ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page
Chiropractic Help in Pregnancy | El Paso, TX

Chiropractic Help in Pregnancy | El Paso, TX

Truide Torres started having back pain throughout the progression of her pregnancy. After she began to experiencing many limitations with her daily physical activities, Truide Torres visited Dr. Alex Jimenez, chiropractor, to receive chiropractic care for her back pain. Because of her pregnancy, Truide Torres had some doubts, and she felt unsure about receiving chiropractic care. However, Dr. Alex Jimenez and his staff reassured her and gave her the confidence to follow through with her treatment. Truide Torres recommends Dr. Alex Jimenez to anyone.

Chiropractic Help in Pregnancy

Chiropractic care provides maintenance to the spinal column, discs, bones, and nerves without drugs/medications or surgery. It helps correct any spinal misalignments, or subluxations, which reduces spinal nerve strain and promotes health and wellness throughout the body. There are no known contraindications to chiropractic care during pregnancy. All chiropractors are trained to work with women who are pregnant. Providing chiropractic care for pregnant women is routine care for the majority of chiropractors.

pregnancy chiropractic care el paso tx.

 

We are blessed to present to you�El Paso�s Premier Wellness & Injury Care Clinic.

Our services are specialized and focused on injuries and the complete recovery process.�Our areas of practice includeWellness & Nutrition, Chronic Pain,�Personal Injury,�Auto Accident Care, Work Injuries, Back Injury, Low�Back Pain, Neck Pain, Migraine Treatment, Sports Injuries,�Severe Sciatica, Scoliosis, Complex Herniated Discs,�Fibromyalgia, Chronic Pain, Stress Management, and Complex Injuries.

As El Paso�s Chiropractic Rehabilitation Clinic & Integrated Medicine Center,�we passionately are focused on treating patients after frustrating injuries and chronic pain syndromes. We focus on improving your ability through flexibility, mobility and agility programs tailored for all age groups and disabilities.

If you have enjoyed this video and we have helped you in any way, please feel free to subscribe and recommend�us.

Recommend: Dr. Alex Jimenez � Chiropractor

Health Grades: www.healthgrades.com/review/3SDJ4

Facebook Clinical Page: www.facebook.com/dralexjimene…

Facebook Sports Page: www.facebook.com/pushasrx/

Facebook Injuries Page: www.facebook.com/elpasochirop…

Facebook Neuropathy Page: www.facebook.com/ElPasoNeurop…

Yelp: goo.gl/pwY2n2

Clinical Testimonies: www.dralexjimenez.com/categor…

Information: Dr. Alex Jimenez � Chiropractor

Clinical Site: www.dralexjimenez.com

Injury Site: personalinjurydoctorgroup.com

Sports Injury Site: chiropracticscientist.com

Back Injury Site: elpasobackclinic.com

Linked In: www.linkedin.com/in/dralexjim…

Pinterest: www.pinterest.com/dralexjimenez/

Twitter: twitter.com/dralexjimenez

Twitter: twitter.com/crossfitdoctor

Recommend: PUSH-as-Rx ��

Rehabilitation Center: www.pushasrx.com

Facebook: www.facebook.com/PUSHftinessa…

PUSH-as-Rx: www.push4fitness.com/team/

Knee Arthritis: Diagnostic Imaging Approaches II | El Paso, TX.

Knee Arthritis: Diagnostic Imaging Approaches II | El Paso, TX.

Sagittal Fluid Sensitivity

knee arthritis chiropractic care el paso tx.
  • Sagittal Fluid Sensitive MR slice showing large synovial popliteal (Baker’s) cyst (above top image) and sizeable synovial effusion (above bottom image)
  • Note multiple patchy dark signal areas on both images, representing fibrinoid inflammatory deposits aka “rice bodies” a characteristic MRI feature of RA

Management Rheumatological Referral & DRM

  • Conservative management followed by operative care in complicated cases of tendon ruptures and joints dislocations
  • Supplemental reading:
  • Diagnosis and Management of Rheumatoid Arthritis – AAFP
  • www.aafp.org/afp/2011/1201/p1245.html

Septic Arthritis (SA)

  • Septic arthritis – d/t bacterial or fungal contamination of the joint. SA may cause rapid joint destruction and requires prompt Dx and antibiotic administration
  • Joints affected: large joints with rich blood supply (knee 50%>hips>shoulders).
  • Routs of Infection:
  • 1) Hematogenous is m/c
  • 2) Spread from an adjacent site
  • 3) Direct implantation (e.g., trauma, iatrogenically)
  • Patients at risk: children, diabetics, immunocompromised, pre-existing joint damage/inflammation, e.g., RA, etc.
  • I.V. drug users are particularly at risk and also may contaminate atypical joints “the S joints” SIJ, SCJ, Symphysis pubis, ACJ, etc.

 

  • Clinically: may vary and depends on host immune response and bacterial virulence. May present with rapid onset or exacerbation of pre-existing joint pain, swelling, limitation of ROM. General signs of malaise, fever, fatigue and elevated ESR, CRP, Leucocytosis may be present.
  • N.B. Diabetics and immunocompromised may present with fewer manifestations and lack of fever d/t declining immune response
  • Dx: clinical, radiological and laboratory. Arthrocentesis may be necessary for culture, cell count and purulent synovial examination
  • Management: I.V. antibiotics
  • Imaging Dx: begins with radiography but in the early stage most likely will be unremarkable. MRI can be sensitive and help with early identification of joint effusion, bone edema, etc. US may be helpful in the superficial joints and children. US helps with needle guidance. Bone scintigraphy may be used occaisonally if MRI is contraindicated

Routes of Joint Contamination

knee arthritis chiropractic care el paso tx.

 

  • 1. Hematogenous (M/C)
  • 2. Spread from the adjacent site
  • 3. Direct inoculation
  • M/C organism-Staph aureus
  • N.B Gonococcal infection may be a top differential in some cases
  • IV drug users: Pseudomonas, candida
  • Sickle cell: Salmonella
  • Animal (cats/dogs) bites: Pasteurella
  • Occasionally fungal contamination may occur
knee arthritis chiropractic care el paso tx.

Radiography

knee arthritis chiropractic care el paso tx.

 

  • Initially non-specific ST/joint effusion, obscuration/distortion of fat planes. Because it takes 30% of compact and 50-75% trabecular bone to be destroyed before seen on x-rays, radiography is insensitive to some of the early changes. MR imaging is the preferred modality
  • If MRI is not available or contraindicated. Bone scintigraphy with Tc-99 MDT can help
  • In children, US preferred to avoid ionizing radiation. In children, US can be more sensitive than in adults due to lack of bone maturation

Radiographic Dx

knee arthritis chiropractic care el paso tx.

 

  • Early findings are unrewarding. Early features may include joint widening d/t effusion. Soft tissue swelling and obscuration/displacement of fat planes
  • 1-2 weeks: periarticular and adjacent osseous changes are manifesting as patchy demineralization, moth-eaten, permeating bone destruction, loss, and indistinctness of the epiphyseal “white cortical line” with an increase in soft tissue swelling. MRI may be helpful with early Dx.
  • Late features: complete joint destruction and ankyloses
  • N.B. Septic arthritis may progress rapidly within days and requires early I.V. antibiotic to prevent major joint destruction

T1 & T2 Knee MRI

knee arthritis chiropractic care el paso tx.

 

  • T1 (above left) and T2 fat-sat sagittal knee MRI slices reveal loss of normal marrow signal on T1 and increase on T2 due to septic edema. Bone sequestrum d/t osteomyelitis progressing into septic arthritis is noted. Marked joint effusion with adjacent soft tissue edema is seen. Dx: OSM and septic arthritis
  • Imaging may help the Dx of the septic joint. However, the final Dx is based on Hx, physical examination, blood tests and most importantly synovial aspiration (arthrocentesis)
  • Synovial fluid should be sent for Gram staining, culture, glucose testing, leukocyte count, and differential determination
  • ESR/CRP may be elevated
  • Synovial fluid: WBC can be 50,000-60,000/ul, with 80% neutrophils with depleted glucose levels Gram stain: in 75% gram-positive cocci. Gram staining is less sensitive in gonococcal infection with only 25% of cultures +
  • In 9% of cases, blood cultures are the only source of pathogen identification and should be obtained before antibiotic treatment
  • Articles: www.aafp.org/afp/2011/0915/p653.html
  • www.aafp.org/afp/2016/1115/p810.html

Crystal-Induced Knee Arthritis

  • Crystalline arthritis: a group of arthropathies resulting from crystal deposition in and around the joint.
  • 2-m/c: Monosodium urate crystals (MSU)� and Calcium Pyrophosphate Dehydrate crystals (CPPD) arthropathy
  • Gout: MSU deposition in and around joints and soft tissues. Elevated levels of serum uric acid (UA) (>7mg/dL) caused by overproduction or under-excretion of uric acid
  • Once UA reached/exceeded 7mg/dL, it will deposit in the peripheral tissues. Primary gout: disturbed metabolism of nucleic acids and purines break down. Secondary gout: increased cell turnover: Psoriasis, leukemia, multiple myeloma, hemolysis, chemotherapy, etc.
  • Gout presents with 5-characteristic stages:
  • 1)asymptomatic hyperuricemia (years/decades)
  • acute attacks of gouty arthritis (waxes and wanes and lasts for several years)
  • Interval phase between attacks
  • Chronic tophaceous gout
  • Gouty nephropathy
knee arthritis chiropractic care el paso tx.

