ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page

Wellness

Clinic Wellness Team. A key factor to spine or back pain conditions is staying healthy. Overall wellness involves a balanced diet, appropriate exercise, physical activity, restful sleep, and a healthy lifestyle. The term has been applied in many ways. But overall, the definition is as follows.

It is a conscious, self-directed, and evolving process of achieving full potential. It is multidimensional, bringing together lifestyles both mental/spiritual and the environment in which one lives. It is positive and affirms that what we do is, in fact, correct.

It is an active process where people become aware and make choices towards a more successful lifestyle. This includes how a person contributes to their environment/community. They aim to build healthier living spaces and social networks. It helps in creating a person’s belief systems, values, and a positive world perspective.

Along with this comes the benefits of regular exercise, a healthy diet, personal self-care, and knowing when to seek medical attention. Dr. Jimenez’s message is to work towards being fit, being healthy, and staying aware of our collection of articles, blogs, and videos.


Mattress Shopping? What To Know

Mattress Shopping? What To Know

Getting a good night�s sleep is absolutely integral to good spinal health. Sometimes, though that isn�t possible. According to the National Sleep Foundation, 92 percent of people believe that a�comfortable mattress is important for good, restful sleep. A bad mattress, or one that is old, or one that is simply wrong for your body can contribute to sleep deprivation, lower back pain, headaches, stiff neck, and anxiety and depression. With so much at stake, it�s easy to see just how important it is to select a good mattress.

Ask About How The Mattress Is Made

Learn about the construction� and what the different components mean for your comfort. Different mattresses have different coils and they are arranged differently. The padding can vary in thickness. The depth can range from 7 inches to 18 inches on the average. Understanding the various components can make it easier for you to find the one that is right for you.

Look For Comfort, As Well As, Support

A good mattress is comfortable and has good support. Support is good but if you don�t have comfort then it won�t be effective.

If it is too firm (too much support) it will cause pain on your body�s pressure points. You want your hips and shoulders to slightly sink into the mattress. However, if you prefer a mattress that is firmer to support your back, you can get one with padding on top.

Don�t Let Price Be The Determining Factor

You naturally want to get the most for your dollar, but remember that you get what you pay for. A cheap mattress can translate to a poor quality one.

Look for quality and value rather than price. If money is an issue, do some comparison shopping to find the mattress you want for the best price.

Sales are another way to save money on a purchase, but look out for advertising gimmicks. Know the meaning of the terms that are used and know what you are looking for before you go for that so-called great deal.

mattress el paso tx.

Educate Yourself On The Different Mattress Types

Do you want a memory foam or would latex work better for you? What exactly is an innerspring mattress? Are adjustable beds really all they are cracked up to be? Do some research and brush up on the different�types of mattresses�so that you can approach your shopping trip with confidence and as an educated consumer. It will definitely work in your favor.

In The End, It�s All About Personal Preference

There is no mattress that is a one size (or type) fits all. Different people will respond differently to mattresses. The best thing to do is try them out. Spend at least 20 minutes laying down before you make the decision to purchase or not.

Finally, if you find that your�quality of sleep�has recently gotten worse, that you are tossing and turning or wake up with pain in your back, neck, or head, it could be time to change your mattress � or pillow. If you can see your mattress sagging, that could be another indication that it is time to get a new one.

Mattresses are designed to withstand a certain degree of wear and tear, but they don�t last forever. The quality, the weight and other factors contribute to how quickly it wears out. So if you notice any of the warning signs it may be time to get a new mattress so that you can get back to peaceful, restful sleep.

Injury Medical Clinic: Back Pain Care & Treatments

Rest Helps Restore Spinal Health

Rest Helps Restore Spinal Health

You try to do all the right things when it comes to taking care of your spine. You lift the right way, exercise, practice good posture, stretch, drink plenty of water, and take frequent breaks to walk around if you are seated for an extended period of time. Those are all excellent habits to keep, but there is something else that you should be doing � and it is one of the most overlooked and undervalued health practices. Rest!

Running On Empty: The Silent Epidemic

Stress can do severe damage to your emotional and mental health, but it can also hurt your body as well. Many people carry stress in their lower backs which means that when stress goes up it can result in lower back pain. It can also make you more sensitive to pain.

It is estimated that 66 percent of all doctor visits have a stress related component. What�s more, 50 percent of people who suffer from stress rate it as moderate to high. We live in a culture that makes it commonplace to run on empty. The problem with that is sooner or later you are going to crash and your body will bear the brunt.

Rest is important for helping you alleviate and manage stress, but recent studies show that 1 in 3 adults don�t get enough sleep. There is another reason to get your seven to nine hours in, though, that is directly related to spinal health.

rest spine health el paso tx.

What Rest Can Do For Your Spinal Health

When you rest you give your body time to replenish depleted stores of energy. Adequate sleep improves your immune function, memory, metabolism, learning, and healing. You will be more alert, happier, and have more energy. It is also very beneficial is you are trying to lose weight.

Excess weight can put pressure on your spine and cause it to curve, causing back pain. This is especially true if you carry your weight in your abdomen. That extra weight in the front pulls your spine into a sway back curve making it painful to stand for long periods of time.

