugs or together with conventional treatment approaches. Functional neurologists can help treat a wide variety of neurological health issues, including:

 

  • Neurodegenerative disorders: Alzheimer�s disease, Parkinson�s disease, dementia, and multiple system atrophy.
  • Demyelinating conditions: Multiple sclerosis, transverse myelitis, and leukodystrophies.
  • Trauma and brain injuries: Concussions and whiplash-associated disorders.
  • Vestibular conditions: Motion sickness, dizziness/disequilibrium, labyrinthitis, vertigo, and Meniere’s disease.
  • Movement disorders: Tics, restless leg syndrome, myoclonus, and dystonia.
  • Neuro-developmental conditions: Autism spectrum disorders, ADHD, Asperger’s syndrome, Tourette syndrome, dyslexia, processing disorders, and global developmental delay.
  • Nerve disorders: Carpal tunnel syndrome, trigeminal neuralgia, Bell�s palsy, and polyneuropathy.
  • Cerebro-vascular disorders: Stroke, and TIA.
  • Chronic musculoskeletal pain: Arm, leg, back, hip, knee, and foot pain.
  • Headaches and pain syndromes: Cluster headaches, complex regional pain syndrome, migraines, and fibromyalgia
  • Functional neurological disorders which are best referred to as a group of physical, sensory and cognitive symptoms which do not seem to have an identifiable organic etiology.

 

Functional Neurology Treatment

 

The primary goal of functional neurology is to promote, support, and restore the optimal function of the brain and the nervous system, as opposed to the absence of pathology. Sometimes it’s not always possible to determine the natural source of a person’s neurological disease and its symptoms. Functional neurology can be particularly beneficial in these instances. �

 

The patient’s medical history and a non-invasive evaluation are required for diagnosis. Treatment is determined based on the patient’s current and targeted well-being. Any blood tests, x-rays, MRIs and/or other tests are also evaluated. During the evaluation, the healthcare professional will observe all aspects of the patient, including eye movements and posture, which can demonstrate the function of the brain and the nervous system. Blood pressure, pulse, and reflexes are also evaluated. �

 

Neuro-developmental conditions and behavioral disorders are generally treated with functional neurology. Anxiety is commonly increased in patients with these type of health issues, therefore, it is recommended that the non-invasive evaluation is performed in a way which does not trigger anxiety in the patient. Functional neurology treatment is individualized and every part of the treatment approach is customized to the individual’s treatment requirements. �

 

Functional neurology emphasizes on encouraging patients to practice self-care so that face-to-face treatment with a healthcare professional does not continue for months or years without end. Home exercise programs are developed to treat the associated health issues, meaning that functional neurology treatment is incorporated into the patient’s daily activities. �

 

Biochemistry and Nutrition in Functional Neurology

 

Functional neurology treatment focuses on retraining the brain. Neurons need energy and stimulation to survive and thrive, therefore, functional neurology treatment may involve exercises, such as eye exercises, cognitive activities, balancing activities, and joint adjustments. Different stimulation can affect different regions and pathways in the human brain. �

 

Moreover, functional neurology treatment may also involve a nutritional and biochemical approach by eliminating several factors which may potentially affect neurons. These can ultimately include toxins, chemicals, and infection, among other factors. Dietary modifications and supplementation may also be included to provide optimal energy for neurons. �

 

An individualized treatment approach is applied to each individual otherwise there exists the risk of over-stimulating and exceeding the capacity of a patient’s nervous system. The goal of functional neurology treatment is to improve brain and nervous system health, neural processing, communication, and all signaling involving the brain and the entire human body. �

 

Functional neurology focuses on the diagnosis and treatment of the human brain and the nervous system utilizing sensory and cognitive based treatment methods and techniques to promote, support, and restore neuroplasticity, integrity, and functional optimization. Functional neurology can be utilized to help improve a variety of neurological diseases and health issues, including Alzheimer’s disease. Functional neurology is frequently practiced by chiropractors. – Dr. Alex Jimenez D.C., C.C.S.T. Insight

 

The purpose of the article above is to discuss the purpose of functional neurology in the treatment of neurological disease. Neurological diseases are associated with the brain, the spine, and the nerves. The scope of our information is limited to chiropractic, musculoskeletal and nervous health issues as well as functional medicine articles, topics, and discussions. To further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900 . �

 

Curated by Dr. Alex Jimenez �

 


 

Additional Topic Discussion: Chronic Pain

 

Sudden pain is a natural response of the nervous system which helps to demonstrate possible injury. By way of instance, pain signals travel from an injured region through the nerves and spinal cord to the brain. Pain is generally less severe as the injury heals, however, chronic pain is different than the average type of pain. With chronic pain, the human body will continue sending pain signals to the brain, regardless if the injury has healed. Chronic pain can last for several weeks to even several years. Chronic pain can tremendously affect a patient’s mobility and it can reduce flexibility, strength, and endurance.

 

 


 

Formulas for Methylation Support

 

Xymogen Formulas - El Paso, TX

 

XYMOGEN�s Exclusive Professional Formulas are available through select licensed health care professionals. The internet sale and discounting of XYMOGEN formulas are strictly prohibited.

 

Proudly,�Dr. Alexander Jimenez makes XYMOGEN formulas available only to patients under our care.

 

Please call our office in order for us to assign a doctor consultation for immediate access.