 

Clinical Presentation

  • Depends� on stages
  • Acute attacks: acute joint pain “first and the worst” even painful to light touch
  • DDx: septic joint (both may co-exist) bursitis etc.
  • Gouty arthritis typically presents as monoarthropathy
  • Chronic tophaceous stage: deposits in joints, ear pinna, ocular structures, and other regions. Nephrolithiasis etc. Men>women. Obesity, diet, and age >50-60.
  • Radiography: early attacks are unremarkable and may present as non-specific joint effusion
  • Chronic tophaceous gout radiography: punched out peri-articular, para-articular and intraosseous erosions with overhanging edges. A characteristic rim of sclerosis and internal calcification, soft tissue tophi. Target sites: lower extremity m/c
  • Rx: allopurinol, colchicine (esp. preventing acute episodes and maintenance)

Synovial Aspiration

knee arthritis chiropractic care el paso tx.

 

  • Synovial aspiration with polarized microscopy reveal negatively birefringent needle-shaped MSU crystals with large inflammatory PMN presence. DDx: positively birefringent rhomboid-shaped CPPD crystals (above bottom right) seen in Pseudogout and CPPD
knee arthritis chiropractic care el paso tx.

 

Large S.T.

knee arthritis chiropractic care el paso tx.

 

  • Density and joint effusion punched out osseous erosion with overhanging margins, overall preservation of bone density, internal calcifications Dx: chronic tophaceous gout

MRI Gout Features

knee arthritis chiropractic care el paso tx.

 

  • Erosions with overhanging margins, a low signal on T1 and high on T2 and fat-suppressed images. Peripheral contrast enhancement of tophaceous deposits d/t granulation tissue
  • Dx: final Dx; synovial aspiration and polarized microscopy

Additional Articles

Knee Arthritis

 

Sciatica Chiropractic Treatment | El Paso, TX

Sciatica Chiropractic Treatment | El Paso, TX

Edgar M. Reyes works for the city of El Paso, TX. Recommended by one of his wife’s friends, Mr. Reyes visited Dr. Alex Jimenez, chiropractor, to receive treatment for his sciatica symptoms. Edgar Reyes struggled to walk due to his sciatic nerve pain before seeing Dr. Jimenez, but thanks to the chiropractic care he’s received, Mr. Reyes can walk again. Edgar M. Reyes highly recommends Dr. Alex Jimenez as the non-surgical choice for sciatica treatment.

Sciatica Chiropractic Treatment

The primary objective of sciatica treatment is to alleviate pain in the legs and lower back. This can be accomplished via a variety of methods, including medications and physical therapy. Chiropractic care can also help. Doctors of Chiropractic (DC) or chiropractors, regularly treat sciatica. Sciatica is characterized by pain that originates in the lower back or buttock which travels into one or both legs. Sciatic nerve pain varies in intensity and frequency; minimum, moderate, severe and intermittent, frequent or constant.

sciatica treatment chiropractor el paso tx.

We are blessed to present to you�El Paso�s Premier Wellness & Injury Care Clinic.

Our services are specialized and focused on injuries and the complete recovery process.�Our areas of practice includeWellness & Nutrition, Chronic Pain,�Personal Injury,�Auto Accident Care, Work Injuries, Back Injury, Low�Back Pain, Neck Pain, Migraine Treatment, Sports Injuries,�Severe Sciatica, Scoliosis, Complex Herniated Discs,�Fibromyalgia, Chronic Pain, Stress Management, and Complex Injuries.

As El Paso�s Chiropractic Rehabilitation Clinic & Integrated Medicine Center,�we passionately are focused on treating patients after frustrating injuries and chronic pain syndromes. We focus on improving your ability through flexibility, mobility and agility programs tailored for all age groups and disabilities.

If you have enjoyed this video and we have helped you in any way, please feel free to subscribe and recommend�us.

Recommend: Dr. Alex Jimenez � Chiropractor

Health Grades: www.healthgrades.com/review/3SDJ4

Facebook Clinical Page: www.facebook.com/dralexjimene…

Facebook Sports Page: www.facebook.com/pushasrx/

Facebook Injuries Page: www.facebook.com/elpasochirop…

Facebook Neuropathy Page: www.facebook.com/ElPasoNeurop…

Yelp: goo.gl/pwY2n2

Clinical Testimonies: www.dralexjimenez.com/categor…

Information: Dr. Alex Jimenez � Chiropractor

Clinical Site: www.dralexjimenez.com

Injury Site: personalinjurydoctorgroup.com

Sports Injury Site: chiropracticscientist.com

Back Injury Site: elpasobackclinic.com

Linked In: www.linkedin.com/in/dralexjim…

Pinterest: www.pinterest.com/dralexjimenez/

Twitter: twitter.com/dralexjimenez

Twitter: twitter.com/crossfitdoctor

Recommend: PUSH-as-Rx ��

Rehabilitation Center: www.pushasrx.com

Facebook: www.facebook.com/PUSHftinessa…

PUSH-as-Rx: www.push4fitness.com/team/

Evaluation of Patients Presenting with Knee Pain: Part II. Differential Diagnosis

Evaluation of Patients Presenting with Knee Pain: Part II. Differential Diagnosis

The knee is the largest joint in the human body, where the complex structures of the lower and upper legs come together. Consisting of three bones, the femur, the tibia, and the patella which are surrounded by a variety of soft tissues, including cartilage, tendons and ligaments, the knee functions as a hinge, allowing you to walk, jump, squat or sit. As a result, however, the knee is considered to be one of the joints that are most prone to suffer injury. A knee injury is the prevalent cause of knee pain.

A knee injury can occur as a result of a direct impact from a slip-and-fall accident or automobile accident, overuse injury from sports injuries, or even due to underlying conditions, such as arthritis. Knee pain is a common symptom which affects people of all ages. It may also start suddenly or develop gradually over time, beginning as a mild or moderate discomfort then slowly worsening as time progresses. Moreover, being overweight can increase the risk of knee problems. The purpose of the following article is to discuss the evaluation of patients presenting with knee pain and demonstrate their differential diagnosis.

Abstract

Knee pain is a common presenting complaint with many possible causes. An awareness of certain patterns can help the family physician identify the underlying cause more efficiently. Teenage girls and young women are more likely to have patellar tracking problems such as patellar subluxation and patellofemoral pain syndrome, whereas teenage boys and young men are more likely to have knee extensor mechanism problems such as tibial apophysitis (Osgood-Schlatter lesion) and patellar tendonitis. Referred pain resulting from hip joint pathology, such as slipped capital femoral epiphysis, also may cause knee pain. Active patients are more likely to have acute ligamentous sprains and overuse injuries such as pes anserine bursitis and medial plica syndrome. Trauma may result in acute ligamentous rupture or fracture, leading to acute knee joint swelling and hemarthrosis. Septic arthritis may develop in patients of any age, but crystal-induced inflammatory arthropathy is more likely in adults. Osteoarthritis of the knee joint is common in older adults. (Am Fam Physician 2003;68:917-22. Copyright� 2003 American Academy of Family Physicians.)

Introduction

Determining the underlying cause of knee pain can be difficult, in part because of the extensive differential diagnosis. As discussed in part I of this two-part article,1 the family physician should be familiar with knee anatomy and common mechanisms of injury, and a detailed history and focused physical examination can narrow possible causes. The patient�s age and the anatomic site of the pain are two factors that can be important in achieving an accurate diagnosis (Tables 1 and 2). �

Table 1 Common Causes of Knee Pain

Children and Adolescents

Children and adolescents who present with knee pain are likely to have one of three common conditions: patellar subluxation, tibial apophysitis, or patellar tendonitis. Additional diagnoses to consider in children include slipped capital femoral epiphysis and septic arthritis.

Patellar Subluxation

Patellar subluxation is the most likely diagnosis in a teenage girl who presents with giving-way episodes of the knee.2 This injury occurs more often in girls and young women because of an increased quadriceps angle (Q angle), usually greater than 15 degrees.

Patellar apprehension is elicited by subluxing the patella laterally, and a mild effusion is usually present. Moderate to severe knee swelling may indicate hemarthrosis, which suggests patellar dislocation with osteochondral fracture and bleeding.

Tibial Apophysitis

A teenage boy who presents with anterior knee pain localized to the tibial tuberosity is likely to have tibial apophysitis or Osgood- Schlatter lesion3,4 (Figure 1).5 The typical patient is a 13- or 14-year-old boy (or a 10- or 11-year-old girl) who has recently gone through a growth spurt.

The patient with tibial apophysitis generally reports waxing and waning of knee pain for a period of months. The pain worsens with�squatting, walking up or down stairs, or forceful contractions of the quadriceps muscle. This overuse apophysitis is exacerbated by jumping and hurdling because repetitive hard landings place excessive stress on the insertion of the patellar tendon.

On physical examination, the tibial tuberosity is tender and swollen and may feel warm. The knee pain is reproduced with the resisted active extension or passive hyperflexion of the knee. No effusion is present. Radiographs are usually negative; rarely, they show avulsion of the apophysis at the tibial tuberosity. However, the physician must not mistake the normal appearance of the tibial apophysis for an avulsion fracture. �

Table 2 Differential Diagnosis of Knee Pain

Figure 1 Anterior View of the Structures of the Knee

Patellar Tendonitis

Jumper�s knee (irritation and inflammation of the patellar tendon) most commonly occurs in teenage boys, particularly during a growth spurt2 (Figure 1).5 The patient reports vague anterior knee pain that has persisted for months and worsens after activities such as walking down stairs or running.

On physical examination, the patellar tendon is tender, and the pain is reproduced by resisted knee extension. There is usually no effusion. Radiographs are not indicated.

Slipped Capital Femoral Epiphysis

A number of pathologic conditions result in referral of pain to the knee. For example, the possibility of slipped capital femoral epiphysis must be considered in children and teenagers who present with knee pain.6 The patient with this condition usually reports poorly localized knee pain and no history of knee trauma.