When you lay down and rest you allow your entire spine, associated muscles, and other parts of your body to rejuvenate and relax. You probably don�t realize it, but your muscles in your back and abdomen work all day to keep your body properly supported. Even when sitting there are muscles engaged. Laying down allows all of those muscles to finally relax.

Rest also allows your spinal discs to rehydrate. The spine is made up of fluid filled discs that sit between the vertebrae, acting as a cushion. As you go about your day, thanks to gravity, your discs become compressed. This compression causes the disc to lose fluid (which is about 88 percent water). This can cause pain if the discs are not properly rehydrated � and that is a two-step process of drinking adequate water and getting enough rest.

Drinking water will put the fluids into your body, but as long as you are upright, the compression will continue. Laying down to go to sleep takes that pressure off of your spine so there is no compression and the body can naturally rehydrate the discs. A few hours here and there is not really effective because it does not give the body enough time to do its job. This means that you need to get the recommended seven to nine hours of sleep each night.

Along with all the other great, healthy reasons to get a good night�s sleep, you not have one more to add to the list. A healthy spine will keep you standing tall and help keep you mobile, It is important to do all you can to take care of it.

Injury Medical Clinic: Neck Pain Care & Treatments

Organic Food Vs. Conventional Food

Organic Food Vs. Conventional Food

Many supermarkets have started offering their shoppers a choice in produce: organic or conventionally farmed. This can leave many wondering just what the difference is.

The truth is, both foods taste the same � or very close. Both have the same vitamins, minerals, and other nutrients, so what is the big difference?

It comes down to two major areas: safety and nutrition. That is what consumers need to understand when they are trying to make a decision on whether to purchase foods that have been conventionally farmed, or foods that are natural.

What Is �Organic�?

This is a misused word but the true meaning is that the term refers to how food is grown and processed. Organic farming is intended to encourage water and soil conservation as well as reduce pollution.

This type of farming does not use chemicals for controlling weeds, eliminating insects, or fertilizing. Most of the methods are completely natural. For instance, a farmer may use natural fertilizers to enrich the soil, strategically placed plants to control insects, and mulch or crop rotation to control weeds.

Organic Vs. Conventional Foods

Conventionally farmed products will often use chemicals for insect control and weed control. They often use some type of processing on their foods.

The fertilizer used in planting often has chemicals. The foods may even be genetically modified. Animals may be injected with steroids and hormones which can cause unpleasant or even harmful side effects.

These types of foods do not use any chemicals, they are not genetically modified, and they are not injected with antibiotics or steroids. The food has been very minimally processed � if at all.

There are no additives that don�t belong and could be potentially harmful. These foods are safer for human consumption and they are typically more nutritious.

organic food el paso tx.

How To Identify Organic Foods

In the United States, a food or product that is labeled as organic is required to be certified by the U.S. Department of Agriculture (USDA). The USDA has a certification program for natural growers and it has a set of very stringent standards that the product or food must meet.

There are some exemptions. For instance, a producer who does not sell more than $5,000 annually just in organic foods is not required to get the certification although they do have to adhere to the USDA�s stringent requirements for organic foods.

When a food carries the USDA Organic label, it means that it meets the requirements. While natural producers are not required to put the label on their products, many do.

The labeling varies, depending on the type of food. Single ingredient foods like eggs, vegetables, and fruits are considered to be 100 percent natural and are allowed to carry the USDA seal.

Foods that contain two or more ingredients, like breakfast cereal, are still allowed to use the USDA seal, but also must include the following information:

  • Organic � The product must be 95 percent organic or greater in order to be able to use this term
  • 100 percent organic � The product must be completely organic or all of its ingredients must be natural
  • Made with organic ingredients � The product contains no less than 70 percent natural ingredients

If the product has less than 70 percent natural ingredients, they are not allowed to use the word �organic� anywhere on their product labels.

Health Benefits Of Natural Foods

The greatest health benefit of natural foods is what it does not provide. Organic growers do not use synthetic pesticides to protect their crops from disease, insects, and molds. This means that the food itself has never been touched by these chemicals.

Natural foods also do not have the food additives that conventional foods often do. They are free from artificial sweeteners, flavorings, and colorings as well as preservatives and monosodium glutamate. This means eating natural means that you aren�t putting those chemicals into your body. Plus, many people say that organic foods simply taste better.

If you have further questions or concerns about your particular diet, please ask us! Our Doctor of Chiropractic can help guide you toward a more healthy life, including the foods you consume.

Injury Medical Clinic: Accident Treatment & Recovery

Osteoporosis vs. Osteopenia: What’s The Difference?

Osteoporosis vs. Osteopenia: What’s The Difference?

Osteoporosis is a significant health problem in the United States and worldwide. An estimated 10 million individuals have osteoporosis in the U.S. alone and an additional 18 million individuals are at risk of developing the disease, according to the American Academy of Orthopaedic Surgeons (AAOS). Females make up 80 percent of individuals who suffer from osteoporosis, but it also occurs in males although it is often underdiagnosed and thus underreported.

What is equally disturbing is that another 34 million individuals in the U.S. are at risk of developing osteopenia, a common precursor to osteoporosis. Many experts blame the typical American diet and lifestyle, although genetics can also contribute to a person�s likelihood of developing either of the diseases. The prevalence of both osteoporosis and osteopenia are serious health issues so it is important to understand them.

