ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page

Wellness

Clinic Wellness Team. A key factor to spine or back pain conditions is staying healthy. Overall wellness involves a balanced diet, appropriate exercise, physical activity, restful sleep, and a healthy lifestyle. The term has been applied in many ways. But overall, the definition is as follows.

It is a conscious, self-directed, and evolving process of achieving full potential. It is multidimensional, bringing together lifestyles both mental/spiritual and the environment in which one lives. It is positive and affirms that what we do is, in fact, correct.

It is an active process where people become aware and make choices towards a more successful lifestyle. This includes how a person contributes to their environment/community. They aim to build healthier living spaces and social networks. It helps in creating a person’s belief systems, values, and a positive world perspective.

Along with this comes the benefits of regular exercise, a healthy diet, personal self-care, and knowing when to seek medical attention. Dr. Jimenez’s message is to work towards being fit, being healthy, and staying aware of our collection of articles, blogs, and videos.


Glutamine, Fiber & Fatty Acid Intake for IBD

Glutamine, Fiber & Fatty Acid Intake for IBD

Inflammatory bowel disease, or IBD, is a term used to describe inflammation of the gastrointestinal mucosa of unknown etiology. There are a selection of hypotheses associated to the development and perpetuation of IBD. Three main theories emerge from the literature. The first implicates a persistent intestinal infection; the second demonstrates that the upcoming signs of IBD are due to a defective mucosal barrier to luminal antigens; and the next suggests a dysregulated host immune response to ubiquitous antigens.

 

What are the nutritional components, if any, behind inflammatory bowel disease?

 

It is believed that IBD has both genetic and environmental components, therefore it’s immunologically mediated. Information gathered from IBD patients showing cytokine profiles, permeability defects, response to treatment and natural history of disease, may indicate a heterogeneous group of disorders that fall under the headings of ulcerative colitis, or UC, and Crohn’s disease, or CD. Previous epidemiological data on diet in UC and CD are conflicting, partly as a result of the heterogeneity of those diseases, making it difficult to get reliable statistics and publication bias, such as in the case of negative structures from breastfeeding.

 

Glutamine, Fiber and Fatty Acids

 

Diets high in glutamine, a significant source of energy for enterocytes, in addition to being the preferred fuel of the small intestine, are used with varying success. Glutamine is bekieved to exert its trophic effects on the small intestine by increasing protein synthesis and producing alanine for enteric gluconeogenesis. There is proof that glutamine protects the small intestinal mucosa during acute disease. However, oral glutamine supplements do not restore to normal the increased intestinal permeability discovered in patients with CD and these supplements do not beneficially affect the sufferers’ CDAI or C-reactive protein, also abbreviated as CRP, levels. Similarly, a randomized controlled trial demonstrated no benefit was connected to the usage of glutamine-enriched polymeric formulas in children with CD.

 

In animal research studies, dietary fiber has been implicated in keeping the integrity of the intestine, as well as in preventing bacterial translocation from the gut to the mesenteric lymph nodes. Short-chain fatty acids (SCFA, C1 to C6 natural fatty acids), are created by the fermentation of dietary polysaccharides in the common anaerobic bacteria in the colon. These SCFA are a source of energy for the colonocytes, which together improve sodium and water absorption, and promote blood circulation. Decreased quantities of SCFA, particularly butyrate, and a defect in the oxidation of butyrate from colonocytes, are indicated as a mechanism in the pathogenesis of inflammatory bowel disease. Evidence to support that concept requires the observation of the oxidation of C-labelled butyrate, demonstrated to decrease in patients with active UC in comparison with healthy controls. However, researchers have failed to reveal the differences between UC patients and controls in the oxidation of rectally administered C-labelled butyrate.

 

TPN supplemented with SCFA improved function adaptation to intestinal resection in rats. It remains to be discovered when patients with short bowel syndrome may make the most of SCFA.

 

Butyrate (C4 fatty acid) administered to UC patients contributed to remission levels like corticosteroids and mesalamine. In patients with CD, both intestinal biopsies and lamina propria cells packaged with butyrate had substantially decreased levels of inflammatory cytokines (TNF), possibly due to a reduction in NF?B stimulation and I?B degradation.

 

Eicosanoids are inflammatory mediators, which have also been implicated in the pathogenesis of chronic inflammatory damage in the intestine. Specimens from patients with IBD show enhanced eicosanoid formation. High dietary intake of omega-6 polyunsaturated fatty acids, abbreviated as PUFAs, which reduces omega-3 intake, and may contribute to IBD development. The benefits of fish oil, which contain n3 fatty acids, that were shown in certain inflammatory disorders, such as psoriasis and rheumatoid arthritis. Epidemiological observations of this very low prevalence of IBD in Japanese and Inuit populations consuming substantial n3 fatty acid fish provided a justification for utilizing n3 fatty acids in IBD. The n3 fatty acids are considered to compete with n6 fatty acids as precursors of eicosanoid synthesis. The n3 products reveal a series of 5 leukotrienes, which have considerably less physiological activity when compared with the arachidonate established series 4 counterparts. In addition, fish oil might have an anti inflammatory effect.

 

Rats fed with fish oil that had TNBS-induced inflammatory lesions in the intestine showed less prostaglandin- and leukotriene-mediated resistant response. Parenteral lipid emulsions enhanced with n3 fatty acids reduce diarrhea, weaken morphological changes and decreased colonic concentrations of inflammatory mediators in an animal model of acetic acid induced colitis.

 

Loeschke et al conducted a placebo-controlled trial of n3 fatty acids in preventing relapse in UC. Patients in remission who got n3 fatty acids experienced fewer relapses than did those receiving placebo. Unfortunately, the favorable results of this research study did not last throughout the total amount of the two year research, possibly due to diminished compliance punctually. In a multicenter placebo controlled relapse prevention trial, Belluzzi et al found a significant drop in the relapse rate in CD patients given an exceptional formula designed to allow postponed ileal release of n3 fatty acids. A fish oil diet has been shown to increase eicosapentanoic and docosahexanoic acids in the intestinal mucosal lipids of IBD sufferers, also demonstrating a reduction in arachadonic acid. A gain in the synthesis of leukotriene B5 along with a 53 percent decrease of leukotriene B4 was shown in UC patients, whereas the fish oil treatment revealed a nonsignificant trend to faster remission. Fish oil supplementation results in clinical improvement of active mild to moderate disease, but was not associated with a significant reduction in leukotriene B4 production. Consequently, fish oil supplementation of the diet may provide some short-term benefit to people with CD or UC. Using probiotics and prebiotics has received much attention; the interested reader is referred to recent reviews in this area.

 

Clinical Implications

 

It is widely known that nutritional deficiencies are common in people with CD and UC, and people have to be expected, diagnosed and treated. There are no special diets which may be recommended for all patients with IBD; dietary therapy needs to be individualized. TPN or TEN may be necessary to restore nutrient equilibrium in selected IBD patients with malnutrition, but in adults these interventions do not provide an essential decision to modify disease activity. The omega-3 PUFAs in fish oil may reduce disease activity in UC and CD when used at the short term together with regular medical therapy. Their mechanism of action is to enhance the activity of the amino acids PPAR, or peroxisome proliferator-activated receptors, in the intestine, inhibiting the AP-1 signaling pathway and NF-?B, weakening pro-inflammatory cytokine receptor expression. Future research will focus on the identification and use of certain dietary lipids to reduce intestinal inflammatory activity and also to maintain long-term disease remission.

 

Information referenced from the National Center for Biotechnology Information (NCBI) and the National University of Health Sciences. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

By Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

WELLNESS TOPIC: EXTRA EXTRA: Managing Workplace Stress

 

 

