ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page

Wellness

Clinic Wellness Team. A key factor to spine or back pain conditions is staying healthy. Overall wellness involves a balanced diet, appropriate exercise, physical activity, restful sleep, and a healthy lifestyle. The term has been applied in many ways. But overall, the definition is as follows.

It is a conscious, self-directed, and evolving process of achieving full potential. It is multidimensional, bringing together lifestyles both mental/spiritual and the environment in which one lives. It is positive and affirms that what we do is, in fact, correct.

It is an active process where people become aware and make choices towards a more successful lifestyle. This includes how a person contributes to their environment/community. They aim to build healthier living spaces and social networks. It helps in creating a person’s belief systems, values, and a positive world perspective.

Along with this comes the benefits of regular exercise, a healthy diet, personal self-care, and knowing when to seek medical attention. Dr. Jimenez’s message is to work towards being fit, being healthy, and staying aware of our collection of articles, blogs, and videos.


Functional Fitness & Chiropractic Care for Back Pain

Functional Fitness & Chiropractic Care for Back Pain

In association with professional experience in fitness and chiropractic care,�symptoms of back pain have been determined to improve in people who participate in physical activity and exercise, as directed by a physiotherapist, or physical therapist, or any other healthcare professional, such as a chiropractor. Various complementary and alternative treatment options for back pain also involve the use of functional fitness therapy, however, additional evidence-based research studies on the effectiveness of physical activity and exercise are still needed.

 

On a personal note, chiropractic care utilizes spinal adjustments and manual manipulations to carefully correct misalignments on the spine, or spinal subluxations. Along with chiropractic treatment, a doctor of chiropractor may also recommend a series of stretches and exercises to help increase flexibility, strength and mobility, improving the overall function of the spine. Physical activity for low back pain has been evaluated in the randomized controlled trial below.

Abstract

 

Objective

 

To evaluate effectiveness of an exercise programme in a community setting for patients with low back pain to encourage a return to normal activities.

 

Design

 

Randomised controlled trial of progressive exercise programme compared with usual primary care management. Patients� preferences for type of management were elicited independently of randomisation.

 

Participants

 

187 patients aged 18-60 years with mechanical low back pain of 4 weeks to 6 months� duration.

 

Interventions

 

Exercise classes led by a physiotherapist that included strengthening exercises for all main muscle groups, stretching exercises, relaxation session, and brief education on back care. A cognitive-behavioural approach was used.

 

Main Outcome Measures

 

Assessments of debilitating effects of back pain before and after intervention and at 6 months and 1 year later. Measures included Roland disability questionnaire, Aberdeen back pain scale, pain diaries, and use of healthcare services.

 

Results

 

At 6 weeks after randomisation, the intervention group improved marginally more than the control group on the disability questionnaire and reported less distressing pain. At 6 months and 1 year, the intervention group showed significantly greater improvement in the disability questionnaire score (mean difference in changes 1.35, 95% confidence interval 0.13 to 2.57). At 1 year, the intervention group also showed significantly greater improvement in the Aberdeen back pain scale (4.44, 1.01 to 7.87) and reported only 378 days off work compared with 607 in the control group. The intervention group used fewer healthcare resources. Outcome was not influenced by patients� preferences.

 

Conclusions

 

The exercise class was more clinically effective than traditional general practitioner management, regardless of patient preference, and was cost effective.

 

Key Messages

 

  • Patients with back pain need to return to normal activities as soon as possible but are often afraid that movement or activity may be harmful
  • An exercise programme led by a physiotherapist in the community and based on cognitive-behavioural principles helped patients to cope better with their pain and function better even one year later
  • Patients� preferences for type of management did not affect outcome
  • Patients in the intervention group tended to use fewer healthcare resources and took fewer days off work
  • This type of exercise programme should be more widely available

 

Introduction

 

Low back pain is common and, although it may settle quickly, recurrence rates are about 50% in the following 12 months. Recent management guidelines recommend that an early return to physical activities should be encouraged, but patients are often afraid of movement after an acute onset of back pain. Trials of specific exercise programmes for acute back pain have not shown them to be effective, but a specific exercise programme may have to be tailored to suit the individual patient and so is less likely to be effective for a heterogeneous group of patients.

 

However, there is some evidence that a general exercise programme, which aims to increase individuals� confidence in the use of their spine and overcome the fear of physical activity, can be effective for patients with chronic back pain (of more than six months� duration). A recent randomised trial of a supervised exercise programme in a hospital setting reported significantly better outcomes at six months and two years for the exercise group compared with the control group. Whether this approach would be effective and cost effective for patients with low back pain of less than six months� duration in a primary care setting is unknown.

 

Image 1 Exercise Classes for Back Pain

 

An important methodological problem occurs when it is not possible to blind subjects to the treatment they receive, since outcome is probably directly influenced by their preconceived ideas regarding the effectiveness of intervention. Thus, in trials where a double blind procedure is not feasible, participants who are not randomised to their treatment of choice may be disappointed and suffer from resentful demoralisation, whereas those randomised to their preferred treatment may have a better outcome irrespective of the physiological efficacy of the intervention. However, this problem may be partly ameliorated if patients� treatment preferences are elicited before randomisation, so that they can be used to inform the analysis of costs and outcomes.

 

In this paper, we report a fully randomised trial for the treatment of subacute low back pain in which the analysis was informed by patient preference.

 

Subjects and Methods

 

Recruitment of Subjects

 

Eighty seven general practitioners agreed to participate in the study, and the principal investigator (JKM) visited each practice to discuss participation. Selection of general practitioners was based in the York area and restricted by the need to provide easy access for patients to the classes. Only one invited practice declined to participate. Single handed practices were not invited. The general practitioners referred patients directly to the research team or sent a monthly list of patients who had consulted with back pain. Inclusion criteria were patients with mechanical low back pain of at least four weeks� duration but less than six months, aged between 18 and 60, declared medically fit by their general practitioner to undertake the exercise, and who had consulted one of the general practitioners participating in the study. Patients with any potentially serious pathology were excluded, as were any who would have been unable to attend or participate in the classes. The exclusion criteria were the same as described by Frost et al except that concurrent physiotherapy rather than previous physiotherapy was an exclusion criterion in this trial.

 

Evaluation

 

Patients who seemed eligible were contacted by telephone and if they were interested in participating in the study were invited to an initial interview, at which the study and its implications for participants were explained. Patients who met all the eligibility criteria and consented to participate attended a first assessment a week later.

 

Image 2 Physical Examination for Back Pain

 

This included a physical examination (to exclude possible serious spinal pathology) and collection of baseline data by means of validated measures of health status. The main outcome measures were the Roland back pain disability questionnaire, which measures functional limitations due to back pain, and the Aberdeen back pain scale, which is more a measure of clinical status. The Roland disability questionnaire consists of a 24 point scale: a patient scoring three points on the scale means that he or she reports, for example, �Because of my back I am not doing any of the jobs that I usually do around the house, I use a handrail to get upstairs, and I lie down to rest more often.� We also administered the EuroQoL health index (EQ-5D) and the fear and avoidance beliefs questionnaire (FABQ).

 

The second assessment was carried out at the patients� general practice six weeks after randomisation to treatment. The brief physical examination was repeated, and the patients were asked to complete the same outcome questionnaires.

 

In addition, patients were asked to complete pain diaries in the week before their first assessment and in the week before their second assessment. The diaries were used to assess subjective pain reports and asked �How strong is the pain?� and �How distressing is the pain?�

 

We also evaluated patients at six and 12 months� follow up by sending them outcome questionnaires to complete and return.

 

Randomisation and Treatments

 

A pre-prepared randomisation list was generated from a random numbers table and participants were stratified by practice in blocks of six. The trial coordinator ensured concealment of allocation from the clinical researchers by providing the research physiotherapist with a sealed envelope for a named patient before baseline assessment. A note inside the envelope invited the participant either to attend exercise classes or to continue with the current advice or treatment offered by his or her general practitioner. (One of the referring general practitioners used manipulation as usual treatment on most of his patients so that up to 37 patients in each arm of the study could also have received manipulation.) Each patient had an equal chance of being allocated to the intervention or the control group. Before patients were given their envelope they were asked whether they had any preference for the treatment assignment. The participants opened the envelope after leaving the surgery.

 

Intervention group�The exercise programme consisted of eight sessions, each lasting an hour, spread out over four weeks, with up to 10 participants in each class. The programme was similar to the Oxford fitness programme and included stretching exercises, low impact aerobic exercises, and strengthening exercises aimed at all the main muscle groups. The overall aim was to encourage normal movement of the spine. No special equipment was needed. Participants were discouraged from viewing themselves as invalids and from following the precept of �Let pain be your guide.� They were encouraged to improve their individual record and were selectively rewarded with attention and praise. Although partly based on a traditional physiotherapy approach, the programme used cognitive-behavioural principles. One simple educational message encouraging self reliance was delivered at each class. Participants were told that they should regard the classes as a stepping stone to increasing their own levels of activity.

 

Controls�Patients allocated to the control group continued under the care of their doctor and in some cases were referred to physiotherapy as usual. No attempt was made to regulate the treatment they received, but it was recorded.

 

Economic Analysis

 

We recorded patients� use of healthcare services using a combination of retrospective questionnaires and prospective diary cards, which they returned at 6 and 12 months� follow up. From this information we estimated the cost of each patient�s treatment. We compared the mean costs of treatment for the two groups by using Student�s t tests and standard confidence intervals. However, as cost data were highly positively skewed, these results were checked with a non-parametric �bootstrap.� The economic evaluation addressed both costs to the NHS and the costs to society. Participants were not charged for the classes, in line with any treatment currently available on the NHS.

 

Statistical Analysis

 

Our original intention was to recruit 300 patients, which, given a standard deviation of 4, would have provided 90% power at the 5% significance level to detect a 1.5 point difference between the two groups in the mean change on the Roland disability questionnaire. However, recruitment of patients to the study proved much slower than expected, and, because of the limitations of study resources, recruiting was stopped after 187 patients had been included into the study. This smaller sample reduced the power to detect such a difference to 72%, but there was still 90% power to detect a 2 point difference in outcome.

 

Our analysis was based on intention to treat. We estimated the effects of treatment on the outcome measures by means of analysis of covariance, with the change in scores as the dependent variable and adjustment being made for baseline score and patient preference. We used Student�s t tests to analyse the data from the pain diaries as the baseline scores were quite similar.

 

Dr. Alex Jimenez’s Insight

In consideration with the research study regarding a randomized controlled trial coordinated to determine the effectiveness of functional fitness towards the improvement of low back pain, we supplement our philosophies of overall health and wellness to our patients and we make sure to take their recovery and rehabilitation to the next level. Our fitness and chiropractic care treatment goes beyond many other medically advanced methods. The proprietary treatment methods offered at our clinic promote true well-being and fitness practices with a primary goal on the calibration of the human body. The outcome measures of the randomized controlled trial on exercise for low back pain involved two groups of participants, an intervention group and a control group. The results are recorded below.

 

Results

 

Study Population

 

Of the 187 patients included in the trial, 89 were randomised to the intervention and 98 to the control group. The figure shows their progress through the trial. In both groups those with the most severe back pain at randomisation were less likely to return follow up questionnaires: the mean Roland disability questionnaire score for responders at one year follow up was 5.80 (SD 3.48) compared with a mean score of 9.06 (4.58) for non responders respectively (P=0.002).

 

Baseline Characteristics

 

The clinical and demographic characteristics of the patients in the two groups were fairly well balanced at randomisation (Table 1), although those allocated to the intervention group tended to report more disability on the Roland disability questionnaire than did the control group. Most patients (118, 63%), when asked, would have preferred to be allocated to the exercise programme. Attendance of the classes was considered quite good, with 73% of the intervention group attending between six and eight of the classes. Four people failed to attend any classes and were included in the intention to treat analysis. No patients allocated to the control group took part in the exercise programme.

 

Table 1 Baseline Characteristics of Patients with Mechanical Low Back Pain Included in Study

Table 1: Baseline characteristics of patients with mechanical low back pain included in study. Values are means (standard deviations) unless stated otherwise.

 

Clinical Outcomes

 

Table ?2 shows the mean changes in outcome measures over time, from randomisation to final follow up at one year. After adjustment for baseline scores, the intervention group showed greater decreases in all measures of back pain and disability compared with the controls. At six weeks after randomisation, patients in the intervention group reported less distressing pain than the control group (P=0.03) and a marginally significant difference on the Roland disability questionnaire scores. Other variables were not significantly different, but the differences in change were all in favour of the intervention group. At six months the difference of the mean change scores of the Roland disability questionnaire was significant, and at one year the differences in changes of both the Roland disability questionnaire and the Aberdeen back pain scale were significant (Table ?2). Most of the intervention group improved by at least three points on the Roland disability questionnaire: 53% (95% confidence interval 42% to 64%) had done so at six weeks, 60% (49% to 71%) at six months, and 64% (54% to 74%) at one year. A smaller proportion of the control group achieved this clinically important improvement: 31% (22% to 40%) at six weeks, 40% (29% to 50%) at six months, and 35% (25% to 45%) at one year.

 

Table 2 Changes in Back Pain Scores from Baseline Values in Intervention and Control Groups

Table 2: Changes in back pain scores from baseline values in intervention and control groups at 6 weeks, 6 months, and 1 year follow up.

 

Patients� Preference

 

We examined the effect of patients� baseline preference for treatment on outcome after adjusting for baseline scores and main effects. Preference did not significantly affect response to treatment. The intervention had similar effects on both costs and outcomes regardless of baseline preference. For example, the change in the Roland disability questionnaire score at 12 months in the control group was ?1.93 for patients who preferred intervention and ?1.18 for those who were indifferent (95% confidence interval of difference ?1.05 to 2.55), and in the intervention group the change in score was ?3.10 for those who preferred intervention and ?3.15 for those who were indifferent ((95% confidence interval of difference ?1.47 to 3.08). As the interaction term (preference by random allocation) was non-significant, the results shown in Table ?2 exclude the preference term.

 

Economic Evaluation

 

Patients in the intervention group tended to use fewer healthcare and other resources compared with those in the control group (Table ?3). However, the mean difference, totalling �148 per patient, was not significant: the 95% confidence interval suggests there could have been a saving of as much as �442 per patient in the intervention group or an additional cost of up to �146. Patients in the control group took a total of 607 days off work during the 12 months after randomisation compared with 378 days taken off by the intervention group.

 

Table 3 Use of Services and their Costs Associated with Back Pain in the Two Study Groups

Table 3: Use of services and their costs associated with back pain in the two study groups at 12 months follow up.

 

Discussion

 

Our results support the hypothesis that a simple exercise class can lead to long term improvements for back pain sufferers. Studies have shown that a similar programme for patients with chronic back pain can be effective in the hospital setting. In this study we show the clinical effectiveness for patients with subacute or recurrent low back pain who were referred by their general practitioner to a community programme.

 

Current management guidelines for low back pain recommend a return to physical activity and taking exercise. In particular, they recommend that patients who are not improving at six weeks after onset of back pain, which may be a higher proportion than previously realised, should be referred to a reactivation programme. The programme we evaluated fits that requirement well. It shows participants how they can safely start moving again and increase their levels of physical activity. It is simple and less costly than individual treatment.

 

It seemed to have beneficial effects even one year later, as measured by functional disability (Roland disability questionnaire) and clinical status (Aberdeen back pain scale). The mean changes in scores on these instruments were small, with many patients reporting mild symptoms on the day of entry to the trial. However, a substantially larger proportion of participants in the exercise classes gained increases of over three points on the Roland disability questionnaire at six weeks, six months, and one year, which might be clinically important. At six weeks, participants in the exercise classes reported significantly less distressing pain compared with the control group, although the intensity of pain was not significantly different. This is consistent with findings from a study of chronic back pain patients in Oxford, in which changes in distressing pain were much greater than were the changes in intensity of pain.

 

People with back pain who use coping strategies that do not avoid movement and pain have less disability. In our study the participants in the exercise classes were able to function better according to Roland disability questionnaire scores than the control group at six months and one year after randomisation to treatment, and at one year they also showed a significantly greater improvement in clinical status as measured by the Aberdeen back pain scale. This increase in differences in effect between the intervention and control groups over time is consistent with the results from long term follow up in comparable back pain trials.

 

Study Design

 

The design of this study was a conventional randomised controlled trial in that all eligible patients were randomised. However, the participants were asked to state their preferred treatment before they knew of their allocation. A study of antenatal services showed that preferences can be an important determinant of outcome, but we did not find any strong effect of preference on the outcome, although a much larger sample size would be needed to confidently exclude any modest interaction between preference and outcome. This information may be useful to clinicians in that it suggests that exercise classes are effective even in patients who are not highly motivated. Our trial design, of asking patients for their preferences at the outset, has substantial advantages over the usual patient preference design, in which costs and outcomes cannot be reliably controlled for confounding by preference.

 

Conclusions

 

Our exercise programme did not seem to influence the intensity of pain but did affect the participants� ability to cope with the pain in the short term and even more so in the longer term. It used a cognitive-behavioural model, shifting the emphasis away from a disease model to a model of normal human behaviour, and with minimal extra training a physiotherapist can run it. Patients� preferences did not seem to influence the outcome.

 

Figure 1 Flow Chart Describing Patient Progress Through the Trial

Figure 1: Flow chart describing patients’ progress through the trial.

 

Footnotes

 

Funding: This research was funded by the Arthritis Research Campaign, the Northern and Yorkshire Regional Health Authority, and the National Back Pain Association.

 

Competing interests: None declared.

 

In conclusion,�the participation of patients in functional fitness and/or exercise as recommended by a physiotherapist, or physical therapist, or any other healthcare professional, such as a chiropractor, is essential towards the improvement of their symptoms of low back pain. The exercise programme helped patients better cope with their symptoms of back pain where the intervention group showed that they used fewer healthcare resources and took fewer day off work, according to the outcome measures of the research study. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Sciatica

 

Sciatica is referred to as a collection of symptoms rather than a single type of injury or condition. The symptoms are characterized as radiating pain, numbness and tingling sensations from the sciatic nerve in the lower back, down the buttocks and thighs and through one or both legs and into the feet. Sciatica is commonly the result of irritation, inflammation or compression of the largest nerve in the human body, generally due to a herniated disc or bone spur.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: Treating Sciatica Pain

 

 

Blank
References
1.�Croft P, editor.�Low back pain.�Oxford: Radcliffe Medical Press; 1997.
2.�Clinical Standards Advisory Group.�Back pain.�London: HMSO; 1994.
3.�Waddell G, Feder G, McIntosh A, Lewis M, Hutchinson A.�Low back pain evidence review.�London: Royal College of General Practitioners; 1996.
4.�Malmivaara A, Hakkinen U, Aro T, Heinrichs M, Koskenniemi L, Kuosma E, et al. The treatment of acute low back pain�bed rest, exercises or ordinary activity?�N Engl J Med.�1995;332:351�355.[PubMed]
5.�Faas A, Chavannes A, van Eijk JTM, Gubbels J. A randomized, placebo-controlled trial of exercise therapy in patients with acute low back pain.�Spine.�1993;18:1388�1395.�[PubMed]
6.�Frost H, Klaber Moffett J, Moser J, Fairbank J. Evaluation of a fitness programme for patients with chronic low back pain.�BMJ.�1995;310:151�154.�[PMC free article][PubMed]
7.�Frost H, Lamb S, Klaber Moffett J, Fairbank J, Moser J. A fitness programme for patients with chronic low back pain: 2 year follow-up of a randomised controlled trial.�Pain.�1998;75:273�279.�[PubMed]
8.�McPherson K, Britton A, Wennberg J. Are randomised controlled trials controlled? Patient preferences and unblind trials.�J R Soc Med.�1997;90:652�656.�[PMC free article][PubMed]
9.�Bradley C. Designing medical and educational studies.�Diabetes Care.�1993;16:509�518.�[PubMed]
10.�Clement S, Sikorski J, Wilson J, Candy B. Merits of alternative strategies for incorporating patient preferences into clinical trials must be considered carefully [letter]�BMJ.�1998;317:78.�[PubMed]
11.�Torgerson D, Klaber Moffett J, Russell I. Patient preferences in randomised trials: threat or opportunity?�J Health Serv Res Policy.�1996;1(4):194�197.�[PubMed]
12.�Roland M, Morris R. A study of the natural causes of back pain. Part 1: Development of a reliable and sensitive measure of disability in low-back pain.�Spine.�1983;8:141�144.�[PubMed]
13.�Ruta D, Garratt A, Wardlaw D, Russell I. Developing a valid and reliable measure of health outcome for patients with low back pain.�Spine.�1994;19:1887�1896.�[PubMed]
14.�Brooks R.with EuroQoL Group.�EuroQoL: the current state of play�Health Policy�19963753�72.[PubMed]
15.�Waddell G, Newton M, Henderson I, Somerville D, Main C. A fear-avoidance beliefs questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability.�Pain.�1993;52:157�168.�[PubMed]
16.�Jensen M, McFarland C. Increasing the reliability and validity of pain intensity measurement in chronic pain patients.�Pain.�1993;55:195�203.�[PubMed]
17.�Efron B, Tibshirani R.�An introduction to bootstrap.�New York: Chapman and Hall; 1993.
18.�Williams D, Keefe F. Pain beliefs and use of cognitive-behavioral coping strategies.�Pain.�1991;46:185�190.�[PubMed]
19.�Estlander A, Harkapaa K. Relationships between coping strategies, disability and pain levels in patients with chronic low back pain.�Scand J Behav Ther.�1989;18:56�69.
20.�Holmes J, Stevenson C. Differential effects of avoidant and attentional coping strategies on adaption to chronic and recent-onset pain.�Health Psychology.�1990;9:577�584.�[PubMed]
21.�Rosenstiel A, Keefe F. The use of coping strategies in chronic low back pain patients: relationship to patient characteristics and current adjustments.�Pain.�1983;17:33�44.�[PubMed]
22.�Slade P, Troup J, Lethem J, Bentley G. The fear avoidance model of exaggerated pain perception II Preliminary studies of coping strategies for pain.�Behav Res Ther.�1983;21:409�416.�[PubMed]
23.�Meade T, Dyer S, Browne W, Frank A. Randomised comparison of chiropractic and hospital outpatient management for low back pain: results from extended follow up.�BMJ.�1995;311:349�351.[PMC free article][PubMed]
24.�Cherkin D, Deyo R, Battie M, Street J, Barlow W. A comparison of physical therapy, chiropractic manipulation, and provision of an educational booklet for the treatment of patients with low back pain.�N Engl J Med.�1998;339:1021�1029.�[PubMed]
Close Accordion
Respiratory Health And Nutrition

Respiratory Health And Nutrition

Respiratory Health Abstract: Diet and nutrition may be important modifiable risk factors for the development,
progression and management of obstructive lung diseases such as asthma and chronic
obstructive pulmonary disease (COPD). This review examines the relationship between
dietary patterns, nutrient intake and weight status in obstructive lung diseases, at different
life stages, from in-utero influences through childhood and into adulthood. In vitro and
animal studies suggest important roles for various nutrients, some of which are supported by
epidemiological studies. However, few well-designed human intervention trials are available
to definitively assess the efficacy of different approaches to nutritional management of
respiratory diseases. Evidence for the impact of higher intakes of fruit and vegetables is
amongst the strongest, yet other dietary nutrients and dietary patterns require evidence from
human clinical studies before conclusions can be made about their effectiveness.