What Is Osteopenia?

Osteopenia is often a warning sign of impending osteoporosis. Nearly half of all Americans who are more than 50 years old have the disease.

Osteopenia is a bone disease, marked by a decrease in bone mineral density � or bone loss. While it is not as devastating as osteoporosis, it is a strong indicator that the patient will eventually develop the disease.

Nutrition and exercise are common treatments for osteopenia. Occasionally doctors will prescribe medication, but that is usually not the preferred treatment. Exercise, specifically weight bearing exercise, is a very effective treatment and preventative measure against these diseases.

Incorporating calcium and vitamin D are also common treatments. These can be in the form of supplements, but patients are also encouraged to eat calcium rich foods such as yogurt, leafy greens like spinach, and sardines.

osteoporosis el paso tx.What Is Osteoporosis?

Osteoporosis is a serious condition that causes bones to become extremely brittle and weak. The word �Osteoporosis� literally means �porous bone� which is indicative of the primary characteristic of the disease.

When the bone is viewed under a microscope, it has tiny holes in its surface. While healthy bone has a honeycomb appearance under a microscope, bone with osteoporosis has much larger spaces and holes. The mass and density of osteoporotic bone is severely compromised. This can result in frequent broken bones as well as chronic pain and a patient can even lose several inches in height.

Patients with osteoporosis can also experience limited mobility due to the disease or broken bones that may occur as a result. This can lead to other health problems including depression and obesity. These conditions can exacerbate the disease itself and increase the patient�s pain. Often patients with osteoporosis, particularly at advanced stages, require long term care in a facility such as a nursing home.

The real danger is not how devastating it is to bones, it is the way it can go undetected for so long. Often it is not discovered until a bone is actually broken or the patient�s upper back begins curving forward. Sometimes the patient may become shorter. At that stage it is usually very advanced. With the right treatment, though, it can be slowed or stopped. Sometimes bone density can be improved and the disorder can be reversed at least to some degree.

What To Do If You Have Osteoporosis Or Osteopenia

If you suspect that you may have osteoporosis or osteopenia, or may be at risk for developing it, the first thing you need to do is talk to your doctor to confirm that you do have it. From there you can decide on a course of action which is usually exercise, diet, lifestyle changes, and chiropractic treatments. The sooner you take steps to protect and improve your health, the less likely you are to develop long term conditions.

Injury Medical Clinic: Fibromyalgia Care & Treatment

Neurological Advanced Studies

Neurological Advanced Studies

After a neurological exam, physical exam, patient history, x-rays and any previous screening tests, a doctor may order one or more of the following diagnostic tests to determine the root of a possible/suspected neurological disorder or injury. These diagnostics generally involve neuroradiology, which uses small amounts of radioactive material to study organ function and structure and ordiagnostic imaging, which use magnets and electrical charges to study organ function.

Neurological Studies

Neuroradiology

  • MRI
  • MRA
  • MRS
  • fMRI
  • CT scans
  • Myelograms
  • PET scans
  • Many others

Magnetic Resonance Imaging (MRI)

Shows organs or soft tissue well
  • No ionizing radiation
Variations on MRI
  • Magnetic resonance angiography (MRA)
  • Evaluate blood flow through arteries
  • Detect intracranial aneurysms and vascular malformations
Magnetic resonance spectroscopy (MRS)
  • Assess chemical abnormalities in HIV, stroke, head injury, coma, Alzheimer’s disease, tumors, and multiple sclerosis
Functional magnetic resonance imaging (fMRI)
  • Determine the specific location of the brain where activity occurs

Computed Tomography (CT or CAT Scan)

  • Uses a combination of X-rays and computer technology to produce horizontal, or axial, images
  • Shows bones especially well
  • Used when assessment of the brain needed quickly such as in suspected bleeds and fractures

Myelogram

Contrast dye combined with CT or Xray
Most useful in assessing spinal cord
  • Stenosis
  • Tumors
  • Nerve root injury

Positron Emission Tomography (PET Scan)

Radiotracer is used to evaluate the metabolism of tissue to detect biochemical changes earlier than other study types
Used to assess
  • Alzheimer’s disease
  • Parkinson’s disease
  • Huntington’s disease
  • Epilepsy
  • Cerebrovascular accident

Electrodiagnostic Studies

  • Electromyography (EMG)
  • Nerve Conduction Velocity (NCV) Studies
  • Evoked Potential Studies

Electromyography (EMG)

Detection of signals arising from the depolarization of skeletal muscle
May be measured via:
  • Skin surface electrodes
  • Not used for diagnostic purposes, more for rehab and biofeedback
Needles placed directly within the muscle
  • Common for clinical/diagnostic EMG

neurological studies el paso tx.Diagnostic Needle EMG

Recorded depolarizations may be:
  • Spontaneous
  • Insertional activity
  • Result of voluntary muscle contraction
Muscles should be electrically silent at rest, except at the motor end-plate
  • Practitioner must avoid insertion in motor end-plate
At least 10 different points in the muscle are measured for proper interpretation