 

If you are a patient of Injury Medical & Chiropractic�Clinic, you may inquire about XYMOGEN by calling 915-850-0900.

xymogen el paso, tx

 

For your convenience and review of the XYMOGEN products please review the following link.*XYMOGEN-Catalog-Download

 

* All of the above XYMOGEN policies remain strictly in force.

 


 

Chiropractic A Drug-Free Approach to Pain Management

Chiropractic A Drug-Free Approach to Pain Management

Chiropractic along with Other? Natural Treatments Can Help Reduce the Opioid Epidemic

 

As of now, there are over 2 million Americans dependent on opioids. For most of these individuals, the addiction comes from seeking pain management for an injury or chronic condition. The opioid crisis has become a national emergency causing overdose remedies to be sold over-the-counter.

Seeking chiropractic care can provide patients with relief, and aid in reducing any negative effects of the opioid epidemic.

The most commonly abused opioids are:

  • Fentanyl
  • Oxycodone
  • Tramadol

Opioids are often given to people battling cancer but are also prescribed following surgery and for people with chronic pain.

Taking opioids over a long period of time is the most dangerous because the effects can trick your brain to thinking the drugs are necessary to live.

11860 Vista Del Sol, Ste. 128 Chiropractic A Drug-Free Approach to Pain Management El Paso, TX.

Opioids are a convenient and fast remedy for pain, but only provide pain relief, and do not treat the actual issues.

That is why opioids should be a last resort.

A chiropractor can assess your body from head to toe and provide pain relief through:

 

  • Adjustments
  • Massage
  • Acupuncture
  • Electromagnetic therapy

Chiropractic is a drug-free approach to pain relief and pain management.

The American College of Physicians (ACP) recommends the use of non-invasive, drug-free treatments such as Chiropractic care, first for chronic and acute lower back pain.

 

  • Lower back pain is one of the primary causes of opioid dependency.
  • Lower back pain can be difficult to treat, due to identifying and the cause.
  • Many doctors prescribe pain killers to provide comfort, while the actual problem goes untreated.
  • Chiropractors can identify the root cause of the pain.
  • Lower back pain can be caused by issues with the feet, ankles, knees, or hips.
  • Chronic back pain is due to some form of musculoskeletal weakness or imbalance.

An imbalance in one or both of the feet can cause problems throughout the entire body, especially placing stress on the lower back. Chiropractors are trained to examine the feet when a patient complains of back pain. Once the cause is identified, they can treat an individual without any prescription drugs.

Treatments for chronic pain typically include:

  • Chiropractic adjustments
  • Custom orthotics to help maintain the effectiveness of the adjustments
  • You can be examined for custom orthotics in less than five minutes and have them sent directly to you or pick them up.
  • Custom orthotics help us stand for extended periods, and with walking/working out.
  • Custom orthotics help you function without pain, and prescription-free.

�Treat pain without the use of surgery and addictive drugs.


 

Control *FOOT MOTION & POSTURE* with Functional Foot Orthotics | El Paso, Tx (2019)

 

 

If you have low back pain�or have had it, you are not alone. Experts estimate that around�80% of people�will experience some type of back problem at some point in their lives.�The Global Burden of Disease 2010 lists low back pain as the number one cause of disability worldwide. The good news is the majority of back pain is mechanical in origin or is not organic. This means that infection, cancer, fracture, inflammatory arthritis, and other serious conditions are not the cause. In fact, you may benefit by looking to your feet, knees,�and hips as the culprits.


 

What’s Afoot

When there are problems with the feet, it can cause problems through the legs and all the way to the spine. This can cause the ankle to pronate, meaning it rolls inward. This alters the way the�bones of the foot�line up which extends through the tibia, or shin bone.

 


 

NCBI Resources

The most commonly prescribed opioids are hydrocodone products. They are used to treat pain from injuries, dental work, and typically moderate pain. Milder pain is often treated with codeine but it is also used to treat coughing as well as severe diarrhea. Overall, opioids are used to treat everything from cancer pain to post-op pain to osteoarthritis.

 

Microbiome : Vaginal vs Cesarean El Paso, TX.

Microbiome : Vaginal vs Cesarean El Paso, TX.

As humans, we depend on microbiomes to stay alive. Microbiomes are essential in fighting off germs and maintaining health. The development of microbiomes begins in utero where the microbes have been isolated to the placenta, fetal membranes, amniotic fluid, and umbilical cord blood, but are mainly transferred from mother to child during birth in a process referred to as “seeding” (1,2). “Seeding”� occurs as the child passes through the mothers vaginal canal and becomes coated in her microbiome. In addition to this, small amounts of microbiomes get transferred to the child as the mother breastfeeds. This early introduction from mother to infant serves as an inoculation process with long term health outcomes for the newborn (2). With the number of cesarean births being higher this decade than in the past, you may find yourself asking, “How does a cesarean birth affect my child’s microbiomes?”

11860 Vista Del Sol, Ste. 128 Microbiome : Vaginal vs Caesarean El Paso, TX.

Vaginal

 

With vaginal births still being the most common way of delivery (68%), these children are seen to have overall better health throughout their lifetime than those born via cesarian (2). Vaginal birth is the most effective way to spread the microbiomes to the child’s skin, but studies have found that microbiomes do differ between ethnic groups. Microbiomes are made up of multiple bacterias and specifically, women with a higher pH have a smaller community of protective biomes. It has also been seen that the gut microbiota in pregnant women with gestational diabetes, tend to have an increased abundance of disease-associated microbes (2). That being said, the pH and mothers gut microbes play a significant role in the types of microbiomes that get transferred to their child.