The typical patient with slipped capital femoral epiphysis is overweight and sits on the examination table with the affected hip slightly flexed and externally rotated. The knee examination is normal, but hip pain is elicited with passive internal rotation or extension of the affected hip.

Radiographs typically show displacement of the epiphysis of the femoral head. However, negative radiographs do not rule out the diagnosis in patients with typical clinical findings. Computed tomographic (CT) scanning is indicated in these patients.

Osteochondritis Dissecans

Osteochondritis dissecans is an intra-articular osteochondrosis of unknown etiology that is characterized by degeneration and recalcification of articular cartilage and underlying bone. In the knee, the medial femoral condyle is most commonly affected.7

The patient reports vague, poorly localized knee pain, as well as morning stiffness or recurrent effusion. If a loose body is present, mechanical symptoms of locking or catching of the knee joint also may be reported. On physical examination, the patient may demonstrate quadriceps atrophy or tenderness along the involved chondral surface. A mild joint effusion may be present.7

Plain-film radiographs may demonstrate the osteochondral lesion or a loose body in the knee joint. If osteochondritis dissecans is suspected, recommended radiographs include anteroposterior, posteroanterior tunnel, lateral, and Merchant�s views. Osteochondral lesions at the lateral aspect of the medial femoral condyle may be visible only on the posteroanterior tunnel view. Magnetic resonance imaging (MRI) is highly sensitive in detecting these abnormalities and is indicated in patients with a suspected osteochondral lesion.7 �

Dr Jimenez White Coat

A knee injury caused by sports injuries, automobile accidents, or an underlying condition, among other causes, can affect the cartilage, tendons and ligaments which form the knee joint itself. The location of the knee pain can differ according to the structure involved, also, the symptoms can vary. The entire knee may become painful and swollen as a result of inflammation or infection, whereas a torn meniscus or fracture may cause symptoms in the affected region. Dr. Alex Jimenez D.C., C.C.S.T. Insight

Adults

Overuse Syndromes

Anterior Knee Pain. Patients with patellofemoral pain syndrome (chondromalacia patellae) typically present with a vague history of mild to moderate anterior knee pain that usually occurs after prolonged periods of sitting (the so-called �theater sign�).8 Patellofemoral pain syndrome is a common cause of anterior knee pain in women.

On physical examination, a slight effusion may be present, along with patellar crepitus on the range of motion. The patient�s pain may be reproduced by applying direct pressure to the anterior aspect of the patella. Patellar tenderness may be elicited by subluxing the patella medially or laterally and palpating the superior and inferior facets of the patella. Radiographs usually are not indicated.

Medial Knee Pain. One frequently overlooked diagnosis is medial plica syndrome. The plica, a redundancy of the joint synovium medially, can become inflamed with repetitive overuse.4,9 The patient presents with acute onset of medial knee pain after a marked increase in usual activities. On physical examination, a tender, mobile nodularity is present at the medial aspect of the knee, just anterior to the joint line. There is no joint effusion, and the remainder of the knee examination is normal. Radiographs are not indicated.

Pes anserine bursitis is another possible cause of medial knee pain. The tendinous insertion of the sartorius, gracilis, and semitendinosus muscles at the anteromedial aspect of the proximal tibia forms the pes anserine bursa.9 The bursa can become inflamed as a result of overuse or a direct contusion. Pes�anserine bursitis can be confused easily with a medial collateral ligament sprain or, less commonly, osteoarthritis of the medial compartment of the knee. �

The patient with pes anserine bursitis reports pain at the medial aspect of the knee. This pain may be worsened by repetitive flexion and extension. On physical examination, tenderness is present at the medial aspect of the knee, just posterior and distal to the medial joint line. No knee joint effusion is present, but there may be slight swelling at the insertion of the medial hamstring muscles. Valgus stress testing in the supine position or resisted knee flexion in the prone position may reproduce the pain. Radiographs are usually not indicated.

Lateral Knee Pain. Excessive friction between the iliotibial band and the lateral femoral condyle can lead to iliotibial band tendonitis.9 This overuse syndrome commonly occurs in runners and cyclists, although it may develop in any person subsequent to activity involving repetitive knee flexion. The tightness of the iliotibial band, excessive foot pronation, genu varum, and tibial torsion are predisposing factors.

The patient with iliotibial band tendonitis reports pain at the lateral aspect of the knee joint. The pain is aggravated by activity, particularly running downhill and climbing stairs. On physical examination, tenderness is present at the lateral epicondyle of the femur, approximately 3 cm proximal to the joint line. Soft tissue swelling and crepitus also may be present, but there is no joint effusion. Radiographs are not indicated.

Noble�s test is used to reproduce the pain in iliotibial band tendonitis. With the patient in a supine position, the physician places a thumb over the lateral femoral epicondyle as the�patient repeatedly flexes and extends the knee. Pain symptoms are usually most prominent with the knee at 30 degrees of flexion.

Popliteus tendonitis is another possible cause of lateral knee pain. However, this condition is fairly rare.10

Trauma

Anterior Cruciate Ligament Sprain. Injury to the anterior cruciate ligament usually occurs because of noncontact deceleration forces, as when a runner plants one foot and sharply turns in the opposite direction. Resultant valgus stress on the knee leads to anterior displacement of the tibia and sprain or rupture of the ligament.11 The patient usually reports hearing or feeling a �pop� at the time of the injury and must cease activity or competition immediately. Swelling of the knee within two hours after the injury indicates rupture of the ligament and consequent hemarthrosis.

On physical examination, the patient has a moderate to severe joint effusion that limits the range of motion. The anterior drawer test may be positive, but can be negative because of hemarthrosis and guarding by the hamstring muscles. The Lachman test should be positive and is more reliable than the anterior drawer test (see text and Figure 3 in part I of the article1).

Radiographs are indicated to detect possible tibial spine avulsion fracture. MRI of the knee is indicated as part of a presurgical evaluation.

Medial Collateral Ligament Sprain. Injury to the medial collateral ligament is fairly common and is usually the result of acute trauma. The patient reports a misstep or collision that places valgus stress on the knee, followed by the immediate onset of pain and swelling at the medial aspect of the knee.11

On physical examination, the patient with medial collateral ligament injury has point tenderness at the medial joint line. Valgus stress testing of the knee flexed to 30 degrees reproduces the pain (see text and Figure 4 in part I of this article1). A clearly defined endpoint on valgus stress testing indicates a grade 1�or grade 2 sprain, whereas complete medial instability indicates full rupture of the ligament (grade 3 sprain).

Lateral Collateral Ligament Sprain. Injury of the lateral collateral ligament is much less common than the injury of the medial collateral ligament. Lateral collateral ligament sprain usually results from varus stress to the knee, as occurs when a runner plants one foot and then turns toward the ipsilateral knee.2 The patient reports acute onset of lateral knee pain that requires prompt cessation of activity.

On physical examination, point tenderness is present at the lateral joint line. Instability or pain occurs with varus stress testing of the knee flexed to 30 degrees (see text and Figure 4 in part I of this article1). Radiographs are not usually indicated.

Meniscal Tear. The meniscus can be torn acutely with a sudden twisting injury of the knee, such as may occur when a runner suddenly changes direction.11,12 Meniscal tear also may occur in association with a prolonged degenerative process, particularly in a patient with an anterior cruciate ligament-deficient knee. The patient usually reports recurrent knee pain and episodes of catching or locking of the knee joint, especially with squatting or twisting of the knee.

On physical examination, a mild effusion is usually present, and there is tenderness at the medial or lateral joint line. Atrophy of the vastus medialis obliquus portion of the quadriceps muscle also may be noticeable. The McMurray test may be positive (see Figure 5 in part I of this article1), but a negative test does not eliminate the possibility of a meniscal tear.

Plain-film radiographs usually are negative and seldom are indicated. MRI is the radiologic test of choice because it demonstrates most significant meniscal tears.

Infection

Infection of the knee joint may occur in patients of any age but is more common in those whose immune system has been weakened by cancer, diabetes mellitus, alcoholism,�acquired immunodeficiency syndrome, or corticosteroid therapy. The patient with septic arthritis reports abrupt onset of pain and swelling of the knee with no antecedent trauma.13

On physical examination, the knee is warm, swollen, and exquisitely tender. Even slight motion of the knee joint causes intense pain.

Arthrocentesis reveals turbid synovial fluid. Analysis of the fluid yields a white blood cell count (WBC) higher than 50,000 per mm3 (50 ? 109 per L), with more than 75 percent (0.75) polymorphonuclear cells, an elevated protein content (greater than 3 g per dL [30 g per L]), and a low glucose concentration (more than 50 percent lower than the serum glucose concentration).14 Gram stain of the fluid may demonstrate the causative organism. Common pathogens include Staphylococcus aureus, Streptococcus species, Haemophilus influenza, and Neisseria gonorrhoeae.

Hematologic studies show an elevated WBC, an increased number of immature polymorphonuclear cells (i.e., a left shift), and an elevated erythrocyte sedimentation rate (usually greater than 50 mm per hour).

Older Adults

Osteoarthritis

Osteoarthritis of the knee joint is a common problem after 60 years of age. The patient presents with knee pain that is aggravated by weight-bearing activities and relieved by rest.15 The patient has no systemic symptoms but usually awakens with morning stiffness that dissipates somewhat with activity. In addition to chronic joint stiffness and pain, the patient may report episodes of acute synovitis.

Findings on physical examination include decreased range of motion, crepitus, a mild joint effusion, and palpable osteophytic changes at the knee joint.

When osteoarthritis is suspected, recommended radiographs include weight-bearing anteroposterior and posteroanterior tunnel views, as well as non-weight-bearing Merchants and lateral views. Radiographs show�joint-space narrowing, subchondral bony sclerosis, cystic changes, and hypertrophic osteophyte formation.