Procedure

Needle is inserted into the muscle
  • Insertional activity recorded
  • Electrical silence recorded
  • Voluntary muscle contraction recorded
  • Electrical silence recorded
  • Maximal contraction effort recorded

Samples Collected

Muscles
  • Innervated by the same nerve but different nerve roots
  • Innervated by the same nerve root but different nerves
  • Different locations along the course of the nerves
Helps to distinguish the level of the lesion

Motor Unit Potential (MUP)

Amplitude
  • Density of the muscle fibers attached to that one motor neuron
  • Proximity of the MUP
Recruitment pattern can also be assessed
  • Delayed recruitment can indicated loss of motor units within the muscle
  • Early recruitment is seen in myopathy, where the MUPs tend to be of low amplitude short duration

neurological studies el paso tx.Polyphasic MUPS

  • Increased amplitude and duration can be the result of reinnervation after chronic denervation

neurological studies el paso tx.Complete Potential Blocks

  • Demyelination of multiple segments in a row can result in a complete block of nerve conduction and therefore no resulting MUP reading, however generally changes in MUPs are only seen with damage to the axons, not the myelin
  • Damage to the central nervous system above the level of the motor neuron (such as by cervical spinal cord trauma or stroke) can result in complete paralysis little abnormality on needle EMG

Denervated Muscle Fibers

Detected as abnormal electrical signals
  • Increased insertional activity will be read in the first couple of weeks, as it becomes more mechanically irritable
As muscle fibers become more chemically sensitive they will begin to produce spontaneous depolarization activity
  • Fibrillation potentials

Fibrillation Potentials

  • DO NOT occur in normal muscle fibers
  • Fibrillations cannot be seen with the naked eye but are detectable on EMG
  • Often caused by nerve disease, but can be produced by severe muscle diseases if there is damage to the motor axons

neurological studies el paso tx.Positive Sharp Waves

  • DO NOT occur in normally functioning fibers
  • Spontaneous depolarization due to increased resting membrane potential

neurological studies el paso tx.Abnormal Findings

  • Findings of fibrillations and positive sharp waves are the most reliable indicator of damage to motor axons to the muscle after one week up to 12 months after the damage
  • Often termed �acute� in reports, despite possibly being visible months after onset
  • Will disappear if there is complete degeneration or denervation of nerve fibers

Nerve Conduction Velocity (NCV) Studies

Motor
  • Measures compound muscle action potentials (CMAP)
Sensory
  • Measures sensory nerve action potentials (SNAP)

Nerve Conduction Studies

  • Velocity (Speed)
  • Terminal latency
  • Amplitude
  • Tables of normal, adjusted for age, height and other factors are available for practitioners to make comparison

Terminal Latency

  • Time between stimulus and the appearance of a response
  • Distal entrapment neuropathies
  • Increased terminal latency along a specific nerve pathway

Velocity

Calculated based on latency and variables such as distance
Dependent on diameter of axon
Also dependent on thickness of myelin sheath
  • Focal neuropathies thin myelin sheaths, slowing conduction velocity
  • Conditions such as Charcot Marie Tooth Disease or Guillian Barre Syndrome damage myelin in large diameter, fast conducting fibers

Amplitude

  • Axonal health
  • Toxic neuropathies
  • CMAP and SNAP amplitude affected

Diabetic Neuropathy

Most common neuropathy
  • Distal, symmetric
  • Demyelination and axonal damage therefore speed and amplitude of conduction are both affected

Evoked Potential Studies

Somatosensory evoked potentials (SSEPs)
  • Used to test sensory nerves in the limbs
Visual evoked potentials (VEPs)
  • Used to test sensory nerves of the visual system
Brainstem auditory evoked potentials (AEPs)
  • Used to test sensory nerves of the auditory system
Potentials recorded via low-impedance surface electrodes
Recordings averaged after repeated exposure to sensory stimulus
  • Eliminates background �noise�
  • Refines results since potentials are small and difficult to detect apart from normal activity
  • According to Dr. Swenson, in the case of SSEPs, at least 256 stimuli are usually needed in order to obtain reliable, reproducible responses

Somatosensory Evoked Potentials (SSEPs)

Sensation from muscles
  • Touch and pressure receptors in the skin and deeper tissues
Little if any pain contribution
  • Limits ability to use testing for pain disorders
Velocity and/or amplitude changes can indicate pathology
  • Only large changes are significant since SSEPs are normally highly variable
Useful for intraoperative monitoring and to assess the prognosis of patients suffering severe anoxic brain injury
  • Not useful in assessing radiculopathy as individual nerve roots cannot be easily identified

Late Potentials

Occur more than 10-20 milliseconds after stimulation of motor nerves
Two types
  • H-Reflex
  • F-Response

H-Reflex

Named for Dr. Hoffman
  • First described this reflex in 1918
Electrodiagnostic manifestation of myotatic stretch reflex
  • Motor response recorded after electrical or physical stretch stimulation of the associated muscle
Only clinically useful in assessing S1 radiculopathy, as the reflex from the tibial nerve to triceps surae can be assessed for velocity and amplitude
  • More quantifiable that Achilles reflex testing
  • Fails to return with after damage and therefore not as clinically useful in recurrent radiculopathy cases