Blank
References
1.�Liu Y, van Kruiningen HJ, West AB, Cartun RW, Cortot A, Colombel JF. Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn’s disease.�Gastroenterology.�1995;108:1396�1404.�[PubMed]
2.�Sartor R.�Microbial factors in the pathogenesis of Crohn’s disease, ulcerative colitis and experimental intestinal inflammation.�Baltimore: Williams & Wilkins; 1995.
3.�Wakefield AJ, Ekbom A, Dhillon AP, Pittilo RM, Pounder RE. Crohn’s disease: pathogenesis and persistent measles virus infection.�Gastroenterology.�1995;108:911�916.�[PubMed]
4.�Sartor RB. Current concepts of the etiology and pathogenesis of ulcerative colitis and Crohn’s disease.�Gastroenterol Clin North Am.�1995;24:475�507.�[PubMed]
5.�Sartor RB. Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases.�Am J Gastroenterol.�1997;92:5S�11S.�[PubMed]
6.�MacDermott RP. Alterations in the mucosal immune system in ulcerative colitis and Crohn’s disease.�Med Clin North Am.�1994;78:1207�1231.�[PubMed]
7.�Podolsky DK. Inflammatory bowel disease (1)�N Engl J Med.�1991;325:928�937.�[PubMed]
8.�Podolsky DK. Inflammatory bowel disease (2)�N Engl J Med.�1991;325:1008�1016.�[PubMed]
9.�Yang H, Rotter J.�The genetics of inflammatory disease.�Baltimore: Williams & Wilkins; 1994.
10.�Wurzelmann JI, Lyles CM, Sandler RS. Childhood infections and the risk of inflammatory bowel disease.�Dig Dis Sci.�1994;39:555�560.�[PubMed]
11.�Knoflach P, Park BH, Cunningham R, Weiser MM, Albini B. Serum antibodies to cow’s milk proteins in ulcerative colitis and Crohn’s disease.�Gastroenterology.�1987;92:479�485.�[PubMed]
12.�De Palma GD, Catanzano C. Removable self-expanding metal stents: a pilot study for treatment of achalasia of the esophagus.�Endoscopy.�1998;30:S95�S96.�[PubMed]
13.�Bernstein CN, Ament M, Artinian L, Ridgeway J, Shanahan F. Milk tolerance in adults with ulcerative colitis.�Am J Gastroenterol.�1994;89:872�877.�[PubMed]
14.�Matsui T, Iida M, Fujishima M, Imai K, Yao T. Increased sugar consumption in Japanese patients with Crohn’s disease.�Gastroenterol Jpn.�1990;25:271.�[PubMed]
15.�Kelly DG, Fleming CR. Nutritional considerations in inflammatory bowel diseases.�Gastroenterol Clin North Am.�1995;24:597�611.�[PubMed]
16.�Geerling BJ, Dagnelie PC, Badart-Smook A, Russel MG, Stockbr�gger RW, Brummer RJ. Diet as a risk factor for the development of ulcerative colitis.�Am J Gastroenterol.�2000;95:1008�1013.�[PubMed]
17.�Dudrick SJ, Latifi R, Schrager R. Nutritional management of inflammatory bowel disease.�Surg Clin North Am.�1991;71:609�623.�[PubMed]
18.�D’Odorico A, Bortolan S, Cardin R, D’Inca’ R, Martines D, Ferronato A, Sturniolo GC. Reduced plasma antioxidant concentrations and increased oxidative DNA damage in inflammatory bowel disease.�Scand J Gastroenterol.�2001;36:1289�1294.�[PubMed]
19.�Reimund JM, Hirth C, Koehl C, Baumann R, Duclos B. Antioxidant and immune status in active Crohn’s disease. A possible relationship.�Clin Nutr.�2000;19:43�48.�[PubMed]
20.�Romagnuolo J, Fedorak RN, Dias VC, Bamforth F, Teltscher M. Hyperhomocysteinemia and inflammatory bowel disease: prevalence and predictors in a cross-sectional study.�Am J Gastroenterol.�2001;96:2143�2149.�[PubMed]
21.�Lewis JD, Fisher RL. Nutrition support in inflammatory bowel disease.�Med Clin North Am.�1994;78:1443�1456.�[PubMed]
22.�Azcue M, Rashid M, Griffiths A, Pencharz PB. Energy expenditure and body composition in children with Crohn’s disease: effect of enteral nutrition and treatment with prednisolone.�Gut.�1997;41:203�208.[PMC free article][PubMed]
23.�Mingrone G, Capristo E, Greco AV, Benedetti G, De Gaetano A, Tataranni PA, Gasbarrini G. Elevated diet-induced thermogenesis and lipid oxidation rate in Crohn disease.�Am J Clin Nutr.�1999;69:325�330.[PubMed]
24.�Bjarnason I, Macpherson A, Mackintosh C, Buxton-Thomas M, Forgacs I, Moniz C. Reduced bone density in patients with inflammatory bowel disease.�Gut.�1997;40:228�233.�[PMC free article][PubMed]
25.�Griffiths AM, Nguyen P, Smith C, MacMillan JH, Sherman PM. Growth and clinical course of children with Crohn’s disease.�Gut.�1993;34:939�943.�[PMC free article][PubMed]
26.�Fischer JE, Foster GS, Abel RM, Abbott WM, Ryan JA. Hyperalimentation as primary therapy for inflammatory bowel disease.�Am J Surg.�1973;125:165�175.�[PubMed]
27.�Reilly J, Ryan JA, Strole W, Fischer JE. Hyperalimentation in inflammatory bowel disease.�Am J Surg.�1976;131:192�200.�[PubMed]
28.�Ganem D, Schneider RJ. Hepadnaviridae: The viruses and their replication. In: Knipe DM, Howley PM, editors.�Fields Virology. Volume 2.�Philadelphia: Lippincott, Williams & Wilkins; 2001. pp. 2923�2969.
29.�Jones VA, Dickinson RJ, Workman E, Wilson AJ, Freeman AH, Hunter JO. Crohn’s disease: maintenance of remission by diet.�Lancet.�1985;2:177�180.�[PubMed]
30.�Suzuki I, Kiyono H, Kitamura K, Green DR, McGhee JR. Abrogation of oral tolerance by contrasuppressor T cells suggests the presence of regulatory T-cell networks in the mucosal immune system.�Nature.�1986;320:451�454.�[PubMed]
31.�Ostro MJ, Greenberg GR, Jeejeebhoy KN. Total parenteral nutrition and complete bowel rest in the management of Crohn’s disease.�JPEN J Parenter Enteral Nutr.�1985;9:280�287.�[PubMed]
32.�Matuchansky C. Parenteral nutrition in inflammatory bowel disease.�Gut.�1986;27 Suppl 1:81�84.[PMC free article][PubMed]
33.�Payne-James JJ, Silk DB. Total parenteral nutrition as primary treatment in Crohn’s disease–RIP?�Gut.�1988;29:1304�1308.�[PMC free article][PubMed]
34.�Shiloni E, Coronado E, Freund HR. Role of total parenteral nutrition in the treatment of Crohn’s disease.�Am J Surg.�1989;157:180�185.�[PubMed]
35.�Dickinson RJ, Ashton MG, Axon AT, Smith RC, Yeung CK, Hill GL. Controlled trial of intravenous hyperalimentation and total bowel rest as an adjunct to the routine therapy of acute colitis.�Gastroenterology.�1980;79:1199�1204.�[PubMed]
36.�McIntyre PB, Powell-Tuck J, Wood SR, Lennard-Jones JE, Lerebours E, Hecketsweiler P, Galmiche JP, Colin R. Controlled trial of bowel rest in the treatment of severe acute colitis.�Gut.�1986;27:481�485.[PMC free article][PubMed]
37.�Greenberg GR, Fleming CR, Jeejeebhoy KN, Rosenberg IH, Sales D, Tremaine WJ. Controlled trial of bowel rest and nutritional support in the management of Crohn’s disease.�Gut.�1988;29:1309�1315.[PMC free article][PubMed]
38.�Hughes CA, Bates T, Dowling RH. Cholecystokinin and secretin prevent the intestinal mucosal hypoplasia of total parenteral nutrition in the dog.�Gastroenterology.�1978;75:34�41.�[PubMed]
39.�Stratton RJ, Smith TR. Role of enteral and parenteral nutrition in the patient with gastrointestinal and liver disease.�Best Pract Res Clin Gastroenterol.�2006;20:441�466.�[PubMed]
40.�O’Sullivan M, O’Morain C. Nutrition in inflammatory bowel disease.�Best Pract Res Clin Gastroenterol.�2006;20:561�573.�[PubMed]
41.�Gonz�lez-Huix F, Fern�ndez-Ba�ares F, Esteve-Comas M, Abad-Lacruz A, Cabr� E, Acero D, Figa M, Guilera M, Humbert P, de Le�n R. Enteral versus parenteral nutrition as adjunct therapy in acute ulcerative colitis.�Am J Gastroenterol.�1993;88:227�232.�[PubMed]
42.�Voitk AJ, Echave V, Feller JH, Brown RA, Gurd FN. Experience with elemental diet in the treatment of inflammatory bowel disease. Is this primary therapy?�Arch Surg.�1973;107:329�333.�[PubMed]
43.�Axelsson C, Jarnum S. Assessment of the therapeutic value of an elemental diet in chronic inflammatory bowel disease.�Scand J Gastroenterol.�1977;12:89�95.�[PubMed]
44.�Lochs H, Steinhardt HJ, Klaus-Wentz B, Zeitz M, Vogelsang H, Sommer H, Fleig WE, Bauer P, Schirrmeister J, Malchow H. Comparison of enteral nutrition and drug treatment in active Crohn’s disease. Results of the European Cooperative Crohn’s Disease Study. IV.�Gastroenterology.�1991;101:881�888.[PubMed]
45.�Malchow H, Steinhardt HJ, Lorenz-Meyer H, Strohm WD, Rasmussen S, Sommer H, Jarnum S, Brandes JW, Leonhardt H, Ewe K. Feasibility and effectiveness of a defined-formula diet regimen in treating active Crohn’s disease. European Cooperative Crohn’s Disease Study III.�Scand J Gastroenterol.�1990;25:235�244.�[PubMed]
46.�O’Brien CJ, Giaffer MH, Cann PA, Holdsworth CD. Elemental diet in steroid-dependent and steroid-refractory Crohn’s disease.�Am J Gastroenterol.�1991;86:1614�1618.�[PubMed]
47.�Okada M, Yao T, Yamamoto T, Takenaka K, Imamura K, Maeda K, Fujita K. Controlled trial comparing an elemental diet with prednisolone in the treatment of active Crohn’s disease.�Hepatogastroenterology.�1990;37:72�80.�[PubMed]
48.�O’Mor�in C, Segal AW, Levi AJ. Elemental diet as primary treatment of acute Crohn’s disease: a controlled trial.�Br Med J (Clin Res Ed)�1984;288:1859�1862.�[PMC free article][PubMed]
49.�Raouf AH, Hildrey V, Daniel J, Walker RJ, Krasner N, Elias E, Rhodes JM. Enteral feeding as sole treatment for Crohn’s disease: controlled trial of whole protein v amino acid based feed and a case study of dietary challenge.�Gut.�1991;32:702�707.�[PMC free article][PubMed]
50.�Rocchio MA, Cha CJ, Haas KF, Randall HT. Use of chemically defined diets in the management of patients with acute inflammatory bowel disease.�Am J Surg.�1974;127:469�475.�[PubMed]
51.�Saverymuttu S, Hodgson HJ, Chadwick VS. Controlled trial comparing prednisolone with an elemental diet plus non-absorbable antibiotics in active Crohn’s disease.�Gut.�1985;26:994�998.�[PMC free article][PubMed]
52.�Teahon K, Bjarnason I, Pearson M, Levi AJ. Ten years’ experience with an elemental diet in the management of Crohn’s disease.�Gut.�1990;31:1133�1137.�[PMC free article][PubMed]
53.�Teahon K, Smethurst P, Pearson M, Levi AJ, Bjarnason I. The effect of elemental diet on intestinal permeability and inflammation in Crohn’s disease.�Gastroenterology.�1991;101:84�89.�[PubMed]
54.�Heuschkel RB, Menache CC, Megerian JT, Baird AE. Enteral nutrition and corticosteroids in the treatment of acute Crohn’s disease in children.�J Pediatr Gastroenterol Nutr.�2000;31:8�15.�[PubMed]
55.�Sanderson IR, Boulton P, Menzies I, Walker-Smith JA. Improvement of abnormal lactulose/rhamnose permeability in active Crohn’s disease of the small bowel by an elemental diet.�Gut.�1987;28:1073�1076.[PMC free article][PubMed]
56.�Sanderson IR, Udeen S, Davies PS, Savage MO, Walker-Smith JA. Remission induced by an elemental diet in small bowel Crohn’s disease.�Arch Dis Child.�1987;62:123�127.�[PMC free article][PubMed]
57.�Ruemmele FM, Roy CC, Levy E, Seidman EG. Nutrition as primary therapy in pediatric Crohn’s disease: fact or fantasy?�J Pediatr.�2000;136:285�291.�[PubMed]
58.�O’Morain C, O’Sullivan M. Nutritional support in Crohn’s disease: current status and future directions.�J Gastroenterol.�1995;30 Suppl 8:102�107.�[PubMed]
59.�Rigaud D, Cosnes J, Le Quintrec Y, Ren� E, Gendre JP, Mignon M. Controlled trial comparing two types of enteral nutrition in treatment of active Crohn’s disease: elemental versus polymeric diet.�Gut.�1991;32:1492�1497.�[PMC free article][PubMed]
60.�Royall D, Wolever TM, Jeejeebhoy KN. Evidence for colonic conservation of malabsorbed carbohydrate in short bowel syndrome.�Am J Gastroenterol.�1992;87:751�756.�[PubMed]
61.�Giaffer MH, North G, Holdsworth CD. Controlled trial of polymeric versus elemental diet in treatment of active Crohn’s disease.�Lancet.�1990;335:816�819.�[PubMed]
62.�Verma S, Kirkwood B, Brown S, Giaffer MH. Oral nutritional supplementation is effective in the maintenance of remission in Crohn’s disease.�Dig Liver Dis.�2000;32:769�774.�[PubMed]
63.�Levine GM, Deren JJ, Steiger E, Zinno R. Role of oral intake in maintenance of gut mass and disaccharide activity.�Gastroenterology.�1974;67:975�982.�[PubMed]
64.�Weser E, Heller R, Tawil T. Stimulation of mucosal growth in the rat ileum by bile and pancreatic secretions after jejunal resection.�Gastroenterology.�1977;73:524�529.�[PubMed]
65.�Fell JM, Paintin M, Arnaud-Battandier F, Beattie RM, Hollis A, Kitching P, Donnet-Hughes A, MacDonald TT, Walker-Smith JA. Mucosal healing and a fall in mucosal pro-inflammatory cytokine mRNA induced by a specific oral polymeric diet in paediatric Crohn’s disease.�Aliment Pharmacol Ther.�2000;14:281�289.�[PubMed]
66.�Souba WW, Smith RJ, Wilmore DW. Glutamine metabolism by the intestinal tract.�JPEN J Parenter Enteral Nutr.�1985;9:608�617.�[PubMed]
67.�Windmueller HG, Spaeth AE. Uptake and metabolism of plasma glutamine by the small intestine.�J Biol Chem.�1974;249:5070�5079.�[PubMed]
68.�Higashiguchi T, Hasselgren PO, Wagner K, Fischer JE. Effect of glutamine on protein synthesis in isolated intestinal epithelial cells.�JPEN J Parenter Enteral Nutr.�1993;17:307�314.�[PubMed]
69.�Burke DJ, Alverdy JC, Aoys E, Moss GS. Glutamine-supplemented total parenteral nutrition improves gut immune function.�Arch Surg.�1989;124:1396�1399.�[PubMed]
70.�Souba WW, Herskowitz K, Klimberg VS, Salloum RM, Plumley DA, Flynn TC, Copeland EM. The effects of sepsis and endotoxemia on gut glutamine metabolism.�Ann Surg.�1990;211:543�549; discussion 543-551;.�[PMC free article][PubMed]
71.�Den Hond E, Hiele M, Peeters M, Ghoos Y, Rutgeerts P. Effect of long-term oral glutamine supplements on small intestinal permeability in patients with Crohn’s disease.�JPEN J Parenter Enteral Nutr.�1999;23:7�11.�[PubMed]
72.�Akobeng AK, Miller V, Stanton J, Elbadri AM, Thomas AG. Double-blind randomized controlled trial of glutamine-enriched polymeric diet in the treatment of active Crohn’s disease.�J Pediatr Gastroenterol Nutr.�2000;30:78�84.�[PubMed]
73.�Jacobs LR, Lupton JR. Effect of dietary fibers on rat large bowel mucosal growth and cell proliferation.�Am J Physiol.�1984;246:G378�G385.�[PubMed]
74.�Spaeth G, Berg RD, Specian RD, Deitch EA. Food without fiber promotes bacterial translocation from the gut.�Surgery.�1990;108:240�246; discussion 246-247;.�[PubMed]
75.�Roediger WE, Moore A. Effect of short-chaim fatty acid on sodium absorption in isolated human colon perfused through the vascular bed.�Dig Dis Sci.�1981;26:100�106.�[PubMed]
76.�Sakata T. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors.�Br J Nutr.�1987;58:95�103.�[PubMed]
77.�Roediger WE. The colonic epithelium in ulcerative colitis: an energy-deficiency disease?�Lancet.�1980;2:712�715.�[PubMed]
78.�Chapman MA, Grahn MF, Boyle MA, Hutton M, Rogers J, Williams NS. Butyrate oxidation is impaired in the colonic mucosa of sufferers of quiescent ulcerative colitis.�Gut.�1994;35:73�76.[PMC free article][PubMed]
79.�Den Hond E, Hiele M, Evenepoel P, Peeters M, Ghoos Y, Rutgeerts P. In vivo butyrate metabolism and colonic permeability in extensive ulcerative colitis.�Gastroenterology.�1998;115:584�590.�[PubMed]
80.�Simpson EJ, Chapman MA, Dawson J, Berry D, Macdonald IA, Cole A. In vivo measurement of colonic butyrate metabolism in patients with quiescent ulcerative colitis.�Gut.�2000;46:73�77.[PMC free article][PubMed]
81.�Tappenden KA, Thomson AB, Wild GE, McBurney MI. Short-chain fatty acid-supplemented total parenteral nutrition enhances functional adaptation to intestinal resection in rats.�Gastroenterology.�1997;112:792�802.�[PubMed]
82.�Senagore AJ, MacKeigan JM, Scheider M, Ebrom JS. Short-chain fatty acid enemas: a cost-effective alternative in the treatment of nonspecific proctosigmoiditis.�Dis Colon Rectum.�1992;35:923�927.[PubMed]
83.�Segain JP, Raingeard de la Bl�ti�re D, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blotti�re HM, Galmiche JP. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease.�Gut.�2000;47:397�403.�[PMC free article][PubMed]
84.�Aslan A, Triadafilopoulos G. Fish oil fatty acid supplementation in active ulcerative colitis: a double-blind, placebo-controlled, crossover study.�Am J Gastroenterol.�1992;87:432�437.�[PubMed]
85.�Shoda R, Matsueda K, Yamato S, Umeda N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan.�Am J Clin Nutr.�1996;63:741�745.�[PubMed]
86.�Vilaseca J, Salas A, Guarner F, Rodr�guez R, Mart�nez M, Malagelada JR. Dietary fish oil reduces progression of chronic inflammatory lesions in a rat model of granulomatous colitis.�Gut.�1990;31:539�544.�[PMC free article][PubMed]
87.�Campos FG, Waitzberg DL, Habr-Gama A, Logullo AF, Noronha IL, Jancar S, Torrinhas RS, F�rst P. Impact of parenteral n-3 fatty acids on experimental acute colitis.�Br J Nutr.�2002;87 Suppl 1:S83�S88.[PubMed]
88.�Loeschke K, Ueberschaer B, Pietsch A, Gruber E, Ewe K, Wiebecke B, Heldwein W, Lorenz R. n-3 fatty acids only delay early relapse of ulcerative colitis in remission.�Dig Dis Sci.�1996;41:2087�2094.[PubMed]
89.�Belluzzi A, Brignola C, Campieri M, Pera A, Boschi S, Miglioli M. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease.�N Engl J Med.�1996;334:1557�1560.�[PubMed]
90.�Hawthorne AB, Daneshmend TK, Hawkey CJ, Belluzzi A, Everitt SJ, Holmes GK, Malkinson C, Shaheen MZ, Willars JE. Treatment of ulcerative colitis with fish oil supplementation: a prospective 12 month randomised controlled trial.�Gut.�1992;33:922�928.�[PMC free article][PubMed]
91.�Hillier K, Jewell R, Dorrell L, Smith CL. Incorporation of fatty acids from fish oil and olive oil into colonic mucosal lipids and effects upon eicosanoid synthesis in inflammatory bowel disease.�Gut.�1991;32:1151�1155.�[PMC free article][PubMed]
92.�Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma)�J Biol Chem.�1995;270:12953�12956.�[PubMed]
93.�Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs.�J Biol Chem.�1997;272:3406�3410.�[PubMed]
94.�Delerive P, Furman C, Teissier E, Fruchart J, Duriez P, Staels B. Oxidized phospholipids activate PPARalpha in a phospholipase A2-dependent manner.�FEBS Lett.�2000;471:34�38.�[PubMed]
95.�Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma.�Proc Natl Acad Sci USA.�1997;94:4318�4323.�[PMC free article][PubMed]
96.�Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta.�Proc Natl Acad Sci USA.�1997;94:4312�4317.�[PMC free article][PubMed]
97.�Mans�n A, Guardiola-Diaz H, Rafter J, Branting C, Gustafsson JA. Expression of the peroxisome proliferator-activated receptor (PPAR) in the mouse colonic mucosa.�Biochem Biophys Res Commun.�1996;222:844�851.�[PubMed]
98.�Desreumaux P, Ernst O, Geboes K, Gambiez L, Berrebi D, M�ller-Alouf H, Hafraoui S, Emilie D, Ectors N, Peuchmaur M, et al. Inflammatory alterations in mesenteric adipose tissue in Crohn’s disease.�Gastroenterology.�1999;117:73�81.�[PubMed]
99.�Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, Flanigan A, Murthy S, Lazar MA, Wu GD. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response.�J Clin Invest.�1999;104:383�389.�[PMC free article][PubMed]
100.�Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, Witztum JL, Auwerx J, Palinski W, Glass CK. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein.�Proc Natl Acad Sci USA.�1998;95:7614�7619.�[PMC free article][PubMed]
101.�Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, Delerive P, Fadel A, Chinetti G, Fruchart JC, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators.�Nature.�1998;393:790�793.�[PubMed]
102.�Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J. PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease.�Arterioscler Thromb Vasc Biol.�1999;19:546�551.�[PubMed]
103.�Delerive P, Martin-Nizard F, Chinetti G, Trottein F, Fruchart JC, Najib J, Duriez P, Staels B. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway.�Circ Res.�1999;85:394�402.�[PubMed]
104.�Sakai M, Matsushima-Hibiya Y, Nishizawa M, Nishi S. Suppression of rat glutathione transferase P expression by peroxisome proliferators: interaction between Jun and peroxisome proliferator-activated receptor alpha.�Cancer Res.�1995;55:5370�5376.�[PubMed]
105.�Zhou YC, Waxman DJ. STAT5b down-regulates peroxisome proliferator-activated receptor alpha transcription by inhibition of ligand-independent activation function region-1 trans-activation domain.�J Biol Chem.�1999;274:29874�29882.�[PubMed]
106.�Desreumaux P, Dubuquoy L, Nutten S, Peuchmaur M, Englaro W, Schoonjans K, Derijard B, Desvergne B, Wahli W, Chambon P, et al. Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies.�J Exp Med.�2001;193:827�838.�[PMC free article][PubMed]
107.�Lewis JD, Lichtenstein GR, Stein RB, Deren JJ, Judge TA, Fogt F, Furth EE, Demissie EJ, Hurd LB, Su CG, et al. An open-label trial of the PPAR-gamma ligand rosiglitazone for active ulcerative colitis.�Am J Gastroenterol.�2001;96:3323�3328.�[PubMed]
108.�G�ttlicher M, Widmark E, Li Q, Gustafsson JA. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.�Proc Natl Acad Sci USA.�1992;89:4653�4657.[PMC free article][PubMed]
Close Accordion
Nutraceutical Supplements, Nutrition: And Treatment Of Hypertension

Nutraceutical Supplements, Nutrition: And Treatment Of Hypertension

Nutraceutical Abstract:

Vascular biology, endothelial and vascular smooth muscle and cardiac dysfunction play a primary role in the initiation and perpetuation of hypertension, cardiovascular disease and target organ damage. Nutrientgene interactions and epigenetics are predominant factors in promoting beneficial or detrimental effects in cardiovascular health and hypertension. Macronutrients and micronutrients can prevent, control and treat hypertension through numerous mechanisms related to vascular biology. Oxidative stress, inflammation and autoimmune dysfunction initiate and propagate hypertension and cardiovascular disease. There is a role for the selected use of single and component nutraceutical supplements, vitamins, antioxidants and minerals in the treatment of hypertension based on scientifically controlled studies which complement optimal nutrition, coupled with other lifestyle modifications.