Crystal-Induced Inflammatory Arthropathy

Acute inflammation, pain, and swelling in the absence of trauma suggest the possibility of a crystal-induced inflammatory arthropathy such as gout or pseudogout.16,17 Gout commonly affects the knee. In this arthropathy, sodium urate crystals precipitate in the knee joint and cause an intense inflammatory response. In pseudogout, calcium pyrophosphate crystals are the causative agents.

On physical examination, the knee joint is erythematous, warm, tender, and swollen. Even minimal range of motion is exquisitely painful.

Arthrocentesis reveals clear or slightly cloudy synovial fluid. Analysis of the fluid yields a WBC count of 2,000 to 75,000 per mm3 (2 to 75 ? 109 per L), a high protein content (greater than 32 g per dL [320 g per L]), and a glucose concentration that is approximately 75 percent of the serum glucose con- centration.14 Polarized-light microscopy of the synovial fluid displays negatively birefringent rods in the patient with gout and positively birefringent rhomboids in the patient with pseudogout.

Popliteal Cyst

The popliteal cyst (Baker�s cyst) is the most common synovial cyst of the knee. It originates from the posteromedial aspect of the knee joint at the level of the gastrocnemio-semimembranous bursa. The patient reports insidious onset of mild to moderate pain in the popliteal area of the knee.

On physical examination, palpable fullness is present at the medial aspect of the popliteal area, at or near the origin of the medial head of the gastrocnemius muscle. The McMurray test may be positive if the medial meniscus is injured. Definitive diagnosis of a popliteal cyst may be made with arthrography, ultrasonography, CT scanning, or, less commonly, MRI.

The authors indicate that they do not have any conflicts of interest. Sources of funding: none reported.

In conclusion, although the knee is the largest joint in the human body where the structures of the lower extremities meet, including the femur, the tibia, the patella, and many other soft tissues, the knee can easily suffer damage or injury and result in knee pain. Knee pain is one of the most common complaints among the general population, however, it commonly occurs in athletes. Sports injuries, slip-and-fall accidents, and automobile accidents, among other causes, can lead to knee pain.

As described in the article above, diagnosis is essential towards determining the best treatment approach for each type of knee injury, according to their underlying cause. While the location and the severity of the knee injury may vary depending on the cause of the health issue, knee pain is the most common symptom. Treatment options, such as chiropractic care and physical therapy, can help treat knee pain. The scope of our information is limited to chiropractic and spinal health issues. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

Curated by Dr. Alex Jimenez �

Green Call Now Button H .png

Additional Topic Discussion: Relieving Knee Pain without Surgery

Knee pain is a well-known symptom which can occur due to a variety of knee injuries and/or conditions, including�sports injuries. The knee is one of the most complex joints in the human body as it is made-up of the intersection of four bones, four ligaments, various tendons, two menisci, and cartilage. According to the American Academy of Family Physicians, the most common causes of knee pain include patellar subluxation, patellar tendinitis or jumper’s knee, and Osgood-Schlatter disease. Although knee pain is most likely to occur in people over 60 years old, knee pain can also occur in children and adolescents. Knee pain can be treated at home following the RICE methods, however, severe knee injuries may require immediate medical attention, including chiropractic care.

blog picture of cartoon paper boy

EXTRA EXTRA | IMPORTANT TOPIC: El Paso, TX Chiropractor Recommended

Blank
References
1. Calmbach WL, Hutchens M. Evaluation of patients presenting with knee pain: part I. History, physical examination, radiographs, and laboratory tests. Am Fam Physician 2003;68:907-12.
2. Walsh WM. Knee injuries. In: Mellion MB, Walsh WM, Shelton GL, eds. The team physician�s hand- book. 2d ed. St. Louis: Mosby, 1990:554-78.
3. Dunn JF. Osgood-Schlatter disease. Am Fam Physi- cian 1990;41:173-6.
4. Stanitski CL. Anterior knee pain syndromes in the adolescent. Instr Course Lect 1994;43:211-20.
5. Tandeter HB, Shvartzman P, Stevens MA. Acute knee injuries: use of decision rules for selective radiograph ordering. Am Fam Physician 1999;60: 2599-608.
6. Waters PM, Millis MB. Hip and pelvic injuries in the young athlete. In: DeLee J, Drez D, Stanitski CL, eds. Orthopaedic sports medicine: principles and practice. Vol. III. Pediatric and adolescent sports medicine. Philadelphia: Saunders, 1994:279-93.
7. Schenck RC Jr, Goodnight JM. Osteochondritis dis- secans. J Bone Joint Surg [Am] 1996;78:439-56.
8. Ruffin MT 5th, Kiningham RB. Anterior knee pain: the challenge of patellofemoral syndrome. Am Fam Physician 1993;47:185-94.
9. Cox JS, Blanda JB. Peripatellar pathologies. In: DeLee J, Drez D, Stanitski CL, eds. Orthopaedic sports medicine: principles and practice. Vol. III. Pediatric and adolescent sports medicine. Philadel- phia: Saunders, 1994:1249-60.
10. Petsche TS, Selesnick FH. Popliteus tendinitis: tips for diagnosis and management. Phys Sportsmed 2002;30(8):27-31.
11. Micheli LJ, Foster TE. Acute knee injuries in the immature athlete. Instr Course Lect 1993;42:473- 80.
12. Smith BW, Green GA. Acute knee injuries: part II. Diagnosis and management. Am Fam Physician 1995;51:799-806.
13. McCune WJ, Golbus J. Monarticular arthritis. In: Kelley WN, ed. Textbook of rheumatology. 5th ed. Philadelphia: Saunders, 1997:371-80.
14. Franks AG Jr. Rheumatologic aspects of knee dis- orders. In: Scott WN, ed. The knee. St. Louis: Mosby, 1994:315-29.
15. Brandt KD. Management of osteoarthritis. In: Kel- ley WN, ed. Textbook of rheumatology. 5th ed. Philadelphia: Saunders, 1997:1394-403.
16. Kelley WN, Wortmann RL. Crystal-associated syn- ovitis. In: Kelley WN, ed. Textbook of rheumatol- ogy. 5th ed. Philadelphia: Saunders, 1997:1313- 51. 1
7. Reginato AJ, Reginato AM. Diseases associated with deposition of calcium pyrophosphate or hy- droxyapatite. In: Kelley WN, ed. Textbook of rheumatology. 5th ed. Philadelphia: Saunders, 1997:1352-67.
Close Accordion
Heel Spurs Treatment | Video

Heel Spurs Treatment | Video

Blanca suffered from heel spurs as a result of her occupation as a registered nurse. Her painful symptoms made it challenging for her to accomplish her daily tasks, both in the workplace and in her everyday life. Due to her unbearable heel spurs, Blanca considered finding a new job until she found Dr. Alex Jimenez, doctor of chiropractic. Blanca highly recommends Dr. Alex Jimenez as the non-surgical choice for heel spurs, among other sports injuries and health issues.

Heel Spurs Treatment

A heel spur is a health issue which occurs when a bony-like expansion, known as a calcium deposit, develops between the heel arch and bone of the foot. Heel spurs frequently start in front of the heels and finally affect different elements of the foot. Indicators of heel spurs can include pain, soreness, swelling, and inflammation in the front of the foot. The affected area may also feel hot to the touch. The indicators can also spread to the back of the foot. Finally, a tiny bony protrusion could be observable if left untreated.

heel spurs chiropractic care el paso tx.

We are blessed to present to you�El Paso�s Premier Wellness & Injury Care Clinic.

Our services are specialized and focused on injuries and the complete recovery process.�Our areas of practice includeWellness & Nutrition, Chronic Pain,�Personal Injury,�Auto Accident Care, Work Injuries, Back Injury, Low�Back Pain, Neck Pain, Migraine Treatment, Sports Injuries,�Severe Sciatica, Scoliosis, Complex Herniated Discs,�Fibromyalgia, Chronic Pain, Stress Management, and Complex Injuries.

As El Paso�s Chiropractic Rehabilitation Clinic & Integrated Medicine Center,�we passionately are focused on treating patients after frustrating injuries and chronic pain syndromes. We focus on improving your ability through flexibility, mobility and agility programs tailored for all age groups and disabilities.

If you have enjoyed this video and we have helped you in any way, please feel free to subscribe and recommend�us.

Recommend: Dr. Alex Jimenez � Chiropractor

Health Grades: www.healthgrades.com/review/3SDJ4

Facebook Clinical Page: www.facebook.com/dralexjimene…

Facebook Sports Page: www.facebook.com/pushasrx/

Facebook Injuries Page: www.facebook.com/elpasochirop…

Facebook Neuropathy Page: www.facebook.com/ElPasoNeurop…

Yelp: goo.gl/pwY2n2

Clinical Testimonies: www.dralexjimenez.com/categor…

Information: Dr. Alex Jimenez � Chiropractor

Clinical Site: www.dralexjimenez.com

Injury Site: personalinjurydoctorgroup.com

Sports Injury Site: chiropracticscientist.com

Back Injury Site: elpasobackclinic.com

Linked In: www.linkedin.com/in/dralexjim…

Pinterest: www.pinterest.com/dralexjimenez/

Twitter: twitter.com/dralexjimenez

Twitter: twitter.com/crossfitdoctor

Recommend: PUSH-as-Rx ��

Rehabilitation Center: www.pushasrx.com

Facebook: www.facebook.com/PUSHftinessa…

PUSH-as-Rx: www.push4fitness.com/team/

How Chiropractic Can Be Used As Supportive Care For Cancer

How Chiropractic Can Be Used As Supportive Care For Cancer

Cancer puts a tremendous amount of stress on the body. Cancer treatments add to that stress, affecting the organs as well as the musculoskeletal system. Pain is a common complaint among cancer patients. They experience a variety of aches and pains including headaches, neck pain, muscle tension, and back pain as well as painful peripheral neuropathy. They may also have mobility problems and difficulty walking.