 

Cesarean

 

There are generally two ways a child ends up being born via cesarean, labor ending in a cesarean, or a planned cesarean with no labor attempted. Children who are born via cesarean with labor attempted first, have a slightly higher number of microbiomes due to the vaginal fluids exposed to them during labor than that born elective cesarean. The most effective way a mother can transfer microbiomes to their newborn via cesarean is to “incubate” a cloth for 1 hour in their vaginal canal. When the infant is born,� the doctors rub the child’s mouth, eyes, and skin with the cloth that was previously incubated within minutes after birth (2). This process ensures that the child will have microbiomes more closely related to those born vaginally. Children born elective cesarean without using the incubation method, show fewer gut microbiomes related to their mother, but rather have more skin and oral microbes, and bacteria due to the operating room (2).

 

Children who are born via cesarean, whether labor was attempted first or not, are more likely to develop immune-related disorders such as asthma, allergies,� inflammatory bowel disease, and obesity (2). This is directly linked to not being “seeded” by the mother. Furthermore, adults who were born via cesarean contain a fecal microbiota that is drastically different than adults who were born vaginally (2).

The purpose of the female reproductive system is to reproduce and birth. Therefore, the best route will always be vaginal if it is safe for baby and mom. This being said, a cesarean is not a bad way to bring a child into the world. The child will just face more skin irritability and have a greater risk of developing health issues due to not receiving the same microbiomes as a child born vaginally. – Kenna Vaughn, Health Coach Insight

References:

(1) Aagaard, Kjersti, et al. �The Placenta Harbors a Unique Microbiome.� Science Translational Medicine, U.S. National Library of Medicine, 21 May 2014, www.ncbi.nlm.nih.gov/pmc/articles/PMC4929217.
(2) Dunn, Alexis B, et al. �The Maternal Infant Microbiome: Considerations for Labor and Birth.� MCN. The American Journal of Maternal Child Nursing, U.S. National Library of Medicine, 2017, www.ncbi.nlm.nih.gov/pmc/articles/PMC5648605/.

Difference Between AMPA and NMDA Receptors

Difference Between AMPA and NMDA Receptors

Glutamate is the main excitatory neurotransmitter in the central nervous system, or CNS, of mammals and it primarily interacts with both metabotropic and ionotropic receptors to activate and regulate postsynaptic responses. Both AMPA and NMDA receptors are fundamental mediators of synaptic plasticity, the ability of synapses to strengthen or weaken, where dysregulation of those receptors leads to neurodegeneration in a variety of disorders, including Alzheimer’s disease. �

 

The main difference between AMPA and NMDA receptors is that sodium and potassium increases in AMPA receptors where calcium increases along with sodium and potassium influx in NMDA receptors. Moreover, AMPA receptors do not have a magnesium ion block while NMDA receptors do have a calcium ion block. AMPA and NMDA are two types of ionotropic, glutamate receptors. They are non-selective, ligand-gated ion channels, which mainly enable the passage of sodium and potassium ions. Furthermore, glutamate is a neurotransmitter which creates excitatory postsynaptic signals in the CNS. �

 

Difference Between AMPA and NMDA Receptors Diagram | El Paso, TX Chiropractor

What are AMPA Receptors?

 

AMPA, also known as ?-amino-3-hydroxy-5-methyl-4-isoxazole-propionate, receptors are glutamate receptors which are in charge of maintaining the rapid, synaptic transmission in the central nervous system. AMPA receptors have four subunits, GluA1-4. Moreover, the GluA2 subunit is not permeable to calcium ions because it contains arginine from the TMII region. �

 

Furthermore, AMPA receptors are involved in the transmission of the majority of the rapid, excitatory synaptic signals. The increase of the post-synaptic response depends on the amount of receptors in the post-synaptic surface. The type of agonist which activates the AMPA receptors is ?-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid. The activation of the AMPA receptors leads to the non-selective transportation of cations, such as sodium and potassium ions, into the cell. This generates an action potential in the postsynaptic membrane. Figure 1 below demonstrates a diagram of AMPA receptors. �

 

AMPA Receptors Figure 1 | El Paso, TX Chiropractor

 

What are NMDA Receptors?

 

NMDA, also known as N-methyl-d-aspartate, receptors are glutamate receptors which are found in the postsynaptic membrane. The NMDA receptors are made up of two varieties of subunits: GluN1 and GluN2. The GluN1 subunit is fundamental for the role of the receptor. This subunit can associate with one of the four types of GluN2 subunits, GluN2A-D. �

 

Furthermore, the main utilization of the NMDA receptors is to maintain the synaptic response. In the resting membrane potential, these receptors are inactive due to the creation of a magnesium block. The agonist of the NMDA receptor is N-methyl-d-aspartic acid. L-glutamate, including glycine, can connect to the receptor to activate it. Upon stimulation, NMDA receptors activate the calcium influx along with the potassium and sodium influx. Figure 2 demonstrates NMDA receptors. �

 

NMDA Receptors Figure 2 | El Paso, TX Chiropractor

 

Similarities Between AMPA and NMDA Receptors

 

  • AMPA, NMDA, and kainate receptors are the three main types of glutamate receptors.
  • These are ligand-gated ion channels which activate and regulate sodium and potassium ions.
  • These are known due to the type of agonist which activates the receptor.
  • Moreover, the activation of these receptors produces excitatory postsynaptic responses or ESPSs.
  • Furthermore, several protein subunits connect together to form these receptors.