F-Response

So named because it was first recorded in the foot
Occurs 25 -55 milliseconds after initial stimulus
Due to antidromic depolarization of the motor nerve, resulting in a orthodromic electrical signal
  • Not a true reflex
  • Results in a small muscle contraction
  • Amplitude can be highly variable, so not as important as velocity
  • Reduced velocity indicates slowed conduction
Useful in assessing proximal nerve pathology
  • Radiculopathy
  • Guillian Barre Syndrome
  • Chronic Inflammatory Demyelinating Polyradiculopathy (CIDP)
Useful in assessing demyelinative peripheral neuropathies

Sources

  1. Alexander G. Reeves, A. & Swenson, R. Disorders of the Nervous System. Dartmouth, 2004.
  2. Day, Jo Ann. �Neuroradiology | Johns Hopkins Radiology.� Johns Hopkins Medicine Health Library, 13 Oct. 2016, www.hopkinsmedicine.org/radiology/specialties/ne uroradiology/index.html.
  3. Swenson, Rand. Electrodiagnosis.

Share Ebook

 

Health Benefits From Chiropractic Care

Health Benefits From Chiropractic Care

Health: At its core, chiropractic is about allowing the body to naturally seek its natural balance, allowing all systems to work together. When it is unencumbered it can actually begin to heal itself. However, it can only attain proper function when it is at its proper structure.

When the structure becomes impaired through disease, stress, or injury, function becomes impaired. The degree of impairment often depends on a variety of factors including the nature of the root cause, the length of time it is left unchecked, and the patient�s support system.

Chiropractic is an exceptional part of a patient�s wellness team, addressing existing conditions as well as preventing many health issues. While most people relate the physical aspect of chiropractic to the practice, it is really a whole body approach to wellness. Chiropractic address body, mind, and spirit.

Health

Body

Chiropractic for physical health helps manage pain and heal injuries. Patients who receive regular chiropractic care enjoy a greater range of motion and improved mobility as well as decreased or even the elimination of pain in the body. Spinal misalignments can cause misalignments I other parts of the body which can cause a variety of symptoms from pain to impeded organ function.

When a part of the body is injured, such as the ankle, the body attempts to compensate. It may cause the pelvis to tilt or the spine to curve. The patient may experience pain in the hips, knees, and lower back.

Chiropractic addresses these issues, seeking out the root of the problem and then working to bring the body back into perfect balance. It is a viable and effective treatment for back pain, joint pain, sprains, carpal tunnel syndrome, headaches, and tendonitis. However, it can also be used to treat digestive disorders, asthma, and allergies.

health benefits chiropractic el paso tx.

Mind

Imbalances of the mind, such as depression and anxiety are not only destructive and debilitating on their own, they can also exacerbate pain and immobility in the body. These conditions often occur when there is an imbalance of some kind, usually within the brain.

When the body itself is out of alignment, it can inhibit the transmission of messages between the brain and vital nerves. Misalignment that blocks the central nervous system can cause imbalances in the brain, leading to conditions like depression.

Spinal misalignments and pain put a great deal of stress on the body which can affect the mental state. Physical stress that comes from injury or illness can bring about anxiety and panic disorders. When left unchecked, it can lead to mental health issues that can affect family, work, and social activities.

Chiropractic for mental health addresses several mental health issues by aligning the physical body and promoting whole body wellness through lifestyle changes, diet, exercise, and other therapies like massage. When the whole body is in alignment, mind, body and spirit are healthier.

Spirit

You don�t hear a lot about chiropractic for spiritual healing, but many practitioners are discovering the spiritual benefits of the treatment. Doctors have long known that a person�s thoughts contribute to their physical health. A person�s spirituality, their connection to whatever that means to them, plays a very significant part in their overall wellness both mentally and physically.

Chiropractic for spiritual healing may incorporate meditation, yoga, massage, and breathing exercises into treatment. When the physical body is out of balance, the spirit can become imbalanced as well. Bring the body into alignment, and the spirit will follow.

The nervous system is what controls the entire body; when there is interference, the energy cannot flow as it should, causing discomfort and disease mentally, physically, and spiritually. When the flow of energy is without interference, the body can begin to heal itself.

Injury Medical Clinic: Elderly & Geriatric Fitness

Biochemistry Of Pain

Biochemistry Of Pain

Biochemistry of Pain:�All pain syndromes have an inflammation profile. An inflammatory profile can vary from person to person and can also vary in one person at different times. The treatment of pain syndromes is to understand this inflammation profile. Pain syndromes are treated medically, surgically or both. The goal is to inhibit/suppress the production of inflammatory mediators. And a successful outcome is one that results in less inflammation and of course less pain.

Biochemistry Of Pain

Objectives:

  • Who are the key players
  • What are the biochemical mechanisms?
  • What are the consequences?