Many cancer patients have found chiropractic care to be a very effective treatment for pain management and to improve flexibility, mobility, and muscle strength. They find it helps to reduce stress and helps the body function more efficiently.

It provides these benefits without the use of medication or invasive treatments. For patients undergoing chemotherapy, it is very beneficial because chiropractic�s whole body approach to wellness helps to combat the debilitating effects of the treatment.

Benefits of Chiropractic Care for Cancer Patients

There are many different reasons that cancer patients may seek chiropractic treatment. Cancer is, in itself, very hard on the body. The disease can cause headaches, muscle stiffness, neck pain, and back pain. However, the treatments can also cause problems.

Patients undergoing radiation treatment must lie on a table for extended periods of time which can be very uncomfortable. Surgery can cause pain in the joints and connective tissues. Chemotherapy drugs can cause unpleasant side effects including nausea, neuropathy, and headaches.

Some of the ways chiropractic care can help cancer patients include:

  • The relief of nausea, headaches, and fatigue
  • Improved balance
  • Alleviation of neck and back pain and stiffness
  • Reduction of joint inflammation
  • Better mobility
  • Restoration of nerve function
  • Reduced muscle tension

Often cancer patients have also reported improvements beyond the typical musculoskeletal complaints that chiropractic treats. Reduced effects of peripheral neuropathy, improved digestion, and even easier respiratory function are just some of the added benefits.

cancer chiropractic support el paso tx.

Chiropractic Treatment Approaches

Chiropractors use a drug-free, hands-on approach to treatment for a wide range of issues. It restores nerve function, corrects musculoskeletal problems, and helps to bring the body back into proper alignment. It is non-invasive and offers patients a safe, natural alternative to medications and other treatments that can have unwanted side effects.

One barrier that may prevent a patient from seeking chiropractic care is the common misconception that it is aggressive and forceful, even painful. The truth is, most chiropractic techniques are very gentle, applying very low force and some no force at all.

Most are also not painful at all and work quickly to enhance the range of motion and increase energy as well as reduce pain. It can help relieve a patient�s symptoms while helping them stay strong while they undergo treatment.

Some of the chiropractic treatment options that are used for cancer patients include:

  • Spinal manipulation
  • Ice
  • Heat
  • Hands-on adjustments
  • Non-force techniques
  • Electrical muscle stimulation
  • Massage
  • Special instrument applications
  • Traction

The Whole-Body Wellness Advantage

Whole body wellness is an integral part of chiropractic care. It can involve diet modification, lifestyle changes, exercise, and stress reduction practices.

When a chiropractor treats a cancer patient � or any patient � he or she will look beyond the obvious issues or symptoms to find the root of the problem and ways to help the body heal itself. Sometimes this may involve supplements, vitamins, or minerals that will aid in correcting the condition. Other times it may simply be a matter of getting the body to a healthy state where it is strong enough to combat the condition or heal from injury.

The treatment is individualized and tailored specifically to the patient�s needs and lifestyle. For instance, many conditions benefit from weight loss or exercise, and many pain issues respond well to adjustments in diet and stress reduction. Chiropractic looks at the whole body and works to provide it with what it needs to get strong and get healthy.

Chiropractor Recommended

Knee Arthritis: Diagnostic Imaging Approaches I | El Paso, TX.

Knee Arthritis: Diagnostic Imaging Approaches I | El Paso, TX.

Degenerative Knee Arthritis

  • Knee Arthritis
  • Knee OA (arthrosis) is the m/c symptomatic OA with 240 cases per 100,000, 12.5% of people >45 y.o.
  • Modifiable risk factors: trauma, obesity, lack of fitness, muscle weakness
  • Non-modifiable: women>men, aging, genetics, race/ethnicity
  • Pathology: da disease of the articular cartilage. Continuing mechanical stimulation follows by an initial increase in water and cartilage thickness. Gradual loss of proteoglycans and ground substance. Fissuring/splitting. Chondrocytes are damaged and release enzymes into the joint. Cystic progression and further cartilage loss. Subchondral bone is denuded and exposed to mechanical stresses. It becomes hypervascular forming osteophytes. Subchondral cysts and bone thickening/sclerosis develop.
  • Imaging plays a crucial role in Dx/grading and management
  • Clinically: pain on walking/rest, crepitus, swelling d/t synovitis, locking/catching d/t osseocartilaginous fragments and gradual functional loss. Knee OA typically presents as mono and oligoarthritis. DDx: morning pain/stiffness is >30-min DDx from inflammatory arthritis
  • Treatment: in mild to moderate cases-conservative care. Severe OA-total knee arthroplasty

OA: L.O.S.S. Radiologic Presentation

knee arthritis chiropractic care el paso tx.

 

  • Typical radiologic-pathologic presentation of� OA: L.O.S.S.
  • Loss of joint space (non-uniform/asymmetrical)
  • Osteophytes
  • Subchondral sclerosis
  • Subchondral cysts
  • Bone deformity: Genu Varum- is the m/c deformity d/t medial knee compartment affected more severely
  • In addition: a weakening of periarticular soft tissues, instability and other changes

Imaging

knee arthritis chiropractic care el paso tx.

 

  • Radiography is the modality of choice
  • Views should include b/l weight bearing
  • Evaluation of joint space is crucial. Normal joint space -3-mm
  • Grading is based on the degree of joint space narrowing (JSN), osteophytes, bone deformation, etc.
  • Grade 1: minimal JSN, suspicious osteophytes
  • Grade 2: appreciable osteophytes and JSN on AP weight-bearing view
  • Grade 3: multiple osteophytes, definite JSN, subchondral sclerosis
  • Grade 4: severe JSN, large osteophytes, marked subchondral sclerosis and definite bony deformity
  • Typical report language will state:
  • Minor, mild, moderate or severe aka advanced arthrosis

Technique

knee arthritis chiropractic care el paso tx.

 

  • Radiography: AP weight-bearing knees: note severe JSN of the medial compartment more severely with lateral knee compartment. Osteophytes and marked genu varum deformity and bone deformation
  • Typically medial femorotibial compartment is affected early and more severely
  • The patellofemoral compartment is also affected and best visualized on the lateral and Sunrise views
  • Impressions: severe tri-compartmental knee arthrosis
  • Recommendations: referral to the orthopedic surgeon

Moderate JSN

knee arthritis chiropractic care el paso tx.

 

  • B/L AP weight-bearing view (above top image): Moderate JSN primarily of the medial femorotibial compartment. Osteophytosis, subchondral sclerosis and mild bone deformation (genu varum)
  • Additional features: PF OA, intra-articular osteophytes, secondary osteocartilaginous loose bodies and subchondral cysts (above arrows)

Secondary Osteochondromatosis

knee arthritis chiropractic care el paso tx.

 

  • Intra-articular osteocartilaginous loose bodies known as secondary osteochondromatosis
  • Typical in DJD especially of the large joints
  • It may accelerate further cartilage destruction and progression of OA
  • May worsen signs of synovitis
  • Intra-articular locking, catching etc.

Management of Severe Knee OA

knee arthritis chiropractic care el paso tx.

 

  • Conservative care: NSAID, exercise, weight loss etc.
  • Operative care should be used if conservative care failed or symptoms progress despite conservative efforts in severe OA cases
  • Review article
  • www.aafp.org/afp/2018/0415/p523.html

Calcium Pyrophosphate Dehydrate Deposition Disease

knee arthritis chiropractic care el paso tx.

 

  • CPPD arthropathy common in the knee
  • May present as asymptomatic chondrocalcinosis, CPPD arthropathy resembling DJD with pan predominance of large subchondral cysts. Often found as isolated PFJ DJD
  • Pseudogout with an acute attack of knee pain resembling gouty arthritis
  • Radiography is the 1st step and often reveals the Dx
  • Arthrocentesis with polarized microscopy may be helpful to DDx between CPPD and Gouty arthritis

Rheumatoid Arthritis

  • RA: an autoimmune systemic inflammatory disease that targets soft tissues of joints synovium, tendons/ligaments, bursae and extra-articular sites (e.g., eyes, lungs, cardiovascular system)
  • RA is the m/c inflammatory arthritis, 3% of women and 1% of men. Age: 30-50 F>M 3:1, but may develop at any age. True RA is uncommon in children and should not be confused with Juvenile Idiopathic Arthritis
  • RA most often affects small joints of the hands and feet as symmetrical arthritis (2nd 3rd MCP, 3rd PIPs, wrists & MTPs, sparing DIPs of fingers and toes)
  • Radiographically: RA presents with joint effusion leading to hyperemia and marginal erosions and periarticular osteoporosis. In the knee, the lateral compartment is affected more frequently leading to valgus deformity. Uniform aka concentric/symmetrical JSN affects all compartments and remains a key Dx clue
  • An absence of subchondral sclerosis and osteophytes. Popliteal cyst�(Baker’s cyst) may represent synovial pannus and inflammatory synovitis extending into the popliteal region that may rapture and extend into posterior leg compartment
  • N.B. Following initial RA joint destruction, it is not unusual to note superimposed 2nd OA
  • Radiography is the 1st step but early joint involvement may be undetectable by x-rays and can be helped by US and/or MRI.
  • Lab tests: RF, CRP, anti-cyclic citrulline peptide antibodies (anti-CCP Ab). CBC
  • Final Dx is based on Hx, clinical exam, labs, and radiology
  • Clinical pearls: patients with RA may present with a single knee being affected
  • Most patients are likely to have bilateral symmetrical hands/feet RA.
  • Cervical spine, particularly C1-2 is affected in 75-90% of cases throughout the course of the disease
  • N.B. Sudden exacerbation of joint pain in RA should not underestimate septic arthritis because patients with pre-existing RA are at higher risk of infectious arthritis. Joint aspiration may help with Dx.