Keywords: respiratory disease; asthma; COPD; dietary patterns; antioxidants; vitamin C;
vitamin E; flavonoids; vitamin D; obesity; adipokines; undernutrition

1. Introduction:�Respiratory Health

Diet and nutrition are increasingly becoming recognized as modifiable contributors to chronic disease development and progression. Considerable evidence has emerged indicating the importance of dietary intake in obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) in both early life and disease development [1,2] and management of disease progression [3,4]. These�respiratory diseases are characterized by airway and systemic inflammation, airflow obstruction, deficits in lung function and significant morbidity and mortality, as well as being costly economic burdens [5,6]. Pharmacological management remains the mainstay for treatment of respiratory diseases, and while treatment options are advancing, dietary intake modification could be an important adjuvant to disease management and an important consideration for disease prevention. Dietary patterns as well as intake of individual nutrients have been evaluated in observational and experimental studies throughout life stages and disease stages to elucidate their role in respiratory diseases. This review concentrates on evidence regarding the role of dietary patterns, individual nutrients, weight status and adipokines in asthma and COPD.

2. Dietary Intake And Respiratory Diseases

2.1. Dietary Patterns:�Respiratory Health

Various dietary patterns have been linked to the risk of respiratory disease [7]. The Mediterranean diet has been found to have protective effects for allergic respiratory diseases in epidemiological studies [8]. This dietary pattern consists of a high intake of minimally processed plant foods, namely; fruit, vegetables, breads, cereals, beans, nuts and seeds, low to moderate intake of dairy foods, fish, poultry and wine and low intake of red meat. High intakes of olive oil result in a dietary composition that is low in saturated fat though still moderate in total fat. In children, several studies showed that adherence to the Mediterranean diet is inversely associated with atopy and has a protective effect on atopy, wheezing and asthma symptoms [9�11]. The Mediterranean diet may also be important for maternal diet, as a study in Spain found that a high Mediterranean diet score during pregnancy was protective for persistent wheeze and atopic wheeze in children at 6.5 years of age [12]. Though one cross-sectional study in Japan reported a strong association between the adherence to the Mediterranean diet and asthma control [13], there is less evidence available to support this dietary pattern in adults. The �western� dietary pattern, prevalent in developed countries, is characterised by high consumption of refined grains, cured and red meats, desserts and sweets, french fries, and high-fat dairy products [2,14]. This pattern of intake has been associated with increased risk of asthma in children [15,16]. Furthermore, in children, increased intake of fast food such as hamburgers and related eating behaviours, for example salty snack eating and frequent take away consumption, are correlated with the presence of asthma, wheezing and airway hyperresponsiveness (AHR) [17,18]. In adults, a western diet has been shown to be positively associated with increased frequency of asthma exacerbation [19], but not related to asthma risk. In addition, an acute challenge with a high fat fast food meal has been shown to worsen airway inflammation [20]. While this dietary pattern appears to be deleterious in children and adults with asthma, studies examining the effect of this dietary pattern in maternal diets have found no relationship with a consumption of a �western� style diet in pregnancy and risk of asthma in offspring [21]. Cross-sectional studies have also found that the �western� diet is associated with an increased risk of COPD [2]. In summary the Mediterranean diet appears to be protective in children, though there is less evidence for benefits in the maternal diet and in adults. There is evidence to suggest that a �western� style dietary pattern increases risk of asthma in children, has worse outcomes for adults with asthma and is related to COPD risk.

2.2. Fruit And Vegetables:�Respiratory Health

Fruit and vegetable intake has been investigated for potential benefits in association with respiratory conditions due to their nutrient profile consisting of antioxidants, vitamins, minerals, fibre and phytochemicals. The mechanisms by which the nutrients in fruit and vegetables exert beneficial effects in respiratory conditions are discussed in the sections below. Epidemiological evidence reviewed by Saadeh et al. [7] showed that fruit intake was associated with a low prevalence of wheezing and that cooked green vegetable intake was associated with a low prevalence of wheezing and asthma in school children aged 8�12 years old. Furthermore low vegetable intake in children was related to current asthma [7]. In adults, Grieger et al. [22] discusses the heterogeneous nature of the data describing fruit and vegetable intake and lung function, with one study showing no effect on lung function of higher fruit and vegetable intake over 10 years [23], yet in another study, increased fruit intake over 2 years was associated with increased FEV1 [23], while another study showed that a large decrease in fruit intake over 7 years was associated with decreased FEV1 [24]. We recently conducted an intervention in adults with asthma and found that subjects who consumed a high fruit and vegetable diet for 3 months, had a decreased risk of asthma exacerbation, compared to subjects who consumed a low fruit and vegetable diet [25]. A recent meta-analysis of adults and children, which analysed 12 cohorts, 4 population-based case-control studies, and 26 cross-sectional studies provides important new evidence showing that a high intake of fruit and vegetables reduces the risk of childhood wheezing, and that fruit and vegetable intake is negatively associated with asthma risk in adults and children [26]. While some studies of maternal diet have found no relationship with fruit and vegetable intake and asthma in children [27], other studies have found that increased fruit and vegetable intake were related to a decreased risk of asthma in children [21,28]. Increased fruit and vegetable intake may be protective against COPD development, with consumption of a �prudent� diet including increased fruit and vegetables being protective against lung function decline [3]. Two randomized controlled trials (RCT�s) manipulating fruit and vegetable intake have been conducted in COPD. A 12 week study showed no effect of a high fruit and vegetable intake on FEV1, systemic inflammation or airway oxidative stress [29]. However, a 3-year study in 120 COPD patients revealed an improvement in lung function in the high fruit and vegetable group compared to the control group [30], suggesting that longer term intervention is needed to provide a therapeutic effect. There is considerable evidence to suggest that a high intake of fruit and vegetables is favourable for all life stages of asthma and evidence is emerging which suggests the same in COPD.

2.3. Omega-3 Fatty Acids And Fish:�Respiratory Health

Omega-3 polyunsaturated fatty acids (PUFA) from marine sources and supplements have been shown to be anti-inflammatory through several cellular mechanisms including their incorporation into cellular membranes and resulting altered synthesis of eicosanoids [31]. Experimental studies have shown that long chain omega-3 PUFA�s decrease inflammatory cell production of pro-inflammatory prostaglandin (PG) E2, leukotriene (LT) B4 [32] and activity of nuclear factor-kappaB (NF-?B), a potent inflammatory transcription factor [33]. Long chain omega-3 PUFA�s also down regulate pro-inflammatory cell cytokine production (interleukin-1? (IL-1?), tumor necrosis factor-? (TNF-?)) by monocytes and macrophages, decrease expression of cellular adhesion molecules on monocytes and endothelial cells and reduce�production of ROS in neutrophils [34]. Saddeh et al. [7] reported that the evidence describing the relationship between omega-3 PUFA�s or fish consumption and respiratory conditions in childhood is contradictory. Some observational studies show that intake of oily fish is negatively associated with AHR and asthma [35,36]. However, evidence from Japan suggests that frequency of fish consumption is positively related to asthma risk [37] and in Saudi Arabia fish intake was not related to the presence of asthma or wheezing at all [18]. Similarly in adults, the data is heterogeneous, with omega-3 PUFAs or fish being associated with improved lung function [38] and decreased risk of asthma [39], AHR [35] and wheeze [36] in some, but not all studies [40]. Maternal dietary intake of oily fish was found to be protective of asthma in children 5 years of age if born to mothers with asthma [41] and a recent systematic review of omega-3 fatty acid supplementation studies in women during pregnancy found that the risk of asthma development in children was reduced [42]. The data examining the possible benefits of dietary omega-3 fatty acid supplementation in asthma are heterogeneous and as summarized by a 2002 Cochrane review [43], to date there is insufficient evidence to recommend omega-3 PUFA supplementation in asthma. Omega-3 PUFA may have positive effects in COPD, as higher levels of DHA in serum were found to decrease the risk of developing COPD [44]. Experimental studies in humans with COPD including supplementation with omega-3 found lower levels of TNF-? [45] and improved rehabilitation outcomes [46], though no improvements were seen in FEV1. Several studies using omega-3 PUFA supplementation in COPD are currently underway and will provide important new information to inform the field [47�49]. Consumption of oily fish or supplementation with omega-3 PUFA�s may have positive effects in asthma and COPD, though strong evidence to support the experimental and epidemiological data is not yet available.

3. Nutrients And Respiratory Disease

3.1. Antioxidants And Oxidative Stress

Dietary antioxidants are an important dietary factor in protecting against the damaging effects of oxidative stress in the airways, a characteristic of respiratory diseases [50]. Oxidative stress caused by reactive oxygen species (ROS), is generated in the lungs due to various exposures, such as air pollution, airborne irritants and typical airway inflammatory cell responses [51]. Also, increased levels of ROS generate further inflammation in the airways via activation of NF-?B and gene expression of pro-inflammatory mediators [52]. Antioxidants including vitamin C, vitamin E, flavonoids and carotenoids are abundantly present in fruits and vegetables, as well as nuts, vegetable oils, cocoa, red wine and green tea. Dietary antioxidants may have beneficial effects on respiratory health, from influences of the maternal diet on the fetus, and intake in children through to adults and pregnant women with asthma and adults with COPD. ?-tocopherol is a form of vitamin E, which helps maintain integrity of membrane fatty acids, by inhibiting lipid peroxidation [22]. Carotenoids are plant pigments and include; ?- and ?-carotene, lycopene, lutein and ?-cryptoxanthin. This group of fat soluble antioxidants have been shown to benefit respiratory health due to their ability to scavenge ROS and reduce oxidative stress [22]. The antioxidant lycopene, present predominantly in tomatoes, may be beneficial in respiratory conditions, indeed lycopene intake has been positively correlated with FEV1 in both asthma and COPD [53] and an�intervention study in asthma showed that lycopene supplementation could suppress neutrophilic airway inflammation [54]. Antioxidants may also be important in asthma during pregnancy, as while oxidative stress commonly increases during normal pregnancies, in women with asthma oxidative stress is heightened [55]. During pregnancy there is a compensatory increase in circulating and placental antioxidants in asthma versus women without asthma, to protect the foetus against damaging effects of oxidative stress [55,56]. Improving antioxidant intake in pregnant women with asthma may be beneficial as poor fetal growth outcomes are associated with low levels of circulating antioxidants and dietary antioxidants are the first defense mechanism against ROS [22]. Maternal intake of vitamin E, vitamin D, milk, cheese and calcium during pregnancy are negatively associated, while vitamin C is positively associated, with wheezing in early childhood [57,58]. Antioxidants including lycopene appear to have positive influences in respiratory conditions, further detail is provided below on evidence for vitamin C, vitamin E and flavonoids and their role in the maternal diet, diets of children and adults with asthma and adults with COPD.

3.2. Vitamin C:�Respiratory Health

Vitamin C has been enthusiastically investigated for benefits in asthma and links to asthma prevention. In vitro data from endothelial cell lines showed that vitamin C could inhibit NF-?B activation by IL-1, TNF-? and block production of IL-8 via mechanisms not dependent on the antioxidant activity of vitamin C [59]. Anti-inflammatory and anti-asthmatic effects of vitamin C supplementation in vivo, have been shown through allergic mouse models of asthma. Jeong et al. [60] reported decreased AHR to methacholine and inflammatory cell infiltration of perivascular and peribronchiolar spaces when vitamin C was supplemented during allergen challenge. While Chang et al. [61] found that high dose Vitamin C supplementation in allergen challenged mice decreased eosinophils in BALF and increased the ratio of Th1/Th2 cytokine production shifting the inflammatory pattern to Th1 dominant. Observational studies in children showed consumption of fruit, a rich source of vitamin C, was related to reduced wheezing [62] and vitamin C intake was negatively associated with wheezing [63], while another study reported no relationship between vitamin C intake and lung function [64]. Grieger et al. [22] also reported conflicting evidence for effects of vitamin C intake in adults, with epidemiological studies showing a positive association between vitamin C intake and lung function in some [65], but not all studies [23,66]. Despite the observational data linking vitamin C to lung health, supplementation with vitamin C has not been shown to reduce the risk of asthma [66] which may be related to the interdependence of nutrients found in foods, resulting in lack of efficacy when supplementing with isolated nutrients. Evidence from experimental and observational studies suggests that Vitamin C might be important in COPD pathogenesis and management. Koike et al. [67] reported that in knock out mice unable to synthesize vitamin C, vitamin C supplementation was able to prevent smoke induced emphysema and also to restore damaged lung tissue and decrease oxidative stress caused by smoke induced emphysema. A case control study in Taiwan reported that subjects with COPD had lower dietary intake and lower serum levels of vitamin C than healthy controls [68]. Indeed an epidemiological study in the United Kingdom of over 7000 adults aged 45�74 years found that increased plasma vitamin C concentration was associated with a decreased risk of obstructive airways disease, suggestive of a protective effect [69]. Thus, in summary, while observational data has suggested that vitamin C is important for lung health, intervention trials�showing efficacy are lacking and it appears that supplementation with vitamin C-rich whole foods, such
as fruit and vegetables may be more effective.

3.3. Vitamin E:�Respiratory Health

The vitamin E family comprises of 4 tocopherols and 4 tocotrienols, with the most plentiful in the diet or in tissues being ?-tocopherol and ?-tocopherol [70]. Vitamin E works synergistically with vitamin C, as following neutralisation of ROS, oxidised vitamin E isoforms can be processed back into their reduced form by vitamin C [71]. Abdala-Valencia et al. [72] discuss the evidence for the roles of ?-tocopherol and ?-tocopherol in allergic lung inflammation in mechanistic animal studies and clinical trials. Supplementation of mice with ?-tocopherol reduced allergic airway inflammation and AHR [73], while ?-tocopherol was pro-inflammatory and augmented AHR, negating the positive effects of ?-tocopherol [74]. Other animal studies report that ?-tocopherol may assist in resolving inflammation caused by ozone exposure and endotoxin induced neutrophilic airway inflammation, owing to its ability to oxidize reactive nitrogen species [75,76]. A study in humans showed that both ? and ?-tocopherol may be effective in decreasing LPS induced neutrophilic inflammation [77]. The conflicting results from these supplementation studies are likely to be influenced by baseline tissue levels of vitamin E [72], with ?-tocopherol supplementation leading to improved lung function and wheeze in Europe, where ?-tocopherol levels are low [78�80], but not in the US, where ?-tocopherol intake is high due to soybean oil consumption [81�83]. As a result, meta-analysis of vitamin E effects on asthma outcomes is equivocal; it is likely that supplementation with physiological concentrations of ?-tocopherol in the context of a background diet low in ?-tocopherol, may be most beneficial in asthma and further research testing this hypothesis is required. In COPD, serum levels of vitamin E have been shown to be decreased during exacerbation, which suggests increased intake may be helpful to improve vitamin E concentrations [84]. Vitamin E has been shown to reduce biomarkers of oxidative stress in adults with COPD in one RCT [85], but not another [86]. In the Women�s Health Study (n = 38,597), the risk of developing chronic lung disease over a 10 year supplementation period was reduced by 10% in women using vitamin E supplements (600 IU on alternate days) [87]. Dietary intake of vitamin E lower than recommended dietary intakes has been reported in pregnant women with a family history of allergic disease [88] and recent work in animal models has highlighted ?-tocopherol may be important for allergic mothers in pregnancy. Allergic female mice were supplemented with ?-tocopherol prior to mating and following allergen challenge the offspring showed reduced response to allergen challenge with decreased eosinophils in BALF [89]. The offspring also showed reduced development of lung dendritic cells, necessary for producing allergic responses. Evidence from observational studies also suggests that reduced maternal dietary intake of vitamin E is related to an increased risk of childhood asthma and wheeze [90�92] and increased in vitro proliferative responses in cord blood mononuclear cells (CBMC) [93]. A mechanistic study by Wassall et al. [94] examined the effect of ?-tocopherol and vitamin C on CBMC and maternal peripheral blood mononuclear cells (PBMC). ?-tocopherol was mostly anti-inflammatory, although increased proliferation and increased TGF-? were seen with some allergens. However, the addition of vitamin C to the system had inflammatory actions, with increased production of pro-inflammatory cytokines, combined with reduced production of IL-10 and TGF-?. This study by Wassall et al. [94] demonstrates that supplementation�with these antioxidants does modulate immune responses in pregnancy, however several of the results are unexpected, highlighting the complex nature of the relationships between dietary nutrients and disease. In asthma the experimental data for vitamin E are compelling, yet supplementation benefits are not well described. In COPD there is currently not enough evidence to make conclusions about vitamin E supplementation.

3.4. Flavonoids:�Respiratory Health

Flavonoids are potent antioxidants and have anti-inflammatory as well as anti-allergic actions due in part, to their ability to neutralise ROS [95]. There are 6 classes of flavonoids including flavones, flavonols, flavanones, isoflavones and flavanols [96], which are widely distributed throughout the diet and found in fruit, vegetables, nuts, seeds, stems, flowers, roots, bark, dark chocolate, tea, wine and coffee [96]. Tanaka et al. [95] present the evidence for the benefits of dietary flavonoids in asthma development and progression. In addition to reducing oxidative stress, in vitro experiments have found that many individual flavonoids have inhibitory effects on IgE mediated immune responses such as histamine secretion by mast cells, shift in cytokine production from Th-2 to Th-1 production and decreased NF-?B activation and inhibition of TNF-? [97�100]. Experimental studies of flavonoids in animal models of allergic asthma have shown reduced airway and peripheral blood inflammation, decreased bronchoconstriction and AHR and lower eosinophils in BALF, blood and lung tissue [101�104]. In humans, evidence from a case control study in adults showed that apple and red wine consumption, rich sources of flavonoids, was associated with reduced asthma prevalence and severity [66]. However a follow-up study investigating intake of 3 subclasses of flavonoids did not find any associations with asthma prevalence or severity [105]. There are a limited number of experimental studies using flavonoid supplements in humans with asthma. Three RCT�s in adults with asthma using a product called pycnogenol, which contains a mixture of bioflavonoids, reported benefits including increased lung function, decreased symptoms and reduced need for rescue inhalers [106]. There is a paucity of evidence for the effects of flavonoids in the maternal diet and respiratory outcomes in children. One study which found a positive association of maternal apple intake and asthma in children at 5 years, suggests that the flavonoid content of apples may be responsible for the beneficial relationship [107]. Evidence for the effects of flavonoids in respiratory conditions is emerging and promising. Though like vitamin C, it may be difficult to disentangle the effects of flavonoids from other nutrients in flavonoid-rich foods. Supplementation of individual flavonoids in experimental animal studies has provided evidence to suggest that intervention trials in humans may be warranted.

3.5. Vitamin D:�Respiratory Health

Epidemiological studies show promising associations between vitamin D and lung health; however the mechanisms responsible for these effects are poorly understood. Vitamin D can be obtained from dietary sources or supplementation; however sun exposure is the main contributor to vitamin D levels [108]. While vitamin D has beneficial effects independent of UV exposure [109], it can be difficult to separate this potential confounder from direct effects of vitamin D on lung health [110]. The review by Foong and Zosky [111] presents the current evidence for the role of vitamin D deficiency in disease onset, progression and exacerbation in respiratory infections, asthma and COPD. Respiratory infections contribute to disease progression and exacerbation in both COPD and asthma. Vitamin D appears to have a protective role against the susceptibility to and severity of these infections [111], as active vitamin D (1,25 (OH)2D) modifies production of antimicrobial cathelicidins and defensins that kill bacteria and induce wound repair [112]. Activated vitamin D also decreases the expression of rhinovirus receptors in endothelial cell cultures and PBMC�s [113]. In vitro studies also support the link between vitamin D and airway remodelling as active vitamin D inhibits airway smooth muscle (ASM) cell proliferation [114] and deficiency impairs normal lung development [115]. Furthermore, animal models suggest that vitamin D can inhibit Th1 and Th2 cell cytokine production [116]. Epidemiological evidence links low levels of vitamin D with wheeze and respiratory infections, though evidence for the link with asthma onset is weak and inconsistent [111]. In children, low circulating vitamin D was related to lower lung function, increased corticosteroid use and exacerbation frequency [117]. Also in children with steroid resistant asthma, low vitamin D was related to increased ASM thickness [117]. Other observational studies report that in children, low levels of vitamin D are associated with asthma exacerbation [118]. Several observational studies support the role of vitamin D for protection against respiratory conditions in children. Zosky et al. [119] found that vitamin D deficiency at 18 weeks gestation was associated with lower lung function and current wheeze in children 6 years of age and an increased risk of asthma in boys. The role for vitamin D in enhancing steroid responsiveness suggested by observational studies [120] is supported by mechanistic studies [121], and in concert with the actions of vitamin D in infection, may explain the effect of vitamin D in reducing asthma exacerbations [111]. Only one intervention trial has been conducted using vitamin D in adults with asthma, which found that rate of first exacerbation was reduced in subjects who demonstrated an increase in circulating vitamin D3 following supplementation [122]. Data for the role of vitamin D in COPD onset is limited, though several cross-sectional studies have reported an association between low vitamin D levels, or deficiency, with COPD incidence [123]. Blood vitamin D levels have also been correlated with lung function in COPD patients [124,125]. Experimental data suggest that vitamin D may be important in COPD for its effect on normal lung growth and development, though human data to support this is not available. It is possible that COPD onset may also be impacted by cellular responses to cigarette smoke exposure which inhibits the protective immunomodulatory effects of vitamin D [126]. There is research suggesting a genetic link between vitamin D and COPD pathogenesis. In an observational study single nucleotide polymorphisms in the vitamin D binding protein (VDBP) predicted vitamin D levels in COPD patients and were found to be a risk factor for COPD [123]. The VDBP is also involved in macrophage activation as high levels of airway VDBP are related to increased macrophage activation, also high levels of serum VDBP were found to be related to lower lung function [127]. COPD progression may also be affected by vitamin D status through absence of the vitamin D receptor and parenchyma degradation [128]. COPD exacerbations are generally caused by viral or bacterial lung infections, and though vitamin D has a positive role in reducing infection, there is no evidence to support that vitamin D is associated with ameliorating exacerbations in COPD patients [129]. The extra-skeletal effects of vitamin D are well documented in both asthma and COPD, and deficiency is associated with negative respiratory and immune outcomes. At this stage however, more evidence from supplementation interventions is needed before widespread adoption of supplementation can be recommended.