Inflammation Review:

Key Players

biochemistry of pain el paso tx.

biochemistry of pain el paso tx.

biochemistry of pain el paso tx.

biochemistry of pain el paso tx.Why Does My Shoulder Hurt? A Review Of The Neuroanatomical & Biochemical Basis Of Shoulder Pain

ABSTRACT

If a patient asks �why does my shoulder hurt?� the conversation will quickly turn to scientific theory and sometimes unsubstantiated conjecture. Frequently, the clinician becomes aware of the limits of the scientific basis of their explanation, demonstrating the incompleteness of our understanding of the nature of shoulder pain. This review takes a systematic approach to help answer fundamental questions relating to shoulder pain, with a view to providing insights into future research and novel methods for treating shoulder pain. We shall explore the roles of (1) the peripheral receptors, (2) peripheral pain processing or �nociception�, (3) the spinal cord, (4) the brain, (5) the location of receptors in the shoulder and (6) the neural anatomy of the shoulder. We also consider how these factors might contribute to the variability in the clinical presentation, the diagnosis and the treatment of shoulder pain. In this way we aim to provide an overview of the component parts of the peripheral pain detection system and central pain processing mechanisms in shoulder pain that interact to produce clinical pain.

INTRODUCTION: A VERY BRIEF HISTORY OF PAIN SCIENCE ESSENTIAL FOR CLINICIANS

The nature of pain, in general, has been a subject of much controversy over the past century. In the 17th century Descartes� theory1 proposed that the intensity of pain was directly related to the amount of associated tissue injury and that pain was processed in one distinct pathway. Many earlier theories relied upon this so-called �dualist� Descartian philosophy, seeing pain as the consequence of the stimulation of a �specific� peripheral pain receptor in the brain. In the 20th century a scientific battle between two opposing theories ensued, namely specificity theory and pattern theory. The Descartian �specificity theory� saw pain as a specific separate modality of sensory input with its own apparatus, while �pattern theory� felt that pain resulted from the intense stimulation of non-specific receptors.2 In 1965, Wall and Melzack�s 3 gate theory of pain provided evidence for a model in which pain perception was modulated by both sensory feedback and the central nervous system. Another huge advance in pain theory at around the same time saw the discovery of the specific mode of actions of the opioids.4 Subsequently, recent advances in neuroimaging and molecular medicine have vastly expanded our overall understanding of pain.

So how does this relate to shoulder pain?�Shoulder pain is a common clinical problem, and a robust understanding of the way in which pain is processed by the body is essential to best diagnose and treat a patient�s pain. Advances in our knowledge of pain processing promise to explain the mismatch between pathology and the perception of pain, they may also help us explain why certain patients fail to respond to certain treatments.

BASIC BUILDING BLOCKS OF PAIN

Peripheral sensory receptors: the mechanoreceptor and the �nociceptor�

There are numerous types of peripheral sensory receptors present in the human musculoskeletal system. 5 They may be classified based on their func�tion (as mechanoreceptors, thermoreceptors or nociceptors) or morphology (free nerve endings or different types of encapsulated receptors).5 The dif�ferent types of receptor can then be further subclas�sified based on the presence of certain chemical markers. There are significant overlaps between dif�ferent functional classes of receptor, for example

Peripheral Pain Processing: �Nociception�

Tissue injury involves a variety of inflammatory mediators being released by damaged cells including bradykinin, histamine, 5-hydroxytryptamine, ATP, nitric oxide and certain ions (K+ and H+). The activation of the arachidonic acid pathway leads to the production of prostaglandins, thromboxanes and leuko- trienes. Cytokines, including the interleukins and tumor necrosis factor ?, and neurotrophins, such as nerve growth factor (NGF), are also released and are intimately involved in the facilitation of inflammation.15 Other substances such as excitatory amino acids (glutamate) and opioids (endothelin-1) have also been implicated in the acute inflammatory response.16 17 Some of these agents may directly activate nociceptors, while others bring about the recruitment of other cells which then release further facilitatory agents.18 This local process resulting in the increased responsiveness of nociceptive neurons to their normal input and/or the recruitment of a response to normally subthreshold inputs is termed �peripheral sensitization�.�Figure 1 summarizes some of the key mechanisms involved.

biochemistry of pain el paso tx.NGF and the transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor have a symbiotic relationship when it comes to inflammation and nociceptor sensitization. The cytokines produced in inflamed tissue result in an increase in NGF production.19 NGF stimulates the release of histamine and serotonin (5-HT3) by mast cells, and also sensitizes nociceptors, possibly altering the properties of A? fibers such that a greater proportion become nociceptive. The TRPV1 receptor is present in a subpopulation of primary afferent fibers and is activated by capsaicin, heat and protons. The TRPV1 receptor is synthesized in the cell body of the afferent fibre, and is transported to both the peripheral and central terminals, where it contributes to the sensitivity of nociceptive afferents. Inflammation results in NGF production peripherally which then binds to the tyrosine kinase receptor type 1 receptor on the nociceptor terminals, NGF is then transported to the cell body where it leads to an up regulation of TRPV1 transcription and consequently increased nociceptor sensitivity.19 20 NGF and other inflammatory mediators also sensitize TRPV1 through a diverse array of secondary messenger pathways. Many other receptors including cholinergic receptors, ?-aminobutyric acid (GABA) receptors and somatostatin receptors are also thought to be involved in peripheral nociceptor sensitivity.