Radiographic DDx

knee arthritis chiropractic care el paso tx.

 

  • RA (above left) vs. OA (above right)
  • RA: concentric (uniform) joint space loss, lack of osteophytes and juxta-articular osteopenia.
  • Clinical Pearls: patients with RA may present radiographically with subchondral sclerosis d/t superimposed DJD. The latter feature should not be interpreted as OA but instead considered as secondary OA

AP Knee Radiograph

knee arthritis chiropractic care el paso tx.

 

  • Note marked uniform JSN, juxta-articular osteopenia and subchondral cystic changes
  • Clinical Pearls: subcortical cysts in RA will characteristically lack sclerotic rim noted in OA-associated subcortical cysts.

MRI Sensitivity

knee arthritis chiropractic care el paso tx.

 

  • MRI is very sensitive and may aid during early Dx of RA.
  • T2 fat-sat or STIR and T1 + C gad contrast fat-suppressed sequences may be included
  • MRI Dx of RA: synovial inflammation/effusion, synovial hyperplasia, and pannus formation decreased cartilage thickness, subchondral cysts, and bone erosions
  • MRI is very sensitive to reveal juxt-articular bone marrow edema, a precursor to erosions
  • Intra-articular fibrinoid fragments known as “Rice bodies” are characteristic MR sign of RA
  • Note: T2 fat-sat sagittal MRI revealing large inflammatory joint effusion and pannus synovial proliferation (above arrowheads). No evidence of radiographic or MRI bone erosions present. Dx: RA

STIR MR Slices

knee arthritis chiropractic care el paso tx.

 

  • Note: STIR MR slices in the axial (above bottom image) and coronal planes (above top image) demonstrate extensive synovitis/effusion (above arrowheads) and multiple erosions in the medial and lateral tibial plateau (above arrows)
  • Additionally, scattered patchy areas of bone marrow edema are noted (above asterisks) such marrow edema changes are indicative and predictive of future osseous erosions.
  • Additional features: note thinning and destruction of joint cartilage

Knee Arthritis

 

Evaluation of Patients Presenting with Knee Pain: Part I. History, Physical Examination, Radiographs, and Laboratory Tests

Evaluation of Patients Presenting with Knee Pain: Part I. History, Physical Examination, Radiographs, and Laboratory Tests

Knee pain is a common health issue among athletes and the general population alike. Although symptoms of knee pain can be debilitating and frustrating, knee pain is often a very treatable health issue. The knee is a complex structure made up of three bones: the lower section of the thighbone, the upper region of the shinbone, and the kneecap.

Powerful soft tissues, such as the tendons and ligaments of the knee as well as the cartilage beneath the kneecap and between the bones, hold these structures together in order to stabilize and support the knee. However, a variety of injuries and/or conditions can ultimately lead to knee pain. The purpose of the article below is to evaluate patients with knee pain.

Abstract

Family physicians frequently encounter patients with knee pain. Accurate diagnosis requires a knowledge of knee anatomy, common pain patterns in knee injuries, and features of frequently encountered causes of knee pain, as well as specific physical examination skills. The history should include characteristics of the patient�s pain, mechanical symptoms (locking, popping, giving way), joint effusion (timing, amount, recurrence), and mechanism of injury. The physical examination should include careful inspection of the knee, palpation for point tenderness, assessment of joint effusion, range-of-motion testing, evaluation of ligaments for injury or laxity, and assessment of the menisci. Radiographs should be obtained in patients with isolated patellar tenderness or tenderness at the head of the fibula, inability to bear weight or flex the knee to 90 degrees, or age greater than 55 years. (Am Fam Physician 2003; 68:907-12. Copyright� 2003 American Academy of Family Physicians.)

Introduction

Knee pain accounts for approximately one-third of musculoskeletal problems seen in primary care settings. This complaint is most prevalent in�physically active patients, with as many as 54 percent of athletes having some degree of knee pain each year.1 Knee pain can be a source of significant disability, restricting the ability to work or perform activities of daily living.

The knee is a complex structure (Figure 1),2 and its evaluation can present a challenge to the family physician. The differential diagnosis of knee pain is extensive but can be narrowed with a detailed history, a focused physical examination and, when indicated, the selective use of appropriate imaging and laboratory studies. Part I of this two-part article provides a systematic approach to evaluating the knee, and part II3 discusses the differential diagnosis of knee pain.

image.png

History

Pain Characteristics

The patient�s description of knee pain is helpful in focusing the differential diagnosis.4 It is important to clarify the characteristics of the pain, including its onset (rapid or insidious), location (anterior, medial, lateral, or posterior knee), duration, severity, and quality (e.g., dull, sharp, achy). Aggravating and alleviating factors also need to be identified. If knee pain is caused by an acute injury, the physician needs to know whether the patient was able to continue activity or bear weight after the injury or was forced to cease activities immediately.

 

Mechanical Symptoms

The patient should be asked about mechan- ical symptoms, such as locking, popping, or giving way of the knee. A history of locking episodes suggests a meniscal tear. A sensation of popping at the time of injury suggests liga- mentous injury, probably complete rupture of a ligament (third-degree tear). Episodes of giving way are consistent with some degree of knee instability and may indicate patellar sub- luxation or ligamentous rupture.

Effusion

The timing and amount of joint effusion are important clues to the diagnosis. Rapid onset (within two hours) of a large, tense effusion suggests rupture of the anterior cru- ciate ligament or fracture of the tibial plateau with resultant hemarthrosis, whereas slower onset (24 to 36 hours) of a mild to moderate effusion is consistent with meniscal injury or ligamentous sprain. Recurrent knee effusion after activity is consistent with meniscal injury.

Mechanism of Injury

The patient should be questioned about specific details of the injury. It is important to know if the patient sustained a direct blow to the knee, if the foot was planted at the time of injury, if the patient was decelerating or stopping suddenly, if the patient was landing from a jump, if there was a twisting component to the injury, and if hyperextension occurred.

A direct blow to the knee can cause serious injury. The anterior force applied to the proximal tibia with the knee in flexion (e.g., when the knee hits the dashboard in an automobile accident) can cause injury to the posterior cruciate ligament. The medial collateral ligament is most commonly injured as a result of direct lateral force to the knee (e.g., clipping in football); this force creates a val- gus load on the knee joint and can result in rupture of the medial collateral ligament. Conversely, a medial blow that creates a varus load can injure the lateral collateral ligament.

Noncontact forces also are an important cause of knee injury. Quick stops and sharp cuts or turns create significant deceleration forces that can sprain or rupture the anterior cruciate ligament. Hyperextension can result in injury to the anterior cruciate ligament or posterior cruciate ligament. Sudden twisting or pivoting motions create shear forces that can injure the meniscus. A combination of forces can occur simultaneously, causing injury to multiple structures.

 

Medical History

A history of knee injury or surgery is important. The patient should be asked about previous attempts to treat knee pain, including the use of medications, supporting devices, and physical therapy. The physician also should ask if the patient has a history of�gout, pseudogout, rheumatoid arthritis, or other degenerative joint diseases.

Dr Jimenez White Coat

Knee pain is a common health issue which can be caused by sports injuries, automobile accident injuries, or by an underlying health issue, such as arthritis. The most common symptoms of knee injury include pain and discomfort, swelling, inflammation and stiffness. Because treatment for knee pain varies according to the cause, it’s essential for the individual to receive proper diagnosis for their symptoms. Chiropractic care is a safe and effective, alternative treatment approach which can help treat knee pain, among other health issues.

Dr. Alex Jimenez D.C., C.C.S.T. Insight

Physical Examination

Inspection and Palpation

The physician begins by comparing the painful knee with the asymptomatic knee and inspecting the injured knee for erythema, swelling, bruising, and discoloration. The mus- culature should be symmetric bilaterally. In particular, the vastus medialis obliquus of the quadriceps should be evaluated to determine if it appears normal or shows signs of atrophy.

The knee is then palpated and checked for pain, warmth, and effusion. Point tenderness should be sought, particularly at the patella, tibial tubercle, patellar tendon, quadriceps tendon, anterolateral and anteromedial joint line, medial joint line, and lateral joint line. Moving the patient�s knee through a short arc of motion helps identify the joint lines. Range of motion should be assessed by extending and flexing the knee as far as possible (normal range of motion: extension, zero degrees; flex- ion, 135 degrees).5

Patellofemoral Assessment

An evaluation for effusion should be conducted with the patient supine and the injured knee in extension. The suprapatellar pouch should be milked to determine whether an effusion is present.

Patellofemoral tracking is assessed by observing the patella for smooth motion while the patient contracts the quadriceps muscle. The presence of crepitus should be noted during palpation of the patella.

The quadriceps angle (Q angle) is determined by drawing one line from the anterior superior iliac spine through the center of the patella and a second line from the center of the patella through the tibial tuberosity (Figure 2).6 A Q angle greater than 15 degrees is a predisposing factor for patellar subluxation (i.e., if the Q angle is increased, forceful contraction of the quadriceps muscle can cause the patella to sublux laterally).

A patellar apprehension test is then performed. With fingers placed at the medial aspect of the patella, the physician attempts to sublux the patella laterally. If this maneuver reproduces the patient�s pain or a giving-way sensation, patellar subluxation is the likely cause of the patient�s symptoms.7 Both the superior and inferior patellar facets should be palpated, with the patella subluxed first medially and then laterally.