3.6. Minerals:�Respiratory Health

Some minerals have also been found to be protective in respiratory conditions. In children, increased intake of magnesium, calcium and potassium is inversely related to asthma prevalence [7]. While several observational and experimental trials have been performed with conflicting results [130], a randomised controlled trial concluded that a low sodium diet had no therapeutic benefit for bronchial reactivity in adults with asthma [131]. Dietary magnesium may have beneficial bronchodilator effects in asthma [132]. Low dietary magnesium intake has been associated with negative effects on bronchial smooth muscle in severe asthma [133] and with lower lung function in children [134]. However further evidence of positive therapeutic effects are required before its importance in asthma and recommendations can be determined [135]. Dietary intake of selenium has been shown to be lower in asthmatics compared to non-asthmatics [136] and maternal plasma selenium levels were reported to be inversely associated with risk of asthma in children [137]. However case control studies in children have not found a relationship with selenium levels or intake with asthma related outcomes [18,138]. Furthermore, results from a large well designed RCT in adults with asthma showed no positive benefit of selenium supplementation [139]. Investigation of minerals in cord blood imply the importance of adequate intake during pregnancy, as levels of cord blood selenium were negatively associated with persistent wheeze, and levels of iron were negatively associated with later onset wheeze in children [140]. Studies on dietary intake of minerals and associations with COPD are sparse. A small study in Sweden found that in older subjects with severe COPD, intakes of folic acid and selenium were below recommended levels, and although intake of calcium was adequate, serum calcium levels were low, likely related to their vitamin D status as intake was lower than recommended [141]. Mineral intake may be important in respiratory diseases, yet evidence for supplementation is weak. It is likely that adequate intake of these nutrients in a whole diet approach is sufficient.

4. Obesity, Adipokines And Respiratory Disease

Overnutrition and resulting obesity are clearly linked with asthma, though the mechanisms involved are still under investigation. The review by Periyalil et al. [142] describes how immunometabolismadipose tissue derived immunological changes causing metabolic effects [143] contributes to the link between asthma and obesity. In the obese state dietary intake of lipids leads to increased circulating free fatty acids [144], which activate immune responses, such as activation of TLR4, leading to increased inflammation, both systemically and in the airways [20]. Adipose tissue also secretes adipokines and asthmatic subjects have higher concentrations of circulating leptin than healthy controls [14] which are further increased in females, though leptin is associated with BMI in both males and females [145]. Leptin receptors are present in the bronchial and alveolar epithelial cells and leptin has been shown to induce activation of alveolar macrophages [146] and have indirect effects on neutrophils [147]. Also leptin promotes Th1 proliferation inducing increased activation of neutrophils by TNF-? [148]. In vitro, leptin also activates alveolar macrophages taken from obese asthmatics, which induces airway inflammation through production of pro-inflammatory cytokines [149]. However, a causal role for leptin in the obese asthma relationship is yet to be established. Adiponectin, an anti-inflammatory adipokine, has beneficial effects in animal models of asthma [150], however, positive associations in human studies have only been seen in women [151]. In obesity, macrophage and mast cell infiltration into adipose tissue is upregulated [142]. Neutrophils also appear to dominate airway inflammation in the obese asthma phenotype [152], particularly in females [153], which may explain why inhaled corticosteroids are less effective in achieving control in obese asthma [154]. While the mechanisms are yet to be understood, a recent review reports that obesity in pregnancy is associated with higher odds of asthma in children, with increased risk as maternal BMI increases [155].

COPD is characterised not only by pulmonary deficits but also by chronic systemic inflammation and co-morbidities which may develop in response to the metabolic dysregulation that occurs with excess adipose tissue [156]. A recent meta-analysis of leptin levels in COPD reported a correlation with body mass index (BMI) and fat mass percent in stable COPD though absolute levels were not different to healthy controls [157]. During exacerbation, leptin levels increased and were positively associated with circulating TNF-? [157]. Bianco et al. [158] describes the role of adiponectin and its effect on inflammation in COPD. Adiponectin has anti-inflammatory effects and is present in high concentrations in serum of healthy subjects [159]. Adiponectin exists in several isoforms, which have varied biological effects [160] and interact with two receptors present in the lungs (AdipoR1 and AdipoR2) that have opposing effects on inflammation [161]. Single nucleotide polymorphisms in the gene encoding adiponectin are associated with cardiovascular disease, obesity and the metabolic syndrome [162]. The role of adiponectin in COPD however is not well understood. In COPD, serum adiponectin is increased and directly relates to disease severity and lung function decline [163]. There is an alteration in the oligomerisation of adiponectin in COPD resulting in increased concentrations of the anti-inflammatory higher-molecular weight isoform [164], and the expression of adiponectin receptors in the lung is also altered in comparison to healthy subjects [165]. Animal models have shown anti-inflammatory effects of adiponectin in the lung through the increased expression of TNF-? in alveolar macrophages in adiponectin deficient mice [166]. Further mechanistic studies have also shown the anti-inflammatory potential of adiponectin by reducing the effects of TNF-?, IL-1? and NF-?B and increasing expression of IL-10 through interaction with AdipoR1 [161]. However under certain conditions in cell lines and animal models adiponectin has been shown to have pro-inflammatory effects [167,168]. As both detrimental and protective effects have been seen, the complex modulation of adiponectin isoforms and receptors in COPD requires further exploration. Obesity, the resulting systemic inflammation and alterations in adipokines have significant negative effects in both asthma and COPD. While work examining the mechanisms of effect is extensive, evidence for interventions to improve the course of disease are limited to weight loss interventions in asthma at this stage.

5. Undernutrition And Respiratory Disease

Though underweight has not been well studied in asthma, an observational study in Japan reported that subjects with asthma who were underweight had poorer asthma control than their normal weight counterparts [169]. While there is widespread acknowledgement that malnutrition in pregnant women adversely effects of the lung development of the fetus [170], a recent review reported that the offspring of mothers who were underweight did not have an increased risk of asthma. Amongst the obstructive lung diseases, undernutrition is most commonly recognized as a feature of COPD. Itoh et al. [171] present a review on undernutrition in COPD and the evidence for nutritional therapy in management�of the disease. Weight loss, low body weight and muscle wasting are common in COPD patients with advanced disease and are associated with reduced survival time and an increased risk of exacerbation [172]. The causes of undernutrition in COPD are multifactorial and include reduced energy intake due to decreased appetite, depression, lower physical activity and dyspnoea while eating [173]. In addition, resting energy expenditure is increased in COPD, likely due to higher energy demands from increased work of breathing [174]. Also, systemic inflammation which is a hallmark of COPD, may influence energy intake and expenditure [175]. Cigarette smoke may also have deleterious effects on body composition in addition to the systemic effects of COPD. Smoking causes muscle fibre atrophy and decreased muscle oxidative capacity shown in cohorts of non-COPD smokers [176,177] and in animal models of chronic smoke exposure [178,179]. The mechanisms underlying muscle wasting in COPD are complex and multifaceted [180]. Increased protein degradation occurs in the whole body, though it is enhanced in the diaphragm [181]. Protein synthesis pathways are altered, indeed insulin like growth factor-1 (IGF-1) which is essential for muscle synthesis is decreased in cachectic COPD patients [182] and is lower in COPD patients during acute exacerbation, compared to healthy controls [183]. Increased oxidative stress, due to increased mitochondrial ROS production, occurs both systemically and in muscle tissue in cachectic COPD patients and is negatively associated with fat free mass (FFM) and muscle strength in COPD patients [184]. Furthermore myostatin induces muscle atrophy by inhibiting proliferation of myoblasts and mRNA expression of myostain is increased in cachectic COPD patients and is related to muscle mass [185]. Systemic inflammatory mediators such as TNF-? and NF-?B are also implicated in COPD muscle atrophy [186,187]. Nutritional supplementation therapy in undernourished COPD patients has been shown to induce weight gain, increase fat free mass, increase grip strength and exercise tolerance as well as improve quality of life [188]. Further studies point out the importance of not only high energy content, but also macronutrient composition of the nutritional supplement and inclusion of low intensity respiratory rehabilitation exercise [189,190]. Other dietary nutrients have been investigated for the benefits in COPD. Creatinine, found in meat and fish, did not have additive effects to rehabilitation, while sulforaphane, found in broccoli and wasabi, and curcumin, the pigment in turmeric, may have beneficial antioxidant properties [191�193]. Branched chain amino acid supplementation in COPD is associated with positive results including increases in whole body protein synthesis, body weight, fat free mass and arterial blood oxygen levels [194,195]. Undernutrition is not a significant problem in asthma, though is a major debilitating feature of COPD. There is promising evidence that nutritional supplementation in COPD is important and can help to alleviate some of the adverse effects of the disease, particularly muscle wasting and weight loss.

6. Conclusions: Respiratory Health

Dietary intake appears to be important in both the development and management of respiratory diseases, shown through epidemiological and cross-sectional studies and supported by mechanistic studies in animal models. Although more evidence is needed from intervention studies in humans, there is a clear link for some nutrients and dietary patterns. The dietary patterns associated with benefits in respiratory diseases include high fruit and vegetable intake, Mediterranean style diet, fish and omega-3 intake, while fast food intake and westernized dietary�patterns have adverse associations. Figure 1 shows a diagrammatic representation of the relationships of nutrition and obstructive lung diseases.

respiratory

Respiratory Health

Though antioxidants are associated with positive effects on inflammation, clinical outcomes and respiratory disease prevention, intervention studies of individual antioxidants do not indicate widespread adoption of supplementation [196]. Differences in results from individual studies including whole foods such as fruit and vegetables and fish could be influenced by the nutritional profile owing to the region it was grown or produced. In considering studies using single nutrients it is also important to acknowledge that nutrients in the diet are consumed as whole foods that contain other micronutrients, fibre and compounds with both known and unknown anti and pro-inflammatory potential. Furthermore investigations of single nutrients should ideally control for other antioxidants and dietary sources of pro-inflammatory nutrients. While this limitation is common, it is a significant challenge to control for dietary intake of other nutrients in clinical trials. A whole foods approach to nutrient supplementation�for example, increasing intake of fruit and vegetables, has the benefit of increasing intake of multiple nutrients, including vitamin C, vitamin E, carotenoids and flavonoids and shows more promise in respiratory diseases in terms of reducing risk of COPD [3] and incidence of asthma exacerbations [25].

The evidence for mechanisms of vitamin D in lung development and immune function are yet to be fully established. It appears that vitamin D is important in respiratory diseases and infections, however the temporal role of vitamin D deficiency in disease onset, pathogenesis and exacerbations and whether supplementation is indicated is yet to be clarified.

Overnutrition in respiratory disease is clearly associated with adverse effects, highlighted by detrimental effects induced by immunometabolism. Further understanding of the relationship between mediators of immunometabolism and respiratory diseases and their mechanisms may provide therapeutic options. Undernutrition still poses risk in some respiratory conditions. Appropriate nutritional supplementation in advanced COPD is indicated, and several nutrients appear to be beneficial in COPD development and exacerbation.

The field of nutrition and respiratory disease continues to develop and expand, though further work is required in the form of randomized controlled dietary manipulation studies using whole foods to enable provision of evidence based recommendations for managing respiratory conditions.

Bronwyn S. Berthon and Lisa G. Wood *

Centre for Asthma and Respiratory Diseases, Level 2, Hunter Medical Research Institute,
University of Newcastle, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia;
E-Mail: bronwyn.berthon@newcastle.edu.au

* Author to whom correspondence should be addressed; E-Mail: lisa.wood@newcastle.edu.au;
Tel.: +61-2-4042-0147; Fax: +61-2-4042-0046.

Author Contributions

Bronwyn Berthon and Lisa Wood contributed to the study concept and design and were both involved in the preparation and completion of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

� 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(creativecommons.org/licenses/by/4.0/).

blank
References:

1. Nurmatov, U.; Devereux, G.; Sheikh, A. Nutrients and foods for the primary prevention of asthma
and allergy: Systematic review and meta-analysis. J. Allergy Clin. Immunol. 2011, 127,
724�733.e30.
2. Varraso, R.; Fung, T.T.; Barr, R.G.; Hu, F.B.; Willett, W.; Camargo, C.A.J. Prospective study of
dietary patterns and chronic obstructive pulmonary disease among US women. Am. J. Clin. Nutr.
2007, 86, 488�495.
3. Shaheen, S.O.; Jameson, K.A.; Syddall, H.E.; Aihie Sayer, A.; Dennison, E.M.; Cooper, C.;
Robinson, S.M.; Hertfordshire Cohort Study Group. The relationship of dietary patterns with adult
lung function and COPD. Eur. Respir. J. 2010, 36, 277�284.
4. Scott, H.A.; Jensen, M.E.; Wood, L.G. Dietary interventions in asthma. Curr. Pharm. Des. 2014,
20, 1003�1010.
5. Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention
2012 (update). Available online: www.ginasthma.org (accessed on 30 July 2013).
6. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the
Diagnosis, Management and Prevention of COPD. Available online: www.goldcopd.org/
(accessed on 3 December 2014).
7. Saadeh, D.; Salameh, P.; Baldi, I.; Raherison, C. Diet and allergic diseases among population aged
0 to 18 years: Myth or reality? Nutrients 2013, 5, 3399�3423.
8. Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.;
Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin.
Nutr. 1995, 61, 1402S�1406S.
9. Arvaniti, F.; Priftis, K.N.; Papadimitriou, A.; Papadopoulos, M.; Roma, E.; Kapsokefalou, M.;
Anthracopoulos, M.B.; Panagiotakos, D.B. Adherence to the Mediterranean type of diet is associated
with lower prevalence of asthma symptoms, among 10�12 years old children: The PANACEA
study. Pediatr. Allergy Immunol. 2011, 22, 283�289.
10. Chatzi, L.; Kogevinas, M. Prenatal and childhood Mediterranean diet and the development of
asthma and allergies in children. Public Health Nutr. 2009, 12, 1629�1634.
11. De Batlle, J.; Garcia-Aymerich, J.; Barraza-Villarreal, A.; Ant�, J.M.; Romieu, I. Mediterranean
diet is associated with reduced asthma and rhinitis in Mexican children. Allergy 2008, 63,
1310�1316.
12. Chatzi, L.; Torrent, M.; Romieu, I.; Garcia-Esteban, R.; Ferrer, C.; Vioque, J.; Kogevinas, M.;
Sunyer, J. Mediterranean diet in pregnancy is protective for wheeze and atopy in childhood. Thorax
2008, 63, 507�513.
13. Barros, R.; Moreira, A.; Fonseca, J.; de Oliveira, J.F.; Delgado, L.; Castel-Branco, M.G.; Haahtela,
T.; Lopes, C.; Moreira, P. Adherence to the Mediterranean diet and fresh fruit intake are associated
with improved asthma control. Allergy 2008, 63, 917�923.
14. Wood, L.G.; Gibson, P.G. Dietary factors lead to innate immune activation in asthma. Pharmacol.
Ther. 2009, 123, 37�53.
15. Carey, O.J.; Cookson, J.B.; Britton, J.; Tattersfield, A.E. The effect of lifestyle on wheeze, atopy,
and bronchial hyperreactivity in Asian and white children. Am. J. Respir. Crit. Care Med. 1996, 154,
537�540.
16. Huang, S.L.; Lin, K.C.; Pan, W.H. Dietary factors associated with physician-diagnosed asthma and
allergic rhinitis in teenagers: Analyses of the first Nutrition and Health Survey in Taiwan. Clin.
Exp. Allergy 2001, 31, 259�264.
17. Wickens, K.; Barry, D.; Friezema, A.; Rhodius, R.; Bone, N.; Purdie, G.; Crane, J. Fast foods�
Are they a risk factor for asthma? Allergy 2005, 60, 1537�1541.
18. Hijazi, N.; Abalkhail, B.; Seaton, A. Diet and childhood asthma in a society in transition: A study
in urban and rural Saudi Arabia. Thorax 2000, 55, 775�779.
19. Varraso, R.; Kauffmann, F.; Leynaert, B.; Le Moual, N.; Boutron-Ruault, M.C.; Clavel-Chapelon,
F.; Romieu, I. Dietary patterns and asthma in the E3N study. Eur. Respir. J. 2009, 33, 33�41.
20. Wood, L.G.; Garg, M.L.; Gibson, P.G. A high-fat challenge increases airway inflammation and
impairs bronchodilator recovery in asthma. J. Allergy Clin. Immunol. 2011, 127, 1133�1140.
21. Netting, M.J.; Middleton, P.F.; Makrides, M. Does maternal diet during pregnancy and lactation
affect outcomes in offspring? A systematic review of food-based approaches. Nutrition 2014, 30,
1225�1241.
22. Grieger, J.; Wood, L.; Clifton, V. Improving asthma during pregnancy with dietary antioxidants:
The current evidence. Nutrients 2013, 5, 3212�3234.
23. Butland, B.K.; Fehily, A.M.; Elwood, P.C. Diet, lung function, and lung function decline in
a cohort of 2512 middle aged men. Thorax 2000, 55, 102�108.
24. Carey, I.M.; Strachan, D.P.; Cook, D.G. Effects of changes in fresh fruit consumption on
ventilatory function in healthy British adults. Am. J. Respir. Crit. Care Med. 1998, 158, 728�733.
25. Wood, L.G.; Garg, M.L.; Smart, J.M.; Scott, H.A.; Barker, D.; Gibson, P.G. Manipulating
antioxidant intake in asthma: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 96, 534�543.
26. Seyedrezazadeh, E.; Moghaddam, M.P.; Ansarin, K.; Vafa, M.R.; Sharma, S.; Kolahdooz, F. Fruit
and vegetable intake and risk of wheezing and asthma: A systematic review and meta-analysis. Nutr.
Rev. 2014, 72, 411�428.
27. Erkkola, M.; Nwaru, B.I.; Kaila, M.; Kronberg-Kippil�, C.; Ilonen, J.; Simell, O.; Veijola, R.;
Knip, M.; Virtanen, S.M. Risk of asthma and allergic outcomes in the offspring in relation to
maternal food consumption during pregnancy: A Finnish birth cohort study. Pediatr. Allergy
Immunol. 2012, 23, 186�194.
28. Fitzsimon, N.; Fallon, U.; O�Mahony, D.; Loftus, B.G.; Bury, G.; Murphy, A.W.; Kelleher, C.C.;
Lifeways Cross Generation Cohort Study Steering Group. Mother�s dietary patterns during
pregnancy and risk of asthma symptoms in children at 3 years. Ir. Med. J. 2007, 100, 27�32.
29. Baldrick, F.R.; Elborn, J.S.; Woodside, J.V.; Treacy, K.; Bradley, J.M.; Patterson, C.C.;
Schock, B.C.; Ennis, M.; Young, I.S.; McKinley, M.C. Effect of fruit and vegetable intake on
oxidative stress and inflammation in COPD: A randomised controlled trial. Eur. Respir. J. 2012, 39,
1377�1384.
30. Keranis, E.; Makris, D.; Rodopoulou, P.; Martinou, H.; Papamakarios, G.; Daniil, Z.; Zintzaras, E.;
Gourgoulianis, K.I. Impact of dietary shift to higher-antioxidant foods in COPD: A randomised
trial. Eur. Respir. J. 2010, 36, 774�780.
31. Thies, F.; Miles, E.A.; Nebe-von-Caron, G.; Powell, J.R.; Hurst, T.L.; Newsholme, E.A.;
Calder, P.C. Influence of dietary supplementation with long-chain n-3 or n-6 polyunsaturated fatty
acids on blood inflammatory cell populations and functions and on plasma soluble adhesion
molecules in healthy adults. Lipids 2001, 36, 1183�1193.
32. Kelley, D.S.; Taylor, P.C.; Nelson, G.J.; Schmidt, P.C.; Ferretti, A.; Erickson, K.L.; Yu, R.;
Chandra, R.K.; Mackey, B.E. Docosahexaenoic acid ingestion inhibits natural killer cell activity
and production of inflammatory mediators in young healthy men. Lipids 1999, 34, 317�324.
33. Lo, C.J.; Chiu, K.C.; Fu, M.; Chu, A.; Helton, S. Fish oil modulates macrophage P44/P42 mitogenactivated
protein kinase activity induced by lipopolysaccharide. J. Parenter. Enter. Nutr. 2000, 24,
159�163.
34. Calder, P.C. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin.
Nutr. 2006, 83, 1505S�1519S.
35. Peat, J.K.; Salome, C.M.; Woolcock, A.J. Factors associated with bronchial hyperresponsiveness
in Australian adults and children. Eur. Respir. J. 1992, 5, 921�929.
36. Tabak, C.; Wijga, A.H.; de Meer, G.; Janssen, N.A.; Brunekreef, B.; Smit, H.A. Diet and asthma
in Dutch school children (ISAAC-2). Thorax 2006, 61, 1048�1053.
37. Takemura, Y.; Sakurai, Y.; Honjo, S.; Tokimatsu, A.; Tokimatsu, A.; Gibo, M.; Hara, T.; Kusakari,
A.; Kugai, N. The relationship between fish intake and the prevalence of asthma: The Tokorozawa
childhood asthma and pollinosis study. Prev. Med. 2002, 34, 221�225.
38. De Luis, D.A.; Armentia, A.; Aller, R.; Asensio, A.; Sedano, E.; Izaola, O.; Cuellar, L. Dietary
intake in patients with asthma: A case control study. Nutrition 2005, 21, 320�324.
39. Laerum, B.N.; Wentzel-Larsen, T.; Gulsvik, A.; Omenaas, E.; Gislason, T.; Janson, C.; Svanes, C.
Relationship of fish and cod oil intake with adult asthma. Clin. Exp. Allergy 2007, 37, 1616�1623.
40. McKeever, T.M.; Lewis, S.A.; Cassano, P.A.; Ocke, M.; Burney, P.; Britton, J.; Smit, H.A.
The relation between dietary intake of individual fatty acids, FEV1 and respiratory disease in Dutch
adults. Thorax 2008, 63, 208�214.
41. Salam, M.T.; Li, Y.F.; Langholz, B.; Gilliland, F.D. Maternal fish consumption during pregnancy
and risk of early childhood asthma. J. Asthma 2005, 42, 513�518.
42. Klemens, C.M.; Berman, D.R.; Mozurkewich, E.L. The effect of perinatal omega-3 fatty acid
supplementation on inflammatory markers and allergic diseases: A systematic review. BJOG 2011,
118, 916�925.
43. Thien, F.C.K.; Woods, R.; De Luca, S.; Abramson, M.J. Dietary marine fatty acids (fish oil) for
asthma in adults and children (Cochrane Review). In The Cochrane Library; John Wiley & Sons,
Ltd.: Chichester, UK, 2002 (updated 2010).
44. Shahar, E.; Boland, L.L.; Folsom, A.R.; Tockman, M.S.; McGovern, P.G.; Eckfeldt, J.H.
Docosahexaenoic acid and smoking-related chronic obstructive pulmonary disease. Am. J. Respir.
Crit. Care Med. 1999, 159, 1780�1785.
45. De Batlle, J.; Sauleda, J.; Balcells, E.; G�mez, F.P.; M�ndez, M.; Rodriguez, E.; Barreiro, E.;
Ferrer, J.J.; Romieu, I.; Gea, J.; et al. Association between ?3 and ?6 fatty acid intakes and serum
inflammatory markers in COPD. J. Nutr. Biochem. 2012, 23, 817�821.
46. Broekhuizen, R.; Wouters, E.F.; Creutzberg, E.C.; Weling-Scheepers, C.A.; Schols, A.M.
Polyunsaturated fatty acids improve exercise capacity in chronic obstructive pulmonary disease.
Thorax 2005, 60, 376�382.
47. Fulton, A.S.; Hill, A.M.; Williams, M.T.; Howe, P.R.; Frith, P.A.; Wood, L.G.; Garg, M.L.;
Coates, A.M. Feasibility of omega-3 fatty acid supplementation as an adjunct therapy for people
with chronic obstructive pulmonary disease: Study protocol for a randomized controlled trial.
Trials 2013, 14, 107.
48. Texas A&M University, USA. Eicosapentaenoic Acid and Protein Modulation to Induce Anabolism
in Chronic Obstructive Pulmonary Disease (COPD): Aim 2 NLM Identifier: NCT01624792.
Available online: clinicaltrials.gov/ct2/show/NCT01624792 (accessed on 29 September 2014).
49. National Institute of Environmental Health Sciences; Columbia University, USA. The Chronic
Obstructive Pulmonary Disease Fish Oil Pilot Trial (COD-Fish). Available online:
clinicaltrials.gov/show/NCT00835289 (accessed on 29 September 2014).
50. Wood, L.G.; Gibson, P.G.; Garg, M.L. Biomarkers of lipid peroxidation, airway inflammation and
asthma. Eur. Respir. J. 2003, 21, 177�186.
51. Kelly, F.J. Vitamins and respiratory disease: Antioxidant micronutrients in pulmonary health and
disease. Proc. Nutr. Soc. 2005, 64, 510�526.
52. Rahman, I. Oxidative stress, chromatin remodeling and gene transcription in inflammation and
chronic lung diseases. J. Biochem. Mol. Biol. 2003, 36, 95�109.
53. Ochs-Balcom, H.M.; Grant, B.J.; Muti, P.; Sempos, C.T.; Freudenheim, J.L.; Browne, R.W.;
McCann, S.E.; Trevisan, M.; Cassano, P.A.; Iacoviello, L.; et al. Antioxidants, oxidative stress,
and pulmonary function in individuals diagnosed with asthma or COPD. Eur. J. Clin. Nutr. 2006, 60,
991�999.
54. Wood, L.G.; Garg, M.L.; Powell, H.; Gibson, P.G. Lycopene-rich treatments modify
noneosinophilic airway inflammation in asthma: Proof of concept. Free Radic. Res. 2008, 42,
94�102.
55. Clifton, V.L.; Vanderlelie, J.; Perkins, A.V. Increased anti-oxidant enzyme activity and biological
oxidation in placentae of pregnancies complicated by maternal asthma. Placenta 2005, 26, 773�779.
56. McLernon, P.C.; Wood, L.G.; Murphy, V.E.; Hodyl, N.A.; Clifton, V.L. Circulating antioxidant
profile of pregnant women with asthma. Clin. Nutr. 2012, 31, 99�107.
57. Miyake, Y.; Sasaki, S.; Tanaka, K.; Hirota, Y. Dairy food, calcium and vitamin D intake in
pregnancy, and wheeze and eczema in infants. Eur. Respir. J. 2010, 35, 1228�1234.
58. Kumar, R. Prenatal factors and the development of asthma. Curr. Opin. Pediatr. 2008, 20,
682�687.
59. Bowie, A.G.; O�Neill, L.A. Vitamin C inhibits NF-kappa B activation by TNF via the activation
of p38 mitogen-activated protein kinase. J. Immunol. 2000, 165, 7180�7188.
60. Jeong, Y.-J.; Kim, J.-H.; Kang, J.S.; Lee, W.J.; Hwang, Y. Mega-dose vitamin C attenuated lung
inflammation in mouse asthma model. Anat. Cell Biol. 2010, 43, 294�302.
61. Chang, H.-H.; Chen, C.-S.; Lin, J.-Y. High Dose Vitamin C Supplementation Increases the
Th1/Th2 Cytokine Secretion Ratio, but Decreases Eosinophilic Infiltration in Bronchoalveolar
Lavage Fluid of Ovalbumin-Sensitized and Challenged Mice. J. Agric. Food Chem. 2009, 57,
10471�10476.
62. Forastiere, F.; Pistelli, R.; Sestini, P.; Fortes, C.; Renzoni, E.; Rusconi, F.; Dell�Orco, V.; Ciccone,
G.; Bisanti, L. The SIDRIA Collaborative Group, I. Consumption of fresh fruit rich in vitamin C
and wheezing symptoms in children. Thorax 2000, 55, 283�288.
63. Emmanouil, E.; Manios, Y.; Grammatikaki, E.; Kondaki, K.; Oikonomou, E.; Papadopoulos, N.;
Vassilopoulou, E. Association of nutrient intake and wheeze or asthma in a Greek pre-school
population. Pediatr. Allergy Immunol. 2010, 21, 90�95.
64. Cook, D.G.; Carey, I.M.; Whincup, P.H.; Papacosta, O.; Chirico, S.; Bruckdorfer, K.R.; Walker, M.
Effect of fresh fruit consumption on lung function and wheeze in children. Thorax 1997, 52,
628�633.
65. Schwartz, J.; Weiss, S.T. Relationship between dietary vitamin C intake and pulmonary function
in the First National Health and Nutrition Examination Survey (NHANES I). Am. J. Clin. Nutr.
1994, 59, 110�114.
66. Shaheen, S.O.; Sterne, J.A.; Thompson, R.L.; Songhurst, C.E.; Margetts, B.M.; Burney, P.G.
Dietary antioxidants and asthma in adults: Population-based case-control study. Am. J. Respir. Crit.
Care Med. 2001, 164, 1823�1828.
67. Koike, K.; Ishigami, A.; Sato, Y.; Hirai, T.; Yuan, Y.; Kobayashi, E.; Tobino, K.; Sato, T.; Sekiya,
M.; Takahashi, K.; et al. Vitamin C Prevents Cigarette Smoke�Induced Pulmonary Emphysema in
Mice and Provides Pulmonary Restoration. Am. J. Respir. Cell Mol. Biol. 2013, 50, 347�357.
68. Lin, Y.C.; Wu, T.C.; Chen, P.Y.; Hsieh, L.Y.; Yeh, S.L. Comparison of plasma and intake levels
of antioxidant nutrients in patients with chronic obstructive pulmonary disease and healthy people
in Taiwan: A case-control study. Asia Pac. J. Clin. Nutr. 2010, 19, 393�401.
69. Sargeant, L.A.; Jaeckel, A.; Wareham, N.J. Interaction of vitamin C with the relation between
smoking and obstructive airways disease in EPIC Norfolk. European Prospective Investigation into
Cancer and Nutrition. Eur. Respir. J. 2000, 16, 397�403.
70. Brigelius-Flohe, R.; Traber, M.G. Vitamin E: Function and metabolism. FASEB J. 1999, 13,
1145�1155.
71. Huang, J.; May, J.M. Ascorbic acid spares ?-tocopherol and prevents lipid peroxidation in cultured
H4IIE liver cells. Mol. Cell. Biochem. 2003, 247, 171�176.
72. Abdala-Valencia, H.; Berdnikovs, S.; Cook-Mills, J. Vitamin E isoforms as modulators of lung
inflammation. Nutrients 2013, 5, 4347�4363.
73. Mabalirajan, U.; Aich, J.; Leishangthem, G.D.; Sharma, S.K.; Dinda, A.K.; Ghosh, B. Effects of
vitamin E on mitochondrial dysfunction and asthma features in an experimental allergic murine
model. J. Appl. Physiol. 2009, 107, 1285�1292.
74. McCary, C.A.; Abdala-Valencia, H.; Berdnikovs, S.; Cook-Mills, J.M. Supplemental and highly
elevated tocopherol doses differentially regulate allergic inflammation: Reversibility of ?-tocopherol
and ?-tocopherol�s effects. J. Immunol. 2011, 186, 3674�3685.
75. He, Y.; Franchi, L.; Nunez, G. The protein kinase PKR is critical for LPS-induced iNOS production
but dispensable for inflammasome activation in macrophages. Eur. J. Immunol. 2013, 43, 1147�1152.
76. Fakhrzadeh, L.; Laskin, J.D.; Laskin, D.L. Ozone-induced production of nitric oxide and TNF-?
and tissue injury are dependent on NF-kappaB p50. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004,
287, L279�L285.
77. Hernandez, M.L.; Wagner, J.G.; Kala, A.; Mills, K.; Wells, H.B.; Alexis, N.E.; Lay, J.C.; Jiang, Q.;
Zhang, H.; Zhou, H.; et al. Vitamin E, ?-tocopherol, reduces airway neutrophil recruitment after
inhaled endotoxin challenge in rats and in healthy volunteers. Free Radic. Biol. Med. 2013, 60,
56�62.
78. Dow, L.; Tracey, M.; Villar, A.; Coggon, D.; Margetts, B.M.; Campbell, M.J.; Holgate, S.T. Does
dietary intake of vitamins C and E influence lung function in older people? Am. J. Respir. Crit.
Care Med. 1996, 154, 1401�1404.
79. Smit, H.A.; Grievink, L.; Tabak, C. Dietary influences on chronic obstructive lung disease and
asthma: A review of the epidemiological evidence. Proc. Nutr. Soc. 1999, 58, 309�319.
80. Tabak, C.; Smit, H.A.; Rasanen, L.; Fidanza, F.; Menotti, A.; Nissinen, A.; Feskens, E.J.; Heederik,
D.; Kromhout, D. Dietary factors and pulmonary function: A cross sectional study in middle aged
men from three European countries. Thorax 1999, 54, 1021�1026.
81. Weiss, S.T. Diet as a risk factor for asthma. Ciba Found. Symp. 1997, 206, 244�257.
82. Troisi, R.J.; Willett, W.C.; Weiss, S.T.; Trichopoulos, D.; Rosner, B.; Speizer, F.E. A prospective
study of diet and adult-onset asthma. Am. J. Respir. Crit. Care Med. 1995, 151, 1401�1408.
83. Devereux, G.; Seaton, A. Diet as a risk factor for atopy and asthma. J. Allergy Clin. Immonol.
2005, 115, 1109�1117.
84. Tug, T.; Karatas, F.; Terzi, S.M. Antioxidant vitamins (A, C and E) and malondialdehyde levels in
acute exacerbation and stable periods of patients with chronic obstructive pulmonary disease. Clin.
Investig. Med. 2004, 27, 123�128.
85. Daga, M.K.; Chhabra, R.; Sharma, B.; Mishra, T.K. Effects of exogenous vitamin E supplementation
on the levels of oxidants and antioxidants in chronic obstructive pulmonary disease. J. Biosci.
2003, 28, 7�11.
86. Wu, T.C.; Huang, Y.C.; Hsu, S.Y.; Wang, Y.C.; Yeh, S.L. Vitamin E and vitamin C supplementation
in patients with chronic obstructive pulmonary disease. Int. J. Vitam. Nutr. Res. 2007, 77,
272�279.
87. Agler, A.H.; Kurth, T.; Gaziano, J.M.; Buring, J.E.; Cassano, P.A. Randomised vitamin E
supplementation and risk of chronic lung disease in the Women�s Health Study. Thorax 2011, 66,
320�325.
88. West, C.E.; Dunstan, J.; McCarthy, S.; Metcalfe, J.; D�Vaz, N.; Meldrum, S.; Oddy, W.H.;
Tulic, M.K.; Prescott, S.L. Associations between maternal antioxidant intakes in pregnancy and
infant allergic outcomes. Nutrients 2012, 4, 1747�1758.
89. Abdala-Valencia, H.; Berdnikovs, S.; Soveg, F.W.; Cook-Mills, J.M. ?-Tocopherol Supplementation
of Allergic Female Mice Inhibits Development of CD11c+CD11b+ Dendritic Cells in Utero and
Allergic Inflammation in Neonates. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 307, L482�L496.
90. Litonjua, A.A.; Rifas-Shiman, S.L.; Ly, N.P.; Tantisira, K.G.; Rich-Edwards, J.W.;
Camargo, C.A., Jr.; Weiss, S.T.; Gillman, M.W.; Gold, D.R. Maternal antioxidant intake in
pregnancy and wheezing illnesses in children at 2 year of age. Am. J. Clin. Nutr. 2006, 84, 903�911.
91. Miyake, Y.; Sasaki, S.; Tanaka, K.; Hirota, Y. Consumption of vegetables, fruit, and antioxidants
during pregnancy and wheeze and eczema in infants. Allergy 2010, 65, 758�765.
92. Devereux, G.; Turner, S.W.; Craig, L.C.; McNeill, G.; Martindale, S.; Harbour, P.J.; Helms, P.J.;
Seaton, A. Low maternal vitamin E intake during pregnancy is associated with asthma in 5-year-old
children. Am. J. Respir. Crit. Care Med. 2006, 174, 499�507.
93. Devereux, G.; Barker, R.N.; Seaton, A. Antenatal determinants of neonatal immune responses to
allergens. Clin. Exp. Allergy 2002, 32, 43�50.
94. Wassall, H.; Devereux, G.; Seaton, A.; Barker, R. Complex effects of vitamin E and vitamin C
supplementation on in vitro neonatal mononuclear cell responses to allergens. Nutrients 2013, 5,
3337�3351.
95. Tanaka, T.; Takahashi, R. Flavonoids and asthma. Nutrients 2013, 5, 2128�2143.
96. Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and
bioavailability. Am. J. Clin. Nutr. 2004, 79, 727�747.
97. Hirano, T.; Higa, S.; Arimitsu, J.; Naka, T.; Shima, Y.; Ohshima, S.; Fujimoto, M.; Yamadori, T.;
Kawase, I.; Tanaka, T. Flavonoids such as luteolin, fisetin and apigenin are inhibitors of
interleukin-4 and interleukin-13 production by activated human basophils. Int. Arch. Allergy
Immunol. 2004, 134, 135�140.
98. Kawai, M.; Hirano, T.; Higa, S.; Arimitsu, J.; Maruta, M.; Kuwahara, Y.; Ohkawara, T.; Hagihara,
K.; Yamadori, T.; Shima, Y.; et al. Flavonoids and related compounds as anti-allergic substances.
Allergol. Int. 2007, 56, 113�123.
99. Nair, M.P.; Mahajan, S.; Reynolds, J.L.; Aalinkeel, R.; Nair, H.; Schwartz, S.A.; Kandaswami, C.
The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene
expression in normal peripheral blood mononuclear cells via modulation of the NF-kappa beta
system. Clin. Vaccine Immunol. 2006, 13, 319�328.
100. Nair, M.P.N.; Kandaswami, C.; Mahajan, S.; Chadha, K.C.; Chawda, R.; Nair, H.; Kumar, N.;
Nair, R.E.; Schwartz, S.A. The flavonoid, quercetin, differentially regulates Th-1 (IFN?) and Th-2
(IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochim. Biophys.
Acta Mol. Cell Res. 2002, 1593, 29�36.
101. Leemans, J.; Cambier, C.; Chandler, T.; Billen, F.; Clercx, C.; Kirschvink, N.; Gustin, P.
Prophylactic effects of omega-3 polyunsaturated fatty acids and luteolin on airway
hyperresponsiveness and inflammation in cats with experimentally-induced asthma. Vet. J.
2010, 184, 111�114.
102. Li, R.R.; Pang, L.L.; Du, Q.; Shi, Y.; Dai, W.J.; Yin, K.S. Apigenin inhibits allergen-induced
airway inflammation and switches immune response in a murine model of asthma.
Immunopharmacol. Immunotoxicol. 2010, 32, 364�370.
103. Wu, M.Y.; Hung, S.K.; Fu, S.L. Immunosuppressive effects of fisetin in ovalbumin-induced
asthma through inhibition of NF-kB activity. J. Agric. Food Chem. 2011, 59, 10496�10504.
104. Rogerio, A.P.; Kanashiro, A.; Fontanari, C.; da Silva, E.V.G.; Lucisano-Valim, Y.M.; Soares, E.G.;
Faccioli, L.H. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine
allergic asthma. Inflamm. Res. 2007, 56, 402�408.
105. Garcia, V.; Arts, I.C.; Sterne, J.A.; Thompson, R.L.; Shaheen, S.O. Dietary intake of flavonoids
and asthma in adults. Eur. Respir. J. 2005, 26, 449�452.
106. Belcaro, G.; Luzzi, R.; Cesinaro di Rocco, P.; Cesarone, M.R.; Dugall, M.; Feragalli, B.;
Errichi, B.M.; Ippolito, E.; Grossi, M.G.; Hosoi, M.; et al. Pycnogenol improvements in asthma
management. Panminerva Med. 2011, 53, 57�64.
107. Willers, S.M.; Devereux, G.; Craig, L.C.A.; McNeill, G.; Wijga, A.H.; Abou El-Magd, W.; Turner,
S.W.; Helms, P.J.; Seaton, A. Maternal food consumption during pregnancy and asthma,
respiratory and atopic symptoms in 5-year-old children. Thorax 2007, 62, 773�779.
108. Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266�281.
109. Hart, P.H.; Lucas, R.M.; Walsh, J.P.; Zosky, G.R.; Whitehouse, A.J.O.; Zhu, K.; Allen, K.L.;
Kusel, M.M.; Anderson, D.; Mountain, J.A. Vitamin D in Fetal Development: Findings From
a Birth Cohort Study. Pediatrics 2014, doi:10.1542/peds.2014-1860.
110. Hart, P.H.; Gorman, S.; Finlay-Jones, J.J. Modulation of the immune system by UV radiation:
More than just the effects of vitamin D? Nat. Rev. Immunol. 2011, 11, 584�596.
111. Foong, R.; Zosky, G. Vitamin D deficiency and the lung: Disease initiator or disease modifier?
Nutrients 2013, 5, 2880�2900.
112. Hiemstra, P.S. The role of epithelial ?-defensins and cathelicidins in host defense of the lung. Exp.
Lung Res. 2007, 33, 537�542.
113. Martinesi, M.; Bruni, S.; Stio, M.; Treves, C. 1,25-Dihydroxyvitamin D3 inhibits tumor necrosis
factor-?-induced adhesion molecule expression in endothelial cells. Cell Biol. Int. 2006, 30,
365�375.
114. Song, Y.; Qi, H.; Wu, C. Effect of 1,25-(OH)2D3 (a vitamin D analogue) on passively sensitized
human airway smooth muscle cells. Respirology 2007, 12, 486�494.
115. Zosky, G.R.; Berry, L.J.; Elliot, J.G.; James, A.L.; Gorman, S.; Hart, P.H. Vitamin D deficiency
causes deficits in lung function and alters lung structure. Am. J. Respir. Crit. Care Med. 2011, 183,
1336�1343.
116. Pichler, J.; Gerstmayr, M.; Szepfalusi, Z.; Urbanek, R.; Peterlik, M.; Willheim, M. 1?,25(OH)2D3
inhibits not only Th1 but also Th2 differentiation in human cord blood T cells. Pediatr. Res. 2002,
52, 12�18.
117. Gupta, A.; Sjoukes, A.; Richards, D.; Banya, W.; Hawrylowicz, C.; Bush, A.; Saglani, S.
Relationship between serum vitamin D, disease severity and airway remodeling in children with
asthma. Am. J. Respir. Crit. Care Med. 2011, 184, 1342�1349.
118. Brehm, J.M.; Schuemann, B.; Fuhlbrigge, A.L.; Hollis, B.W.; Strunk, R.C.; Zeiger, R.S.; Weiss,
S.T.; Litonjua, A.A. Serum vitamin D levels and severe asthma exacerbations in the Childhood
Asthma Management Program study. J. Allergy Clin. Immonol. 2010, 126, 52�58.
119. Zosky, G.R.; Hart, P.H.; Whitehouse, A.J.; Kusel, M.M.; Ang, W.; Foong, R.E.; Chen, L.; Holt, P.G.;
Sly, P.D.; Hall, G.L. Vitamin D deficiency at 16 to 20 weeks� gestation is associated with impaired
lung function and asthma at 6 years of age. Ann. Am. Thorac. Soc. 2014, 11, 571�577.
120. Searing, D.A.; Zhang, Y.; Murphy, J.R.; Hauk, P.J.; Goleva, E.; Leung, D.Y. Decreased serum
vitamin D levels in children with asthma are associated with increased corticosteroid use. J. Allergy
Clin. Immonol. 2010, 125, 995�1000.
121. Xystrakis, E.; Kusumakar, S.; Boswell, S.; Peek, E.; Urry, Z.; Richards, D.F.; Adikibi, T.;
Pridgeon, C.; Dallman, M.; Loke, T.K.; et al. Reversing the defective induction of IL-10 secreting
regulatory T cells in glucocorticoid-resistant asthma patients. J. Clin. Investig. 2006, 116,
146�155.
122. Castro, M.; King, T.S.; Kunselman, S.J.; Cabana, M.D.; Denlinger, L.; Holguin, F.; Kazani, S.D.;
Moore, W.C.; Moy, J.; Sorkness, C.A.; et al. Effect of vitamin D3 on asthma treatment failures in
adults with symptomatic asthma and lower vitamin D levels: The VIDA randomized clinical trial.
JAMA 2014, 311, 2083�2091.
123. Janssens, W.; Bouillon, R.; Claes, B.; Carremans, C.; Lehouck, A.; Buysschaert, I.; Coolen, J.;
Mathieu, C.; Decramer, M.; Lambrechts, D. Vitamin D deficiency is highly prevalent in COPD
and correlates with variants in the vitamin D-binding gene. Thorax 2010, 65, 215�220.
124. Black, P.N.; Scragg, R. Relationship between serum 25-hydroxyvitamin D and pulmonary function
survey. Chest 2005, 128, 3792�3798.
125. Persson, L.J.; Aanerud, M.; Hiemstra, P.S.; Hardie, J.A.; Bakke, P.S.; Eagan, T.M. Chronic
obstructive pulmonary disease is associated with low levels of vitamin D. PLoS One 2012,
7, e38934.
126. Uh, S.T.; Koo, S.M.; Kim, Y.K.; Kim, K.U.; Park, S.W.; Jang, A.S.; Kim, D.J.; Kim, Y.H.;
Park, C.S. Inhibition of vitamin D receptor translocation by cigarette smoking extracts. Tuberc.
Respir. Dis. 2012, 73, 258�265.
127. Wood, A.M.; Bassford, C.; Webster, D.; Newby, P.; Rajesh, P.; Stockley, R.A.; Thickett, D.R.
Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages. Thorax
2011, 66, 205�210.
128. Sundar, I.K.; Hwang, J.W.; Wu, S.; Sun, J.; Rahman, I. Deletion of vitamin D receptor leads to
premature emphysema/COPD by increased matrix metalloproteinases and lymphoid aggregates
formation. Biochem. Biophys. Res. Commun. 2011, 406, 127�133.
129. Lehouck, A.; Mathieu, C.; Carremans, C.; Baeke, F.; Verhaegen, J.; Van Eldere, J.; Decallonne,
B.; Bouillon, R.; Decramer, M.; Janssens, W. High doses of vitamin D to reduce exacerbations in
chronic obstructive pulmonary disease: A randomized trial. Ann. Intern. Med. 2012, 156, 105�114.
130. Baker, J.C.; Ayres, J.G. Diet and asthma. Respir. Med. 2000, 94, 925�934.
131. Pogson, Z.E.K.; Antoniak, M.D.; Pacey, S.J.; Lewis, S.A.; Britton, J.R.; Fogarty, A.W.
Does a low sodium diet improve asthma control? A randomized controlled trial. Am. J. Respir.
Crit. Care Med. 2008, 178, 132�138.
132. Matthew, R.; Altura, B. The role of magnesium in lung diseases: Asthma, allergy, and pulmonary
hypertension. Magnes. Trace Elem. 1991, 10, 220�228.
133. Baker, J.; Tunnicliffe, W.; Duncanson, R.; Ayres, J. Dietary antioxidants in type 1 brittle asthma:
A case control study. Thorax 1999, 54, 115�118.
134. Gilliand, F.; Berhane, K.; Li, Y.; Kim, D.; Margolis, H. Dietary magnesium, potassium, sodium
and childrens lung function. Am. J. Epidemiol. 2002, 155, 125�131.
135. Kim, J.-H.; Ellwood, P.; Asher, M.I. Diet and asthma: Looking back, moving forward. Respir. Res.
2009, 10, 49�55.
136. Kadrabova, J.; Mad�aric, A.; Kovacikova, Z.; Podiv�nsky, F.; Ginter, E.; Gazd�k, F. Selenium
status is decreased in patients with intrinsic asthma. Biol. Trace Elem. Res. 1996, 52, 241�248.
137. Devereux, G.; McNeill, G.; Newman, G.; Turner, S.; Craig, L.; Martindale, S.; Helms, P.; Seaton,
A. Early childhood wheezing symptoms in relation to plasma selenium in pregnant mothers and
neonates. Clin. Exp. Allergy 2007, 37, 1000�1008.
138. Burney, P.; Potts, J.; Makowska, J.; Kowalski, M.; Phillips, J.; Gnatiuc, L.; Shaheen, S.; Joos, G.;
Van Cauwenberge, P.; van Zele, T.; et al. A case control study of the relation between plasma
selenium and asthma in European populations: A GAL2EN project. Allergy 2008, 63, 865�871.
139. Shaheen, S.O.; Newson, R.B.; Rayman, M.P.; Wong, A.P.; Tumilty, M.K.; Phillips, J.M.;
Potts, J.F.; Kelly, F.J.; White, P.T.; Burney, P.G. Randomised, double blind, placebo controlled
trial of selenium supplementation in adult asthma. Thorax 2007, 62, 483�490.
140. Shaheen, S.O.; Newson, R.B.; Henderson, A.J.; Emmett, P.M.; Sherriff, A.; Cooke, M.; Team, A.S.
Umbilical cord trace elements and minerals and risk of early childhood wheezing and eczema. Eur.
Respir. J. 2004, 24, 292�297.
141. Andersson, I.; Gr�nberg, A.; Slinde, F.; Bosaeus, I.; Larsson, S. Vitamin and mineral status in
elderly patients with chronic obstructive pulmonary disease. Clin. Respir. J. 2007, 1, 23�29.
142. Periyalil, H.; Gibson, P.; Wood, L. Immunometabolism in obese asthmatics: Are we there yet?
Nutrients 2013, 5, 3506�3530.
143. Mathis, D.; Shoelson, S.E. Immunometabolism: An emerging frontier. Nat. Rev. Immunol.
2011, 11, 81.
144. Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428�435.
145. Berthon, B.S.; Macdonald-Wicks, L.K.; Gibson, P.G.; Wood, L.G. Investigation of the association
between dietary intake, disease severity and airway inflammation in asthma. Respirology 2013, 18,
447�454.
146. Procaccini, C.; Jirillo, E.; Matarese, G. Leptin as an immunomodulator. Mol. Aspects Med.
2012, 33, 35�45.
147. Caldefie-Chezet, F.; Poulin, A.; Vasson, M.P. Leptin regulates functional capacities of
polymorphonuclear neutrophils. Free Radic. Res. 2003, 37, 809�814.
148. Zarkesh-Esfahani, H.; Pockley, A.G.; Wu, Z.; Hellewell, P.G.; Weetman, A.P.; Ross, R.J.
Leptin indirectly activates human neutrophils via induction of TNF-alpha. J. Immunol. 2004, 172,
1809�1814.
149. Lugogo, N.L.; Hollingsworth, J.W.; Howell, D.L.; Que, L.G.; Francisco, D.; Church, T.D.;
Potts-Kant, E.N.; Ingram, J.L.; Wang, Y.; Jung, S.H.; et al. Alveolar macrophages from
overweight/obese subjects with asthma demonstrate a proinflammatory phenotype. Am. J. Respir.
Crit. Care Med. 2012, 186, 404�411.
150. Shore, S.A.; Terry, R.D.; Flynt, L.; Xu, A.; Hug, C. Adiponectin attenuates allergen-induced
airway inflammation and hyperresponsiveness in mice. J. Allergy Clin. Immonol. 2006, 118,
389�395.
151. Wood, L.G.; Gibson, P.G. Adiponectin: The link between obesity and asthma in women? Am. J.
Respir. Crit. Care Med. 2012, 186, 1�2.
152. Wood, L.G.; Baines, K.J.; Fu, J.; Scott, H.A.; Gibson, P.G. The neutrophilic inflammatory
phenotype is associated with systemic inflammation in asthma. Chest 2012, 142, 86�93.
153. Scott, H.A.; Gibson, P.G.; Garg, M.L.; Wood, L.G. Airway inflammation is augmented by obesity
and fatty acids in asthma. Eur. Respir. J. 2011, 38, 594�602.
154. Telenga, E.D.; Tideman, S.W.; Kerstjens, H.A.; Hacken, N.H.; Timens, W.; Postma, D.S.;
van den Berge, M. Obesity in asthma: More neutrophilic inflammation as a possible explanation
for a reduced treatment response. Allergy 2012, 67, 1060�1068.
155. Forno, E.; Young, O.M.; Kumar, R.; Simhan, H.; Celed�n, J.C. Maternal Obesity in Pregnancy,
Gestational Weight Gain, and Risk of Childhood Asthma. Pediatrics 2014, 134, e535�e546.
156. Franssen, F.M.; O�Donnell, D.E.; Goossens, G.H.; Blaak, E.E.; Schols, A.M. Obesity and the lung:
5. Obesity and COPD. Thorax 2008, 63, 1110�1117.
157. Zhou, L.; Yuan, C.; Zhang, J.; Yu, R.; Huang, M.; Adcock, I.M.; Yao, X. Circulating Leptin
Concentrations in Patients with Chronic Obstructive Pulmonary Disease: A Systematic Review
and Meta-Analysis. Respiration 2014, 86, 512�522.
158. Bianco, A.; Mazzarella, G.; Turchiarelli, V.; Nigro, E.; Corbi, G.; Scudiero, O.; Sofia, M.; Daniele,
A. Adiponectin: An attractive marker for metabolic disorders in chronic obstructive pulmonary
disease (COPD). Nutrients 2013, 5, 4115�4125.
159. Daniele, A.; de Rosa, A.; de Cristofaro, M.; Monaco, M.L.; Masullo, M.; Porcile, C.; Capasso, M.;
Tedeschi, G.; Oriani, G.; di Costanzo, A. Decreased concentration of adiponectin together with
a selective reduction of its high molecular weight oligomers is involved in metabolic complications
of myotonic dystrophy type 1. Eur. J. Endocrinol. 2011, 165, 969�975.
160. Kadowaki, T.; Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev. 2005, 26,
439�451.
161. Nigro, E.; Scudiero, O.; Sarnataro, D.; Mazzarella, G.; Sofia, M.; Bianco, A.; Daniele, A.
Adiponectin affects lung epithelial A549 cell viability counteracting TNFa and IL-1? toxicity
through AdipoR1. Int. J. Biochem. Cell Biol. 2013, 45, 1145�1153.
162. Gable, D.R.; Matin, J.; Whittall, R.; Cakmak, H.; Li, K.W.; Cooper, J.; Miller, G.J.; Humphries, S.E.;
HIFMECH investigators. Common adiponectin gene variants show different effects on risk of
cardiovascular disease and type 2 diabetes in European subjects. Ann. Hum. Genet. 2007, 71,
453�466.
163. Yoon, H.I.; Li, Y.; Man, S.F.; Tashkin, D.; Wise, R.A.; Connett, J.E.; Anthonisen, N.A.; Churg, A.;
Wright, J.L.; Sin, D.D. The complex relationship of serum adiponectin to COPD outcomes COPD
and adiponectin. Chest 2012, 142, 893�899.
164. Daniele, A.; de Rosa, A.; Nigro, E.; Scudiero, O.; Capasso, M.; Masullo, M.; de Laurentiis, G.;
Oriani, G.; Sofia, M.; Bianco, A. Adiponectin oligomerization state and adiponectin receptors
airway expression in chronic obstructive pulmonary disease. Int. J. Biochem. Cell Biol. 2012, 44,
563�569.
165. Petridou, E.T.; Mitsiades, N.; Gialamas, S.; Angelopoulos, M.; Skalkidou, A.; Dessypris, N.;
Hsi, A.; Lazaris, N.; Polyzos, A.; Syrigos, C.; et al. Circulating adiponectin levels and expression
of adiponectin receptors in relation to lung cancer: Two case-control studies. Oncology 2007, 73,
261�269.
166. Ajuwon, K.M.; Spurlock, M.E. Adiponectin inhibits LPS-induced NF-kappaB activation and
IL-6 production and increases PPARgamma2 expression in adipocytes. Am. J. Physiol. Regul.
Integr. Comp. Physiol. 2005, 288, R1220�R1225.
167. Cheng, X.; Folco, E.J.; Shimizu, K.; Libby, P. Adiponectin induces pro-inflammatory programs in
human macrophages and CD4+ T cells. J. Biol. Chem. 2012, 287, 36896�36904.
168. Miller, M.; Pham, A.; Cho, J.Y.; Rosenthal, P.; Broide, D.H. Adiponectin-deficient mice are
protected against tobacco-induced inflammation and increased emphysema. Am. J. Physiol. Lung
Cell. Mol. Physiol. 2010, 299, L834�L842.
169. Furukawa, T.; Hasegawa, T.; Suzuki, K.; Koya, T.; Sakagami, T.; Youkou, A.; Kagamu, H.;
Arakawa, M.; Gejyo, F.; Narita, I.; et al. Influence of underweight on asthma control. Allergol. Int.
2012, 61, 489�496.
170. Harding, R.; Maritz, G. Maternal and fetal origins of lung disease in adulthood. Semin. Fetal.
Neonatal Med. 2012, 17, 67�72.
171. Itoh, M.; Tsuji, T.; Nemoto, K.; Nakamura, H.; Aoshiba, K. Undernutrition in patients with COPD
and its treatment. Nutrients 2013, 5, 1316�1335.
172. Hallin, R.; Koivisto-Hursti, U.K.; Lindberg, E.; Janson, C. Nutritional status, dietary energy intake
and the risk of exacerbations in patients with chronic obstructive pulmonary disease (COPD).
Respir. Med. 2006, 100, 561�567.
173. Gr�nberg, A.M.; Slinde, F.; Engstr�m, C.P.; Hulth�n, L.; Larsson, S. Dietary problems in patients
with severe chronic obstructive disease. J. Hum. Nutr. Diet. 2005, 18, 445�452.
174. Wilson, D.O.; Donahoe, M.; Rogers, R.M.; Pennock, B.E. Metabolic rate and weight loss in
chronic obstructive lung disease. J. Parenter. Enter. Nutr. 1990, 14, 7�11.
175. Gan, W.Q.; Man, S.F.; Senthilselvan, A.; Sin, D.D. Association between chronic obstructive
pulmonary disease and systemic inflammation: A systematic review and a meta-analysis. Thorax
2004, 59, 574�580.
176. Orlander, J.; Kiessling, K.H.; Larsson, L. Skeletal muscle metabolism, morphology and function
in sedentary smokers and nonsmokers. Acta Physiol. Scand. 1979, 107, 39�46.
177. Kok, M.O.; Hoekstra, T.; Twisk, J.W.R. The Longitudinal Relation between Smoking and Muscle
Strength in Healthy Adults. Eur. Addict. Res. 2012, 18, 70�75.
178. Gosker, H.R.; Langen, R.C.J.; Bracke, K.R.; Joos, G.F.; Brusselle, G.G.; Steele, C.; Ward, K.A.;
Wouters, E.F.M.; Schols, A.M.W.J. Extrapulmonary Manifestations of Chronic Obstructive
Pulmonary Disease in a Mouse Model of Chronic Cigarette Smoke Exposure. Am. J. Respir. Cell
Mol. Biol. 2009, 40, 710�716.
179. Nakatani, T.; Nakashima, T.; Kita, T.; Ishihara, A. Effects of exposure to cigarette smoke at
different dose levels on extensor digitorum longus muscle fibres in Wistar-Kyoto and spontaneously
hypertensive rats. Clin. Exp. Pharmacol. Physiol. 2003, 30, 671�677.
180. Remels, A.H.; Gosker, H.R.; Langen, R.C.; Schols, A.M. The mechanisms of cachexia underlying
muscle dysfunction in COPD. J. Appl. Physiol. (1985) 2013, 114, 1253�1262.
181. Caron, M.A.; Debigare, R.; Dekhuijzen, P.N.; Maltais, F. Comparative assessment of the
quadriceps and the diaphragm in patients with COPD. J. Appl. Physiol. (1985) 2009, 107,
952�961.
182. Vogiatzis, I.; Simoes, D.C.; Stratakos, G.; Kourepini, E.; Terzis, G.; Manta, P.; Athanasopoulos, D.;
Roussos, C.; Wagner, P.D.; Zakynthinos, S. Effect of pulmonary rehabilitation on muscle
remodelling in cachectic patients with COPD. Eur. Respir. J. 2010, 36, 301�310.
183. Kythreotis, P.; Kokkini, A.; Avgeropoulou, S.; Hadjioannou, A.; Anastasakou, E.; Rasidakis, A.;
Bakakos, P. Plasma leptin and insulin-like growth factor I levels during acute exacerbations of
chronic obstructive pulmonary disease. BMC Pulm. Med. 2009, 9, 11.
184. Barreiro, E.; Rabinovich, R.; Marin-Corral, J.; Barbera, J.A.; Gea, J.; Roca, J. Chronic endurance
exercise induces quadriceps nitrosative stress in patients with severe COPD. Thorax 2009, 64,
13�19.
185. Plant, P.J.; Brooks, D.; Faughnan, M.; Bayley, T.; Bain, J.; Singer, L.; Correa, J.; Pearce, D.;
Binnie, M.; Batt, J. Cellular markers of muscle atrophy in chronic obstructive pulmonary disease.
Am. J. Respir. Cell Mol. Biol. 2010, 42, 461�471.
186. Langen, R.C.; Haegens, A.; Vernooy, J.H.; Wouters, E.F.; de Winther, M.P.; Carlsen, H.; Steele, C.;
Shoelson, S.E.; Schols, A.M. NF-kappaB activation is required for the transition of pulmonary
inflammation to muscle atrophy. Am. J. Respir. Cell Mol. Biol. 2012, 47, 288�297.
187. Sharma, R.; Anker, S.D. Cytokines, apoptosis and cachexia: The potential for TNF antagonism.
Int. J. Cardiol. 2002, 85, 161�171.
188. Ferreira, I.M.; Brooks, D.; White, J.; Goldstein, R. Nutritional supplementation for stable chronic
obstructive pulmonary disease. Cochrane Database Syst. Rev. 2012, 12, CD000998.
189. Planas, M.; Alvarez, J.; Garc�a-Peris, P.A.; de la Cuerda, C.; de Lucas, P.; Castell�, M.; Canseco, F.;
Reyes, L. Nutritional support and quality of life in stable chronic obstructive pulmonary disease
(COPD) patients. Clin. Nutr. 2005, 24, 433�441.
190. Sugawara, K.; Takahashi, H.; Kasai, C.; Kiyokawa, N.; Watanabe, T.; Fujii, S.; Kashiwagura, T.;
Honma, M.; Satake, M.; Shioya, T. Effects of nutritional supplementation combined with
low-intensity exercise in malnourished patients with COPD. Respir. Med. 2010, 104, 1883�1889.
191. Al-Ghimlas, F.; Todd, D.C. Creatine supplementation for patients with COPD receiving
pulmonary rehabilitation: A systematic review and meta-analysis. Respirology 2010, 15, 785�795.
192. Morimitsu, Y.; Nakagawa, Y.; Hayashi, K.; Fujii, H.; Kumagai, T.; Nakamura, Y.; Osawa, T.;
Horio, F.; Itoh, K.; Iida, K.; et al. A sulforaphane analogue that potently activates the Nrf2-
dependent detoxification pathway. J. Biol. Chem. 2002, 277, 3456�3463.
193. Meja, K.K.; Rajendrasozhan, S.; Adenuga, D.; Biswas, S.K.; Sundar, I.K.; Spooner, G.;
Marwick, J.A.; Chakravarty, P.; Fletcher, D.; Whittaker, P.; et al. Curcumin restores corticosteroid
function in monocytes exposed to oxidants by maintaining HDAC2. Am. J. Respir. Cell Mol. Biol.
2008, 39, 312�323.
194. Engelen, M.P.; Rutten, E.P.; de Castro, C.L.; Wouters, E.F.; Schols, A.M.; Deutz, N.E.
Supplementation of soy protein with branched-chain amino acids alters protein metabolism in
healthy elderly and even more in patients with chronic obstructive pulmonary disease. Am. J. Clin.
Nutr. 2007, 85, 431�439.
195. Dal Negro, R.W.; Aquilani, R.; Bertacco, S.; Boschi, F.M.C.; Tognella, S. Comprehensive effects of
supplemented essential amino acids in patients with severe COPD and sarcopenia. Monaldi Arch.
Chest Dis. 2010, 73, 25�33.
196. Varraso, R. Nutrition and asthma. Curr. Allergy Asthma Rep. 2012, 12, 201�210.