 

Difference Between AMPA and NMDA Receptors

 

AMPA receptors are best known as a type of glutamate receptor which activates in excitatory neurotransmission and connects ?-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid which additionally works as a cation channel. Where the NMDA receptors are best known as a type of glutamate receptor which helps in excitatory neurotransmission and also connects N-methyl-D-aspartate. This is the most fundamental difference between AMPA and NMDA receptors. �

 

AMPA receptors have four subunits, GluA1-4 while NMDA receptors have a GluN1 subunit associated with one of the four GluN2 receptors, GluN2A-D. Activation can also be a difference between AMPA and NMDA receptors. AMPA receptors are only activated by glutamate while NMDA receptors are activated by different agonists. The agonist for AMPA receptors is ?-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid where the agonist for NMDA receptors is N-methyl-d-aspartic acid. �

 

Ion influx is a fundamental difference between AMPA and NMDA receptors. Activation of AMPA receptors results in the sodium and potassium influx while the activation of NMDA receptors leads to an increase in potassium, sodium, and calcium. Another distinction between AMPA and NMDA receptors is that AMPA receptors do not contain a calcium ion where NMDA receptors contain magnesium receptors. Also, AMPA receptors are responsible for the transmission of the majority of the rapid, excitatory synaptic signals while NMDA receptors are responsible for the modulation of the synaptic response. �

 

AMPA receptors are glutamate receptors which lead to the influx of sodium and potassium ions. NMDA receptors are another type of glutamate receptors which result in the influx of calcium ions with potassium and sodium ions. The main difference between AMPA and NMDA receptors is the type of ion influx associated with their activation and regulation. �

 

Several varieties of ionotropic glutamate receptors have been demonstrated in the following article. Three of these main excitatory neurotransmitter in the central nervous system, or CNS, are ligand-gated ion channels best known as AMPA receptors, NMDA receptors, and kainate receptors. These ionotropic glutamate receptors are best referred to after the agonists which activate and regulate them: AMPA or ?-amino-3-hydroxy-5-methyl-4-isoxazole-propionate, NMDA or N-methyl-d-aspartate, and kainic acid. – Dr. Alex Jimenez D.C., C.C.S.T. Insight

 

The purpose of the article above is to demonstrate the difference between AMPA and NMDA receptors for brain health. Neurological diseases are associated with the brain, the spine, and the nerves. The scope of our information is limited to chiropractic, musculoskeletal and nervous health issues as well as functional medicine articles, topics, and discussions. To further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900 . �

 

Curated by Dr. Alex Jimenez �

 


 

Additional Topic Discussion: Chronic Pain

 

Sudden pain is a natural response of the nervous system which helps to demonstrate possible injury. By way of instance, pain signals travel from an injured region through the nerves and spinal cord to the brain. Pain is generally less severe as the injury heals, however, chronic pain is different than the average type of pain. With chronic pain, the human body will continue sending pain signals to the brain, regardless if the injury has healed. Chronic pain can last for several weeks to even several years. Chronic pain can tremendously affect a patient’s mobility and it can reduce flexibility, strength, and endurance.

 

 


 

Formulas for Methylation Support

 

Xymogen Formulas - El Paso, TX

 

XYMOGEN�s Exclusive Professional Formulas are available through select licensed health care professionals. The internet sale and discounting of XYMOGEN formulas are strictly prohibited.

 

Proudly,�Dr. Alexander Jimenez makes XYMOGEN formulas available only to patients under our care.

 

Please call our office in order for us to assign a doctor consultation for immediate access.

 

If you are a patient of Injury Medical & Chiropractic�Clinic, you may inquire about XYMOGEN by calling 915-850-0900.

xymogen el paso, tx

 

For your convenience and review of the XYMOGEN products please review the following link.*XYMOGEN-Catalog-Download

 

* All of the above XYMOGEN policies remain strictly in force.

 


 

5 Ways to Improve Brain Health

5 Ways to Improve Brain Health

Until only several decades ago, neuroscientists believed that the brain stopped creating new neural connections, meaning that your memory starts to become irreversibly worse when the human body stopped developing, which is generally in your early 20s.� Neuroscientists also understood that neurons weaken and die as we age. The loss of brain function due to neural breakdown was believed to be a normal part of aging until recent research studies demonstrated the opposite of this belief. �

 

Over the last several years, it has become evident to neuroscientists that you can, as a matter of fact, create new neurons and develop new neural connections starting in your early 20s and continuing well into your old age. As the older regions of the brain start to wear out, you can ultimately rewire your brain and improve your overall brain health. But, how can you improve brain health? In the following article, we will discuss 5 ways you can improve your brain health and promote your well-being. �

 

Eat Healthy Foods

 

You are what you eat, or at least, your brain can be affected by the types of foods you eat. Eating junk food can have a tremendous impact on your brain health because trans fats and saturated fats, frequently found in processed foods, can negatively alter the brain’s synapses. Synapses connect the brains neurons and are fundamental for memory and learning. But, a balanced diet rich in omega-3 fatty acids, which are found in salmon, walnuts, and kiwi, can provide the synapses with a boost which can ultimately help fight against neurological diseases, including depression, dementia, and Alzheimer’s disease. �

 

Participate in Exercise

 

Participating in exercise and physical activity can also help boost your memory and help you think more clearly, reducing the risk of developing neurological diseases. Because exercise and some physical activity is a moderate stressor to the body, which uses energy needed by the brain, it triggers the release of substances, known as growth factors, which make the brain’s neurons fitter and stronger. Participating in 30 minutes of exercise or physical activity every other day can help improve brain health, and don’t forget to stretch. Stretching can help reduce anxiety, which can affect overall brain health. �

 

Mental Stimulation

 

Make sure to also give your brain a workout with brainteasers, crossword puzzles, and memory games. Research studies have demonstrated that using these tools to remain mentally active can help reduce the risks of developing dementia and other neurological diseases by building and maintaining a reserve of stimulation on your brain. Mental stimulation can help boost the regions of your brain which control and regulate learning and attention, which are hard-wired into the brain. �

 

Memory Training

 

Maintaining information stored in your memory banks and retaining that memory with age may also be a simple matter of mind control. By way of instance, confidence in your cognitive abilities might actually influence how well your memory works, especially for the elderly. Because many older adults tend to blame memory lapses on age, regardless of whether or not that is the reason, they may often be keeping themselves out of even trying to remember. Prediction can also enhance memory. If you have an idea of the information you have to remember afterward, you’re more likely to remember it. �

 

Get Enough Sleep

 

Getting enough sleep can help improve your overall well-being, especially your brain health. Sleep gives your brain an opportunity to match the memories of the day and combine them for long-term storage. One research study demonstrated that the brain can perform its reviewing much quicker when you are asleep than when you’re wide awake. A 90-minute mid-afternoon nap can help store long-term memories, such as events or skills you are attempting to master. Research studies have demonstrated that developing Alzheimer’s disease and other types of dementia are generally due to genetics. �

 

One research study, presented in July at the Alzheimer’s Association’s International Conference on Alzheimer’s Disease, demonstrated a connection between moms who develop Alzheimer’s disease and the chances that their children will develop the health issue in older age. Another research study suggests that a pattern of proteins is a risk factor for neurological disease. But, no one can predict who will develop dementia. While neuroscientists discover better treatments for these health issues, following ways to improve brain health is probably the best you can do to promote your overall well-being. �

 

Many neuroscientists once believed that the brain stopped developing new neurons and new neural connections as soon as you reached adulthood. However, recent research studies have demonstrated that we can create new neurons and new neural connection which can continue well into your old age.�In the following article, we discuss 5 ways you can improve your brain health and promote your well-being. From eating healthy foods to getting enough sleep, maintaining your overall well-being can help improve your brain health. – Dr. Alex Jimenez D.C., C.C.S.T. Insight

 

The purpose of the article above is to demonstrate 5 ways which can ultimately help improve your overall brain health. Neurological diseases are associated with the brain, the spine, and the nerves. The scope of our information is limited to chiropractic, musculoskeletal and nervous health issues as well as functional medicine articles, topics, and discussions. To further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900 . �

 

Curated by Dr. Alex Jimenez �

 


 

Additional Topic Discussion: Chronic Pain

 

Sudden pain is a natural response of the nervous system which helps to demonstrate possible injury. By way of instance, pain signals travel from an injured region through the nerves and spinal cord to the brain. Pain is generally less severe as the injury heals, however, chronic pain is different than the average type of pain. With chronic pain, the human body will continue sending pain signals to the brain, regardless if the injury has healed. Chronic pain can last for several weeks to even several years. Chronic pain can tremendously affect a patient’s mobility and it can reduce flexibility, strength, and endurance.

 

 


 

Formulas for Methylation Support

 

Xymogen Formulas - El Paso, TX

 

XYMOGEN�s Exclusive Professional Formulas are available through select licensed health care professionals. The internet sale and discounting of XYMOGEN formulas are strictly prohibited.

 

Proudly,�Dr. Alexander Jimenez makes XYMOGEN formulas available only to patients under our care.

 

Please call our office in order for us to assign a doctor consultation for immediate access.

 

If you are a patient of Injury Medical & Chiropractic�Clinic, you may inquire about XYMOGEN by calling 915-850-0900.

xymogen el paso, tx

 

For your convenience and review of the XYMOGEN products please review the following link.*XYMOGEN-Catalog-Download

 

* All of the above XYMOGEN policies remain strictly in force.

 


 

Understanding the Life and Death of a Neuron

Understanding the Life and Death of a Neuron

For many years, most neuroscientists believed we were born with all the neurons we were ever going to carry in our brains. As children, we may develop new neurons to help create the pathways, known as neural circuits, which function as information highways between different regions of the brain. However, scientists believed that after a neural circuit was created, developing any new neurons could interrupt the flow of information and disable the brain’s communication system. �

 

Introduction to Brain Basics

 

In 1962, scientist Joseph Altman questioned this belief when he saw evidence of neurogenesis, or the birth of neurons, in a region of an adult rat’s brain known as the hippocampus. He then reported that newborn neurons migrated from their birthplace in the hippocampus to other regions of the brain. In 1979, another scientist, Michael Kaplan, proved Altman’s findings in the rat brain and in 1983, Kaplan found neural precursor cells in the forebrain of an adult monkey. �

 