Key words: Hypertension; Nutrition; Nutritional supplements;
Cardiovascular disease; Vascular biology

Core tip: Vascular biology and endothelial dysfunction
play a primary roles in hypertension and subsequent cardiovascular disease. Micronutrients, macronutrients and optimal nutrition and nutritional supplements can
prevent, control and treat hypertension through numerous mechanisms related to vascular biology. These treatments are complementary to drug therapy. Oxidative
stress, inflammation and autoimmune dysfunction initiate and propagate hypertension and cardiovascular disease. There is a role for the selected use of single and component nutraceutical supplements, vitamins, antioxidants and minerals in the treatment of hypertension based on scientifically controlled studies which complement optimal nutrition, coupled with other lifestyle modifications.

Nutraceutical Introduction:

nutraceutical

Vascular disease is a balance between vascular injury and repair (Figure 1). The endothelium is in a strategic location between the blood and the vascular smooth muscle
and secretes various substances to maintain vascular homeostasis and health (Figures 2 and 3). Various insults that damage the endothelium, lead to endothelial dysfunction
(ED) and may induce hypertension and other cardiovascular diseases. Hypertension may be a hemodynamic marker of injured endothelium and vascular smooth muscle related to finite responses of inflammation, oxidative stress and immune dysfunction of the arteries leading to ED, vascular and cardiac smooth muscle dysfunction, loss of arterial elasticity with reduced arterial compliance and increased systemic vascular resistance. Hypertension
is a consequence of the interaction of genetics and environment. Macronutrients and micronutrients are crucial in the regulation of blood pressure (BP) and subsequent�target organ damage (TOD). Nutrient-gene interactions, subsequent gene expression, epigenetics, oxidative stress, inflammation and autoimmune vascular dysfunction have positive or negative influences on vascular biology in humans. Endothelial activation with ED and vascular smooth muscle dysfunction (VSMD) initiate and perpetuate essential hypertension.

nutraceuticalnutraceuticalMacronutrient and micronutrient deficiencies are very common in the general population and may be even more common in patients with hypertension and cardiovascular
disease due to genetics, environmental causes and prescription drug use. These deficiencies will have an enormous impact on present and future cardiovascular
health outcomes such as hypertension, myocardial infarction (MI), stroke and renal disease. The diagnosis and treatment of these nutrient deficiencies will reduce BP
and improve vascular health, ED, vascular biology and cardiovascular events.

EPIDEMIOLOGY

Epidemiology underscores the etiologic role of diet and associated nutrient intake in hypertension. The transition from the Paleolithic diet to our modern diet has produced
an epidemic of nutritionally-related diseases (Table 1). Hypertension, atherosclerosis, coronary heart disease (CHD), MI, congestive heart failure (CHF), cerebrovascular
accidents (CVA), renal disease, type 2 diabetes mellitus (T2DM), metabolic syndrome (MS) and obesity are some of these diseases[1,2]. Table 1 contrasts intake of nutrients involved in BP regulation during the Paleolithic Era and modern time. Evolution from a pre-agricultural, hunter-gatherer milieu to an agricultural, refrigeration society has imposed an unnatural and unhealthful nutritional selection process. In sum, diet has changed more than our genetics can adapt.

nutraceuticalThe human genetic makeup is 99.9% that of our Paleolithic ancestors, yet our nutritional, vitamin and mineral intakes are vastly different[3]. The macronutrient and micronutrient variations, oxidative stress from radical oxygen species (ROS) and radical nitrogen species (RNS) and inflammatory mediators such as cell adhesion molecules (CAMs), cytokines, signaling molecules and autoimmune vascular dysfunction of T cells and B cells, contribute
to the higher incidence of hypertension and other cardiovascular diseases through complex nutrient-gene interactions, epigenetic and nutrient-caveolae interactions and nutrient reactions with pattern recognition receptors [toll like receptors (TLR) and nod like receptors] in the endothelium[4-9] (Figure 4). Reduction in nitric oxidebioavailability, increase in angiotensin ? and endothelin coupled with endothelial activation initiate the vascular and cardiac dysfunction and hypertension. Poor nutrition, coupled with obesity and a sedentary lifestyle have resulted in an exponential increase in nutritionally-related
diseases. In particular, the high Na+/K+ ratio of modern diets has contributed to hypertension, CVA, CHD, MI, CHF and renal disease[3,10] as have the relatively low intake
of omega-3 PUFA, increase in omega-6 PUFA, saturated fat and trans fatty acids[11].

nutraceuticalPATHOPHYSIOLOGY

Vascular biology assumes a pivotal role in the initiation and perpetuation of hypertension and cardiovascular TOD[1]. Oxidative stress (ROS and RNS), inflammation (increased expression of redox-sensitive proinflammatory genes, CAMs and recruitment migration�and infiltration of circulating cells) and autoimmune vascular dysfunction (T cells and B cells) are the primary pathophysiologic and functional mechanisms that induce vascular disease[1,12-14] (Figure 5). All three of these are closely inter-related and establish a deadly combination that leads to ED, vascular smooth muscle and cardiac dysfunction, hypertension, vascular disease, atherosclerosis and CVD. Hypertension is not a disease but is the correct and chronically dysregulated response with an exaggerated outcome of the infinite insults to the blood vessel with subsequent environmental-genetic expression
patterns and downstream disturbances in which the vascular system is the innocent bystander. This becomes a maladaptive vascular response that was initially intended
to provide vascular defense to the endothelial insults (Figure 6)[1,13-15]. Hypertension is a vasculopathy characterized by ED, structural remodeling, vascular inflammation, increased arterial stiffness, reduced distensibility and loss of elasticity[13]. These insults are biomechanical (BP, pulse pressure, blood flow, oscillatory flow, turbulence, augmentation, pulse wave velocity and reflected waves) and biohumoral or biochemical which includes all the non-mechanical causes such as metabolic, endocrine, nutritional, toxic, infectious and other etiologies[1] (Figure 4). In addition to the very well established connections for endocrine and nutritional causes of hypertension, toxins and infections also increase BP[16-20]. Various toxins such as polychlorinated biphenyls, mercury, lead, cadmium, arsenic and iron also increase BP and CVD[16,17].

nutraceuticalnutraceuticalNumerous microbial organisms have been implicated in hypertension and CHD[18-20]. All of these insults lead to impaired microvascular structure and function which manifests clinically as hypertension[12-14]. The level of BP may not give an accurate indication of the microvascular involvement and impairment in hypertension. Hypertensive patients have abnormal microvasculature in the form of inward eutrophic remodeling of the small resistance arteries leading to impaired vasodilatory capacity, increased vascular resistance, increased media to lumen ratio, decreased maximal organ perfusion and reduced flow reserve, especially in the heart with decreased coronary flow reserve[12-14]. Significant functional then structural microvascular impairment occurs even before the BP begins to rise in normotensive offspring of hypertensive parents evidenced by ED, impaired vasodilation, forearm vascular resistance, diastolic dysfunction, increased left ventricular mass index, increased septal and posterior wall thickness and left ventricular hypertrophy[12,15]. Thus, the cellular processes underlying the vascular perturbations constitute a vascular phenotype of hypertension that may be determined by early life
programming and imprinting which is compounded by vascular aging[12-14].

Oxidative Stress

Oxidative stress, with an imbalance between ROS and RNS and the anti-oxidant defense mechanisms, contributes to the etiology of hypertension in animals[10] and humans[11,12]. Radical oxygen species and RNS are generated�by multiple cellular sources, including nicotinamide adenine dinucleotide phosphate hydrase (NADPH) oxidase,
mitochondria, xanthine oxidase, uncoupled endotheliumderived nitric oxide (NO) synthase (U-eNOS), cyclooxygenase and lipo-oxygenase[11]. Superoxide anion is the predominant ROS species produced by these tissues, which neutralizes NO and also leads to downstream production of other ROS (Figure 3). Hypertensive patients have impaired endogenous and exogenous anti-oxidant defense mechanisms[21], an increased plasma oxidative�stress and an exaggerated oxidative stress response to various stimuli[21,22]. Hypertensive subjects also have lower plasma ferric reducing ability of plasma, lower vitamin C levels and increased plasma 8-isoprostanes, which correlate with both systolic and diastolic BP. Various singlenucleotide polymorphisms (SNP�s) in genes that codify for anti-oxidant enzymes are directly related to hypertension[23]. These include NADPH oxidase, xanthine
oxidase, superoxide dismutase 3 (SOD 3), catalase, glutathione peroxidase 1 (GPx 1) and thioredoxin. Antioxidant deficiency and excess free radical production have been implicated in human hypertension in numerous�epidemiologic, observational and interventional studies
(Table 2)[21,22,24]. Radical oxygen species directly damage endothelial cells, degrade NO, influence eicosanoid metabolism, oxidize LDL, lipids, proteins, carbohydrates, DNA and organic molecules, increase catecholamines, damage the genetic machinery, influence gene expression and transcription factors[1,21,22,25,26]. The inter-relations of neurohormonal systems, oxidative stress and cardiovascular disease are shown in Figures 6 and 7. The increased oxidative stress, inflammation and autoimmune vascular dysfunction in human hypertension results from a combination of increased generation of ROS and RNS, an
exacerbated response to ROS and RNS and a decreased antioxidant reserve[24-29]. Increased oxidative stress in the rostral ventrolateral medulla (RVLM) enhances glutamatergic excitatory inputs and attenuates GABA-ergic inhibitory inputs to the RVLM which contributes to increased sympathetic nervous system (SNS) activity from the paraventricular nucleus[30]. Activation of the AT1R in the RVLM increases NADPH oxidase and increases oxidative stress and superoxide anion, increases SNS outflow causing an imbalance of SNS/PNS activity with elevation of BP, increased heart rate and alterations in
heart rate variability and heart rate recovery time, which can be blocked by AT1R blockers[30,31].

nutraceutical

nutraceuticalInflammation

The link between inflammation and hypertension has been suggested in both cross-sectional and longitudinal studies[32]. Increases in high sensitivity C-reactive protein
(HS-CRP) as well as other inflammatory cytokines such as interleukin-1B, (IL-1B), IL-6, tumor necrosis alpha (TNF-?) and chronic leukocytosis occur in hypertension and hypertensive- related TOD, such as increased carotid IMT[33]. HS-CRP predicts future CV events[32,33]. Elevated HS-CRP is both a risk marker and risk factor�for hypertension and CVD[34,35]. Increases in HS-CRP of over 3 ?g/ml may increase BP in just a few days that is directly proportional to the increase in HS-CRP[34,35]. Nitric oxide and eNOS are inhibited by HS-CRP[34,35]. The AT2R, which normally counterbalances AT1R, is downregulated by HS-CRP[34,35]. Angiotensin ? (A-?) upregulates many of the cytokines, especially IL-6, CAMs and chemokines by activating nuclear factor Kappa B (NF?b)
leading to vasoconstriction. These events, along with the increases in oxidative stress and endothelin-1, elevate BP[32].

Autoimmune Dysfunction

Innate and adaptive immune responses are linked to hypertension and hypertension-induced CVD through at least three mechanisms: cytokine production, central nervous
system stimulation and renal damage. This includes salt-sensitive hypertension with increased renal inflammation as a result of T cell imbalance, dysregulation of CD4+
and CD8+ lymphocytes and chronic leukocytosis with increased neutrophils and reduced lymphocytes[36-38]. Leukocytosis, especially increased neutrophils and decreased
lymphocyte count increase BP in Blacks by 6/2 mmHg in the highest vs the lowest tertile[38]. Macrophages and various T-cell subtypes regulate BP, invade the arterial
wall, activate TLRs and induce autoimmune vascular damage[38,39]. Angiotensin ? activates immune cells (T cells, macrophages and dendritic cells) and promotes cell
infiltration into target organs[39]. CD4+ T lymphocytes express AT1R and PPAR gamma receptors, and release TNF-?, interferon and interleukins within the vascular wall when activated[39] (Figure 5). IL-17 produced by T cells may play a pivotal role in the genesis of hypertension caused by Angiotensin ?[39]. Hypertensive patients have significantly higher TLR 4 mRNA in monocytes compared to normal[40]. Intensive reduction in BP to systolic
BP (SBP) less than 130 mmHg vs SBP to only 140 mmHg lowers the TLR 4 more[40]. A-? activates the TLR expression leading to inflammation and activation of the innate immune system. When TLR 4 is activated there is downstream macrophage activation, migration, increase metalloproteinase 9, vascular remodeling, collagen accumulation in the artery, LVH and cardiac fibrosis[40]. The autonomic nervous system is critical in either increasing
or decreasing immune dysfunction and inflammation[41]. Efferent cholinergic anti inflammatory pathways via the vagal nerve innervate the spleen, nicotine acetylcholine
receptor subunits and cytokine producing immune cells to influence vasoconstriction and BP[41]. Local CNS inflammation or ischemia may mediate vascular inflammation and hypertension[39].

Aldosterone is associated with increased adaptive immunity and autoimmune responses with CD4+ T cell activation and Th 17 polarization with increased IL 17, TGF-? and TNF-? which modulate over 30 inflammatory genes[42,43]. Increased serum aldosterone is an
independent risk factor for CVD and CHD through non-hemodynamic effects as well as through increased BP[42,43]. Blockade of mineralocorticoid receptors in the heart, brain, blood vessels and immune cells reduces CV risk even with the persistence of hypertension[42,43].

TREATMENT

Many of the natural compounds in food, certain nutraceutical supplements, vitamins, antioxidants or minerals function in a similar fashion to a specific class of antihypertensive
drugs. Although the potency of these natural compounds may be less than the antihypertensive drug, when used in combination with other nutrients and nutraceutical
supplements, the antihypertensive effect is additive or synergistic. Table 3 summarizes these natural compounds into the major antihypertensive drug classes such as diuretics, beta blockers, central alpha agonists, direct vasodilators, calcium channel blockers (CCB�s), angiotensin converting enzyme inhibitors (ACEI�s), angiotensin receptor blockers (ARB�s) and direct renin inhibitors (DRI).

nutraceuticalDietary Approaches To Stop Hypertension Diets

The Dietary Approaches to Stop Hypertension (DASH) ?and ? diets conclusively demonstrated significant reductions in BP in borderline and stage?hypertensive patients[44,45]. In DASH?untreated hypertensive subjects with SBP < 160 mmHg and DBP 80-95 mmHg were placed on one of three diets for 4 wk, control diet, fruit and vegetable diet (F + V) and combined diet that added F + V and low fat dairy[44]. DASH ? added progressive sodium restriction in each group[45]. The control diet consisted of sodium at 3 g/d, potassium, magnesium and calcium at 25% of the US average, macronutrients at US average of 4 servings per day, a sodium/potassium ratio of 1.7 and fiber at 9 g/d. The F + V diet increased the potassium, magnesium and calcium to 75%, macronutrients to greater than the US average, a sodium potassium ratio of 0.7, 31 g of fiber and 8.5 servings of fruits and vegetables per day. The combined diet was similar to the F + V diet but added low fat dairy. At 2 wk the BP was decreased by 10.7/5.2 mmHg in the hypertensive patients in DASH?and 11.5/6.8 mmHg in the hypertensive patients in DASH ?. These reductions persisted as long as the patients were on the diet. The DASH diet increases plasma renin activity (PRA) and serum aldosterone levels in response to the BP reductions[46,47]. The mean increase in PRA was 37 ng/ml per day[47]. There was an associated of response with the G46A polymorphism of beta 2 adrenergic receptor. The A allele of G46A had a greater BP reduction and blunted PRA and aldosterone. The arachidonic acid (AA) genotype had the best response and the GG genotype had no response. Adding an ARB, ACEI or DRI improved BP response to the DASH diet in the GG group due to blockade of the increase in PRA. A low sodium DASH diet decreases oxidative stress (urine F2-isoprostanes), improves vascular function (augmentation index) and lowers BP in salt sensitive subjects[48]. In addition, plasma nitrite increased and pulse wave velocity�decreased at week two on the DASH diet[49].

Sodium (Na+) Reduction

The average sodium intake in the US is 5000 mg/d with some areas of the country consuming 15000-20000 mg/d[50]. However, the minimal requirement for sodium�is probably about 500 mg/d[50]. Epidemiologic, observational and controlled clinical trials demonstrate that an increased sodium intake is associated with higher BP as well as increased risk for CVD, CVA, LVH, CHD, MI, renal insufficiency, proteinuria and over activity of the SNS[1,50]. A reduction in sodium intake in hypertensive patients, especially the salt sensitive patients, will significantly lower BP by 4-6/2-3 mmHg that is proportional to the degree of sodium restriction and may prevent or delay hypertension in high risk patients and reduce future CV events[51-53].