Close Accordion
A Healthy Diet Benefits Your Life: 8 Wonderful Ways

A Healthy Diet Benefits Your Life: 8 Wonderful Ways

Healthy Diet: It’s hard to turn on the television or cruise the internet without being bombarded with headlines about “Americans don’t sleep enough” or “one third of adults are obese.”

While stress, heredity, and smoking are all factors that play into a person’s well being, one of the biggest is a healthy diet. Choosing to eat healthy benefits the body in a number of key areas. Still gobbling up the pizza and slurping down the diet soda, unconvinced? See if these eight points about a healthy diet change your mind.

1. Healthy Diet Strengthens & Improves Muscle Function

Healthy muscles carry us where we want to go. The right foods, along with proper exercise, build and maintain muscle mass, maintaining strength and mobility.

2. Promotes A Longer Life

Feeding your body what it needs can add years to your life. Reducing stress is one way to promote health, and a healthy diet is another. Foods rich in minerals and vitamins build up every cell in your body, preparing it to fight illness and stay alive longer.

3. Enables Richer Years

An individual who is healthy maintains a higher level of physical activity and brain function than their less healthy peers. A stronger body provides a richer life with more unique experiences.

4. Makes You Prettier

If you won’t eat healthy for your insides, maybe a better outside will motivate some dietary changes. We all want to be physically attractive. Healthy foods contribute to clear skin and shiny hair that no amount of high priced beauty products provides. Fueling the body with rich omega fatty and other healthy foods nourishes skin, hair, and nails.

healthy diet5. Makes You Smarter

Research shows certain dietary choices power up your brain to function at a higher level, and help everyday brain function. Introducing “brain foods” into your diet aid with memory retention and problem solving skills.

This is one of the best reasons to commit to a healthy diet of vitamin-rich foods, as a healthy brain allows a much more active and independent lifestyle, from working longer to being able to drive.

6. Decreases Your Injury Risk

A high-functioning body with strong bones and muscles maintains balance, handles heavy loads, and holds up under stress better than its weaker counterparts. Muscles and bones lacking calcium and protein over time grow weaker.

This, unfortunately, causes the body to be less stable and more prone to injury. Falls, slips, and twists end up with more serious injuries if a person’s body isn’t strong and healthy.

7. Fights Bad Genes

If you are already worried about the cancer that runs on mom’s side or the heart attack risk that runs on dad’s side, take heart. While you can’t change your DNA, you can use a healthy diet to combat some of your genetic disposition to disease.

Ingraining a healthy diet into your life, as well as exercise and regular doctor checkups, helps minimize the risk of falling victim to your family’s predisposed illnesses.

If you end up with an illness, whether or not from heredity, a healthy diet….

8. Prepares You To Fight Illness

A nutrient-rich diet boosts a person’s immune system to be able to fight off infection and illness. When a person falls victim to a disease or other medical condition, their diet helps them fight it off so it hopefully doesn’t get worse and is cured quickly.

A healthy diet is integral to a long, happy life. Deciding to eat healthy and maintain that commitment consistently may seem like a big change in lifestyle at first, but it will benefit you and your loved ones in ways that are practically immeasurable.

Tips For Preventing Dehydration

This article is copyrighted by Blogging Chiros LLC for its Doctor of Chiropractic members and may not be copied or duplicated in any manner including printed or electronic media, regardless of whether for a fee or gratis without the prior written permission of Blogging Chiros, LLC.

Safe Physiotherapy Interventions in Cervical Disc Herniations

Safe Physiotherapy Interventions in Cervical Disc Herniations

Recognizing clinical and experimental evidence, physiotherapy is a healthcare profession that helps restore and maintain function to individuals affected by injury, disease or disability by using mechanical force and movements, manual therapy, exercise and electrotherapy, as well as through patient education and advice. The terms physiotherapy and physical therapy are used interchangeably to describe the same healthcare profession. Physiotherapy is recommended for a variety of injuries and conditions, and it can help support overall health and wellness for people of all ages.

 

For further notice,�physiotherapy services may be offered alongside chiropractic care, to provide a cautious and gentle manipulation and/or mobilization of the cervical and thoracic spine in the instance of a large cervical disc herniation. Cervical disc herniations can cause pain and discomfort, numbness and weakness in the neck, shoulders, chest, arms and hands.

Abstract

 

A 34-year-old woman was seen in a physiotherapy department with signs and symptoms of cervical radiculopathy. Loss of cervical lordosis and a large paracentral to intraforaminal disc prolapse (8?mm) at C5�C6 level was reported on MRI. She was taking diclofenac sodium, tramadol HCl, diazepam and pregabalin for the preceding 2?months and no significant improvement, except temporary relief, was reported. She was referred to physiotherapy while awaiting a surgical opinion from a neurosurgeon. In physiotherapy she was treated with mobilisation of the upper thoracic spine from C7 to T6 level. A cervical extension exercise was performed with prior voluntary extension of the thoracic spine and elevated shoulders. She was advised to continue the same at home. General posture advice was given. Signs and symptoms resolved within the following four sessions of treatment over 3?weeks. Surgical intervention was subsequently deemed unnecessary.

 

Background

 

Surgical interventions are commonly recommended in large cervical prolapsed discs and the importance of non-aggressive physiotherapy interventions is less recognised and poorly understood. We present interventions that were associated with resolution of symptoms of radiculopathy resulting from a larger cervical herniated disc. These interventions, if applied correctly, may help to reduce the number of surgeries required for cervical prolapsed discs.

 

Case Presentation

 

The patient was a 34-year-old woman. She was seen in the physiotherapy department with a complaint of left-sided neck and shoulder pain. The pain was radiating to her left arm and there was associated numbness. The duration of symptoms was more than 2?months with no history of trauma. The pain was present on waking in the morning and gradually increased during the day. She was otherwise a healthy woman. Neck movements were aggravating the symptoms. She was seen in the acute hospital accident and emergency department (A&E) twice since onset and had been taking diclofenac sodium, tramadol HCl, diazepam and pregabalin. An MRI was planned and a request was sent for physiotherapy during the MRI waiting period. A neurosurgical review was requested by the A&E consultant upon receipt of the MRI report 7?weeks later.

 

Patient examination in the physiotherapy department revealed a normal gait pattern, her left arm held in front of her chest with the left shoulder slightly elevated. Her active range of neck motion was restricted and was painful on the left side. Flexion and rotation to the left were aggravating her arm and shoulder pain. Strength deficits were noted in the left elbow flexors and wrist extensors (4/5) when compared with the right side. There was paraesthesia along the radial border of the forearm and thumb regions. The brachioradialis reflex was diminished and biceps reflex was sluggish. Triceps and plantar reflexes were normal. Passive intervertebral movements were tender at C5�C6 level and were reproducing the pain. Sustained pressure at C7 and below was easing the pain and also improving the neck range of motion. The patient was deemed to have C6 radiculopathy. The MRI report, available 2?weeks after the commencement of physiotherapy, confirmed the diagnosis.

 

Investigations

 

The findings from the plain cervical x-ray were unremarkable. MRI showed (Figure 1) loss of cervical spine lordosis, a left paracentral to intraforaminal lesion with 8?mm hernia, which indented the cord and obstructed the left paracentral recess and neural foramen.

 

Figure 1 Loss of Cervical Spine Lordosis and Large Disc Herniation at C5 and C6 on MRI

Figure 1: Loss of cervical spine lordosis and large disc herniation at C5 and C6 on MRI.

 

Differential Diagnosis

 

  • Cervical myelopathy.

 

Treatment

 

The patient received pharmacological treatment for the initial two symptomatic months, which included diclofenic sodium, tramadol, diazepam and pregabalin (lyrica) tablet. Physiotherapy was started after 2?months. Physiotherapy intervention consisted of mobilisation of the thoracic spine, resisted cervical extension exercises, a home programme of exercises and advice regarding the posture.

 

Mobilisation of the thoracic spine was administered in the prone lying position from C7 toT6 level. Mild intensity oscillations (15?reps) in an anterosuperior direction were directly applied to each of the spinal segments, through the thumb over the spinous processes, during the first visit. The applied force was enough to appreciate intervertebral movement in each segment and without significant pain. High-intensity oscillations (10�20) were applied during the subsequent treatment sessions. The patient was asked for symptom feedback during treatment.

 

Cervical spine extension exercises were carried out in a sitting position. The patient was asked to extend her thoracic spine with lungs fully inflated and shoulders elevated followed by extension of her cervical spine. Head extension was moderately resisted by the therapist near the end range of extension for 5�10?s and brought back to neutral after each resisted movement. The resisted movement was repeated at least three times with intervals of 30?s. The patient was asked to perform the same exercise at home every hour during the day.

 

The patient was educated regarding the rationale of extension exercises, sitting and lying posture and their effects on the spine. The duration of each session was approximately 20�25?min.

 

Dr. Alex Jimenez’s Insight

Surgical interventions are generally recommended and widely considered for large cervical disc herniations. Although less recognized and often misunderstood, however, physiotherapy can be just as effective towards improving herniated discs in the cervical spine, excluding the need for surgery, according to the research study. Pharmacological treatments are also commonly used to help temporarily reduce symptoms alongside physiotherapy interventions. Cautious and gentle, spinal manipulation and mobilization of the cervical spine should be performed in the case of large cervical disc herniations to avoid aggravating the injury and/or condition. As recommended by a physiotherapist, or other healthcare professional experienced in physiotherapy, proper exercise can restore the function of the cervical spine and prevent regression of large prolapsed discs along the spine. Through appropriate physiotherapy intervention as well as through patient safety and compliance, the retraction of the cervical herniated discs is possible.

 

Outcome and Follow-Up

 

Pharmacological interventions were helpful to reduce the patient’s pain on a temporary basis. Symptoms were recurring and resolution was not sustainable. The symptoms started improving after the first physiotherapy session and continued to improve during the subsequent sessions. It fully resolved in four sessions extended over 3?weeks. The patient was reviewed 4?months after the resolution of symptoms and there was no recurrence of symptoms. She was reviewed by a neurosurgeon and the surgical option was withdrawn.

 

Discussion

 

Stiffness of the thoracic spine has been linked to the painful pathologies of the cervical spine, and manipulation of the thoracic spine has been shown to improve painful symptoms and mobility of the cervical spine. However, cervical disc herniations of greater than 4?mm are considered inappropriate for physiotherapy interventions such as traction and manipulation. Spinal manipulation refers to a passive movement thrust of high velocity and low amplitude, usually applied at the end range of movement and is beyond the patient’s control. Manipulation of the cervical spine is an aggressive procedure, which carries various risks and is often associated with worsening of symptoms. Manipulation was not considered in the treatment options for this patient because of the risks associated with it, and also because of patient’s anxiety and lack of MRI-confirmed diagnosis.

 

Active extension of the thoracic spine increases the range of motion of the cervical spine and, in these authors� clinical experience, relieves minor neck symptoms. Conversely, thoracic spine kyphosis, such as slouch sitting, restricts the mobility of the cervical spine and aggravates the painful symptoms. A good sitting posture is constituted by a slightly extended thoracic spine. Therefore, active extension of the thoracic spine prior to cervical extension may improve cervical movements and restore cervical curvature.

 

It is believed that excessive pressure during flexion on the anterior aspect of the intervertebral discs pushes the nucleus pulposus posteriorly and causes herniations. Conversely, cervical lordosis might have the reverse effect�that is, decreases pressure on the anterior aspect of the discs and may create a suction effect which retracts the herniated contents. Therefore, a combination of short duration and repeated movements at the end of extension may serve as a suction pump and possibly retract the extruded content of the disc. Active cervical extension exercises, with an extended thoracic spine posture, may have been the key element in a home exercise programme to restore lordosis of the cervical spine and relieve radiculopathy symptoms in the current case. This may possibly have been due to the retraction of the herniated discs.

 

Spinal mobilisation refers to a gentle, oscillatory, passive movement of a spinal segment. These are applied to a spinal segment to gently increase the passive range of motion. It allows the patient to report aggravation of pain and to resist any unwanted movements. No mobilisation treatment was administered at C5�C6 level as palpation at this level was aggravating the symptoms. Segments below this level were mobilised with emphasis at C7�T1 level. Any treatment at the affected segment was likely to irritate the nerve root and thereby increase the inflammatory process.

 

Various interventions are reported for the treatment of prolapsed discs. Saal et al reported the use of traction, specific physical therapy exercise, oral anti-inflammatory medication and patient education in the treatment of 26 patients with herniated cervical discs (<4?mm) and reported significant improvement in outcomes for 24 patients. They observed that surgery for disc herniations occurs when a patient has significant myotomal weakness, severe pain or pain that persists beyond an arbitrary conservative treatment period of 2�8?weeks.

 

Spontaneous regressions of cervical disc protrusions are reported in the literature. However, spontaneous regressions of herniated cervical discs are speculated to be rare. Various factors related to regression are hypothesised and theorised. Pan et al summarised the factors related to the resorption of herniated disc as: the age of the patients; dehydration of the expanded nucleus pulposus; resorption of haematoma; revascularisation; penetration of herniated cervical disc fragments through the posterior longitudinal ligament; size of disc herniations; and existence of cartilage and annulus fibrosus tissue in the herniated material. Some studies on spontaneous regressions of discs reported that the patients were receiving physiotherapy. Physiotherapy interventions are not defined in any of these studies, however. Therefore, it is possible that disc regressions in these studies may be due to similar physiotherapy interventions as described here, or the patients were practising techniques and adopting postures as reported in the current case.

 

Learning Points

 

  • Thoracic spine mobilisation improves cervical spine biomechanics and can be considered in conjunction with other interventions in all painful conditions of the cervical spine.
  • Active extension of the thoracic spine facilitates movements of the cervical spine and may help regression of large prolapsed discs.
  • There is a possibility of retraction of herniated cervical discs through appropriate physiotherapy intervention.
  • Patient education ensures safety and compliance to therapist advice.
  • Meticulous assessment and patient feedback guides the therapist in selection of intensity of mobilisation.

 

Footnotes

 

Competing interests: None.

 

Patient consent: Obtained.

 

In conclusion,�physiotherapy, or physical therapy, is used to treat various injuries, diseases and disabilities, through the use of mechanical force and movements, manual therapy, exercise, electrotherapy, and through patient education and advice to restore and maintain function. As in the case above, physiotherapy can be recommended and considered as treatment before referring to surgical interventions of large cervical disc herniations. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Sciatica

 

Sciatica is referred to as a collection of symptoms rather than a single type of injury or condition. The symptoms are characterized as radiating pain, numbness and tingling sensations from the sciatic nerve in the lower back, down the buttocks and thighs and through one or both legs and into the feet. Sciatica is commonly the result of irritation, inflammation or compression of the largest nerve in the human body, generally due to a herniated disc or bone spur.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: Treating Sciatica Pain

 

 

Blank
References
1.�Norlander S, Gustavsson BA, Lindell J, et al.�Reduced mobility in the cervico-thoracic motion segment�a risk factor for musculoskeletal neck-shoulder pain: a two-year prospective follow-up study.�Scand J Rehabil Med�1997;29:167�74.�[PubMed]
2.�Walser RF, Meserve BB, Boucher TR.�The effectiveness of thoracic spine manipulation for the management of musculoskeletal conditions: a systematic review and meta-analysis of randomized clinical trials.�J Man Manipulative Ther�2009;17:237�46.�[PMC free article][PubMed]
3.�Krauss J, Creighton D, Ely JD, et al.�The immediate effects of upper thoracic translatoric spinal manipulation on cervical pain and range of motion: a randomized clinical trial.�J Man Manipulative Ther2008;16:93�9.�[PMC free article][PubMed]
4.�Saal JS, Saal JA, Yurth EF.�Nonoperative management of herniated cervical intervertebral disc with radiculopathy.�Spine (Phila Pa 1976)�1996;21:1877�83.�[PubMed]
5.�Murphy DR, Beres JL.�Cervical myelopathy: a case report of a �near-miss� complication to cervical manipulation.�J Manipulative Physiol Ther�2008;31:553�7.�[PubMed]
6.�Leon-Sanchez A, Cuetter A, Ferrer G.�Cervical spine manipulation: an alternative medical procedure with potentially fatal complications.�South Med J�2007;100:201�3.�[PubMed]
7.�Scannell JP, McGill SM.�Disc prolapse: evidence of reversal with repeated extension.�Spine (Phila Pa 1976)�2009;34:344�50.�[PubMed]
8.�Gurkanlar D, Yucel E, Er U, et al.�Spontaneous regression of cervical disc herniations.�Minim Invasive Neurosurg�2006;49:179�83.�[PubMed]
9.�Mochida K, Komori H, Okawa A, et al.�Regression of cervical disc herniation observed on magnetic resonance images.�Spine (Phila Pa 1976)�1998;23:990�5; discussion 6�7.�[PubMed]
10.�Song JH, Park HK, Shin KM.�Spontaneous regression of a herniated cervical disc in a patient with myelopathy. Case report.�J Neurosurg�1999;90(1 Suppl):138�40.�[PubMed]
11.�Westmark RM, Westmark KD, Sonntag VK.�Disappearing cervical disc. Case report.�J Neurosurg1997;86:289�90.�[PubMed]
12.�Pan H, Xiao LW, Hu QF.�Spontaneous regression of herniated cervical disc fragments and its clinical significance.�Orthop Surg�2010;2:77�9.�[PubMed]
13.�Teplick JG, Haskin ME.�Spontaneous regression of herniated nucleus pulposus.�AJR Am J Roentgenol1985;145:371�5.�[PubMed]
Close Accordion
Stay Hydrated And Six Easy Ways To Do It

Stay Hydrated And Six Easy Ways To Do It

Stay Hydrated: Summer fun means outside activities in the warm sun, from strenuous pursuits like biking, hiking, and volleyball-playing, to more leisurely enjoyments like sunbathing on a float. No matter how you plan to enjoy the steamy summer months, maintaining hydration should be right up there with sunscreen on your list of important hot weather priorities.

Dehydration is a condition that ranges from mild to serious, and can happen quicker than you think. Right Diagnosis defines dehydration as “an abnormal condition in which the body’s cells are deprived of an adequate amount of water.” One of the main situations factoring into a person becoming dehydrated is heat.

Think you drink enough water and don’t need to worry about dehydration? Consider these points:

  • The ability to recognize thirst diminishes in individuals in their late 30’s or older.
  • A person’s body is made up of roughly 70% water.
  • When you lose 2% of the body’s water content, you are considered dehydrated.

Dehydration symptoms range from unpleasant confusion, muscle weakness, and fatigue to extremely dangerous ones like seizures, kidney failure, and death. The good news is that if you stay hydrated in the first place is relatively easy if you take a few precautions up front.

#1: Drink Plenty Of Water

Make it a habit of carrying water with you during the summer months, and sipping on it throughout the day, especially if you are planning on outside activities. Invest in a couple of BPA-free water bottles for yourself and your family to tote with them on their summer adventures.

Not a big fan of plain water? Try adding lemon, cucumber, and mint sprigs to liven it up! Mix up in a big pitcher the night before so the flavor has time to penetrate. Another option is flavor packets, which are individual packets of flavors like green tea, watermelon, and peach.

#2: Eat The Right Foods

Liquids aren’t the only way your body gets water. Avoid dehydration by eating foods with a high water content.

Choices like celery, watermelon, cucumbers, carrots, and citrus fruits all offer exceptional hydrating ability. Pack these as snacks for the pool or beach, or to enjoy before and after an outdoor workout.

#3: Steer Clear Of Certain Drinks

As yummy and refreshing as an icy beer or frosty margarita tastes, alcohol can contribute to dehydration. If you decide to indulge, limit yourself to one or two, and drink a large glass of water along with your beverage to counteract the alcohol’s effects.

stay hydrated#4: Avoid Overexertion

Exercise is a wonderfully healthy pursuit; however, keep an eye on the temperature. If it is going to be exceptionally hot and humid, choose to exercise either early in the morning, or after sunset, when temperatures are lower and the sun isn’t beaming.

#5: Wear Proper Attire

Dress in light, airy clothing in fabrics that breathe. Protect your head with a cap or hat that shades your face. Avoid black clothing, which tends to absorb the sun and make you hotter.

#6: Stay Hydrated & Be Prepared

Extreme heat makes everyday issues like a flat tire or dead battery life-threatening. Visit a mechanic to confirm your vehicle is in good shape to lessen the chances of getting stranded. Carry extra water or sports drinks in your vehicle, and keep your cell phone charged. If your car breaks down, either stay in your car to wait for help, or stand in the grass instead of on the sizzling pavement.

When you stay hydrated is essential for good health all the time, and during the summer in particular. Implement these easy tips into your daily routine so you and your family maintain hydration and enjoy hot weather outdoor fun.

Chiropractic Treatment For Concussions

This article is copyrighted by Blogging Chiros LLC for its Doctor of Chiropractic members and may not be copied or duplicated in any manner including printed or electronic media, regardless of whether for a fee or gratis without the prior written permission of Blogging Chiros, LLC.

Traditional Chinese Medicine for Low Back Pain Due to Lumbar Disc Herniation

Traditional Chinese Medicine for Low Back Pain Due to Lumbar Disc Herniation

Understanding the following, traditional Chinese medicine utilizes herbal medicines as well as various mind and body practices, such as acupuncture and tai chi, in order to treat or prevent numerous health issues. Traditional Chinese medicine, or TCM, originated in ancient China and has evolved over thousands of years. TCM has been primarily used as a complementary health approach along with other alternative treatment options like chiropractic care. Like TCM, chiropractic care is an alternative healthcare approach focused on the diagnosis, treatment and prevention of a variety of injuries and conditions of the musculoskeletal and nervous system, with an emphasis on manual manipulations and adjustments of the spine. As a doctor of chiropractic, or DC, TCM can also be offered to treat various types of injuries and conditions.

 

On a personal note, integrative TCM conservative therapies have been utilized to help treat symptoms of low back pain due to lumbar disc herniation, or LDH. Disc material from a ruptured or herniated disc in the lumbar spine can irritate or compress one or several of the nerves found in the lower spine. Pressure along the sciatic nerve can cause symptoms of sciatica, such as pain and discomfort, burning and tingling sensations, and numbness which may radiate from the buttocks into the leg and occasionally, down to the foot.�A randomized controlled trial was conducted in order to measure the outcomes of traditional Chinese medicine for low back pain due to LDH. The results have been recorded below.

 

Abstract

 

Low back pain due to lumbar disc herniation (LDH) is very common in clinic. This randomized controlled trial was designed to investigate the effects of integrative TCM conservative therapy for low back pain due to LDH. A total of 408 patients with low back pain due to LDH were randomly assigned to an experimental group with integrative TCM therapy and a control group with normal conservative treatment by the ratio of 3?:?1. The primary outcome was the pain by the visual analogue scale (VAS). The secondary outcome was the low back functional activities by Chinese Short Form Oswestry Disability Index (C-SFODI). Immediately after treatment, patients in the experimental group experienced significant improvements in VAS and C-SFODI compared with the control group (between-group difference in mean change from baseline, ?16.62 points, P < 0.001 in VAS; ?15.55 points, P < 0.001 in C-SFODI). The difference remained at one-month followup, but it is only significant in C-SFODI at six-month followup (?7.68 points, P < 0.001). No serious adverse events were observed. These findings suggest that integrative TCM therapy may be a beneficial complementary and alternative therapy for patients with low back pain due to LDH.