In the early 1980s, a scientist attempting to explain how birds learn how to sing suggested that neuroscientists should once again analyze neurogenesis in the adult brain and start to determine how it can make sense. In several experiments, Fernando Nottebohm and his team revealed that the numbers of neurons in the forebrains of male canaries tremendously increased during the mating season. This was the same time in which the birds had to learn new songs to attract females. �

 

However, why did these bird’s brains create new neurons during such a vital time in learning? Nottebohm believed it was because new neurons helped keep new song patterns inside the neural tissues of the forebrain, or the region of the brain which regulates complex behaviors. These new neurons made learning possible. If birds developed new neurons to help them remember and learn new song patterns, Nottebohm believed that the brains of mammals may also be able to do the same. �

 

Elizabeth Gould discovered evidence of newborn neurons in a different region of the brain in monkeys. Fred Gage and Peter Eriksson also demonstrated that the adult human brain developed new neurons in a similar region. For several neuroscientists, neurogenesis in the adult brain is still an unproven theory. However, other neuroscientists believe that the evidence provides interesting possibilities associated with the role of adult-generated neurons in memory and learning. �

 

Architecture of the Neuron

 

The central nervous system, which includes the brain and the spinal cord, consists of two primary types of cells: the neurons and the glia. Glia outnumber neurons in several regions of the brain, however, neurons are the key structures in the brain. Neurons are information messengers. They utilize electrical impulses and chemical signals to transfer information between different regions of the brain and between the brain and the rest of the nervous system. Everything we think, feel, and do would be impossible without the utilization of neurons and the glial cells, known as astrocytes and oligodendrocytes. �

 

Neurons have three primary parts including a cell body and two extensions known as an axon and a dendrite. Within the cell body is a nucleus, which regulates the cell’s activities and holds the cell’s genetic material. The axon is characterized by a very long tail and it transfers messages from the cell. Dendrites are characterized similar to that of the branches of a tree and they receive messages from the cell. Neurons communicate with one another by sending chemicals, known as neurotransmitters, across a very small region, known as a synapse, found between the axons and the dendrites of adjacent neurons. � There are three types of neurons:

 

  • Sensory neurons: Transfer information from the sense organs, such as the eyes and ears, to the brain.
  • Motor neurons: Manage voluntary muscle activity and transfer messages from nerve cells in the brain to muscles.
  • All other neurons are known as interneurons.

 

Scientists believe that neurons are the most varied type of cell in the human body. Within these three types of neurons are hundreds of different types of neurons, each with specific message-carrying abilities. The way these neurons communicate with one another by establishing connections is ultimately what makes people unique in how we think, feel, and act. �

 

Birth of the Neuron

 

The range to which new neurons are created in the brain has been a controversial topic among neuroscientists for many years. Meanwhile, although nearly all neurons are currently present in our brains by the time we’re born, there’s recent evidence to support that neurogenesis, or the scientific word utilized to describe the birth of neurons, is a lifelong procedure. Neurons are born in regions of the brain which are full of neural precursor cells, known as neural stem cells. These cells have the potential to develop all, if not all, of the different types of neurons and glia found in the brain. Neuroscientists have discovered how neural precursor cells function in the laboratory. Although this may not be exactly how these cells behave when they are in the brain, it gives us data about how they may function when they are in the brain’s environment. �

 

The science of stem cells is still very recent and could ultimately change with further discoveries, however, researchers have discovered enough evidence to support as well as to be able to demonstrate how neural stem cells create the other cells of the brain. Neuroscientists refer to this as a stem cell’s lineage and it is similar in principle to the concept of a family tree. �

 

Neural stem cells increase by dividing into two and creating two new stem cells, two early progenitor cells, or one of each. When a stem cell divides to create another stem cell, it is believed to self-renew. This new cell has the potential to make more stem cells. When a stem cell divides to create an early progenitor cell, it is said to differentiate. Differentiation is when a new cell is more technical in structure and function. An early progenitor cell doesn’t have the potential of a stem cell to create several different types of cells. It can only make cells within their distinct lineage. Early progenitor cells may self-renew or go in either of two ways. One type will develop astrocytes. The other type will develop neurons or oligodendrocytes. �

 

Migration of the Neuron

 

Once a neuron is born, it must go to the region of the brain where it will function. But, how does a neuron understand where to go? And, what helps it get there? Neuroscientists have determined that neurons utilize two different methods to travel:

 

  • Several neurons migrate by following the long fibers of cells known as radial glia. These fibers extend from the inner layers to the outer layers of the brain. Neurons glide along the fibers until they reach their destination.
  • Neurons also travel by using chemical signals. Scientists have found special molecules on the surface of neurons, known as adhesion molecules, which bind with similar molecules on nearby glial cells or nerve axons. These chemical signals will also ultimately help guide the neuron to its final destination in the brain.