Salt sensitivity (? 10% increase in MAP with salt loading) occurs in about 51% of hypertensive patients and is a key factor in determining the cardiovascular, cerebrovascular, renal and BP responses to dietary salt intake[54]. Cardiovascular events are more common in the salt sensitive patients than in salt resistant ones, independent of BP[55]. An increased sodium intake has a direct positive correlation with BP and the risk of CVA and CHD[56]. The risk is independent of BP for CVA with a relative risk of 1.04 to 1.25 from the lowest to the highest quartile[56]. In addition, patients will convert to a nondipping BP pattern with increases in nocturnal BP as the sodium intake increases[56].

Increased sodium intake has a direct adverse effect on endothelial cells[57-61]. Sodium promotes cutaneous lymphangiogenesis, increases endothelial cell stiffness, reduces size, surface area, volume, cytoskeleton, deformability and pliability, reduces eNOS and NO production, increases asymmetric dimethyl arginine (ADMA), oxidative stress and TGF-?. All of these abnormal vascular responses are increased in the presence of aldosterone[57-61]. These changes occur independent of BP and may be partially counteract by dietary potassium[57-61]. The endothelial cells act as vascular salt sensors[62]. Endothelial cells are targets for aldosterone which activate epithelial sodium channels (ENaCs) and have a negative effects on release of NO and on endothelial function. The mechanical stiffness of the cell plasma membrane and the submembranous actin network (endothelial glcyocalyx) (�shell�) serve as a �firewall� to protect the endothelial cells and are regulated by serum sodium, potassium and aldosterone within the physiologic range[62]. Changes in shear-stress-dependent activity of the endothelial NO synthase located in the caveolae regulate the viscosity in this �shell�[62]. High plasma sodium gelates the shell of the endothelial cell, whereas the shell is fluidized by high potassium. These communications between extracellular ions and intracellular enzymes occur at the plasma membrane barrier, whereas 90% of the total cell mass remains uninvolved in these changes. Blockade of the ENaC with spironolactone (100%) or amiloride (84%) minimizes or stop many of these vascular endothelial responses and increase NO[58,63]. Nitric oxide release follows endothelial nanomechanics and not vice versa and membrane depolarization decreases vascular endothelial cell stiffness which improves flow mediated nitric-oxide dependent vasodilation[64,65]. In the presence of vascular inflammation and increased HS-CRP, the effects of aldosterone on the�ENaC is enhanced further increasing vascular stiffness and BP[66]. High sodium intake also abolishes the AT2Rmediated vasodilation immediately with complete abolition of endothelial vasodilation (EDV) within 30 d[67]. Thus, it has become clear that increased dietary sodium has adverse effects on the vascular system, BP and CVD by altering the endothelial glycocalyx, which is a negatively charged biopolymer that lines the blood vessels and serves as a protective barrier against sodium overload, increased sodium permeability and sodium-induced TOD[68]. Certain SNP�s of salt inducible kinase?which alter Na+ /K+ ATPase, determine sodium induced hypertension and LVH[69].

The sodium intake per day in hypertensive patients should be between 1500 to 2000 mg. Sodium restriction improves BP reduction in those on patients that are on pharmacologic treatment and the decrease in BP is additive with restriction of refined carbohydrates[70,71]. Reducing dietary sodium intake may reduce damage to the brain, heart, kidney and vasculature through mechanisms dependent on the small BP reduction as well as those independent of the decreased BP[72-75].

A balance of sodium with other nutrients, especially potassium, magnesium and calcium is important, not only in reducing and controlling BP, but also in decreasing cardiovascular and cerebrovascular events[3,72,73]. An increase in the sodium to potassium ratio is associated with significantly increased risk of CVD and all-cause mortality[72]. The Yanomamo Indians consume and excrete only 1 meq of sodium in 24 h and consume and excrete 152 meq of potassium in 24 h[73]. The Na+ to K+ ratio is 1/152 and is associated with elevated PRA, but BP does not increase with age. At age 50 the average BP in the Yanomamo is 100-108/64-69 mmHg[73].

Potassium

The average U.S. dietary intake of potassium (K+ ) is 45 mmol/d with a potassium to sodium (K+ /Na+ ) ratio of less than 1:2[10,74]. The recommended intake of K+ is 4700 mg/d (120 mmol) with a K+ /Na+ ratio of about 4-5 to 1[10,74]. Numerous epidemiologic, observational and clinical trials have demonstrated a significant reduction in BP with increased dietary K+ intake in both normotensive and hypertensive patients[10,74,76]. The average BP reduction with a K+ supplementation of 60 to 120 mmol/d is 4.4/2.5 mmHg in hypertensive patients but may be as much as 8/4.1 mmHg with 120 mmol/d (4700 mg)[10,74,76,77]. In hypertensive patients, the linear doseresponse relationship is 1.0 mmHg reduction in SBP and 0.52 mmHg reduction in diastolic BP per 0.6 g/d increase in dietary potassium intake that is independent of baseline dietary potassium ingestion[10]. The response depends on race (black > white), sodium, magnesium and calcium intake[10]. Those on a higher sodium intake have a greater reduction in BP with potassium[10]. Alteration of the K+ /Na+ ratio to a higher level is important for both antihypertensive as well as cardiovascular and cerebrovascular effects[10,77]. High potassium intake reduces the incidence of cardiovascular (CHD, MI) and CVA independent of the BP reduction[10,74,76,77]. There are also reductions in CHF, LVH, diabetes mellitus and cardiac arrhythmias[10]. If the serum potassium is less than 4.0 meq/dL, there is an increased risk of CVD mortality, ventricular tachycardia, ventricular fibrillation and CHF[10]. Red blood cell potassium is a better indication of total body stores and CVD risk than is serum potassium[10]. Gu et al[77] found that potassium supplementation at 60 mmol of KCl per day for 12 wk significantly reduced SBP -5.0 mmHg (range -2.13 to -7.88 mmHg) (p < 0.001) in 150 Chinese men and women aged 35 to 64 years.

Potassium increases natriuresis, modulates baroreflex sensitivity, vasodilates, decreases the sensitivity to catecholamines and Angiotensin ?, increases sodium potassium ATPase and DNA synthesis in the vascular smooth muscle cells and decreases SNS activity in cells with improved vascular function[10]. In addition, potassium increases bradykinin and urinary kallikrein, decreases NADPH oxidase, which lowers oxidative stress and inflammation, improves insulin sensitivity, decreases ADMA, reduces intracellular sodium and lowers production of TGF-?[10].

Each 1000 mg increase in potassium intake per day reduces all cause mortality by approximately 20%. Potassium intake of 4.7 g/d is estimated to decrease CVA by 8% to 15% and MI by 6%-11%[10]. Numerous SNP�s such as nuclear receptor subfamily 3 group C, angiotensin ? type receptor and hydroxysteroid 11 beta dehydrogenase (HSD11B1 and B2) determine an individual�s response to dietary potassium intake[78]. Each 1000 mg decrease in sodium intake per day will decrease all cause mortality by 20%[10,73]. A recent analysis suggested a dose related response to CVA with urinary potassium excretion[79]. There was a RRR of CVA of 23% at 1.5-1.99 g, 27% at 2.0-2.49 g, 29% at 2.5-3 g and 32% over 3 g/d of potassium urinary excretion[79]. The recommended daily dietary intake for patients with hypertension is 4.7 to 5.0 g of potassium and less than 1500 mg of sodium[10]. Potassium in food or from supplementation should be reduced or used with caution in those patients with renal impairment or those on medications that increase renal potassium retention such as ACEI, ARB, DRI and serum aldosterone receptor antagonists[10].

Magnesium

A high dietary intake of magnesium of at least 500-1000 mg/d reduces BP in most of the reported epidemiologic, observational and clinical trials, but the results are less consistent than those seen with Na+ and K+[74,80]. In most epidemiologic studies, there is an inverse relationship between dietary magnesium intake and BP[74,80,81]. A study of 60 essential hypertensive subjects given magnesium supplements showed a significant reduction in BP over an eight week period documented by 24 h ambulatory BP, home and office blood BP[74,80,81]. The maximum reduction in clinical trials has been 5.6/2.8 mmHg but some studies have shown no change in BP[82]. The combination of high potassium and low sodium intake with increased magnesium intake had additive anti-hypertensive effects[82]. Magnesium also increases the effectiveness of all anti-hypertensive drug classe[82].

Magnesium competes with Na+ for binding sites on vascular smooth muscle and acts as a direct vasodilator, like a CCB. Magnesium increases prostaglandin E (PGE), regulates intracellular calcium, sodium, potassium and pH, increases nitric oxide, improves endothelial function, reduces oxLDL, reduces HS-CRP, TBxA2, A-?, and norepinephrine. Magnesium also improves insulin resistance, glucose and MS, binds in a necessary-cooperative manner with potassium, inducing EDV and BP reduction, reduces CVD and cardiac arrhythmias, decreases carotid IMT, lowers cholesterol, lowers cytokine production, inhibits nuclear factor Kb, reduces oxidative stress and inhibits platelet aggregation to reduce thrombosis[74,80-86].

Magnesium is an essential co-factor for the delta6-desaturase enzyme that is the rate-limiting step for conversion of linoleic acid (LA) to gamma linolenic acid (GLA)[74,80,81,83-85] needed for synthesis of the vasodilator and platelet inhibitor PGE1. Altered TRPM7 channels, which are the transporter for magnesium occur in many hypertensive patients[83].

A meta-analysis of 241378 patients with 6477 strokes showed an inverse relationship of dietary magnesium to the incidence of ischemic stroke[84]. For each 100 mg of dietary magnesium intake, ischemic stroke was decreased by 8%. The proposed mechanism include inhibition of ischemia induced glutamate release, NMDA receptor blockade, CCB actions, mitochondrial calcium buffering, decrease in ATP depletion and vasodilation of the cerebral arteries[84]. A meta-analysis showed reductions in BP of 3-4/2-3 mmHg in 22 trials of 1173 patients[87].

Intracellular level of magnesium (RBC) is more indicative of total body stores and should be measured in conjunction with serum and urinary magnesium[83]. Magnesium may be supplemented in doses of 500 to 1000 mg/d. Magnesium formulations chelated to an amino acid may improve absorption and decrease the incidence of diarrhea[82]. Adding taurine at 1000 to 2000 mg/d will enhance the anti-hypertensive effects of magnesium[82]. Magnesium supplements should be avoided or used with caution in patients with known renal insufficiency or in those taking medications that induce magnesium retention[82].

Calcium

Population studies show a link between hypertension and calcium[88], but clinical trials that administered calcium supplements to patients have shown inconsistent effects on BP[88]. The heterogeneous responses to calcium supplementation have been explained by Resnick[89]. This is the �ionic hypothesis�[89] of hypertension, cardiovascular disease and associated metabolic, functional and structural disorders. Calcium supplementation is not recommended at this time as an effective means to reduce BP.

Zinc

Low serum zinc levels in observational studies correlate with hypertension as well as CHD, type ? DM, hyperlipidemia, elevated lipoprotein a [Lp(a)], increased 2 h post�prandial plasma insulin levels and insulin resistance[90,91]. Zinc is transported into cardiac and vascular muscle and other tissues by metallothionein[92]. Genetic deficiencies of metallothionein with intramuscular zinc deficiencies may lead to increased oxidative stress, mitochondrial dysfunction, cardiomyocyte dysfunction and apoptosis with subsequent myocardial fibrosis, abnormal cardiac remodeling, heart disease, heart failure, or hypertension[92]. Intracellular calcium increases oxidative stress which is reduced by zinc[92]. Bergomi et al[93] evaluated Zinc (Zn++) status in 60 hypertensive subjects compared to 60 normotensive control subjects. An inverse correlation of BP and serum Zn++ was observed. The BP was also inversely correlated to a Zn++ dependent enzyme-lysyl oxidase activity. Zn++ inhibits gene expression and transcription through NF-?b and activated protein-1 and is an important cofactor for SOD[90,92]. These effects plus those on insulin resistance, membrane ion exchange, RAAS and SNS effects may account for Zn++ antihypertensive effects[90,92]. Zinc intake should be 50 mg/d[1].

Protein

Observational and epidemiologic studies demonstrate a consistent association between a high protein intake and a reduction in BP and incident BP[94,95]. The protein source is an important factor in the BP effect; animal protein being less effective than non-animal or plant protein, especially almonds[94-97]. In the Inter-Salt Study of over 10000 subjects, those with a dietary protein intake 30% above the mean had a lower BP by 3.0/2.5 mmHg compared to those that were 30% below the mean (81 vs 44 g/d)[94]. However, lean or wild animal protein with less saturated fat and more essential omega-3 fatty acids may reduce BP, lipids and CHD risk[94,97]. A meta-analysis confirmed these findings and also suggested that hypertensive patients and the elderly have the greatest BP reduction with protein intake[95]. Another meta-analysis of 40 trials with 3277 patients found reductions in BP of 1.76/1.15 mmHg compared to carbohydrate intake (p < 0.001)[98]. Both vegetable and animal protein significantly and equally reduced BP at 2.27/1.26 mmHg and 2.54/0.95 mmHg respectively[98]. Increased dietary protein intake is inversely associated with risk for stroke in women with hypertension[99]. A randomized cross-over study in 352 adults with pre-hypertension and stage?hypertension found a significant reduction in SBP of 2.0 mmHg with soy protein and 2.3 mmHg with milk protein compared to a high glycemic index diet over each of the 8 wk treatment periods[100]. There was a non-significant reduction in DBP. Another RDB parallel study over 4 wk of 94 subjects with prehypertension and stage?hypertension found significant reductions on office BP of 4.9/2.7 mmHg in those given a combination of 25% protein intake vs the control group given 15% protein in an isocaloric manner[101]. The protein consisted of 20% pea, 20% soy, 30% egg and 30% milk-protein isolate[101]. The daily recommended intake of protein from all sources is 1.0 to 1.5 g/kg body weight, varying with exercise level, age,�renal function and other factors[1,70,71].

Fermented milk supplemented with whey protein concentrate significantly reduces BP in human studies[102-106]. Administration of 20 g/d of hydrolyzed whey protein supplement rich in bioactive peptides significantly reduced BP over 6 wk by 8.0 � 3.2 mmHg in SBP and 5.5 � 2.1 mm in diastolic BP[103]. Milk peptides which contain both caseins and whey proteins are a rich source of ACEI peptides. Val-Pro-Pro and Ile-Pro-Pro given at 5 to 60 mg/d have variable reductions in BP with an average decrease in pooled studies of about 1.28-4.8/0.59-2.2 mmHg[71,100,104-107]. However several recent meta-analysis did not show significant reductions in BP in humans[106,108]. Powdered fermented milk with Lactobacillus helveticus given at 12 g/d significantly lowered BP by 11.2/6.5 mmHg in 4 wk in one study[104]. Milk peptides are beneficial in treating MS[109]. A dose response study showed insignificant reductions in BP[110]. The clinical response is attributed to fermented milk�s active peptides which inhibit ACE.

Pins et al[111] administered 20 g of hydrolyzed whey protein to 56 hypertensive subjects and noted a BP reduction of 11/7 mmHg compared to controls at one week that was sustained throughout the study. Whey protein is effective in improving lipids, insulin resistance, glucose, arterial stiffness and BP[112]. These data indicate that the whey protein must be hydrolyzed in order to exhibit an antihypertensive effect, and the maximum BP response is dose dependent.

Bovine casein-derived peptides and whey protein-derived peptides exhibit ACEI activity[102-111]. These components include B-caseins, B-lg fractions, B2-microglobulin and serum albumin[102-104,111]. The enzymatic hydrolysis of whey protein isolates releases ACEI peptides.

Marine collagen peptides (MCPs) from deep sea fish have anti-hypertensive activity[113-115]. A double-blind placebo controlled trial in 100 hypertensive subjects with diabetes who received MCPs twice a day for 3 mo had significant reductions in DBP and mean arterial pressure[113]. Bonito protein (Sarda Orientalis), from the tuna and mackerel family has natural ACEI inhibitory peptides and reduces BP 10.2/7 mmHg at 1.5 g/d[114,116].

Sardine muscle protein, which contains Valyl-Tyrosine (VAL-TYR), significantly lowers BP in hypertensive subjects[117]. Kawasaki et al[117] treated 29 hypertensive subjects with 3 mg of VAL-TYR sardine muscle concentrated extract for four wk and lowered BP 9.7/5.3 mmHg (p < 0.05). Levels of A-?increased as serum A-? and aldosterone decreased indicating that VAL-TYR is a natural ACEI. A similar study with a vegetable drink with sardine protein hydrolysates significantly lowered BP by 8/5 mmHg in 13 wk[118].