A large number of inflammatory mediators have been specifically implicated in shoulder pain and rotator cuff disease.21�25 While some chemical mediators directly activate nociceptors, most lead to changes in the sensory neuron itself rather than directly activating it. These changes may be early post- translational or delayed transcription dependent. Examples of the former are changes in the TRPV1 receptor or in voltage- gated ion channels resulting from the phosphorylation of membrane-bound proteins. Examples of the latter include the NGF-induced increase in TRV1 channel production and the calcium-induced activation of intracellular transcription factors.

Molecular Mechanisms Of Nociception

The sensation of pain alerts us to real or impending injury and triggers appropriate protective responses. Unfortunately, pain often outlives its usefulness as a warning system and instead becomes chronic and debilitating. This transition to a chronic phase involves changes within the spinal cord and brain, but there is also remarkable modulation where pain messages are initiated � at the level of the primary sensory neuron. Efforts to determine how these neurons detect pain-producing stimuli of a thermal, mechanical or chemical nature have revealed new signaling mechanisms and brought us closer to understanding the molecular events that facilitate transitions from acute to persistent pain.

biochemistry of pain el paso tx.The Neurochemistry Of Nociceptors

Glutamate is the predominant excitatory neurotransmitter in all nociceptors. Histochemical studies of adult DRG, however, reveal two broad classes of unmyelinated C fiber.

Chemical Transducers To Make The Pain Worse

As described above, injury heightens our pain experience by increasing the sensitivity of nociceptors to both thermal and mechanical stimuli. This phenomenon results, in part, from the production and release of chemical mediators from the primary sensory terminal and from non-neural cells (for example, fibroblasts, mast cells, neutrophils and platelets) in the environment36 (Fig. 3). Some components of the inflammatory soup (for example, protons, ATP, serotonin or lipids) can alter neuronal excitability directly by inter- acting with ion channels on the nociceptor surface, whereas others (for example, bradykinin and NGF) bind to metabotropic receptors and mediate their effects through second-messenger signaling cascades11. Considerable progress has been made in understanding the biochemistry basis of such modulatory mechanisms.

Extracellular Protons & Tissue Acidosis

Local tissue acidosis is a hallmark physiological response to injury, and the degree of associated pain or discomfort is well correlated with the magnitude of acidification37. Application of acid (pH 5) to the skin produces sustained discharges in a third or more of polymodal nociceptors that innervate the receptive field 20.

biochemistry of pain el paso tx.Cellular & Molecular Mechanisms Of Pain

Abstract

The nervous system detects and interprets a wide range of thermal and mechanical stimuli as well as environmental and endogenous chemical irritants. When intense, these stimuli generate acute pain, and in the setting of persistent injury, both peripheral and central nervous system components of the pain transmission pathway exhibit tremendous plasticity, enhancing pain signals and producing hypersensitivity. When plasticity facilitates protective reflexes, it can be beneficial, but when the changes persist, a chronic pain condition may result. Genetic, electrophysiological, and pharmacological studies are elucidating the molecular mechanisms that underlie detection, coding, and modulation of noxious stimuli that generate pain.

Introduction: Acute Versus Persistent Pain

biochemistry of pain el paso tx.

biochemistry of pain el paso tx.Figure 5. Spinal Cord (Central) Sensitization

  1. Glutamate/NMDA receptor-mediated sensitization.�Following intense stimulation or persistent injury, activated C and A? nociceptors release a variety of neurotransmitters including dlutamate, substance P, calcitonin-gene related peptide (CGRP), and ATP, onto output neurons in lamina I of the superficial dorsal horn (red). As a consequence, normally silent NMDA glutamate receptors located in the postsynaptic neuron can now signal, increase intracellular calcium, and activate a host of calcium dependent signaling pathways and second messengers including mitogen-activated protein kinase (MAPK), protein kinase C (PKC), protein kinase A (PKA) and Src. This cascade of events will increase the excitability of the output neuron and facilitate the transmission of pain messages to the brain.
  2. Disinhibition.�Under normal circumstances, inhibitory interneurons (blue) continuously release GABA and/or glycine (Gly) to decrease the excitability of lamina I output neurons and modulate pain transmission (inhibitory tone). However, in the setting of injury, this inhibition can be lost, resulting in hyperalgesia. Additionally, disinhibition can enable non-nociceptive myelinated A? primary afferents to engage the pain transmission circuitry such that normally innocuous stimuli are now perceived as painful. This occurs, in part, through the disinhibition of excitatory PKC? expressing interneurons in inner lamina II.
  3. Microglial activation.�Peripheral nerve injury promotes release of ATP and the chemokine fractalkine that will stimulate microglial cells. In particular, activation of purinergic, CX3CR1, and Toll-like receptors on microglia (purple) results in the release of brain-derived neurotrophic factor (BDNF), which through activation of TrkB receptors expressed by lamina I output neurons, promotes increased excitability and enhanced pain in response to both noxious and innocuous stimulation (that is, hyperalgesia and allodynia). Activated microglia also release a host of cytokines, such as tumor necrosis factor ? (TNF?), interleukin-1? and 6 (IL-1?, IL-6), and other factors that contribute to central sensitization.