 

Not all neurons are successful in their journey. Scientists believe that only one-third of these neurons will reach their destination. Some cells die during the process of neuronal growth. Some neurons may also survive, but end up where they don’t belong. Mutations in the genes which regulate migration create regions of misplaced or abnormal neurons which can cause disorders, such as epilepsy. Scientists believe that schizophrenia is partially caused by misguided neurons. �

 

Differentiation of the Neuron

 

When a neuron reaches its destination, then it must begin to perform its initial function. This final measure of differentiation is one of the most misunderstood sections of neurogenesis. Neurons are in charge of the transfer and uptake of neurotransmitters, or chemicals which deliver information between cells. Depending on its location, a neuron may perform the role of a sensory neuron, a motor neuron, or an interneuron, sending and receiving specific neurotransmitters. �

 

In the developing brain, a neuron depends on molecular signals from other cells, including astrocytes, to determine its form and location, the type of transmitter it creates, and to which other neurons it can connect. These newborn cells establish neural circuits, or data pathways that connect from neuron to neuron, which is determined during adulthood. However, in the mature brain, neural circuits are already developed and neurons must find a way to fit in. As a new neuron settles in, it starts to look like enclosing cells. It then develops an axon and dendrites and begins to communicate with its neighbors. �

 

Death of the Neuron

 

Although neurons are the longest living cells within the human body, large numbers of them often die during migration and differentiation. The lives of some neurons can sometimes take unexpected turns. Several health issues associated with the brain, the spinal cord, and the nerves are the consequence of the unnatural deaths of neurons and supporting cells. �

 

  • In Parkinson’s disease, neurons which create the neurotransmitter dopamine die off at the basal ganglia, a region of the brain which controls body movements. This causes difficulty initiating movement.
  • In Huntington’s disease, a genetic mutation causes the over-production of a neurotransmitter known as glutamate, which kills neurons in the basal ganglia. As a result, individuals twist and writhe uncontrollably.
  • In Alzheimer’s disease, unusual proteins build up in and around neurons in the neocortex and hippocampus, sections of the brain which manage memory. When these neurons die, people lose their ability to remember and perform regular tasks. Physical damage to the brain and other regions of the central nervous system can also kill nerves.

 

Injury to the brain, or damage caused by a stroke, can kill nerves completely or gradually starve them of the oxygen and nutrients they need to survive. Spinal cord injury may disrupt communications between the brain and nerves when these lose their link to axons located under the site of injury. These neurons survive but they may lose their ability to communicate. �

 

Conclusion to Brain Basics

 

Scientists hope that by understanding more about the life and death of neurons, they could develop treatment options and perhaps even cures for brain diseases and disorders which ultimately affect the lives of many people in the United States. �

 

The most current research studies suggest that neural stem cells can generate many, if not all, of the several types of neurons located in the brain and the nervous system. Determining how to control these stem cells from the laboratory into specific types of neurons can develop a new supply of brain cells to replace the ones which have been damaged or died. �

 

Treatment approaches may also be created to take advantage of growth factors and other signaling mechanisms within the brain which tells precursor cells to make new neurons. This will make it easy to fix, reshape, and renew the brain from within. �

 

A neuron is characterized as a nerve cell which is considered to be the basic building block of the central nervous system. Neurons are similar to other cells in the human body, however, neurons are responsible for transferring and transmitting information throughout the human body. As previously mentioned above, there are also several different types of neurons which are in charge of a variety of functions. Understanding the life and death of neurons is essential to help understand the mechanisms of neurological diseases and hopefully their treatment and cure.� – Dr. Alex Jimenez D.C., C.C.S.T. Insight

 

The purpose of the article is to understand the life and death of neurons and how these relate with neurological diseases. Neurological diseases are associated with the brain, the spine, and the nerves. The scope of our information is limited to chiropractic, musculoskeletal and nervous health issues as well as functional medicine articles, topics, and discussions. To further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900 . �

 

Curated by Dr. Alex Jimenez �

 


 

Additional Topic Discussion: Chronic Pain

 

Sudden pain is a natural response of the nervous system which helps to demonstrate possible injury. By way of instance, pain signals travel from an injured region through the nerves and spinal cord to the brain. Pain is generally less severe as the injury heals, however, chronic pain is different than the average type of pain. With chronic pain, the human body will continue sending pain signals to the brain, regardless if the injury has healed. Chronic pain can last for several weeks to even several years. Chronic pain can tremendously affect a patient’s mobility and it can reduce flexibility, strength, and endurance.

 

 


 

Formulas for Methylation Support

 

Xymogen Formulas - El Paso, TX

 

XYMOGEN�s Exclusive Professional Formulas are available through select licensed health care professionals. The internet sale and discounting of XYMOGEN formulas are strictly prohibited.

 

Proudly,�Dr. Alexander Jimenez makes XYMOGEN formulas available only to patients under our care.

 

Please call our office in order for us to assign a doctor consultation for immediate access.

 

If you are a patient of Injury Medical & Chiropractic�Clinic, you may inquire about XYMOGEN by calling 915-850-0900.

xymogen el paso, tx

 

For your convenience and review of the XYMOGEN products please review the following link.*XYMOGEN-Catalog-Download

 

* All of the above XYMOGEN policies remain strictly in force.

 


 

The Annual Cost of Neurological Disease in the US

The Annual Cost of Neurological Disease in the US

Neurological diseases are characterized as health issues associated with the brain, the spine, and the nerves which connect them. Neurological disease is considered to be one of the most prevalent health issues with a high burden to the patients, their families, and society. However, there are now estimates of the burden of neurological diseases in the United States. �

 

Neurological Disease Prevalence and Costs

 

The most prevalent and costly neurological diseases, according to several recent research studies, include Alzheimer disease and other dementias, chronic low back pain, stroke, traumatic brain injury, migraine headaches, epilepsy, multiple sclerosis, spinal cord injury, and Parkinson’s disease. Many other neurological diseases were excluded due to their mixed etiologies. �

 