 

Introduction

 

Lumbar disc herniation (LDH) is a common disease and a major contributing factor of low back pain. Although many studies have confirmed that surgery is more effective for LDH, conservative therapies have also been recognized for their therapeutic efficacy. Considering the fact that 20% of patients still have pain after surgery, 7% to 15% of surgical patients may have failed back surgery syndrome, and some patients are scared of surgery, conservative treatment is still one of the primary means for LDH.

 

In China, TCM is one of the main conservative treatments for LDH. Previous studies have confirmed that some TCM therapies have certain effects on low back pain due to LDH. These include acupuncture, oral administration of Chinese medicine, external application of Chinese medicine, Chinese Tuina (massage), and TCM-characteristic functional exercise. Clinically, these therapeutic methods are not used alone but often in combination. Recently, the clinical pathway of treating LDH with integrative TCM therapy has attracted attention. The Shi’s Traumatology Medical Center of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine is well recognized for its long-term commitment to the research on conservative treatment for LDH, coupled with a package protocol for LDH. However, high-quality research evidence is needed to support the effectiveness of the protocol.

 

This clinical trial aims to study the efficacy and safety of integrative TCM therapy for LDH and thus confirm its clinical effect.

 

Materials and Methods

 

Design

 

We conducted a multicenter, randomized controlled trial to evaluate the effectiveness of integrative TCM conservative treatment for patients with low back pain due to LDH. Patients were randomly assigned to an experimental group and a control group by the ratio of 3?:?1 using computer-generated numbers. The randomized treatment assignments were sealed in opaque envelopes and opened individually for each patient who agreed to be in the study. The nurse, who had no role in the design and conduct of the study, prepared the envelopes. Patients in the experimental group were treated with integrative TCM therapy once a day, for two weeks, whereas patients in the control group were treated with a two-week normal conservative intervention. At baseline, immediately after treatment, one and six months after treatment, visual analogue scale (VAS) and the Chinese Short Form Oswestry Disability Index (C-SFODI) were used as outcome assessment. This trial is registered in Chinese Clinical Trial Registry (No. ChiCTR-TRC-11001343).

 

Subjects

 

Patients were recruited from Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Ruijin Hospital Affiliated to Shanghai Jiaotong University, and Yueyang Integrative Traditional Chinese and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine between January 2011 and August 2012.

 

Inclusion criteria: (1) aging 20�60 years; (2) having low back pain due to LDH (MRI scan confirmed lumbar disk herniation) and ruling out other relevant ongoing pathologies such as fractures, lumbar spondylolisthesis, tumor, osteoporosis, or infection; (3) willing to participate in this study and signing the informed consent.

 

Exclusion criteria: (1) having other pain syndromes; (2) experiencing a history of spinal surgery; (3) having neurological disease; (4) having psychiatric disease; (5) having serious chronic diseases that could interfere with the outcomes (e.g., cardiovascular disease, rheumatoid arthritis, epilepsy, or other disqualifying conditions); (6) scared of acupuncture; (7) pregnant or planning to become pregnant during the study; (8) having other diseases that the researchers believe is not suitable for the study.

 

Treatment

 

Experimental Group

 

Patients in the experimental group receive a two-week integrative TCM treatment. They were further divided into three subgroups (according to the duration from initial low back pain to getting treatment) for different treatment methods: acute stage (0�14 days), subacute stage (15�30 days), and chronic stage (>30 days).

 

Acute stage: (1) Electroacupuncture + (2) Chinese herbal injection (Salvia miltiorrhiza injection) + (3) external plaster (Compound Redbud Injury-healing Cataplasms); Subacute stag: (1) Chinese Tuina (massage) + (2) hot compress using Chinese medicine + (3) external plaster (Compound Redbud Injury-healing Cataplasms); Chronic stage: (1) TCM functional exercise + (2) external plaster (Compound Redbud Injury-healing Cataplasms).

 

Treatment Parameters

 

Electroacupuncture. Points: bilateral Dachangshu (BL 25) and Baihuanshu (BL 30).

 

Method: Insert the needles (the sterile, disposable needles, 0.3 � 75?mm, manufactured by Suzhou Medical Supplies Factory Co., Ltd.) 2.5 to 2.8?cun. Upon De Qi (needling sensation), connect the needles with the electroacupuncture device (Model: G6805-II, manufactured by Guangzhou KangMai Medical Devices Co., Ltd.), using a continuous wave, an electrical stimulation pulse wave of approximately 0.6?ms and a frequency of 20?Hz. The treatment was conducted once every day, 30?min for each treatment.

 

External Plaster. Compound Redbud Injury-healing Cataplasms (Approval no. Z19991106, manufactured by Shanghai LEY’s Pharmaceutical Co., Ltd.).

 

Main ingredients: Zi Jing Pi (Cortex Cercis Chinensis), Huang Jing Zi (Negundo Chastetree Fruit), Da Huang (Radix et Rhizoma Rhei), Chuan Xiong (Rhizoma Chuanxiong), Tian Nan Xing (Rhizoma Arisaematis), and Ma Qian Zi (Semen Strychni).

 

Functions: Circulates blood, resolves stasis, eliminates swelling, and alleviates pain.

 

Method: Apply the cataplasms to the most painful area, one plaster each time, once a day.

 

Chinese Herbal Injection. Salvia miltiorrhiza injection (Approval no. Z51021303, manufactured by Sichuan ShengHe Pharmaceutical Co., Ltd.).

 

The main ingredient of the injection is Salvia root P.E. It acts to circulate blood and resolve stasis.

 

Method: Intravenous dripping of 20?mL salvia miltiorrhiza injection and 250 mL 5% glucose, once a day.

 

Hot Compress Using Chinese Medicine. Ingredients: 20?g of Cang Zhu (Rhizoma Atractylodis), Qin Jiao (Radix Gentianae Macrophyllae), Sang Zhi (Ramulus Mori), Mu Gua (Fructus Chaenomelis), Hong Hua (Flos Carthami), Chuan Xiong (Rhizoma Chuanxiong), Hai Feng Teng (Caulis Piperis Kadsurae) and Lei Gong Teng (Radix Tripterygii Wilfordii), respectively. All herbs were provided by Shanghai Hongqiao Pharmaceutical Co., Ltd. and have been tested and qualified.

 

Method: Place the previous medicinal into a gauze bag, decoct with water for 20?mins and take it out. After the temperature cooled to 40~45�C, apply the back to the affected low back area for 30�40 minutes, once a day. The hot compress can help circulate blood and resolve stasis.

 

TCM Functional Exercise. The exercise is known as �Fei Yan Shi� (literally meaning �the flying swallow style�) in Chinese.

 

Method: Ask the patient to take a prone position, extend both hands backwards, lift the chest and lower limbs off the bed using the abdomen as a pivot, and then relax. Conduct this exercise once a day and repeat 4-5 times each time.

 

Functions: Strengthens the power of back muscles, increases the stability of the spine, and thus prevents relapses.

 

Chinese Tuina (Massage). Ask the patient to take a prone position and find the tenderness spots on the low back. Then apply gun-rolling (10?min), Anrou-pressing and kneading (10?min), and Tanbo-plucking (5?min) manipulation to the tenderness spots and surrounding areas. Conclude with oblique pulling manipulation of the low back. Conduct the treatment once a day.

 

Functions: Relaxes spasm of the low back muscles and adjusts lumbar subluxation.

 

After one week TCM treatment, if the patient’s lower back pain without any relief or even aggravated, the prescription of pain medication was adjusted according to clinical guidelines, detailed records the type and dose of pain medication taken by patients, and the patient was identified as no effect.

 

Control Group

 

Patients in the control group receive a two-week normal conservative treatment. Intervention measures include three sections, (1) health education. The patients were invited to receive LDH health education twice a week in outpatient; the health education was designed exclusively to inform patients about the natural course of their illness and the expectation of successful recovery, irrespective of the initial intensity of their pain, educate patients to avoid some bad habits that aggravate the disease, such as a sitting position for a long time and carrying heavy loads, and encourage patients to participate in social activities. (2) Rest: in addition to the normal sleep, the patients need to rest in bed for at least 1-2 hours a day. (3) Pain medication or physical therapy: after one week health education, if the patient’s lower back pain without any relief or even aggravated, the prescription of pain medication was adjusted according to clinical guidelines, detailed records the type and dose of pain medication taken by patients. And if the patients do not want to take pain medication, then the patients were referred to a physiotherapist.

 

Measurements

 

All outcomes were assessed by observers unaware of the grouping, at baseline (M1), immediately after the last intervention (M2). The followup included the assessments at one month (M3) and six months (M4) after the last intervention.

 

The primary outcome measure was the change in pain by the visual analogue scale (VAS), scores range 0 to 100, and a higher score indicates a greater pain, 0 means no pain, and 100 means intolerable pain.

 

The secondary outcome measure was the change in the Chinese Short Form Oswestry Disability Index (C-SFODI), range 0 to 100%. The C-SFODI consists of nine questions, which come from Oswestry Disability Index (ODI); omit the sex life question in Section??8, because this question is always unacceptable by Chinese. The C-SFODI calculation formula is actual cumulative score/45 � 100%, with higher percentage indicating more severe functional disability. And the study has shown that the C-SFODI has good reliability and validity.

 

Statistical Analysis

 

Our pretrial power calculation indicated that 81 patients in experimental group were required to detect a difference in pain relief based on the preliminary experiment data at a significant level of 5% (a two-sided t-test) with 80% power. In anticipation of a 20% attrition rate, we sought 102 patients at least in experimental group. Taking into account the poor effect of control therapy, 102 patients were included in the control group.

 

Between-group difference at baseline was analyzed using independent-samples t-test or Chi-square test. Changes in continuous measures were analyzed by analysis of variance (ANOVA). Effects were evaluated on an intention-to-treat basis (ITT), and participants who did not complete the followup period were considered not having any changes in scores. A two-sided P value of less than 0.05 indicated statistical significance. Results are presented as mean and standard deviation (SD) at M1 and as between-group difference with 95% confidence intervals (CI) at M2, M3, and M4.

 

Quality Control

Before the beginning of the study, all researchers have to receive protocol training. A clinic research coordinator (CRC) was employed to assist researchers in each center. A monitor was also appointed to ensure the quality of the research.

 

Dr. Alex Jimenez’s Insight

The above clinical trial focused on investigating the safety and effectiveness of TCM, or traditional Chinese medicine, for low back pain due to lumbar disc herniation as well as to confirm its clinical result. The participants of the research study with low back pain due to LDH were divided into two groups: the experimental group, which was treated with integrative TCM conservative therapy; and the control group, which was treated normal conservative treatment. The experimental group was then further divided into three subgroups. The details of each TCM treatment method used in the subgroups, including the name, ingredients, method and function of each, are described above. The outcomes were measured accordingly by observers unaware of the specific group divisions. The statistic results were properly analyzed by researchers who received protocol training before the start of the study.

 

Results

 

Between January 2011 and August 2012, a total of 480 patients with low back pain due to LDH were recruited, 72 were rejected due to exclusion criterions, and 408 eligible patients were randomly assigned in accordance with the ratio of 3?:?1 to the experimental group and the control group, 306 in the experimental group and 102 in the control group. Patients in the experimental group all completed a two-week treatment. In the control group, at the second week one patient in the control group was unwilling to continue to participate and withdrew his informed consent, and two patients took Fenbid (500?mg for each dose, 2 doses a day) since the pain worsened during treatment (Figure 1).

 

Figure 1 Screening with Randomization and Completion Evaluations

Figure 1: Screening, randomization, and completion evaluations from the baseline to six-month followup, LDH = lumbar disc herniation.

 

Baseline Characteristics of the Patients

 

Table 1 shows the baseline data for the 408 participants. The mean age of all patients is 45 years, and 51% were women. In terms of disease staging, experimental group and control group were comparable. And the baseline outcome including VAS scores and C-SFODI were also reasonably well balanced between experimental group and control group.

 

Table 1 Baseline Characteristics of the Study Participants

Table 1: Baseline characteristics of the study participants.

 

Improvement in the Primary Outcome

 

The changes in the primary outcomes from baseline to six-month followup are shown in Table 2 and Figure 2. Immediately after the intervention, two groups showed significant decrease in VAS than the baseline. And the experimental group showed a more significant decrease than the control group (?16.62 points [95% confidence interval {CI}, ?20.25 to ?12.98]; P < 0.001).

 

Figure 2 Mean Changes of the Primary and Secondary Outcomes

Figure 2: Mean changes of the primary and secondary outcomes. The means of outcomes are shown for the experimental group (diamond) and the control group (squares). Measurements were obtained at baseline (M1), immediately after the last intervention (M2).

 

Table 2 Changes in Primary and Secondary Outcomes

Table 2: Changes in primary and secondary outcomes.

 

One month after intervention, two groups also had significantly greater reduction in VAS than the baseline. And again, the experimental group showed a more significant decrease than the control group (?6.37 points [95% CI, ?10.20 to ?2.54]; P = 0.001).

 

Six months after intervention, compared with the baseline, the changes in VAS remained significant in the experimental group and control group, but between-group difference was not significant (P = 0.091).

 

Improvement in the Secondary Outcome

 

Immediately after intervention, two groups had significant improvement in C-SFODI than the baseline, and the experimental group showed a more significant improvement than the control group (?15.55 points [95% CI, ?18.92 to ?12.18]; P < 0.001).

 

One month after intervention, two groups also had significant improvement in C-SFODI than the baseline. And again, the experimental group improved more (?11.37 points [95% CI, ?14.62 to ?8.11]; P < 0.001).

 

Six months after intervention, two groups also maintained significant improvement, and the experimental group showed superiority (?7.68 points [95% CI, ?11.42 to ?3.94]; P < 0.001).

 

Adverse Events

 

One patient in the experiment group had mild fainting during acupuncture, remission by bed rest, and then completed the remaining treatment. Two patients in the control group were given Fenbid orally due to aggravated low back pain. No other adverse events were noted in either experimental group or control group.

 

Discussion

 

Although the mechanism of low back pain caused by lumbar disc herniation (LDH) is still not very clear, the prevailing view is that low back pain due to LDH was found to occur not only in response to mechanical stimuli but also to chemical irritation around the nerve root sheath and sinuvertebral nerve.

 

Different TCM therapies have different advantages in the treatment of LDH. Pain is the main symptom in the acute stage of LDH; acupuncture has good analgesic effect on low back pain due to LDH. Lumbar dysfunction is the main symptom in the remission stage; Chinese massage has good effect on improving dysfunction. Oral Chinese herbal formulae, external use of Chinese medicine, and Chinese herbal injection also showed good effect in relieving pain and improving dysfunction caused by LDH. And one study also found that Salvia miltiorrhiza injection especially works better and faster for the acute stage when compared with mannitol. Although the mechanism of acupuncture, Chinese massage, and traditional Chinese herbs in the treatment of LDH remains unclear, it is generally agreed that these treatment methods play a role by increasing local blood circulation, relieving nerve root edema, and speeding up the metabolism of the local inflammatory mediators. In recovery stage of the disease, the major task is to strengthen the muscles of the waist and abdomen to prevent relapse, and TCM functional exercise has advantages in this regard and can subsequently increase the lumbar stability to prevent recurrence.

 

Treating LDH according to different stages has been more and more accepted. In China, LDH is mainly divided into three stages, including acute stage, subacute stage (or remission stage), and chronic stage (or recovery stage). Studies have proven that treating LDH according to different stages has obtained a good clinical effect. In addition, studies have also suggested that it can obtain a better effect than treatment without differentiating different stages.

 

The past 20 years of clinical practice have witnessed the safety of the treatment regimens used in this study. At the same time, its efficacy has been preliminarily confirmed; however, high quality research evidence is still needed. In the treatment regimens, different TCM therapies were selected according to the characteristics of different stages. Specifically, acupuncture and Chinese herbal injections were used in the acute stage for fast pain relief, Chinese Tuina (massage) and external application of Chinese medicine were used in the subacute stage for improvement of the lumbar functions, and low back muscle exercise was used in the chronic stage to increase the stability of the spine and prevent relapses.

 

In China, nonsurgical treatment of lumbar disc herniation mainly uses drugs, physical therapy, or TCM treatment. TCM treatment used in the experimental group has been used in clinical routine and is considered to have good clinical efficacy; the efficacy of conservative treatment used in the control group is considered very weak, usually as auxiliary treatment of other therapies. Ethics Committee considers that in order to maximize the protection of the interests of the patients, it is necessary to let the patients have more opportunity to receive TCM treatment, so in this research the sample size of the experimental group and the control group is 3?:?1.

 

The findings of this study have shown that immediately and one month after intervention, integrative TCM conservative treatment can significantly reduce the VAS scores and C-SFODI, and at six month after intervention, integrative TCM conservative treatment can also significantly reduce the C-SFODI, but two groups have no significant difference in reducing VAS score. VAS is an international general pain visual analog scale, and C-SFODI is the improved version of the ODI (Oswestry Disability Index), and it consists of 9 questions, a higher percentage indicating a more severe functional disability.

 

Regarding adverse events, one patient had mild fainting in the experiment group, two patients in the control group were given Fenbid oral due to low back pain aggravation, and no other adverse events were noted in either experimental group or control group. The mechanism of integrative TCM conservative treatment for LDH remains unclear, and it will be our future research orientation.

 

The main limitation of this study is the short followup time. As a result, we failed to conduct comprehensive evaluation regarding the long-term efficacy of integrative TCM conservative treatment for LDH.

 

Conclusions

 

This randomized controlled clinical trial provides reliable evidence regarding the effectiveness of integrative TCM conservative treatment for patients with low back pain due to lumbar disc herniation. A large sample of long-term followup is further needed for future research.

 

Conflict of Interests

 

No potential conflict of interests relevant to this study was reported.

 

Acknowledgments

 

This work is supported by the Key Discipline of TCM Orthopaedic and Traumatic of the Ministry of Education of the People’s Republic of China (100508); the Medical Key Project of Shanghai Science and Technology Commission (09411953400); the project of Shanghai Medical leading talent (041); the National Natural Science Foundation of China (81073114, 81001528); the National Key New Drugs Creation Project, innovative drug research and development technology platform (no. 2012ZX09303009-001); Shanghai University Innovation Team Construction Project of the Spine Disease of Traditional Chinese Medicine (2009-26).

 

In conclusion, with the measured outcomes and final results of the two groups of participants with low back pain due to lumbar disc herniation, the randomized controlled trial helped contribute valuable information regarding the safety and effectiveness, as well as the clinical effect of integrative TCM conservative therapy. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Sciatica

 

Sciatica is referred to as a collection of symptoms rather than a single type of injury or condition. The symptoms are characterized as radiating pain, numbness and tingling sensations from the sciatic nerve in the lower back, down the buttocks and thighs and through one or both legs and into the feet. Sciatica is commonly the result of irritation, inflammation or compression of the largest nerve in the human body, generally due to a herniated disc or bone spur.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: Treating Sciatica Pain

 

 

Blank
References
1.�Cypress BK. Characteristics of physician visits for back symptoms: a national perspective.�American Journal of Public Health.�1983;73(4):389�395.�[PMC free article][PubMed]
2.�Heliovaara M, Sievers K, Impivaara O, et al. Descriptive epidemiology and public health aspects of low back pain.�Annals of Medicine.�1989;21(5):327�333.�[PubMed]
3.�Peul WC, van Houwelingen HC, van Den Hout WB, et al. Surgery versus prolonged conservative treatment for sciatica.�New England Journal of Medicine.�2007;356(22):2245�2256.�[PubMed]
4.�Weinstein JN, Tosteson TD, Lurie JD, et al. Surgical versus nonoperative treatment for lumbar spinal stenosis four-year results of the spine patient outcomes research trial.�Spine.�2010;35(14):1329�1338.[PMC free article][PubMed]
5.�Jacobs WCH, van Tulder M, Arts M, et al. Surgery versus conservative management of sciatica due to a lumbar herniated disc: a systematic review.�European Spine Journal.�2011;20(4):513�522.[PMC free article][PubMed]
6.�Kosteljanetz M, Espersen JO, Halaburt H, Miletic T. Predictive value of clinical and surgical findings in patients with lumbago-sciatica. A prospective study (Part I)�Acta Neurochirurgica.�1984;73(1-2):67�76.[PubMed]
7.�Markwalder TM, Battaglia M. Failed back surgery syndrome. Part II: surgical techniques, implant choice, and operative results in 171 patients with instability of the lumbar spine.�Acta Neurochirurgica.�1993;123(3-4):129�134.�[PubMed]
8.�Lee JH, Choi TY, Lee MS, et al. Acupuncture for acute low back pain: a systematic review.�The Clinical Journal of Pain.�2013;29(2):172�185.�[PubMed]
9.�Xu M, Yan S, Yin X, et al. Acupuncture for chronic low back pain in long-term follow-up: a meta-analysis of 13 randomized controlled trials.�The American Journal of Chinese Medicine.�2013;41(1):1�19.[PubMed]
10.�Li D, Dong XJ, Li SB. Clinical observation on lumbar disc Herniation using method of clearing away heat and toxin.�Liaoning Journal of Traditional Chinese Medicine.�2012;39(9):1750�1751.
11.�Zhao CW, Li JX, Leng XY, et al. Clinical analysis on the curative effect of external application of traditional Chinese medicine on lumbar disc herniation.�The Journal of Traditional Chinese Orthopedics and Traumatology.�2010;22(12):21�22.
12.�Kong LJ, Fang M, Zhan HS, et al. Tuina-focused integrative chinese medical therapies for inpatients with low back pain: a systematic review and meta-analysis.�Evidence-Based Complementary and Alternative Medicine.�2012;2012:17 pages.578305�[PMC free article][PubMed]
13.�Qiu JW, Wei RQ, Zhang FG. The function of low back muscle exercise in the evaluation of long-term curative effect of patients with lumbar disc herniation.�Chinese Journal of Gerontology.�2010;31(3):413�414.
14.�Li ZH, Liu LJ, Han YQ. Evaluation of clinical pathway Chinese medicine treatment of lumbar disc herniation.�Chinese Journal of Gerontology.�2010;31(2):322�323.
15.�Peul WC, van Houwelingen HC, van der Hout WB, et al. Prolonged conservative treatment or �early� surgery in sciatica caused by a lumbar disc herniation: rationale and design of a randomized trial.�BMC Musculoskeletal Disorders.�2005;6(article 8)�[PMC free article][PubMed]
16.�Zheng GX, Zhao XO, Liu GL. Reliability of the modified oswestry disability index for evaluating patients with low back pain.�Chinese Journal of Spine and Spinal Cord.�2010;12(1):13�15.
17.�Anderson SR, Racz GB, Heavner J. Evolution of epidural lysis of adhesions.�Pain Physician.�2000;3(3):262�270.�[PubMed]
18.�Liu J, Fang L, Xu WD, et al. Effects of intravenous drip of compound Danshen injection on plasma NO and SOD levels in patients with lumbar intervertebral disc prolapse.�Chinese Journal of Clinical Health Care.�2004;7(4):272�274.
19.�Pan LH.�?-aescin sodium combined with Danshen injection in the treatment of lumbar disc herniation.�China Modern Doctor.�2010;48(23):117�121.
20.�Rhee HS, Kim YH, Sung PS. A randomized controlled trial to determine the effect of spinal stabilization exercise intervention based on pain level and standing balance differences in patients with low back pain.�Medical Science Monitor.�2012;18(3):CR174�CR181.�[PMC free article][PubMed]
21.�Wu K, Li YY, He YF, et al. Overview on clinical staging method of protrusion of lumbar intervertebral disc.�Journal of Liaoning University of Traditional Chinese Medicine.�2010;11(12):44�45.
22.�Li CH, Cai SH, Chen SQ, et al. The investigation of staging comprehensive program treatment for lumbar disc herniation.�Journal of Fujian University of Traditional Chinese Medicine.�2010;20(6):7�9.
23.�Li L, Zhan HS, Chen B, et al. Clinical observation of stage Treatment on 110 cases of lumbar disc herniation.�Chinese Journal of Traditional Medical Traumatology & Orthopedics.�2011;19(1):11�15.
24.�Li CH, Zheng QK, Zhang KM, et al. Phased comprehensive treatment for lumbar disc herniation in 60 cases.�Journal of Beijing University of Traditional Chinese Medicine(Clinical Medicine)2011;18(6):10�12.
Close Accordion
Vertebral Artery Dissection Found During Chiropractic Examination

Vertebral Artery Dissection Found During Chiropractic Examination

Acknowledging the subsequent information below,�approximately more than 2 million people are injured in automobile accidents each year and among those incidents, the majority of the people involved are diagnosed with whiplash and/or neck injury by a healthcare professional. When the complex structure of the neck is subjected to trauma, tissue damage and other medical complications may occur. Vertebral artery dissection, or VAD, is characterized by a flap-like tear on the inner lining of the vertebral artery in charge of supplying blood to the brain. After the tear, blood can then enter the arterial wall and form a blood clot, thickening the artery wall and often impeding blood flow.