The Chemical Milieu Of Inflammation

Peripheral sensitization more commonly results from inflammation-associated changes in the chemical environment of the nerve fiber (McMahon et al., 2008). Thus, tissue damage is often accompanied by the accumulation of endogenous factors released from activated nociceptors or non-neural cells that reside within or infiltrate into the injured area (including mast cells, basophils, platelets, macrophages, neutrophils, endothelial cells, keratinocytes, and fibroblasts). Collectively. these factors, referred to as the �inflammatory soup�, represent a wide array of signaling molecules, including neurotransmitters, peptides (substance P, CGRP, bradykinin), eicosinoids and related lipids (prostaglandins, thromboxanes, leukotrienes, endocannabinoids), neurotrophins, cytokines, and chemokines, as well as extracellular proteases and protons. Remarkably, nociceptors express one or more cell surface receptors capable of recognizing and responding to each of these pro-inflammatory or pro-algesic agents (Figure 4). Such interactions enhance excitability of the nerve fiber, thereby heightening its sensitivity to temperature or touch.

Unquestionably the most common approach to reducing inflammatory pain involves inhibiting the synthesis or accumulation of components of the inflammatory soup. This is best exemplified by non-steroidal anti-inflammatory drugs, such as aspirin or ibuprofen, which reduce inflammatory pain and hyperalgesia by inhibiting cyclooxygenases (Cox-1 and Cox-2) involved in prostaglandin synthesis. A second approach is to block the actions of inflammatory agents at the nociceptor. Here, we highlight examples that provide new insight into cellular mechanisms of peripheral sensitization, or which form the basis of new therapeutic strategies for treating inflammatory pain.

NGF is perhaps best known for its role as a neurotrophic factor required for survival and development of sensory neurons during embryogenesis, but in the adult, NGF is also produced in the setting of tissue injury and constitutes an important component of the inflammatory soup (Ritner et al., 2009). Among its many cellular targets, NGF acts directly on peptidergic C fiber nociceptors, which express the high affinity NGF receptor tyrosine kinase, TrkA, as well as the low affinity neurotrophin receptor, p75 (Chao, 2003; Snider and McMahon, 1998). NGF produces profound hypersensitivity to heat and mechanical stimuli through two temporally distinct mechanisms. At first, a NGF-TrkA interaction activates downstream signaling pathways, including phospholipase C (PLC), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K). This results in functional potentiation of target proteins at the peripheral nociceptor terminal, most notably TRPV1, leading to a rapid change in cellular and behavioral heat sensitivity (Chuang et al., 2001).

Irrespective of their pro-nociceptive mechanisms, interfering with neurotrophin or cytokine signaling has become a major strategy for controlling inflammatory disease or resulting pain. The main approach involves blocking NGF or TNF-? action with a neutralizing antibody. In the case of TNF-?, this has been remarkably effective in the treatment of numerous autoimmune diseases, including rheumatoid arthritis, leading to dramatic reduction in both tissue destruction and accompanying hyperalgesia (Atzeni et al., 2005). Because the main actions of NGF on the adult nociceptor occur in the setting of inflammation, the advantage of this approach is that hyperalgesia will decrease without affecting normal pain perception. Indeed, anti-NGF antibodies are currently in clinical trials for treatment of inflammatory pain syndromes (Hefti et al., 2006).

Glutamate/NMDA Receptor-Mediated Sensitization

Acute pain is signaled by the release of glutamate from the central terminals of nociceptors, generating excitatory post-synaptic currents (EPSCs) in second order dorsal horn neurons. This occurs primarily through activation of postsynaptic AMPA and kainate subtypes of ionotropic glutamate receptors. Summation of sub-threshold EPSCs in the postsynaptic neuron will eventually result in action potential firing and transmission of the pain message to higher order neurons.

Other studies indicate that changes in the projection neuron, itself, contribute to the dis- inhibitory process. For example, peripheral nerve injury profoundly down-regulates the K+- Cl- co-transporter KCC2, which is essential for maintaining normal K+ and Cl- gradients across the plasma membrane (Coull et al., 2003). Downregulating KCC2, which is expressed in lamina I projection neurons, results in a shift in the Cl- gradient, such that activation of GABA-A receptors depolarize, rather than hyperpolarize the lamina I projection neurons. This would, in turn, enhance excitability and increase pain transmission. Indeed, pharmacological blockade or siRNA-mediated downregulation of KCC2 in the rat induces mechanical allodynia.

Share Ebook

Sources:

Why does my shoulder hurt? A review of the neuroanatomical and biochemical basis of shoulder pain

Benjamin John Floyd Dean, Stephen Edward Gwilym, Andrew Jonathan Carr

Cellular and Molecular Mechanisms of Pain

Allan I. Basbaum1, Diana M. Bautista2, Gre?gory Scherrer1, and David Julius3

1Department of Anatomy, University of California, San Francisco 94158

2Department of Molecular and Cell Biology, University of California, Berkeley CA 94720 3Department of Physiology, University of California, San Francisco 94158

Molecular mechanisms of nociception

David Julius* & Allan I. Basbaum�

*Department of Cellular and Molecular Pharmacology, and �Departments of Anatomy and Physiology and W. M. Keck Foundation Center for Integrative Neuroscience, University of California San Francisco, San Francisco, California 94143, USA (e-mail: julius@socrates.ucsf.edu)