The most common neurological disorders described above cost the United States approximately $789 billion in 2014, which may increase as the elderly population increases between 2011 and 2050, according to a research study published in the Annals of Neurology. The research study demonstrates the price of the serious annual financial burden in the US and has been demonstrated as healthcare professionals have suggested budget reductions for federally-funded research studies. �

 

According to these demographic statistics, the American Neurological Association, or the ANA, commissioned a research study by former ANA marketing committee and public advocacy committee chair Clifton L. Gooch, MD, currently professor and chair of the Department of Neurology in the University of South Florida’s Morsani College of Medicine in Tampa. �

 

The research study, the Burden of Neurological Disease in the United States: A Summary Report and Call to Action, demonstrated the annual cost of the most prevalent neurological diseases, including Alzheimer’s disease and other dementias, chronic low back pain, stroke, traumatic brain injury, migraine headaches, epilepsy, multiple sclerosis, spinal cord injury, and Parkinson’s disease. Neurological disease ultimately affects an estimated 100 million people in the United States every year and, together with the costs of stroke and dementia alone, these are estimated to total over $600 billion by 2030. �

 

Figure demonstrating the annual costs of the most common neurological diseases.

 

Funding for Neurology in the United States

 

The tremendous and sustained capital investments made in cardiovascular and cancer research studies beginning in the 1970s have considerably increased lifespan. Ironically, however, the number of older adults who have a higher chance of developing neurological diseases have increased, which has developed a growing outbreak among healthcare professionals. �

 

“Preliminary research studies, including those of cancer, focus considerable research study investment to the neurological diseases which are impacting the quality of life and mortality of more and more people in the United States every year,” stated Gooch, referring to the $1.8 billion in funding for cancer and neurology research approved by Congress in 2016. �

 

“We hope the findings of the report will serve as a wake-up call to Congress to improve much needed clinical and basic research funding necessary to discover treatments which can mitigate, and finally cure, the considerable amount of neurological diseases which have developed profound consequences in our patients as well as for the national economy.” �

 

“The future of funding for neurological research studies was an issue in 2012 when the ANA voted to support this particular research study,” stated ANA President Barbara G. Vickrey, MD, MPH. “With the reductions now being suggested to the NIH funding from the President of the United States, this has become of even greater concern today. As representatives of the scholars working to eradicate these health issues, we feel we must raise our collective perceptions, armed with the facts.” �

 

Annual Cost of Neurological Disease Overview

 

Researchers gathered the information from the research study through a complete review of the world literature among the most prevalent and costly neurological diseases in the United States. To be conservative, researchers focused on the prevalence and cost estimates they considered to be the most comprehensive and accurate, excluding neurological diseases, such as depression and chronic pain, which frequently have mixed etiologies beyond primary nervous system injury. �

 

“A complete accounting of all neurological diseases would considerably increase price tag estimates,” wrote the authors of the research study. Indirect and direct costs for the most common neurological diseases previously mentioned above, have been demonstrated in the research study and were estimated according to maintenance standards for each health issue. �

 

Alzheimer’s disease and other dementias accounted for $243 billion of their $789 billion total, while chronic lower back pain represented $177 billion, and stroke represented $110 billion.�As well as documenting the fiscal costs of neurological disease, Gooch and his USF colleagues ultimately recommend an action plan for reducing the burden of these health issues through infrastructure investment in neurological research and enhanced clinical management of neurological disorders. �

 

Many research studies have demonstrated how several of the most common neurological diseases pose a serious annual financial burden in the United States. The most prevalent and costly neurological health issues, such as Alzheimer’s disease and other dementias, chronic low back pain or sciatica, as well as stroke, among other common neurological diseases mentioned above, have been estimated to have an annual cost totalling $789 billion in 2014, according to research studies. These annual costs have also been demonstrated to considerable increase further over time.� – Dr. Alex Jimenez D.C., C.C.S.T. Insight

 


 

The purpose of the article is to demonstrate the annual cost of several of the most prevalent neurological diseases. Neurological diseases are associated with the brain, the spine, and the nerves. The scope of our information is limited to chiropractic, musculoskeletal and nervous health issues as well as functional medicine articles, topics, and discussions. To further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900 . �

 

Curated by Dr. Alex Jimenez �

 


 

Additional Topic Discussion: Chronic Pain

 

Sudden pain is a natural response of the nervous system which helps to demonstrate possible injury. By way of instance, pain signals travel from an injured region through the nerves and spinal cord to the brain. Pain is generally less severe as the injury heals, however, chronic pain is different than the average type of pain. With chronic pain, the human body will continue sending pain signals to the brain, regardless if the injury has healed. Chronic pain can last for several weeks to even several years. Chronic pain can tremendously affect a patient’s mobility and it can reduce flexibility, strength, and endurance.

 

 


 

Formulas for Methylation Support

 

Xymogen Formulas - El Paso, TX

 

XYMOGEN�s Exclusive Professional Formulas are available through select licensed health care professionals. The internet sale and discounting of XYMOGEN formulas are strictly prohibited.

 

Proudly,�Dr. Alexander Jimenez makes XYMOGEN formulas available only to patients under our care.

 

Please call our office in order for us to assign a doctor consultation for immediate access.

 

If you are a patient of Injury Medical & Chiropractic�Clinic, you may inquire about XYMOGEN by calling 915-850-0900.

xymogen el paso, tx

 

For your convenience and review of the XYMOGEN products please review the following link.*XYMOGEN-Catalog-Download

 

* All of the above XYMOGEN policies remain strictly in force.