Soy protein lowers BP in hypertensive patients in most studies[100,119-127]. Soy protein intake was significantly and inversely associated with both SBP and DBP in 45694 Chinese women consuming 25 g/d or more of soy protein over 3 years and the association increased with age[119]. The SBP reduction was 1.9 to 4.9 mm lower and the DBP 0.9 to 2.2 mmHg lower[119]. However, randomized clinical trials and meta-analysis have shown mixed results on BP with no change in BP to reductions of 7% to 10 % for SBP and DBP[121-125]. The recent meta-analysis of 27 trials found a significant reduction in BP of 2.21/1.44 mmHg[120]. Some studies suggest improvement in endothelial function, improved arterial compliance, reduction in HS-CRP and inflammation, ACEI activity, reduction in sympathetic tone, diuretic action and reduction in both oxidative stress and aldosterone levels[125-127]. Fermented soy at about 25 g/d is recommended.

In addition to ACEI effects, protein intake may also alter catecholamine responses and induce a natriuretic effect[117,118]. Low protein intake coupled with low omega 3 fatty acid intake may contribute to hypertension in animal models[128]. The optimal protein intake, depending on level of activity, renal function, stress and other factors, is about 1.0 to 1.5 g/kg per day[1].

Amino Acids And Related Compounds

L-arginine: L-arginine and endogenous methylarginines are the primary precursors for the production of NO, which has numerous beneficial cardiovascular effects, mediated through conversion of L-arginine to NO by eNOS. Patients with hypertension, hyperlipidemia, diabetes mellitus and atherosclerosis have increased levels of HSCRP and inflammation, increased microalbumin, low levels of apelin (stimulates NO in the endothelium), increased levels of arginase (breaks down arginine) and elevated serum levels of ADMA, which inactivates NO[129-133].

Under normal physiological conditions, intracellular arginine levels far exceed the Km [Michaelis Menton constant(MMC)] of eNOS which is less than 5 ?mol[134]. However, endogenous NO formation is dependent on extracellular arginine concentration[134]. The intracellular concentrations of L-arginine are 0.1-3.8 mmol/L in endothelial cells while the plasma concentration of arginine is 80-120 ?mol/L which is about 20-25 times greater than the MMC[135,136]. Despite this, cellular NO formation depends on exogenous L-arginine and this is the arginine paradox. Renal arginine regulates BP and blocks the formation of endothelin, reduces renal sodium reabsorption and is a potent antioxidant[134]. The NO production in endothelial cells is closely coupled to cellular arginine uptake indicating that arginine transport mechanisms play a major role in the regulation of NO-dependent function. Exogenous arginine can increase renal vascular and tubular NO bioavailability and influence renal perfusion, function and BP[132]. Molecular eNOS uncoupling may occur in the absence of tetrahydrobiopterin which stabilizes eNOS, which leads to production of ROS[135].

Human studies in hypertensive and normotensive subjects of parenteral and oral administrations of L-arginine demonstrate an antihypertensive effect as well as improvement in coronary artery blood flow and peripheral blood flow in PAD[129,136-140]. The BP decreased by 6.2/6.8 mmHg on 10 g/d of L-arginine when provided as a supplement or though natural foods to a group of hypertensive subjects[136]. Arginine produces a statistically and biologically significant decrease in BP and improved metabolic effect in normotensive and hypertensive humans that is similar in magnitude to that seen in the DASH?diet[136]. Arginine given at 4 g/d also significantly lowered BP in women with gestational hypertension without proteinuria, reduced the need for anti-hypertensive therapy, decreased maternal and neonatal complications and prolonged the pregnancy[137,138]. The combination of arginine (1200 mg/d) and N-acetyl cysteine (NAC) (600 mg bid) administered over 6 mo to hypertensive patients with type 2 diabetes, lowered SBP and DBP (p < 0.05), increased HDL-C, decreased LDL-C and oxLDL, reduced HSCRP, ICAM, VCAM, PAI-?, fibrinogen and IMT[139]. A study of 54 hypertensive subjects given arginine 4 g three times per day for four weeks had significant reductions in 24 h ABM[140]. A meta-analysis of 11 trials with 383 subjects administered arginine 4-24 g/d found average reduction in BP of 5.39/2.66 mmHg (p < 0.001) in 4 wk[141]. Although these doses of L-arginine appear to be safe, no long term studies in humans have been published at this time and there are concerns of a pro-oxidative effect or even an increase in mortality in patients who may have severely dysfunctional endothelium, advanced atherosclerosis, CHD, ACS or MI[142]. In addition to the arginine-NO path, there exists an nitrate/nitrite pathway that is related to dietary nitrates from vegetables, beetroot juice and the DASH diet that are converted to nitrites by symbiotic, salivary, GI and oral bacteria[143]. Administration of beetroot juice or extract at 500 mg/d will increase nitrites and lower BP, improve endothelial function, increase cerebral, coronary and peripheral blood flow[143].

L-carnitine and acetyl -L-carnitine: L-carnitine is a nitrogenous constituent of muscle primarily involved in the oxidation of fatty acids in mammals. Animal studies indicate that carnitine has both systemic anti-hypertensive effects as well as anti-oxidant effects in the heart by upregulation of eNOS and PPAR gamma, inhibition of RAAS, modulation of NF-?B and down regulation of NOX2, NOX4, TGF-? and CTGF that reduces cardiac fibrosis[144,145]. Endothelial function, NO and oxidative defense are improved while oxidative stress and BP are reduced[144-147]. Human studies on the effects of L-carnitine and acetyl-L-carnitine are limited, with minimal to no change in BP[148-153]. In patients with MS, acetyl-L-carnitine at one gram bid over 8 wk, improved dysglycemia and reduced SBP by 7-9 mmHg, but diastolic BP was significantly decreased only in those with higher glucose[151]. Low carnitine levels are associated with a nondipping BP pattern in Type 2 DM[153]. Carnitine has antioxidant and antiinflammatory effects and may be useful in the treatment of essential hypertension, type ? DM with hypertension, hyperlipidemia, cardiac arrhythmias, CHF and cardiac ischemic syndromes[1,149,150,153]. Doses of 2-3 g twice per day are recommended.

Taurine: Taurine is a sulfonic beta-amino acid that is considered a conditionally-essential amino acid, which is not utilized in protein synthesis, but is found free or in simple peptides with its highest concentration in the brain, retina and myocardium[154]. In cardiomyocytes, it represents about 50% of the free amino acids and has a role of an osmoregulator, inotropic factor and antihypertensive agent[155].

Human studies have noted that essential hypertensive subjects have reduced urinary taurine as well as other sulfur amino acids[1,154,155]. Taurine lowers BP, SVR and HR, decreases arrhythmias, CHF symptoms and SNS activity, increases urinary sodium and water excretion, increases atrial natriuretic factor, improves insulin resistance, increases NO and improves endothelial function. Taurine also decreases A-?, PRA, aldosterone, SNS activity, plasma norepinephrine, plasma and urinary epinephrine, lowers homocysteine, improves insulin sensitivity, kinins and acetyl choline responsiveness, decreases intracellular calcium and sodium, lowers response to beta receptors and has antioxidant, anti-atherosclerotic and anti-inflammatory activities, decreases IMT and arterial stiffness and may protect from risk of CHD[1,154-160]. A lower urinary taurine is associated with increased risk of hypertension and CVD[160,161]. A study of 31 Japanese males with essential hypertension placed on an exercise program for 10 wk showed a 26% increase in taurine levels and a 287% increase in cysteine levels. The BP reduction of 14.8/6.6 mmHg was proportional to increases in serum taurine and reductions in plasma norepinephrine[162]. Fujita et al[155] demonstrated a reduction in BP of 9/4.1 mmHg (p < 0.05) in 19 hypertension subjects given 6 g of taurine for 7 d. Taurine has numerous beneficial effects on the cardiovascular system and BP[156]. The recommended dose of taurine is 2 to 3 g/d at which no adverse effects are noted, but higher doses up to 6 g/d may be needed to reduce BP significantly[1,70,71,154-162].

Omega-3 Fats

The omega-3 fatty acids found in cold water fish, fish oils, flax, flax seed, flax oil and nuts lower BP in observational, epidemiologic and in prospective clinical trials[163-173]. The findings are strengthened by a dose-related response in hypertension as well as a relationship to the specific concomitant diseases associated with hypertension[163-173].

Studies indicate that DHA at 2 g/d reduces BP and heart rate[163,173]. The average reduction in BP is 8/5 mmHg and heart rate falls about 6 beats/min usually in about 6 wk[1,70,71,91-175]. Fish oil at 4-9 g/d or combination of DHA and EPA at 3-5 g/d will also reduce BP[1,168-173]. However, formation of EPA and ultimately DHA from ALA is decreased in the presence of high LA (the essential omega-6 fatty acid), saturated fats, trans fatty acids, alcohol, several nutrient deficiencies (magnesium, vitamin B6) and aging, all of which inhibit the desaturase enzymes[163]. Eating cold water fish three times per week may be as effective as high dose fish oil in reducing BP in hypertensive patients, and the protein in the fish may also have antihypertensive effects[1,163]. In patients with chronic kidney disease 4 g of omega 3 fatty acids reduced BP measured with 24 h ABM over 8 wk by 3.3/2.9 mmHg�compared to placebo (p < 0.0001)[167].

The ideal ratio of omega-6 FA to omega-3 FA is between 1:1 to 1:4 with a polyunsaturated to saturated fat ratio greater than 1.5 to 2:0[2]. Omega 3 fatty acids increase eNOS and nitric oxide, improve endothelial function, improve insulin sensitivity, reduce calcium influx, suppress ACE activity and improve parasympathetic tone[1,163-171]. The omega-6 FA family includes LA, GLA, dihomo-GLA and AA which do not usually lower BP significantly, but may prevent increases in BP induced by saturated fats[176]. GLA may block stress-induced hypertension by increasing PGE1 and PGI2, reducing aldosterone levels, reducing adrenal AT1R density and affinity[175].

The omega-3 FA have a multitude of other cardiovascular consequences which modulates BP such as increases in eNOS and nitric oxide, improvement in ED, reduction in plasma nor-epinephrine and increase in paraSNS tone, suppression of ACE activity and improvement in insulin resistance[176]. The recommended daily dose is 3000 to 5000 mg/d of combined DHA and EPA in a ratio of 3 parts EPA to 2 parts DHA and about 50% of this dose as GLA combined with gamma/delta tocopherol at 100 mg per gram of DHA and EPA to get the omega 3 index to 8% or higher to reduce BP and provide optimal cardioprotection[177]. DHA is more effective than EPA for reducing BP and should be given at 2 g/d if administered alone[163,173].

Omega-9 Fats

Olive oil is rich in the omega-9 monounsaturated fat (MUFA) oleic acid, which has been associated with BP and lipid reduction in Mediterranean and other diets[178-180]. Olive oil and MUFAs have shown consistent reductions in BP in most clinical studies in humans[178-190]. In one study, the SBP fell 8 mmHg (p ? 0.05) and the DBP fell 6 mmHg (p ? 0.01) in both clinic and 24 h ambulatory BP monitoring in the MUFA treated subjects compared to the PUFA treated subjects[178]. In addition, the need for antihypertensive medications was reduced by 48% in the MUFA group vs 4% in the omega-6 PUFA group (p < 0.005). Extra virgin olive oil (EVOO) was more effective than sunflower oil in lowering SBP in a group of 31 elderly hypertensive patients in a double blind randomized crossover study[187]. The SBP was 136 mmHg in the EVOO treated subjects vs 150 mmHg in the sunflower treated group (p < 0.01). Olive oil also reduces BP in hypertensive diabetic subjects[188]. It is the high oleic acid content in olive oil that reduces BP[180]. In stage?hypertensive patients, oleuropein-olive leaf (Olea Eurpoaea) extract 500 mg bid for 8 wk reduced BP 11.5/4.8 mmHg which was similar to captopril 25 mg bid[189]. Olea Eupopea L aqueous extract administered to 12 patients with hypertension at 400 mg qid for 3 mo significantly reduced BP (p < 0.001)[181]. Olive oil intake in the EPIC study of 20343 subjects was inversely associated with both systolic and diastolic BP[182]. In the SUN study of 6863 subjects, BP was inversely associated with olive oil consumption, but only in men[183]. In a study of 40 hypertensive monozygotic twins, olive leaf extract demonstrated a dose response reduction in BP at doses of 500 to 1000 mg/d in 8 wk compared to placebo[184]. The low dose groups decreased BP 3/1 mmHg and the high dose 11/4 mmHg[184]. A double blind, randomized, crossover dietary intervention study over 4 mo using polyphenol rich olive oil 30 mg/d decreased BP in the study group by 7.91/6.65 mmHg and improved endothelial function[185]. The ADMA levels, oxLDL and HS-CRP were reduced in the olive oil group. Plasma nitrites and nitrates increased and hyperemic area after ischemia improved in the treated group. Olive oil inhibits the AT1R receptor, exerts L-type calcium channel antagonist effects and improves wave reflections and augmentation index[191-193].

EVOO is also contains lipid-soluble phytonutrients such as polyphenols. Approximately 5 mg of phenols are found in 10 g of EVOO[178,186]. About 4 tablespoons of EVOO is equal to 40 g of EVOO which is the amount required to get significant reductions in BP.

Fiber

The clinical trials with various types of fiber to reduce BP have been inconsistent[194,195]. Soluble fiber, guar gum, guava, psyllium and oat bran may reduce BP and reduce the need for antihypertensive medications in hypertensive subjects, diabetic subjects and hypertensive-diabetic subjects[1,70,71,194,195]. The average reduction in BP is about 7.5/5.5 mmHg on 40 to 50 g/d of a mixed fiber. There is improvement in insulin sensitivity, endothelial function, reduction in SNS activity and increase in renal sodium loss[1,70,71,194].

Vitamin C

Vitamin C is a potent water-soluble electron-donor. At physiologic levels it is an antioxidant although at supraphysiologic doses such as those achieved with intravenous vitamin C it donates electrons to different enzymes which results in pro-oxidative effects. At physiologic doses vitamin C recycles vitamin E, improves ED and produces a diuresis[196]. Dietary intake of vitamin C and plasma ascorbate concentration in humans is inversely correlated to SBP, DBP and heart rate[196-210].

An evaluation of published clinical trials indicate that vitamin C dosing at 250 mg twice daily will significantly lower SBP 5-7 mmHg and diastolic BP 2-4 mmHg over 8 wk[196-210]. Vitamin C will induce a sodium water diuresis, improve arterial compliance, improve endothelial function, increase nitric oxide and PGI2, decrease adrenal steroid production, improve sympathovagal balance, increase RBC Na/K ATPase, increase SOD, improve aortic elasticity and compliance, improve flow mediated vasodilation, decrease pulse wave velocity and augmentation index, increase cyclic GMP, activate potassium channels, reduce cytosolic calcium and reduce serum aldehydes[208]. Vitamin C prevents ED induced by an oral glucose load. Vitamin C enhances the efficacy of amlodipine, decreases the binding affinity of the AT 1 receptor for angiotensin ? by disrupting the ATR1 disulfide bridges and enhances the anti-hypertensive effects of medications in the elderly�with refractory hypertension[1,70,71,200-205]. In elderly patients with refractory hypertension already on maximum pharmacologic therapy, 600 mg of vitamin C daily lowered the BP by 20/16 mmHg[205]. The lower the initial ascorbate serum level, the better is the BP response. A serum level of 100 ?mol/L is recommended[1,70,71]. The SBP and 24 ABM show the most significant reductions with chronic oral administration of Vitamin C[200-205]. Block et al[206] in an elegant depletion-repletion study of vitamin C demonstrated an inverse correlation of plasma ascorbate levels, SBP and DBP. In a meta-analysis of thirteen clinical trials with 284 patients, vitamin C at 500 mg/d over 6 wk reduced SBP 3.9 mmHg and DBP 2.1 mmHg[207]. Hypertensive subjects were found to have significantly lower plasma ascorbate levels compared to normotensive subjects (40 ?mol/L vs 57 ?mol/L respectively)[211], and plasma ascorbate is inversely correlated with BP even in healthy, normotensive individuals[206].

Vitamin E

Most studies have not shown reductions in BP with most forms of tocopherols or tocotrienols[1,70,71]. Patients with T2DM and controlled hypertension (130/76 mmHg) on prescription medications with an average BP of 136/76 mmHg were administered mixed tocopherols containing 60% gamma, 25% delta and 15% alpha tocopherols[212]. The BP actually increased by 6.8/3.6 mmHg in the study patients (p < 0.0001) but was less compared to the increase with alpha tocopherol of 7/5.3 mmHg (p < 0.0001). This may be a reflection of drug interactions with tocopherols via cytochrome P 450 (3A4 and 4F2) and reduction in the serum levels of the pharmacologic treatments that were simultaneously being given[212]. Gamma tocopherol may have natriuretic effects by inhibition of the 70pS potassium channel in the thick ascending limb of the loop of Henle and lower BP[213]. Both alpha and gamma tocopherol improve insulin sensitivity and enhance adiponectin expression via PPAR gamma dependent processes, which have the potential to lower BP and serum glucose[214]. If vitamin E has an antihypertensive effect, it is probably small and may be limited to untreated hypertensive patients or those with known vascular disease or other concomitant problems such as diabetes or hyperlipidemia.