 

Cruciate Ligaments

Anterior Cruciate Ligament. For the anterior drawer test, the patient assumes a supine position with the injured knee flexed to 90 degrees. The physician fixes the patient�s foot in slight external rotation (by sitting on the foot) and then places thumbs at the tibial tubercle and fingers at the posterior calf. With the patient�s hamstring muscles relaxed, the physician pulls anteriorly and assesses anterior displacement of the tibia (anterior drawer sign).

The Lachman test is another means of assessing the integrity of the anterior cruciate ligament (Figure 3).7 The test is performed with the patient in a supine position and the injured knee flexed to 30 degrees. The physician stabilizes the distal femur with one hand, grasps the proximal tibia in the other hand, and then attempts to sublux the tibia anteriorly. Lack of a clear end point indicates a positive Lachman test.

Posterior Cruciate Ligament. For the posterior drawer test, the patient assumes a supine position with knees flexed to 90 degrees. While standing at the side of the examination table, the physician looks for posterior displacement of the tibia (posterior sag sign).7,8 Next, the physician fixes the patient�s foot in neutral rotation (by sitting on the foot), positions thumbs at the tibial tubercle, and places fingers at the posterior calf. The physician then pushes posteriorly and assesses for posterior displacement of the tibia.

 

Collateral Ligaments

Medial Collateral Ligament. The valgus stress test is performed with the patient�s leg slightly abducted. The physician places one hand at the lateral aspect of the knee joint and the other hand at the medial aspect of the distal tibia. Next, valgus stress is applied to the knee at both zero degrees (full extension) and 30 degrees of flexion (Figure 4)7. With the knee at zero degrees (i.e., in full extension), the posterior cruciate ligament and the articulation of the femoral condyles with the tibial plateau should stabilize the knee; with the knee at 30 degrees of flexion, application of valgus stress assesses the laxity or integrity of the medial collateral ligament.

Lateral Collateral Ligament. To perform the varus stress test, the physician places one hand at the medial aspect of the patient�s knee and the other hand at the lateral aspect of the distal fibula. Next, varus stress is applied to the knee, first at full extension (i.e., zero degrees), then with the knee flexed to 30 degrees (Figure 4).7 A firm end point indicates that the collateral ligament is intact, whereas a soft or absent end point indicates complete rupture (third-degree tear) of the ligament.

Menisci

Patients with injury to the menisci usually demonstrate tenderness at the joint line. The McMurray test is performed with the patient lying supine9 (Figure 5). The test has been described variously in the literature, but the author suggests the following technique.

The physician grasps the patient�s heel with one hand and the knee with the other hand. The physician�s thumb is at the lateral joint line, and fingers are at the medial joint line. The physician then flexes the patient�s knee maximally. To test the lateral meniscus, the tibia is rotated internally, and the knee is extended from maximal flexion to about 90 degrees; added compression to the lateral meniscus can be produced by applying valgus stress across the knee joint while the knee is�being extended. To test the medial meniscus, the tibia is rotated externally, and the knee is extended from maximal flexion to about 90 degrees; added compression to the medial meniscus can be produced by placing varus stress across the knee joint while the knee is degrees of flexion. A positive test produces a thud or a click, or causes pain in a reproducible portion of the range of motion.

Because most patients with knee pain have soft tissue injuries, plain-film radiographs generally are not indicated. The Ottawa knee rules are a useful guide for ordering radiographs of the knee10,11.

If radiographs are required, three views are usually sufficient: anteroposterior view, lateral view, and Merchant�s view (for the patellofemoral joint).7,12 Teenage patients who report chronic knee pain and recurrent knee effusion require a notch or tunnel view (posteroanterior view with the knee flexed to 40 to 50 degrees). This view is necessary to detect radiolucencies of the femoral condyles (most�commonly the medial femoral condyle), which indicate the presence of osteochondritis dissecans.13

Radiographs should be closely inspected for signs of fracture, particularly involving the patella, tibial plateau, tibial spines, proximal fibula, and femoral condyles. If osteoarthritis is suspected, standing weight-bearing radiographs should be obtained.

 

Laboratory Studies

The presence of warmth, exquisite tenderness, painful effusion, and marked pain with even slight range of motion of the knee joint is consistent with septic arthritis or acute inflammatory arthropathy. In addition to obtaining a complete blood count with differential and an erythrocyte sedimentation rate (ESR), arthro- centesis should be performed. The joint fluid should be sent to a laboratory for a cell count with differential, glucose and protein measure- ments, bacterial culture and sensitivity, and polarized light microscopy for crystals.

Because a tense, painful, swollen knee may present an unclear clinical picture, arthrocentesis may be required to differentiate simple effusion from hemarthrosis or occult osteochondral fracture.4 A simple joint effusion produces clear, straw-colored transudative fluid, as in a knee sprain or chronic meniscal injury. Hemarthrosis is caused by a tear of the anterior cruciate ligament, a fracture or, less commonly, an acute tear of the outer portion of the meniscus. An osteochondral fracture causes hemarthrosis, with fat globules noted in the aspirate.

Rheumatoid arthritis may involve the knee joint. Hence, serum ESR and rheumatoid factor testing are indicated in selected patients.

The authors indicate that they do not have any conflicts of interest. Sources of funding: none reported.

In conclusion, knee pain is a common health issue which occurs due to a variety of injuries and/or conditions, such as sports injuries, automobile accidents, and arthritis, among other problems. Treatment of knee pain depends largely on the source of the symptoms. Therefore, it is essential for the individual to seek immediate medical attention to receive a diagnosis.

Chiropractic care is an alternative treatment option which focuses on the treatment of a variety of injuries and/or conditions associated with the musculoskeletal and nervous system. The scope of our information is limited to chiropractic and spinal health issues. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

Curated by Dr. Alex Jimenez

Green Call Now Button H .png

 

Additional Topic Discussion: Relieving Knee Pain without Surgery

Knee pain is a well-known symptom which can occur due to a variety of knee injuries and/or conditions, including�sports injuries. The knee is one of the most complex joints in the human body as it is made-up of the intersection of four bones, four ligaments, various tendons, two menisci, and cartilage. According to the American Academy of Family Physicians, the most common causes of knee pain include patellar subluxation, patellar tendinitis or jumper’s knee, and Osgood-Schlatter disease. Although knee pain is most likely to occur in people over 60 years old, knee pain can also occur in children and adolescents. Knee pain can be treated at home following the RICE methods, however, severe knee injuries may require immediate medical attention, including chiropractic care.

 

blog picture of cartoon paper boy

EXTRA EXTRA | IMPORTANT TOPIC: El Paso, TX Chiropractor Recommended

 

 

Blank
References

1. Rosenblatt RA, Cherkin DC, Schneeweiss R, Hart LG. The content of ambulatory medical care in the United States. An interspecialty comparison. N Engl J Med 1983;309:892-7.

2. Tandeter HB, Shvartzman P, Stevens MA. Acute knee injuries: use of decision rules for selective radiograph ordering. Am Fam Physician 1999;60: 2599-608.

3. Calmbach WL, Hutchens M. Evaluation of patients presenting with knee pain: part II. Differential diag- nosis. Am Fam Physician 2003;68:917-22

4. Bergfeld J, Ireland ML, Wojtys EM, Glaser V. Pin- pointing the cause of acute knee pain. Patient Care 1997;31(18):100-7.

5. Magee DJ. Knee. In: Orthopedic physical assessment. 4th ed. Philadelphia: Saunders, 2002:661-763.

6. Juhn MS. Patellofemoral pain syndrome: a review and guidelines for treatment. Am Fam Physician 1999;60:2012-22.

7. Smith BW, Green GA. Acute knee injuries: part I. History and physical examination. Am Fam Physi- cian 1995;51:615-21.

8. Walsh WM. Knee injuries. In: Mellion MB, Walsh WM, Shelton GL, eds. The team physician�s hand- book. 2d ed. St. Louis: Mosby, 1997:554-78.

9. McMurray TP. The semilunar cartilage. Br J Surg 1942;29:407-14.

10. Stiell IG, Wells GA, Hoag RH, Sivilotti ML, Cacciotti TF, Verbeek PR, et al. Implementation of the Ottawa knee rule for the use of radiography in acute knee injuries. JAMA 1997;278:2075-9.

11. Stiell IG, Greenberg GH, Wells GA, McKnight RD, Cwinn AA, Caciotti T, et al. Derivation of a decision rule for the use of radiography in acute knee injuries. Ann Emerg Med 1995;26:405-13.

12. Sartoris DJ, Resnick D. Plain film radiography: rou- tine and specialized techniques and projections. In: Resnick D, ed. Diagnosis of bone and joint disor- ders. 3d ed. Philadelphia: Saunders:1-40.

13. Schenck RC Jr, Goodnight JM. Osteochondritis dis- secans. J Bone Joint Surg [Am] 1996;78:439-56.

Close Accordion
How Chiropractic Can Help With Childhood Ear Infections | El Paso, TX.

How Chiropractic Can Help With Childhood Ear Infections | El Paso, TX.

More than 80% of children will experience at least one ear infection before they turn three-years-old. Ear infection is one of the top reasons that parents seek medical treatment for their children, causing fever, irritability, and ear pain. Also known as otitis media, an ear infection is caused by fluid buildup behind the eardrum that results in inflammation. It is typically caused by bacteria. According to the Centers for Disease Control (CDC), antibiotics are not a recommended treatment for most ear infections.

Types of Childhood Ear Infections

There are three types of childhood ear infections. Each type has its own distinct set of symptoms that can aid in diagnosis and treatment.