 

Through years of experience practicing chiropractic care,�VAD may often follow after trauma to the neck, such as that which occurs in an automobile accident, or whiplash injury. The symptoms of vertebral artery dissection include head and neck pain as well as intermittent or permanent stroke symptoms, such as difficulty speaking, impaired coordination and loss of vision. VAD, or vertebral artery dissection, is generally diagnosed with a contrast-enhanced CT or MRI scan.

 

Abstract

 

A 30-year-old woman presented to an emergency department with sudden onset of transient loss of left peripheral vision. Owing to a history of migraine headaches, she was released with a diagnosis of ocular migraine. Two days later, she sought chiropractic care for the chief symptom of severe neck pain. The chiropractor suspected the possibility of vertebral artery dissection (VAD). No manipulation was performed; instead, MR angiography (MRA) of the neck was obtained, which revealed an acute left VAD with early thrombus formation. The patient was placed on aspirin therapy. Repeat MRA of the neck 3?months later revealed resolution of the thrombus, without progression to stroke. This case illustrates the importance for all healthcare providers who see patients with neck pain and headache to be attentive to the symptomatic presentation of possible VAD in progress.

 

Background

 

Vertebral artery dissection (VAD) leading to stroke is an uncommon but potentially serious disorder. The incidence of stroke related to the vertebrobasilar system varies from 0.75 to 1.12/100?000 person-years. The pathological process in VAD typically involves dissection of the wall of the artery followed sometime later by thrombus formation, which may cause arterial occlusion or may lead to embolisation, causing occlusion of one or more of the distal branches off the vertebral artery, including the basilar artery, which can be catastrophic. VAD typically occurs in patients who have an inherent, transitory weakness in the arterial wall. In at least 80% of cases, the initial symptoms include neck pain with or without headache.

 

Many patients with VAD may in the early stages present to chiropractors seeking relief from neck pain and headache, without realising they are experiencing VAD. In many of these cases, the patient later develops a stroke. Until recently, it was assumed that the dissection (and subsequent stroke) was caused by cervical manipulative therapy (CMT). However, while early studies found an association between visits to a chiropractor and subsequent stroke related to VAD, recent data suggest that this relationship is not causal.

 

This case report is illustrative of the scenario in which a patient with an undiagnosed VAD in evolution consulted a chiropractor for neck pain and headache. After thorough history and examination, the chiropractor suspected VAD and did not perform CMT. Instead, the patient was referred for further evaluation, which detected a VAD in progress. Prompt diagnosis and anticoagulant treatment were thought to have averted progression to a stroke.

 

Case Presentation

 

A 30-year-old otherwise healthy woman consulted a chiropractor (DBF), reporting of right-sided neck pain in the suboccipital region. The patient reported that, 3?days previously, she had gone to the local hospital emergency department (ED) because of the sudden onset of loss of left peripheral vision. The visual symptoms interfered with her ability to see through her left eye; this was accompanied by �numbness� in her left eyelid. About 2?weeks prior to this ED visit, she had experienced an episode of acute left-sided neck pain with severe left-sided headache. She also related a history of migraine headache without prodrome. She was released from the ED with a tentative diagnosis of ocular migraine. She had never been previously diagnosed with ocular migraine, nor had she ever experienced any visual disturbances with her previous migraines.

 

Shortly after the left-sided ocular symptoms resolved, she suddenly developed right-sided neck pain without provocation, for which she sought chiropractic treatment. She also reported a transient episode of right-sided visual disturbance occurring that same day as well. This was described as sudden blurriness that was of short duration and resolved spontaneously earlier in the day of her presentation for chiropractic examination. When she presented for the initial chiropractic examination, she denied current visual disturbance. She said that she was not experiencing any numbness, paraesthesia or motor loss in the upper or lower extremities. She denied ataxia or difficulty with balance. Medical history was remarkable for childbirth 2� months prior to initial presentation. She stated that her migraine headaches were associated with her menstrual cycle. Family history was remarkable for a spontaneous ascending thoracic aortic aneurysm in her older sister, who was about 30?years of age when her aneurysm had occurred.

 

Investigations

 

Based on the history of sudden onset of severe upper cervical pain and headache with visual disturbance and ocular numbness, the DC was concerned about the possibility of early VAD. Urgent MR angiography (MRA) of the neck and head, along with MRI of the head, was ordered. No cervical spine examination or manipulation was performed because of the suspicion that the neck pain was related to VAD rather than to a �mechanical� cervical disorder.

 

MRA of the neck demonstrated that the left vertebral artery was small and irregular in calibre, extending from the C7 level cephalad to C2, consistent with dissection. There was a patent true lumen with a surrounding cuff of T1 hyper-intensity, consistent with dissection with subintimal thrombus within the false lumen (Figures 1 and ?2). MRI of the head with and without contrast, and MRA of the head without contrast, were both unremarkable. Specifically, there was no intracranial extension of dissection or evidence of infarction. MR perfusion of the brain revealed no focal perfusion abnormalities.

 

Figure 1 Axial Proton Density Image - Image 1

Figure 1: Axial proton density image demonstrates circumferential hyper-intensity surrounding the left cervical vertebral artery (representing the false lumen). Note decreased calibre of true lumen (black flow void) with respect to the right vertebral artery.

 

Figure 2 Axial Image from Three Dimensional Time of Flight MRA - Image 2

Figure 2: Axial image from three-dimensional time-of-flight MRA demonstrates T1 hypointense dissection flap separating the true lumen (lateral) from the false lumen (medial). MRA, MR angiography.

 

Differential Diagnosis

 

The ED released the patient with a tentative diagnosis of ocular migraine, due to her history of migraine headaches. However, the patient stated that the left-sided headache was atypical��like nothing I’ve ever experienced before.� Her previous migraines were associated with her menstrual cycle, but not with any vision changes. She had never been previously diagnosed with ocular migraine. MRA of the cervical region revealed that the patient actually had an acute dissection with thrombus formation in the left vertebral artery.

 

Treatment

 

Owing to the potential of impending stroke associated with an acute VAD with thrombus formation, the patient was admitted to the neurology stroke service for close neurological monitoring. During her admission, the patient did not experience any recurrence of neurological deficits and her headaches improved. She was discharged the following day with a diagnosis of left VAD and transient ischaemic attack. She was instructed to avoid vigorous exercise and trauma to the neck. Daily aspirin (325?mg) was prescribed, to be continued for 3�6?months after discharge.

 

Outcome and Follow-Up

 

After discharge from the stroke service, the patient had no recurrence of headache or visual disturbances, and her posterior neck pain symptoms resolved. Repeat imaging was performed 3?months after presentation, which demonstrated improved calibre of the cervical left vertebral artery with resolution of the thrombus within the false lumen (Figure 3). Imaging of the intracranial compartment remained normal, without evidence of interval infarction or perfusion asymmetry.

 

Figure 3 Maximum Intensity Projection MIP Images - Image 3

Figure 3: Maximum intensity projection (MIP) images from three-dimensional time-of-flight MRA (left image is at time of presentation and right image is at 3-month follow-up). The initial imaging demonstrates markedly diminutive calibre of the left vertebral artery

 

Discussion

 

The pathophysiological process of VAD is thought to start with degeneration of the tissues at the medial-adventitial border of the vertebral artery, leading to the development of microhaematomata within the wall of the artery and, eventually, arterial tear. This can lead to leakage of blood into the arterial wall, causing occlusion of the lumen with subsequent thrombus formation and embolisation, resulting in stroke related to one of the branches of the vertebral artery. This pathological process is similar to that of spontaneous carotid artery dissection, spontaneous thoracic aortic dissection and spontaneous coronary artery dissection. All these conditions tend to occur in younger adults and some have speculated that they may be part of a common inherited pathophysiological process. Notable in this case is the fact that the patient’s older sister had experienced a spontaneous thoracic aortic aneurysm (probably a dissection) at around the same age (30?years) as this patient was when she experienced her VAD.

 

While the dissection is often sudden, the luminal compromise and complications of VAD can develop gradually leading to variable symptoms and presentation, depending on the stage of the disease. The dissection itself, which develops some time before the onset of neural ischaemia, can cause stimulation of nociceptive receptors within the artery, producing pain that is most commonly felt in the upper cervical spine or head. Only after the pathophysiological process progresses to the point of complete arterial occlusion or thrombus formation with distal embolisation does the full manifestation of infarction occur. However, as illustrated in this case, neurological symptoms can develop early in the process, particularly in cases in which the true lumen demonstrates significant calibre decrease secondary to compression.

 

There are several interesting aspects to this case. First, it highlights the importance of spine clinicians being alert to the possibility that what may appear to be typical �mechanical� neck pain could be something potentially more sinister, such as VAD. The sudden onset of severe suboccipital pain, with or without headache, and accompanying brainstem related neurological symptoms, should alert the clinician to the possibility of VAD. As in the case reported here, patients with a history of migraine will typically describe the headache as different from their usual migraine. A careful neurological examination should be performed, looking for possible subtle neurological deficits, although the neurological examination will often be negative in the early stages of VAD.

 

Second, a triad of symptoms raised concern that the patient might be experiencing a VAD in progress. The symptom triad included: (1) spontaneous onset of severe upper cervical pain; (2) severe headache that was distinctly different from the patient’s usual migraine headaches; and (3) brainstem-related neurological symptoms (in the form of transient visual disturbance). Notably, careful neurological examination was negative. Nonetheless, the history was of sufficient concern to prompt immediate investigation.

 

When VAD is suspected but no frank signs of stroke are present, immediate vascular imaging is indicated. While the optimal imaging evaluation of VAD remains controversial, MRA or CTA are the diagnostic studies of choice given their excellent anatomic delineation and ability to evaluate for complications (including infarction and changes in brain perfusion). Some advocate the use of Doppler ultrasound; however, it has limited utility given the course of the vertebral artery in the neck and limited evaluation of the vertebral arteries cephalad to the origin. Additionally, ultrasound imaging is unlikely to allow visualisation of the dissection itself and thus can be negative in the absence of significant arterial occlusion.

 

Third, this case is interesting in light of the controversy about cervical manipulation as a potential �cause� of VAD. While case reports have presented patients who have experienced stroke related to VAD after cervical manipulation, and case�control studies have found a statistical association between visits to chiropractors and stroke related to VAD, further investigation has indicated that the association is not causal. Cassidy et al found that a patient who experiences stroke related to VAD is just as likely to have visited a primary care practitioner as to have visited a chiropractor prior to having the stroke. The authors suggested that the most likely explanation for the statistical association between visits to chiropractors and subsequent VAD is that a patient who experiences the initial symptoms of VAD (neck pain with or without headache) seeks medical attention for these symptoms (from a chiropractor, primary care practitioner, or another type of practitioner), then subsequently experiences the stroke, independent of any action taken by the practitioner.

 

It is important to note that, while there have been reported cases of carotid artery dissection after cervical manipulation, case�control studies have not found this association. The initial symptoms of carotid dissection (neurological symptoms, with neck and head pain less common than VAD), aortic dissection (sudden onset of severe, �tearing� pain) and coronary artery dissection (acute severe chest pain, ventricular fibrillation) are likely to cause the individual to immediately seek ED care, rather than seek chiropractic care. However, VAD has seemingly benign initial symptoms�neck pain and headache�which are symptoms that commonly cause patients to seek out chiropractic care. This may explain why only VAD is associated with visits to chiropractors, while these other types of dissections are not; patients with these other conditions, which have much more alarming symptoms, simply do not present to chiropractors.

 

This case is a good example of a patient with VAD in progress presenting to a chiropractor for the purpose of seeking relief from neck pain. Fortunately, the chiropractor was astute enough to ascertain that the patient’s symptoms were not suggestive of a �mechanical� cervical spine disorder, and appropriate diagnostic investigation was performed. However, if manipulation had been performed, the VAD that was already in progress from natural history may have been blamed on manipulation, after being detected on MRA imaging. Fortunately, in this case, the chiropractor was able to assist with early detection and treatment, and subsequently a stroke was likely averted.

 

Learning Points

 

  • A case is presented in which a patient saw a chiropractor, while seeking treatment for neck pain, and the history raised concern for possible vertebral artery dissection (VAD).
  • Rather than providing manipulative treatment, the chiropractor referred the patient for advanced imaging, which confirmed the diagnosis of VAD.
  • The case illustrates the importance of paying attention to subtle historical factors in patients with VAD.
  • It also serves as an example of a patient with a VAD in progress seeking the services of a chiropractor for the initial symptoms of the disorder.
  • In this case, early detection of the dissection occurred and the patient had a full recovery without any subsequent stroke.

 

Acknowledgments

 

The authors would like to acknowledge the assistance of Pierre Cote, DC, PhD, for his assistance with reviewing this manuscript.

 

Footnotes

 

Contributors: All the authors acknowledge that they have contributed the following to the submission of this manuscript: conception and design, drafting of the manuscript, critical revisions of the manuscript, literature review and references, and proof reading of the final manuscript.

 

Competing interests: None declared.

 

Patient consent: Obtained.

 

Provenance and peer review: Not commissioned; externally peer reviewed.

 

Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Cited by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: Treating Sciatica Pain

 

 

Blank
References
1.�Debette S, Leys D.�Cervical-artery dissections: predisposing factors, diagnosis, and outcome.�Lancet Neurol�2009;8:668�78.�doi:10.1016/S1474-4422(09)70084-5[PubMed]
2.�Boyle E, Cote P, Grier AR et al.�Examining vertebrobasilar artery stroke in two Canadian provinces.�Spine�2008;33(4 Suppl):S170�5.�doi:10.1097/BRS.0b013e31816454e0[PubMed]
3.�Lee VH, Brown RD Jr, Mandrekar JN et al.�Incidence and outcome of cervical artery dissection: a population-based study.�Neurology�2006;67:1809�12.�doi:10.1212/01.wnl.0000244486.30455.71[PubMed]
4.�Schievink WI.�Spontaneous dissection of the cartoid and vertebral arteries.�N Engl J Med�2001;344:898�906.�doi:10.1056/NEJM200103223441206[PubMed]
5.�Volker W, Dittrich R, Grewe S et al.�The outer arterial wall layers are primarily affected in spontaneous cervical artery dissection.�Neurology�2011;76:1463�71.�doi:10.1212/WNL.0b013e318217e71c[PubMed]
6.�Gottesman RF, Sharma P, Robinson KA et al.�Clinical characteristics of symptomatic vertebral artery dissection: a systematic review.�Neurologist�2012;18:245�54.�doi:10.1097/NRL.0b013e31826754e1[PMC free article][PubMed]
7.�Cassidy JD, Boyle E, Cote P et al.�Risk of vertebrobasilar stroke and chiropractic care: results of a population-based case-control and case-crossover study.�Spine�2008;33(4�Suppl):S176�83.�doi:10.1097/BRS.0b013e3181644600[PubMed]
8.�Rothwell DM, Bondy SJ, Williams JI.�Chiropractic manipulation and stroke: a population-based case-control study.�Stroke�2001;32:1054�60.�doi:10.1161/01.STR.32.5.1054[PubMed]
9.�Smith WS, Johnston SC, Skalabrin EJ et al.�Spinal manipulative therapy is an independent risk factor for vertebral artery dissection.�Neurology�2003;60:1424�8.�doi:10.1212/01.WNL.0000063305.61050.E6[PubMed]
10.�Volker W, Besselmann M, Dittrich R et al.�Generalized arteriopathy in patients with cervical artery dissection.�Neurology�2005;64:1508�13.�doi:10.1212/01.WNL.0000159739.24607.98[PubMed]
11.�Evangelista A, Mukherjee D, Mehta RH et al.�Acute intramural hematoma of the aorta: a mystery in evolution.�Circulation�2005;111:1063�70.�doi:10.1161/01.CIR.0000156444.26393.80[PubMed]
12.�Tweet MS, Hayes SN, Pitta SR et al.�Clinical features, management, and prognosis of spontaneous coronary artery dissection.�Circulation�2012;126:579�88.�doi:10.1161/CIRCULATIONAHA.112.105718[PubMed]
13.�Choi S, Boyle E, Cote P et al.�A population-based case-series of Ontario patients who develop a vertebrobasilar artery stroke after seeing a chiropractor.�J Manipulative Physiol Ther�2011;34:15�22.�doi:10.1016/j.jmpt.2010.11.001[PubMed]
14.�Naggara O, Louillet F, Touze E et al.�Added value of high-resolution MR imaging in the diagnosis of vertebral artery dissection.�AJNR Am J Neuroradiol�2010;31:1707�12.�doi:10.3174/ajnr.A2165[PubMed]
15.�Haynes MJ, Vincent K, Fischhoff C et al.�Assessing the risk of stroke from neck manipulation: a systematic review.�Int J Clin Pract�2012;66:940�7.�doi:10.1111/j.1742-1241.2012.03004.x[PMC free article][PubMed]
16.�Nebelsieck J, Sengelhoff C, Nassenstein I et al.�Sensitivity of neurovascular ultrasound for the detection of spontaneous cervical artery dissection.�J Clin Neurosci�2009;16:79�82.�doi:10.1016/j.jocn.2008.04.005[PubMed]
17.�Bendick PJ, Jackson VP.�Evaluation of the vertebral arteries with duplex sonography.�J Vasc Surg1986;3:523�30.�doi:10.1016/0741-5214(86)90120-5[PubMed]
18.�Murphy DR.�Current understanding of the relationship between cervical manipulation and stroke: what does it mean for the chiropractic profession?Chiropr Osteopat�2010;18:22�doi:10.1186/1746-1340-18-22[PMC free article][PubMed]
19.�Engelter ST, Grond-Ginsbach C, Metso TM et al.�Cervical artery dissection: trauma and other potential mechanical trigger events.�Neurology�2013;80:1950�7.�doi:10.1212/WNL.0b013e318293e2eb[PubMed]
20.�Peters M, Bohl J, Th�mke F et al.�Dissection of the internal carotid artery after chiropractic manipulation of the neck.�Neurology�1995;45:2284�6.�doi:10.1212/WNL.45.12.2284[PubMed]
21.�Nadgir RN, Loevner LA, Ahmed T et al.�Simultaneous bilateral internal carotid and vertebral artery dissection following chiropractic manipulation: case report and review of the literature.�Neuroradiology2003;45:311�14.�doi:10.1007/s00234-003-0944-x[PubMed]
22.�Dittrich R, Rohsbach D, Heidbreder A et al.�Mild mechanical traumas are possible risk factors for cervical artery dissection.�Cerebrovasc Dis�2007;23:275�81.�doi:10.1159/000098327[PubMed]
23.�Chung CL, Cote P, Stern P et al.�The association between cervical spine manipulation and carotid artery dissection: a systematic review of the literature.�J Manipulative Physiol Ther�2014; doi:10.1016/j.jmpt.2013.09.005�doi:10.1016/j.jmpt.2013.09.005[PubMed]
24.�Thomas LC, Rivett DA, Attia JR et al.�Risk factors and clinical features of craniocervical arterial dissection.�Man Ther�2011;16:351�6.�doi:10.1016/j.math.2010.12.008[PubMed]
25.�Klineberg E, Mazanec D, Orr D et al.�Masquerade: medical causes of back pain.�Cleve Clin J Med2007;74:905�13.�doi:10.3949/ccjm.74.12.905[PubMed]
Close Accordion