Vitamin D

Vitamin D3 may have an independent and direct role in the regulation of BP and insulin metabolism[215-225]. Vitamin D influences BP by its effects on calcium-phosphate metabolism, RAA system, immune system, control of endocrine glands and ED[216]. If the Vitamin D level is below 30 ng/ml the circulating PRA levels are higher which increases angiotensin ?, increases BP and blunts plasma renal blood flow[221]. The lower the level of Vitamin D, the greater the risk of hypertension, with the lowest quartile of serum Vitamin D having a 52% incidence of hypertension and the highest quartile having a 20% incidence[221]. Vitamin D3 markedly suppresses renin transcription by a VDR-mediated mechanism via the JGA apparatus. Its role in electrolytes, volume and BP homeostasis indicates that Vitamin D3 is important in amelioration of hypertension. Vitamin D lower ADMA, suppresses pro-inflammatory cytokines such as TNF-?, increases nitric oxide, improves endothelial function and arterial elasticity, decreases vascular smooth muscle hypertrophy, regulates electrolytes and blood volume, increases insulin sensitivity, reduces free fatty acid concentration, regulates the expression of the natriuretic peptide receptor and lowers HS-CRP[217-219,221].

The hypotensive effect of vitamin D was inversely related to the pretreatment serum levels of 1,25(OH)2D3 and additive to antihypertensive medications. Pfeifer et al[225] showed that short-term supplementation with vitamin D3 and calcium is more effective in reducing SBP than calcium alone. In a group of 148 women with low 25(OH)2D3 levels, the administration of 1200 mg calcium plus 800 IU of vitamin D3 reduced SBP 9.3% more (p < 0.02) compared to 1200 mg of calcium alone. The HR fell 5.4% (p = 0.02), but DBP was not changed. The range in BP reduction was 3.6/3.1 to 13.1/7.2 mmHg. The reduction in BP is related to the pretreatment level of vitamin D3, the dose of vitamin D3 and serum level of vitamin D3, but BP is reduced only in hypertensive patients. Although vitamin D deficiency is associated with hypertension in observational studies, randomized clinical trials and their meta-analysis have yielded inconclusive results[223]. In addition, vitamin D receptor gene polymorphisms may effect the risk of hypertension in men[224]. A 25 hydroxyvitamin D level of 60 ng/ml is recommended.

Vitamin B6 (Pyridoxine)

Low serum vitamin B6 (pyridoxine) levels are associated with hypertension in humans[226]. One human study by Aybak et al[227] proved that high dose vitamin B6 at 5 mg/kg per day for 4 wk significantly lowered BP by 14/10 mmHg. Pyridoxine (vitamin B6) is a cofactor in neurotransmitter and hormone synthesis in the central nervous system(norepinephrine, epinephrine, serotonin, GABA and kynurenine), increases cysteine synthesis to neutralize aldehydes, enhances the production of glutathione, blocks calcium channels, improves insulin resistance, decreases central sympathetic tone and reduces end organ responsiveness to glucocorticoids and mineralocorticoids[1,70,71,228,229]. Vitamin B6 is reduced with chronic diuretic therapy and heme pyrollactams. Vitamin B6 thus has similar action to central alpha agonists, diuretics and CCB�s. The recommended dose is 200 mg/d orally.

Flavonoids

Over 4000 naturally occurring flavonoids have been identified in such diverse substances as fruits, vegetables, red wine, tea, soy and licorice[230]. Flavonoids (flavonols, flavones and isoflavones) are potent free radical scavengers that inhibit lipid peroxidation, prevent atherosclerosis, promote vascular relaxation and have antihypertensive properties[230]. In addition, they reduce stroke and provide cardioprotective effects that reduce CHD morbidity and�mortality[231].

Resveratrol is a potent antioxidant and antihypertensive found in the skin of red grapes and in red wine. Resveratrol administration to humans reduces augmentation index, improves arterial compliance and lowers central arterial pressure when administered as 250 ml of either regular or dealcoholized red wine[232]. There was a significant reduction in the aortic augmentation index of 6.1% with the dealcoholized red wine and 10.5% with regular red wine. The central arterial pressure was significantly reduced by dealcoholized red wine at 7.4 mmHg and 5.4 mmHg by regular red wine. Resveratrol increases flow mediated vasodilation in a dose related manner, improves ED, prevents uncoupling of eNOS, increases adiponectin, lowers HS-CRP and blocks the effects of angiotensin ?[233-236]. The recommended dose is 250 mg/d of trans resveratrol[234].

Lycopene

Lycopene is a fat-soluble phytonutrient in the carotenoid family. Dietary sources include tomatoes, guava, pink grapefruit, watermelon, apricots and papaya in high concentrations[237-241]. Lycopene produces a significant reduction in BP, serum lipids and oxidative stress markers[237-241]. Paran et al[241] evaluated 30 subjects with Grade?hypertension, age 40-65, taking no antihypertensive or anti-lipid medications treated with a tomato lycopene extract (10 mg lycopene) for eight weeks. The SBP was reduced from 144 to 135 mmHg (9 mmHg reduction, p < 0.01) and DBP fell from 91 to 84 mmHg (7 mmHg reduction, p < 0.01). Another study of 35 subjects with Grade?hypertension showed similar results on SBP, but not DBP[237]. Englehard gave a tomato extract to 31 hypertensive subjects over 12 wk demonstrating a significant BP reduction of 10/4 mmHg[238]. Patients on various anti-hypertensive agents including ACEI, CCB and diuretics had a significant BP reduction of 5.4/3 mmHg over 6 wk when administered a standardized tomato extract[239]. Other studies have not shown changes in BP with lycopene[240]. Lycopene and tomato extract improve ED and reduce plasma total oxidative stress[242]. The recommended daily intake of lycopene is 10-20 mg in food or supplement form.

Pycnogenol

Pycnogenol, a bark extract from the French maritime pine, at doses of 200 mg/d resulted in a significant reduction in SBP from 139.9 mmHg to 132.7 mmHg (p < 0.05) in eleven patients with mild hypertension over eight weeks in a double-blind randomized placebo crossover trial. Diastolic BP fell from 93.8 mmHg to 92.0 mmHg. Pycnogenol acts as a natural ACEI, protects cell membranes from oxidative stress, increases NO and improves endothelial function, reduces serum thromboxane concentrations, decreases myelo-peroxidase activity, improves renal cortical blood flow, reduces urinary albumin excretion and decreases HS-CRP[243-247]. Other studies have shown reductions in BP and a decreased need for ACEI and CCB, reductions in endothelin-1, HgA1C, fasting glucose, LDL-C and myeloperoxidase[244,245,247].

Garlic

Clinical trials utilizing the correct dose, type of garlic and well absorbed long acting preparations have shown consistent reductions in BP in hypertensive patients with an average reduction in BP of 8.4/7.3 mmHg[248,249]. Not all garlic preparations are processed similarly and are not comparable in antihypertensive potency[1]. In addition, cultivated garlic (allium sativum), wild uncultivated garlic or bear garlic (allium urisinum) as well as the effects of aged, fresh and long acting garlic preparations differ[1,70,71,248,249]. Garlic is also effective in reducing BP in patients with uncontrolled hypertension already on anti-hypertensive medication[249,250]. A garlic homogenate-based supplement was administered to 34 prehypertensive and stage?hypertensive patients at 300 mg/d over 12 wk with a reduction in BP of 6.6-7.5/4.6-5.2 mmHg[249]. Aged garlic at doses of 240 to 960 mg/d given to 79 hypertensive subjects over 12 wk significantly lowered SBP 11.8 � 5.4 mmHg in the high dose garlic group[249]. A time released garlic may reduce BP better than the shorter acting garlic[249]. A Cochrane Database review indicated a net reduction in BP of 10-12/6-9 mmHg in all clinical trials with garlic[249]. In a double-blind parallel randomized placebo-controlled trial of 50 patients, 900 mg of aged garlic extract with 2.4 mg of S-allylcysteine was administered daily for 12 wk and reduced SBP 10.2 mmHg (p = 0.03) more than the control group[250].

Approximately 10000 mcg of allicin (one of the active ingredients in garlic) per day, the amount contained in four cloves of garlic (5 g) is required to achieve a significant BP lowering effect[1,70,71,249,250]. Garlic has ACEI activity, calcium channel blocking activity, reduces catecholamine sensitivity, improves arterial compliance, increases bradykinin and nitric oxide and contains adenosine, magnesium, flavonoids, sulfur, allicin, phosphorous and ajoenes that reduce BP[1,70,71].

Seaweed

Wakame seaweed (Undaria pinnatifida) is the most popular, edible seaweed in Japan[251]. In humans, 3.3 g of dried Wakame for four wk significantly reduced both the SBP 14 � 3 mmHg and the DBP 5 � 2 mmHg (p < 0.01)[252]. In a study of 62 middle-aged, male subjects with mild hypertension given a potassium-loaded, ion-exchanging, sodium-adsorbing, potassium-releasing seaweed preparation, significant BP reductions occurred at four weeks on 12 and 24 g/d of the seaweed preparation (p < 0.01)[253]. The MAP fell 11.2 mmHg (p < 0.001) in the sodium-sensitive subjects and 5.7 mmHg (p < 0.05) in the sodiuminsensitive subjects, which correlated with PRA. Seaweed and sea vegetables contain most all of the seawater�s 77I minerals and rare earth elements, fiber and alginate in a colloidal form[251-253]. The primary effect of Wakame appears to be through its ACEI activity from at least four parent tetrapeptides and possibly their dipeptide�and tripeptide metabolites, especially those containing the amino acid sequence Val-Tyr, Ile-Tyr, Phe-Tyr and Ile-Try in some combination[251,254,255]. Its long-term use in Japan has demonstrated its safety. Other varieties of seaweed may reduce BP by reducing intestinal sodium absorption and increasing intestinal potassium absorption[253].

Sesame

Sesame has been shown to reduce BP in a several small randomized, placebo controlled human studies over 30-60 d[256-264]. Sesame lowers BP alone[257-261] or in combination with nifedipine[256,260] diuretics and beta blockers[257,261]. In a group of 13 mild hypertensive subjects, 60 mg of sesamin for 4 wk lowered SBP 3.5 mmHg (p < 0.044) and DBP 1.9 mmHg (p < 0.045)[258]. Black sesame meal at 2.52 g/d over 4 wk in 15 subjects reduced SBP by 8.3 mmHg (p < 0.05) but there was a non-significant reduction in DBP of 4.2 mmHg[259]. Sesame oil at 35 g/d significantly lowered central BP within 1 h and also maintained BP reduction chronically in 30 hypertensive subjects, reduced heart rate, reduced arterial stiffness, decreased augmentation index and pulse wave velocity, decreased HSCRP, improved NO, decreased endothelin?and improved antioxidant capacity[264]. In addition sesame lowers serum glucose, HgbAIC and LDL-C, increases HDL, reduces oxidative stress markers and increases glutathione, SOD, GPx, CAT, vitamins C, E and A[256,257,258-261]. The active ingredients are natural ACEI�s such as sesamin, sesamolin, sesaminol glucosides, furoufuran lignans which also suppressors of NF-?B[262,263]. All of these effects lower inflammation and oxidative stress, improve oxidative defense and reduce BP[262,263].

Beverages: Tea, Coffee, And Cocoa

Green tea, black tea and extracts of active components in both have demonstrated reduction in BP in humans[265-271]. In a double blind placebo controlled trial of 379 hypertensive subjects given green tea extract 370 mg/d for 3 mo, BP was reduced significantly at 4/4 mmHg with simultaneous decrease in HS CRP, TNF-?, glucose and insulin levels[268].

Dark chocolate (100 g) and cocoa with a high content of polyphenols (30 mg or more) have been shown to significantly reduce BP in humans[272-283]. A metaanalysis of 173 hypertensive subjects given cocoa for a mean duration of 2 wk had a significant reduction in BP 4.7/2.8 mmHg (p = 0.002 for SBP and 0.006 for DBP)[276]. Fifteen subjects given 100 g of dark chocolate with 500 mg of poly-phenols for 15 d had a 6.4 mmHg reduction in SBP (p < 0.05) with a non significant change in DBP[273]. Cocoa at 30 mg of poly-phenols reduced BP in pre-hypertensive and stage?hypertensive patients by 2.9/1.9 mmHg at 18 wk (p < 0.001)[274]. Two more recent meta-analysis of 13 trials and 10 trials with 297 patients found a significant reduction in BP of 3.2/2.0 mmHg and 4.5/3.2 mmHg respectively[276,279]. The BP reduction is the greatest in those with the highest baseline BP and those with at least 50%-70% cocoa at doses of 6 to 100 g/d[280,282]. Cocoa may also improve insulin resistance and endothelial function[276,279,281].

Polyphenols, chlorogenic acids (CGAs), the ferulic acid metabolite of CGAs and di-hydro-caffeic acids decrease BP in a dose dependent manner, increase eNOS and improve endothelial function in humans[284-286]. CGAs in green coffee been extract at doses of 140 mg/d significantly reduced SBP and DBP in 28 subjects in a placebocontrolled randomized clinical trial. A study of 122 male subjects demonstrated a dose response in SBP and DBP with doses of CGA from 46 mg/d to 185 mg/d. The group that received the 185 mg dose had a significant reduction in BP of 5.6/3.9 mmHg (p < 0.01) over 28 d. Hydroxyhydroquinone is another component of coffee beans which reduces the efficacy of CGAs in a dosedependent manner which partially explains the conflicting results of coffee ingestion on BP[284,286]. Furthermore, there is genetic variation in the enzyme responsible for the metabolism of caffeine modifies the association between coffee intake, amount of coffee ingested and the risk of hypertension, heart rate, MI, arterial stiffness, arterial wave reflections and urinary catecholamine levels[287]. Fifty-nine percent of the population has the? F/?A allele of the CYP1A2 genotype which confers slow metabolism of caffeine. Heavy coffee drinkers who are slow metabolizers had a 3.00 HR for developing hypertension. In contrast, fast metabolizers with the?A/? A allele have a 0.36 HR for incident hypertension[288].

Additional Compounds

Melatonin demonstrates significant anti-hypertensive effects in humans in a numerous double-blind randomized placebo controlled clinical trials at 3-5 mg/d[289-299]. The average reduction in BP is 6/3 mmHg. Melatonin stimulates GABA receptors in the CNS and vascular melatonin receptors, inhibits plasma A ? levels, improves endothelial function, increases NO, vasodilates, improves nocturnal dipping, lowers cortisol and is additive with ARBs. Beta blockers reduce melatonin secretion[300].

Hesperidin significantly lowered DBP 3-4 mmHg (p < 0.02) and improved microvascular endothelial reactivity in 24 obese hypertensive male subjects in a randomized, controlled crossover study over 4 wk for each of three treatment groups consuming 500 ml of orange juice, hesperidin or placebo[301].

Pomegranate juice is rich in tannins and has numerous other properties that improve vascular health and reduces the SBP by 5%-12%[302,303]. A study of 51 healthy subjects given 330 mg/d of pomegranate juice had reduction in BP of 3.14/2.33 mmHg (p < 0.001)[303]. Pomegranate juice also suppresses the postprandial increase in SBP following a high-fat meal[303]. Pomegranate juice reduces serum ACE activity by 36%, and has anti-atherogenic, antioxidant and anti-inflammatory effects[302,303]. Pomegranate juice at 50 ml/d reduced carotid IMT by 30% over one year, increased PON 83%, decreased oxLDL by 59%-90%, decreased antibodies to oxLDL by 19%, increased total antioxidant status by 130 %, reduced TGF-?, increased catalase, SOD and GPx, increased eNOS and NO and improved endothelial function[304,305]�Pomegranate juice works like an ACEI.

Grape seed extract (GSE) was administered to subjects in nine randomized trials, meta-analysis of 390 subjects and demonstrated a significant reduction in SBP of 1.54 mmHg (P < 0.02)[304,305]. Significant reduction in BP of 11/8 mmHg (P < 0.05) were seen in another dose response study with 150 to 300 mg/d of GSE over 4 wk[306]. GSE has high phenolic content which activates the PI3K/Akt signaling pathway that phosphorylates eNOS and increases NO[306,307].