  • Otitis Media with Effusion (OME) � This results from a fluid buildup that occurs in the middle ear although there are no symptoms or signs of infection. While it can happen when the fluid remains after an ear infection has run its course, other causes may include allergies, previous respiratory infections (like cold or flu), elevation changes, environmental irritants, air travel, and drinking while lying down (usually on the back). Antibiotics are not sufficient for this type of ear infection.
  • Acute Otitis Media (AOM) � This type of ear infection is the most common, affecting the middle ear, and is marked by infection, swelling, and trapped fluid behind the eardrum. Symptoms may include an earache and fever. It may be seasonal (most earaches occur in the winter and fall months), environmental pollutants (second-hand smoke), age (children under two years of age are more prone to earaches), and attendance at daycare. AOM may also be caused when the fluid from OME becomes infected. Antibiotics are sometimes prescribed for more acute cases.
  • Chronic Otitis Media with Effusion (COME) � This can be a serious condition if left untreated. It occurs when fluid in the middle ear continuously returns or remains trapped for a long time. Often infection is not present, and there are no symptoms. Children with COME have a more difficult time fighting new infections, and they may suffer from hearing damage or loss.
ear infections children chiropractic care el paso tx.

 

Risk Factors for Ear Infections

Children are more prone to ear infections than adults. This is because the eustachian tubes (connecting the middle ear to the upper part of the throat) are smaller in children and more level. This means that the fluid does not drain as easily and if a respiratory illness like a cold causes the eustachian tubes to become blocked or swollen, the fluid may become trapped because it can�t drain. Other risk factors include:

  • Drinking while laying on their back
  • Respiratory illness such as a cold
  • Allergies
  • Air travel (changes in air pressure)
  • Cigarette smoke and other environmental pollutants
  • Changes in elevation

Childhood Ear Infection Symptoms and Signs

Most of the time children get ear infections before they are old enough to verbalize their discomfort so parents must rely on telltale sure signs and symptoms.

  • Crying and fussiness
  • Fever (most prevalent in younger children and infants)
  • Pulling or tugging at the ears
  • Difficulty hearing or failure to respond to quiet sounds
  • Fluid draining from the ear
  • Difficulty sleeping
  • Balance problems or clumsiness

Chiropractic for Ear Infections

Several studies have shown Chiropractic for ear infections to be an effective, natural, antibiotic-free treatment. While full spine adjustments are commonly used, other techniques include occipital subluxation, atlas subluxation, and axis subluxations.

Chiropractic care not only treats ear infections, but it also improves their overall health and ability to function. It has a strong focus on whole-body wellness so the chiropractor may recommend diet and lifestyle adjustments in addition to treatment. Parents need to realize that they have a choice when it comes to the type of care their children receive for ear infections and other kinds of illnesses.

Chiropractor 79936

What is a Quadriceps Tendon Rupture?

What is a Quadriceps Tendon Rupture?

The tendons are powerful soft tissues which connect the muscles to the bones. One of these tendons, the quadriceps tendon, works together with the muscles found at the front of the thigh in order to straighten the leg. A quadriceps tendon rupture can affect an individual’s quality of life.

A quadriceps tendon rupture can be a debilitating injury and it usually requires rehabilitation and surgical interventions to restore knee function. These type of injuries are rare. Quadriceps tendon ruptures commonly occur among athletes who perform jumping or running sports.

Quadriceps Tendon Rupture Description

The four quadriceps muscles come together above the kneecap, or patella, to form the quadriceps tendon. The quadriceps tendon joins the quadriceps muscles into the patella. The patella is connected to the shinbone, or tibia, by the patellar tendon. Working collectively, the quadriceps muscles, the quadriceps tendon, and the patellar tendon, straighten the knee.

A quadriceps tendon rupture can be partial or complete. Many partial tears don’t completely disrupt the soft tissues. However, a full tear will divide the soft tissues�into two parts. If the quadriceps tendon ruptures entirely, the muscle is no longer attached to the kneecap or patella. As a result, the knee is unable to straighten�out when the quadriceps muscles contract.

Quadriceps Tendon Rupture Causes

A quadriceps tendon rupture frequently occurs due to an increased load on the leg where the foot is planted and the knee is somewhat flexed. By way of instance, when landing from an awkward jump, the power is too much for the soft tissues to bear, causing a partial or complete tear. Tears may also be due to falls, direct impacts to the knee, and lacerations or cuts.

A weakened quadriceps tendon is also more likely to rupture. Several factors may result in tendon weakness, including quadriceps tendinitis, the inflammation of the quadriceps tendon, called quadriceps tendinitis. Quadriceps tendinitis is one of the most common sports injuries in athletes who participate in sports or physicial�activities which involve jumping.

Weakened soft tissues may also be brought on by diseases that interrupt blood flow to the knee or patella. Utilizing corticosteroids and some antibiotics have also been connected to weakness associated with quadriceps tendon ruptures. Immobilization for an extended period of time can also decrease strength in the quadriceps tendons. Finally, quadriceps tendon ruptures can occur due to dislocations and/or surgery.

Quadriceps Tendon Rupture Symptoms

A popping or tearing feeling is one of the most common symptoms associated with a quadriceps tendon rupture. Pain followed by swelling and inflammation of the knee�might make the individual unable to straighten out their knee. Other symptoms of a quadriceps tendon rupture include:

  • An indentation at the top of the kneecap or patella of the affected site
  • Bruising
  • Tenderness
  • Cramping
  • Sagging or drooping of the kneecap or patella where the tendon tore
  • Difficulty walking because the knee is buckling or giving away

 

 

Quadriceps Tendon Rupture Evaluation

The healthcare professional will perform an evaluation to diagnose a quadriceps tendon rupture by first discussing the patient’s symptoms�and medical history.�After talking about the patient’s symptoms and medical history, the doctor will conduct a comprehensive evaluation of the knee.

To ascertain the precise cause of the patient’s symptoms, the healthcare professional will examine how well it is possible to stretch, or straighten,�the knee. Although this area of the evaluation can be debilitating, it’s essential to diagnose a quadriceps tendon rupture.

To verify a quadriceps tendon rupture diagnosis, the doctor may order some imaging tests, like an x-ray or magnetic resonance imaging, or MRI, scan. The kneecap moves from place once the quadriceps tendon ruptures. This can be quite evident on a sideways x-ray perspective of the knee.

Complete tears may frequently be identified with x-rays alone. The MRI can reveal the quantity of tendon torn along with the positioning of the tear. From time to time, an MRI will also rule out another injury with similar symptoms. Diagnostic imaging is helpful in the evaluation of sports injuries.

Dr Jimenez White Coat

The quadriceps tendon is the large tendon found just above the kneecap, or patella, which allows us to straighten out our knee. While the quadriceps tendon is a strong, fibrous cord which can withstand tremendous amounts of force, sports injuries or other health issues may lead to a quadriceps tendon rupture. Quadriceps tendon ruptures are debilitating problems which can affect a patient’s quality of life.

Dr. Alex Jimenez D.C., C.C.S.T. Insight

Quadriceps Tendon Rupture Treatment

Non-Surgical Treatment

A majority of partial tears react well to non-surgical treatment approaches. The doctor may advise the patient to utilize a knee immobilizer or brace to allow the quadriceps tendon to heal. Crutches will help avoid placing weight onto the leg. A knee immobilizer or brace is used�for 3 to 6 months.

Once the initial pain, swelling, and inflammation have�decreased, alternative treatment options, such as chiropractic care and physical therapy, can be utilized. A doctor of chiropractic, or chiropractor, utilizes spinal adjustments and manual manipulations to carefully correct any spinal misalignments, or subluxations, which may be causing problems.

Furthermore, chiropractic care and physical therapy can provide lifestyle modifications, including physical activity and exercise programs to help speed up the recovery process. The patient may be recommended a variety of stretches and exercises to improve strength, flexibility and mobility. The healthcare professional will determine when it’s safe to return-to-play.

Surgical Treatment

Many individuals with complete tears require surgery to repair a quadriceps tendon rupture. Surgical interventions depend on the patient’s age, actions, and prior level of function. Surgery for quadriceps tendon ruptures involves re-attaching the tendon to the kneecap or patella. Surgery is carried out with regional spinal anesthetic or general anesthetic.

To reattach the tendon, sutures are put in the tendon and then threaded through drill holes at the kneecap. The stitches are attached in the base of the kneecap. The�physician will tie the sutures to find the ideal tension in the kneecap or patella. This will also make sure that the place of the kneecap closely matches that of the uninjured patella or kneecap.

A knee immobilizer, brace or a long leg cast may be utilized following the surgery. The patient may be allowed to set weight on their leg by means of crutches. Stretches and exercises are added into a rehabilitation program by a chiropractor or physical therapist after a surgical intervention.

The precise timeline for chiropractic care and physical therapy following a surgery for those patients that require it will be individualized personally. The patient’s rehabilitation program will be contingent upon the kind of tear, their surgery, medical condition, along with other requirements.

Conclusion

The majority of patients can return to their original routines after recovering from a quadriceps tendon rupture. The individual’s return will be addressed very carefully by the healthcare professional.�The scope of our information is limited to chiropractic and spinal health issues. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

Curated by Dr. Alex Jimenez

Green Call Now Button H .png

 

Additional Topic Discussion: Relieving Knee Pain without Surgery

Knee pain is a well-known symptom which can occur due to a variety of knee injuries and/or conditions, including�sports injuries. The knee is one of the most complex joints in the human body as it is made-up of the intersection of four bones, four ligaments, various tendons, two menisci, and cartilage. According to the American Academy of Family Physicians, the most common causes of knee pain include patellar subluxation, patellar tendinitis or jumper’s knee, and Osgood-Schlatter disease. Although knee pain is most likely to occur in people over 60 years old, knee pain can also occur in children and adolescents. Knee pain can be treated at home following the RICE methods, however, severe knee injuries may require immediate medical attention, including chiropractic care.

 

 

 

blog picture of cartoon paper boy

 

EXTRA EXTRA | IMPORTANT TOPIC: El Paso, TX Chiropractor Recommended