Coenzyme Q10 (Ubiquinone)

Coenzyme Q10 has consistent and significant antihypertensive effects in patients with essential hypertension[1,308-317]. The literature is summarized below: (1) Compared to normotensive patients, essential hypertensive patients have a higher incidence (6 fold) of coenzyme Q10 deficiency documented by serum levels[1]; (2) Doses of 120 to 225 mg/d of coenzyme Q10, depending on the delivery method or the concomitant ingestion with a fatty meal, are necessary to achieve a therapeutic level of 3 ug/ml[1,313,314]. This dose is usually 3-5 mg/kg per day of coenzyme Q10. Oral dosing levels may become lower with nanoparticle and emulsion delivery systems intended to facilitate absorption[315]. Adverse effects have not been characterized in the literature; (3) Patients with the lowest coenzyme Q10 serum levels may have the best antihypertensive response to supplementation; (4) The average reduction in BP is about 15/10 mmHg and heart rate falls 5 beats/min based on reported studies and metaanalysis; (5) The antihypertensive effect takes time to reach its peak level at 4 wk. Then the BP remains stable during long term treatment. The antihypertensive effect is gone within two weeks after discontinuation of coenzyme Q10. The reduction in BP and SVR are correlated with the pretreatment and post treatment serum levels of coenzyme Q10. About 50% of patients respond to oral coenzyme Q10 supplementation for BP[309]; (6) Approximately 50% of patients on antihypertensive drugs may be able to stop between one and three agents. Both total dose and frequency of administration may be reduced. (7) Patients administered coenzyme Q10 with enalapril improved the 24 h ABM better than with enalapril monotherapy and also normalized endothelial function[310]; and (8) Coenzyme Q10 is a lipid phase antioxidant and free radical scavenger, increases eNOS and NO, reduces inflammation and NF-?B and improves endothelial function and vascular elasticity[1,311,312].

Other favorable effects on cardiovascular risk factors include improvement in the serum lipid profile and carbohydrate metabolism with reduced glucose and improved insulin sensitivity, reduced oxidative stress, reduced heart rate, improved myocardial LV function and oxygen delivery and decreased catecholamine levels[1,311,312].

Alpha Lipoic Acid

Alpha lipoic acid (ALA) is known as thioctic acid in Europe where it is a prescription medication. It is a sulfurcontaining compound with antioxidant activity both in water and lipid phases[1,70,71]. Its use is well-established in the treatment of certain forms of liver disease and in the delay of onset of peripheral neuropathy in patients with diabetes. Recent research has evaluated its potential role in the treatment of hypertension, especially as part of the MS[318-321]. In a double-blind cross over study of 36 patients over 8 wk with CHD and hypertension, 200 mg of lipoic acid with 500 mg of acetyl-L-carnitine significantly reduced BP 7/3 mmHg and increased brachial artery diameter[320]. The QUALITY study of 40 patients with DM and stage?hypertension showed significant improvements in BP, urinary albumin excretion, FMD and insulin sensitivity over 8 wk with a combination of Quinapril (40 mg/d) and lipoic acid (600 mg/d) that was greater than either alone[320]. Lipoic acid increases levels of glutathione, cysteine, vitamin C and vitamin E, inhibits NF-?B, reduces endothelin-1, tissue factor and VCAM-1, increases cAMP, downregulates CD4 immune expression on mononuclear cells, reduces oxidative stress, inflammation, reduces atherosclerosis in animal models, decreases serum aldehydes and closes calcium channels which improves vasodilation, increases NO and nitrosothiols, improves endothelial function and lowers BP[1,318-321]. Lipoic acid normalizes membrane calcium channels by providing sulfhydryl groups, decreasing cytosolic free calcium and lowers SVR. In addition, lipoic acid improves insulin sensitivity which lowers glucose and advanced glycosylation end products which improves BP control and lowers serum triglycerides. Morcos et al[321], showed stabilization of urinary albumin excretion in DM subjects given 600 mg of ALA compared to placebo for 18 mo (p < 0.05).

The recommended dose is 100 to 200 mg/d of R-lipoic acid with biotin 2-4 mg/d to prevent biotin depletion with long term use of lipoic acid. R-lipoic acid is preferred to the L isomer because of its preferred use by the mitochondria[1,32,71]. NAC: NAC and L arginine (ARG) in combination reduce endothelial activation and BP in hypertensive patients with type 2 DM[141]. Over 6 mo 24 subjects given placebo or NAC with ARG, significantly reduced both systolic and diastolic BP (p = 0.05)[141]. In addition, ox LDL, HSCRP, ICAM, VCAM, fibrinogen and PAI-1 were decreased while HDL, NO and endothelial postischemic vasodilation increased[141]. NAC increases NO via IL-1b and increases iNOS MRNA, increases glutathione by increasing cysteine levels, reduces the affinity for the AT1 receptor by disrupting disulfide groups, blocks the L type calcium channel, lowers homocysteine, and improves IMT[141,322-324]. The recommended dose is 500 to 1000 mg bid. Hawthorne extract has been used for centuries for the treatment of hypertension, CHF and other cardiovascular diseases[325-329]. A recent four-period crossover design, dose response study in 21 subjects with prehypertension or mild hypertension over 3� d, did not show changes in FMD or BP on standardized extract with 50 mg of oligomeric procyanidin per 250 mg extract with 1000 mg, 1500 or 2500 mg of the extract[325]. Hawthorne showed non inferiority of ACEI and diuretics in the treatment of

NAC: NAC and L arginine (ARG) in combination reduce endothelial activation and BP in hypertensive patients with type 2 DM[141]. Over 6 mo 24 subjects given placebo or NAC with ARG, significantly reduced both systolic and diastolic BP (p = 0.05)[141]. In addition, ox LDL, HSCRP, ICAM, VCAM, fibrinogen and PAI-1 were decreased while HDL, NO and endothelial postischemic vasodilation increased[141]. NAC increases NO via IL-1b and increases iNOS MRNA, increases glutathione by increasing cysteine levels, reduces the affinity for the AT1 receptor by disrupting disulfide groups, blocks the L type calcium channel, lowers homocysteine, and improves IMT[141,322-324]. The recommended dose is 500 to 1000 mg bid.

Hawthorne extract has been used for centuries for the treatment of hypertension, CHF and other cardiovascular diseases[325-329]. A recent four-period crossover design, dose response study in 21 subjects with prehypertension or mild hypertension over 3� d, did not show changes in FMD or BP on standardized extract with 50 mg of oligomeric procyanidin per 250 mg extract with 1000 mg, 1500 or 2500 mg of the extract[325]. Hawthorne showed non inferiority of ACEI and diuretics in the treatment of�102 patients with NYHC ? CHF over 8 wk[327]. Patients with hypertension and type 2 DM on medications for BP and DM were randomized to 1200 mg of hawthorne extract for 16 wk showed significant reductions in DBP of 2.6 mmHg (p = 0.035)[328]. Thirty six mildly hypertensive patients were administered 500 mg of hawthorne extract for 10 wk and showed a non significant trend in DBP reduction (p = 0.081) compared to placebo[329]. Hawthorne acts like an ACEI, BB, CCB and diuretic. More studies are needed to determine the efficacy, long term effects and dose of hawthorne for the treatment of hypertension.

Quercetin is an antioxidant flavonol found in apples, berries and onions that reduces BP in hypertensive individuals[330,331] but the hypotensive effects do not appear to be mediated by changes in HSCRP, TNF-?, ACE activity, ET-1, NO, vascular reactivity or FMD[330]. Quercetin is metabolized by CYP 3A4. Quercetin was administered to 12 hypertensive men at an oral dose of 1095 mg with reduction in mean BP by 5 mmHg, SBP by 7 mmHg and DBP by 3 mmHg[330]. The maximal plasma level at 10 h was 2.3 � 1.8 ?mol/L, with return to baseline levels at 17 h. Forty one pre-hypertensive and stage?hypertensive subjects were enrolled in a randomized, double-blind, placebo-controlled, crossover study with 730 mg of quercetin per day vs placebo[331]. In the stage?hypertensive patients, the BP was reduced by 7/5 mmHg (p < 0.05) but there were no changes in oxidative stress markers[331]. Quercetin administered to 93 overweight or obese subjects at 150 mg/d (plasma levels of 269 nmol/L) over 6 wk lowered SBP 2.9 mmHg in the hypertensive group and up to 3.7 mmHg in SBP in the patients 25-50 years of age[332]. The recommended dose of quercetin is 500 mg bid.

CLINICAL CONSIDERATIONS

Combining Food And Nutrients With Medications

Several of the strategic combinations of nutraceutical supplements together or with anti-hypertensive drugs, have been shown to lower BP more than the medication alone: (1) Sesame with beta blockers, diuretics and nifedipine; (2) Pycnogenol with ACEI and CCB; (3) Lycopene with ACEI, CCB and diuretics; (4) ALA with ACEI or acetyl -L Carnitine; (5) Vitamin C with CCB�s; (6) NAC with arginine; (7) Garlic with ACEI, diuretics and beta blockers; (8) Coenzyme Q10 with ACEI and CCB; (9) Taurine with magnesium; (10) Potassium with all antihypertensive agents; and (11) Magnesium with all antihypertensive agents.

Many anti-hypertensive drugs may cause nutrient depletions that can actually interfere with their anti-hypertensive action or cause other metabolic adverse effects manifest through the lab or with clinical symptoms[333]. Diuretics decrease potassium, magnesium, phosphorous, sodium, chloride, folate, vitamin B6, zinc, iodine and coenzyme Q10; increase homocysteine, calcium and creatinine; and elevate serum glucose by inducing insulin resistance. Beta blockers reduce coenzyme Q10. ACEI and ARB�s reduce zinc.

Vascular biology such as endothelial and VSMD plays a primary role in the initiation and perpetuation of hypertension, CVD and TOD. Nutrient-gene interactions and epigenetics are a predominant factor in promoting beneficial or detrimental effects in cardiovascular health and hypertension. Food and nutrients can prevent, control and treat hypertension through numerous vascular biology mechanisms. Oxidative stress, inflammation and autoimmune dysfunction initiate and propagate hypertension and cardiovascular disease. there is a role for the selected use of single and component nutraceutical supplements vitamins, antioxidants and minerals in the treatment of hypertension based on scientifically controlled studies as a complement to optimal nutritional, dietary intake from food and other lifestyle modifications[333]. A clinical approach which incorporates diet, foods, nutrients, exercise, weight reduction, smoking cessation, alcohol and caffeine restriction, and other lifestyle strategies can be systematically and successfully incorporated into clinical practice (Table 4).

nutraceutical

Nutraceutical Conclusion:

Vascular biology, endothelial and vascular smooth muscle and cardiac dysfunction play a primary role in the initiation and perpetuation of hypertension, cardiovascular disease and TOD. Nutrient-gene interactions and epigenetics are predominant factors in promoting beneficial or detrimental effects in cardiovascular health and hypertension. Macronutrients and micronutrients can prevent, control and treat hypertension through numerous mechanisms related to vascular biology. Oxidative stress, inflammation and autoimmune dysfunction initiate and propagate hypertension and cardiovascular disease. There is a role for the selected use of single and component nutraceutical supplements, vitamins, antioxidants and minerals in the treatment of hypertension based on scientifically controlled studies which complement optimal nutrition, coupled with other lifestyle modifications.

 

 

blank
References:

1 Houston MC. Treatment of hypertension with nutraceuticals, vitamins, antioxidants and minerals. Expert Rev�Cardiovasc Ther 2007; 5: 681-691 [PMID: 17605647 DOI: 10.1159/000098012]

2 Eaton SB, Eaton SB, Konner MJ. Paleolithic nutrition revisited:
a twelve-year retrospective on its nature and implications.
Eur J Clin Nutr 1997; 51: 207-216 [PMID: 9104571 DOI:
10.1038/sj.ejcn.1600389]
3 Houston MC, Harper KJ. Potassium, magnesium, and calcium:
their role in both the cause and treatment of hypertension.
J Clin Hypertens (Greenwich) 2008; 10: 3-11 [PMID:
18607145 DOI: 10.1111/j.1751-7176.2008.08575.x]
4 Layne J, Majkova Z, Smart EJ, Toborek M, Hennig B. Caveolae:
a regulatory platform for nutritional modulation of inflammatory
diseases. J Nutr Biochem 2011; 22: 807-811 [PMID:
21292468 DOI: 10.1016/j.jnutbio.2010.09.013]
5 Dandona P, Ghanim H, Chaudhuri A, Dhindsa S, Kim SS.
Macronutrient intake induces oxidative and inflammatory
stress: potential relevance to atherosclerosis and insulin
resistance. Exp Mol Med 2010; 42: 245-253 [PMID: 20200475
DOI: 10.3858/emm.2010.42.4.033]
6 Berdanier CD. Nutrient-gene interactions. In: Ziegler EE,
Filer LJ Jr, eds. Present Knowledge in Nutrition, 7th Ed.
Washington. DC: ILSI Press. 1996: 574-580
7 Talmud PJ, Waterworth DM. In-vivo and in-vitro nutrientgene
interactions. Curr Opin Lipidol 2000; 11: 31-36 [PMID:
10750691 DOI: 10.1097/00041433-200002000-00005]
8 Lundberg AM, Yan ZQ. Innate immune recognition receptors
and damage-associated molecular patterns in plaque
inflammation. Curr Opin Lipidol 2011; 22: 343-349 [PMID:
21881501 DOI: 10.1097/MOL.0b013e32834ada80]
9 Zhao L, Lee JY, Hwang DH. Inhibition of pattern recognition
receptor-mediated inflammation by bioactive phytochemicals.
Nutr Rev 2011; 69: 310-320 [PMID: 21631512 DOI:
10.1111/j.1753-4887.2011.00394.x]
10 Houston MC. The importance of potassium in managing
hypertension. Curr Hypertens Rep 2011; 13: 309-317 [PMID:
21403995 DOI: 10.1007/s11906-011-0197-8]
11 Broadhurst CL. Balanced intakes of natural triglycerides for
optimum nutrition: an evolutionary and phytochemical perspective.
Med Hypotheses 1997; 49: 247-261 [PMID: 9293470
DOI: 10.1016/S0306-9877(97)90210-3]
12 Eftekhari A, Mathiassen ON, Buus NH, Gotzsche O, Mulvany
MJ, Christensen KL. Disproportionally impaired microvascular
structure in essential hypertension. J Hypertens
2011; 29: 896-905 [PMID: 21330935 DOI: 10.1097/�HJH.0b013e
3283447a1c]
13 Touyz RM. New insights into mechanisms of hypertension.
Curr Opin Nephrol Hypertens 2012; 21: 119-121 [PMID:
22257800 DOI: 10.1097/MNH.0b013e328350a50f]
14 Xing T, Wang F, Li J, Wang N. Hypertension: an immunologic
disease? J Hypertens 2012; 30: 2440-2441 [PMID:
23151885 DOI: 10.1097/HJH.0b013e32835953f9]
15 Giannattasio C, Cattaneo BM, Mangoni AA, Carugo S, Stella
ML, Failla M, Trazzi S, Sega R, Grassi G, Mancia G. Cardiac
and vascular structural changes in normotensive subjects
with parental hypertension. J Hypertens 1995; 13: 259-264
[PMID: 7615957]
16 Goncharov A, Bloom M, Pavuk M, Birman I, Carpenter
DO. Blood pressure and hypertension in relation to levels of
serum polychlorinated biphenyls in residents of Anniston,
Alabama. J Hypertens 2010; 28: 2053-2060 [PMID: 20644494]
17 Houston MC. Role of mercury toxicity in hypertension, cardiovascular
disease, and stroke. J Clin Hypertens (Greenwich)
2011; 13: 621-627 [PMID: 21806773]
18 Al-Ghamdi A. Role of herpes simplex virus-1, cytomegalovirus
and Epstein-Barr virus in atherosclerosis. Pak J Pharm
Sci 2012; 25: 89-97 [PMID: 22186314]
19 Kotronias D, Kapranos N. Herpes simplex virus as a determinant
risk factor for coronary artery atherosclerosis
and myocardial infarction. In Vivo 2005; 19: 351-357 [PMID:
15796197]
20 Grahame-Clarke C, Chan NN, Andrew D, Ridgway GL,
Betteridge DJ, Emery V, Colhoun HM, Vallance P. Human
cytomegalovirus seropositivity is associated with impaired
vascular function. Circulation 2003; 108: 678-683 [PMID:
12900349 DOI: 10.1161/01.CIR.0000084505.54603.C7]
21 Nayak DU, Karmen C, Frishman WH, Vakili BA. Antioxidant
vitamins and enzymatic and synthetic oxygen-derived
free radical scavengers in the prevention and treatment
of cardiovascular disease. Heart Dis 2001; 3: 28-45 [PMID:
11975768 DOI: 10.1097/00132580-200101000-00006]
22 Kizhakekuttu TJ, Widlansky ME. Natural antioxidants and
hypertension: promise and challenges. Cardiovasc Ther 2010;
28: e20-e32 [PMID: 20370791 DOI: 10.1111/�j.1755-5922.2010.0
0137.x]
23 Kitiyakara C, Wilcox CS. Antioxidants for hypertension.
Curr Opin Nephrol Hypertens 1998; 7: 531-538 [PMID: 9818200
DOI: 10.1097/00041552-199809000-00008]
24 Russo C, Olivieri O, Girelli D, Faccini G, Zenari ML, Lombardi
S, Corrocher R. Anti-oxidant status and lipid peroxidation
in patients with essential hypertension. J Hypertens 1998;
16: 1267-1271 [PMID: 9746113 DOI: 10.1097/00004872-199816
090-00007]
25 Tse WY, Maxwell SR, Thomason H, Blann A, Thorpe GH,
Waite M, Holder R. Antioxidant status in controlled and
uncontrolled hypertension and its relationship to endothelial
damage. J Hum Hypertens 1994; 8: 843-849 [PMID: 7853328]
26 Mansego ML, Solar Gde M, Alonso MP, Mart�nez F, S�ez
GT, Escudero JC, Red�n J, Chaves FJ. Polymorphisms of antioxidant
enzymes, blood pressure and risk of hypertension.
J Hypertens 2011; 29: 492-500 [PMID: 21178785 DOI: 10.1097/
HJH.0b013e328341f1b2]
27 Galley HF, Thornton J, Howdle PD, Walker BE, Webster
NR. Combination oral antioxidant supplementation reduces
blood pressure. Clin Sci (Lond) 1997; 92: 361-365 [PMID:
9176034]
28 Dhalla NS, Temsah RM, Netticadan T. Role of oxidative
stress in cardiovascular diseases. J Hypertens 2000; 18: 655-673
[PMID: 10872549 DOI: 10.1097/00004872-200018060-00002]
29 Saez G, Tormos MC, Giner V, Lorano JV, Chaves FJ, Armengod
ME, Redon J. P-653: Oxidative stress and enzymatic
antioxidant mechanisms in essential hypertension. Am J Hypertens
2001; 14: 248A [DOI: 10.1016/S0895-7061(01)01983-5]
30 Nishihara M, Hirooka Y, Matsukawa R, Kishi T, Sunagawa
K. Oxidative stress in the rostral ventrolateral medulla modulates
excitatory and inhibitory inputs in spontaneously hypertensive
rats. J Hypertens 2012; 30: 97-106 [PMID: 22157590
DOI: 10.1097/HJH.0b013e32834e1df4]
31 Konno S, Hirooka Y, Kishi T, Sunagawa K. Sympathoinhibitory
effects of telmisartan through the reduction of oxidative
stress in the rostral ventrolateral medulla of obesity-induced
hypertensive rats. J Hypertens 2012; 30: 1992-1999 [PMID:
22902874 DOI: 10.1097/HJH.0b013e328357fa98]
32 Ghanem FA, Movahed A. Inflammation in high blood pressure:
a clinician perspective. J Am Soc Hypertens 2007; 1:
113-119 [PMID: 20409841 DOI: 10.1016/j.jash.2007.01.004]
33 Amer MS, Elawam AE, Khater MS, Omar OH, Mabrouk RA,
Taha HM. Association of high-sensitivity C-reactive protein
with carotid artery intima-media thickness in hypertensive
older adults. J Am Soc Hypertens 2011; 5: 395-400 [PMID:
21524639]
34 Vongpatanasin W, Thomas GD, Schwartz R, Cassis LA,
Osborne-Lawrence S, Hahner L, Gibson LL, Black S, Samols
D, Shaul PW. C-reactive protein causes downregulation of
vascular angiotensin subtype 2 receptors and systolic hypertension
in mice. Circulation 2007; 115: 1020-1028 [PMID:
17283257 DOI: 10.1161/CIRCULATIONAHA.106.664854]
35 Razzouk L, Muntner P, Bansilal S, Kini AS, Aneja A, Mozes
J, Ivan O, Jakkula M, Sharma S, Farkouh ME. C-reactive
protein predicts long-term mortality independently of lowdensity
lipoprotein cholesterol in patients undergoing percutaneous coronary intervention. Am Heart J 2009; 158: 277-283 [PMID: 19619706 DOI: 10.1016/j.ahj.2009.05.026]

36 Kvakan H, Luft FC, Muller DN. Role of the immune system
in hypertensive target organ damage. Trends Cardiovasc Med
2009; 19: 242-246 [PMID: 20382349 DOI: 10.1016/�j.�tcm.2010.02.
004]
37 Rodr�guez-Iturbe B, Franco M, Tapia E, Quiroz Y, Johnson
RJ. Renal inflammation, autoimmunity and salt-sensitive hypertension.
Clin Exp Pharmacol Physiol 2012; 39: 96-103 [PMID:
21251049 DOI: 10.1111/j.1440-1681.2011.05482.x]
38 Tian N, Penman AD, Mawson AR, Manning RD, Flessner
MF. Association between circulating specific leukocyte types
and blood pressure: the atherosclerosis risk in communities
(ARIC) study. J Am Soc Hypertens 2010; 4: 272-283 [PMID:
20980213 DOI: 10.1016/j.jash.2010.09.005]
39 Muller DN, Kvakan H, Luft FC. Immune-related effects in
hypertension and target-organ damage. Curr Opin Nephrol
Hypertens 2011; 20: 113-117 [PMID: 21245763 DOI: 10.1097/
MNH.0b013e3283436f88]
40 Marketou ME, Kontaraki JE, Zacharis EA, Kochiadakis GE,
Giaouzaki A, Chlouverakis G, Vardas PE. TLR2 and TLR4
gene expression in peripheral monocytes in nondiabetic
hypertensive patients: the effect of intensive blood pressurelowering.
J Clin Hypertens (Greenwich) 2012; 14: 330-335
[PMID: 22533660 DOI: 10.1111/j.1751-7176.2012.00620.x]
41 Luft FC. Neural regulation of the immune system modulates
hypertension-induced target-organ damage. J Am Soc Hypertens
2012; 6: 23-26 [PMID: 22047671 DOI: 10.1016/�j.�jash.2011.
09.006]
42 Herrada AA, Campino C, Amador CA, Michea LF, Fardella
CE, Kalergis AM. Aldosterone as a modulator of immunity:
implications in the organ damage. J Hypertens 2011; 29:
1684-1692 [PMID: 21826023 DOI: 10.1097/�HJH.0b013e32834a
4c75]
43 Colussi G, Catena C, Sechi LA. Spironolactone, eplerenone
and the new aldosterone blockers in endocrine and primary
hypertension. J Hypertens 2013; 31: 3-15 [PMID: 23011526
DOI: 10.1097/HJH.0b013e3283599b6a]
44 Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP,
Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM,
Lin PH, Karanja N. A clinical trial of the effects of dietary
patterns on blood pressure. DASH Collaborative Research
Group. N Engl J Med 1997; 336: 1117-1124 [PMID: 9099655]
45 Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA,
Harsha D, Obarzanek E, Conlin PR, Miller ER, SimonsMorton
DG, Karanja N, Lin PH. Effects on blood pressure
of reduced dietary sodium and the Dietary Approaches to
Stop Hypertension (DASH) diet. DASH-Sodium Collaborative
Research Group. N Engl J Med 2001; 344: 3-10 [PMID:
11136953]
46 Sun B, Williams JS, Svetkey LP, Kolatkar NS, Conlin PR.
Beta2-adrenergic receptor genotype affects the reninangiotensin-aldosterone
system response to the Dietary Approaches
to Stop Hypertension (DASH) dietary pattern. Am
J Clin Nutr 2010; 92: 444-449 [PMID: 20519561 DOI: 10.3945/
ajcn.2009.28924]
47 Chen Q, Turban S, Miller ER, Appel LJ. The effects of dietary
patterns on plasma renin activity: results from the Dietary
Approaches to Stop Hypertension trial. J Hum Hypertens
2012; 26: 664-669 [PMID: 22048714 DOI: 10.1038/jhh.2011.87]
48 Al-Solaiman Y, Jesri A, Zhao Y, Morrow JD, Egan BM. LowSodium
DASH reduces oxidative stress and improves vascular
function in salt-sensitive humans. J Hum Hypertens 2009;
23: 826-835 [PMID: 19404315 DOI: 10.1038/jhh.2009.32]
49 Lin PH, Allen JD, Li YJ, Yu M, Lien LF, Svetkey LP. Blood
Pressure-Lowering Mechanisms of the DASH Dietary Pattern.
J Nutr Metab 2012; 2012: 472396 [PMID: 22496969 DOI:
10.1155/2012/472396]
50 Kotchen TA, McCarron DA. Dietary electrolytes and blood
pressure: a statement for healthcare professionals from the
American Heart Association Nutrition Committee. Circulation
1998; 98: 613-617 [PMID: 9714124]
51 Cutler JA, Follmann D, Allender PS. Randomized trials of
sodium reduction: an overview. Am J Clin Nutr 1997; 65:
643S-651S [PMID: 9022560]
52 Svetkey LP, Sacks FM, Obarzanek E, Vollmer WM, Appel
LJ, Lin PH, Karanja NM, Harsha DW, Bray GA, Aickin M,
Proschan MA, Windhauser MM, Swain JF, McCarron PB,
Rhodes DG, Laws RL. The DASH Diet, Sodium Intake and
Blood Pressure Trial (DASH-sodium): rationale and design.
DASH-Sodium Collaborative Research Group. J Am Diet Assoc
1999; 99: S96-104 [PMID: 10450301 DOI: 10.1016/S0002-
8223(99)00423-X]
53 Kawada T, Suzuki S. Attention of salt awareness to prevent
hypertension in the young. J Clin Hypertens (Greenwich)
2011; 13: 933-934 [PMID: 22142354 DOI: 10.1111/�j.1751-7176.
2011.00555.x]
54 Weinberger MH. Salt sensitivity of blood pressure in humans.
Hypertension 1996; 27: 481-490 [PMID: 8613190 DOI:
10.1161/01.HYP.27.3.481]
55 Morimoto A, Uzu T, Fujii T, Nishimura M, Kuroda S, Nakamura
S, Inenaga T, Kimura G. Sodium sensitivity and cardiovascular
events in patients with essential hypertension.
Lancet 1997; 350: 1734-1737 [PMID: 9413464]
56 Tomonari T, Fukuda M, Miura T, Mizuno M, Wakamatsu
TY, Ichikawa T, Miyagi S, Shirasawa Y, Ito A, Yoshida A,
Omori T, Kimura G. Is salt intake an independent risk factor
of stroke mortality? Demographic analysis by regions in
Japan. J Am Soc Hypertens 2011; 5: 456-462 [PMID: 21890446
DOI: 10.1016/j.jash.2011.07.004]
57 Kanbay M, Chen Y, Solak Y, Sanders PW. Mechanisms and
consequences of salt sensitivity and dietary salt intake. Curr
Opin Nephrol Hypertens 2011; 20: 37-43 [PMID: 21088577 DOI:
10.1097/MNH.0b013e32834122f1]
58 Dubach JM, Das S, Rosenzweig A, Clark HA. Visualizing sodium
dynamics in isolated cardiomyocytes using fluorescent
nanosensors. Proc Natl Acad Sci USA 2009; 106: 16145-16150
[PMID: 19805271 DOI: 10.1073/pnas.0905909106]
59 Oberleithner H, Callies C, Kusche-Vihrog K, Schillers H,
Shahin V, Riethm�ller C, Macgregor GA, de Wardener HE.
Potassium softens vascular endothelium and increases nitric
oxide release. Proc Natl Acad Sci USA 2009; 106: 2829-2834
[PMID: 19202069 DOI: 10.1073/pnas.0813069106]
60 Oberleithner H, Riethm�ller C, Schillers H, MacGregor GA,
de Wardener HE, Hausberg M. Plasma sodium stiffens vascular
endothelium and reduces nitric oxide release. Proc Natl
Acad Sci USA 2007; 104: 16281-16286 [PMID: 17911245 DOI:
10.1073/pnas.0707791104]
61 Fels J, Oberleithner H, Kusche-Vihrog K. M�nage � trois: aldosterone,
sodium and nitric oxide in vascular endothelium.
Biochim Biophys Acta 2010; 1802: 1193-1202 [PMID: 20302930
DOI: 10.1016/j.bbadis.2010.03.006]
62 Oberleithner H, Kusche-Vihrog K, Schillers H. Endothelial
cells as vascular salt sensors. Kidney Int 2010; 77: 490-494
[PMID: 20054292 DOI: 10.1038/ki.2009.490]
63 Kusche-Vihrog K, Callies C, Fels J, Oberleithner H. The
epithelial sodium channel (ENaC): Mediator of the aldosterone
response in the vascular endothelium? Steroids
2010; 75: 544-549 [PMID: 19778545 DOI: 10.1016/�j.steroids.2009.09.003]
64 Fels J, Callies C, Kusche-Vihrog K, Oberleithner H. Nitric
oxide release follows endothelial nanomechanics and not
vice versa. Pflugers Arch 2010; 460: 915-923 [PMID: 20809399
DOI: 10.1007/s00424-010-0871-8]
65 Callies C, Fels J, Liashkovich I, Kliche K, Jeggle P, KuscheVihrog
K, Oberleithner H. Membrane potential depolarization
decreases the stiffness of vascular endothelial cells. J
Cell Sci 2011; 124: 1936-1942 [PMID: 21558418 DOI: 10.1242/
jcs.084657]
66 Kusche-Vihrog K, Urbanova K, Blanqu� A, Wilhelmi M,
Schillers H, Kliche K, Pavenst�dt H, Brand E, Oberleithner
H. C-reactive protein makes human endothelium stiff and tight. Hypertension 2011; 57: 231-237 [PMID: 21149827 DOI: 10.1161/HYPERTENSIONAHA.110.163444]

67 Foulquier S, Dupuis F, Perrin-Sarrado C, Maguin Gat� K,
Merhi-Soussi F, Liminana P, Kwan YW, Capdeville-Atkinson
C, Lartaud I, Atkinson J. High salt intake abolishes AT(2)-
mediated vasodilation of pial arterioles in rats. J Hypertens
2011; 29: 1392-1399 [PMID: 21519278 DOI: 10.1097/�HJH.0b01
3e328347050e]
68 Kusche-Vihrog K, Oberleithner H. An emerging concept of
vascular salt sensitivity. F1000 Biol Rep 2012; 4: 20 [PMID:
23112808 DOI: 10.3410/B4-20]
69 Popov S, Silveira A, W�gs�ter D, Takemori H, Oguro R,
Matsumoto S, Sugimoto K, Kamide K, Hirose T, Satoh M,
Metoki H, Kikuya M, Ohkubo T, Katsuya T, Rakugi H, Imai
Y, Sanchez F, Leosdottir M, Syv�nen AC, Hamsten A, Melander
O, Bertorello AM. Salt-inducible kinase 1 influences
Na(+),K(+)-ATPase activity in vascular smooth muscle cells
and associates with variations in blood pressure. J Hypertens
2011; 29: 2395-2403 [PMID: 22045124 DOI: 10.1097/�HJH.0b01
3e32834d3d55]
70 Houston MC. Nutraceuticals, vitamins, antioxidants, and
minerals in the prevention and treatment of hypertension.
Prog Cardiovasc Dis 2005; 47: 396-449 [PMID: 16115519 DOI:
10.1016/j.pcad.2005.01.004]
71 Houston MC. Nutrition and nutraceutical supplements in
the treatment of hypertension. Expert Rev Cardiovasc Ther
2010; 8: 821-833 [PMID: 20528640 DOI: 10.1586/erc.10.63]
72 Messerli FH, Schmieder RE, Weir MR. Salt. A perpetrator of
hypertensive target organ disease? Arch Intern Med 1997; 157:
2449-2452 [PMID: 9385295 DOI: 10.1001/archinte.1997.00440
420077006]
73 Oliver WJ, Cohen EL, Neel JV. Blood pressure, sodium intake,
and sodium related hormones in the Yanomamo Indians,
a �no-salt� culture. Circulation 1975; 52: 146-151 [PMID:
1132118 DOI: 10.1161/01.CIR.52.1.146]
74 Kawasaki T, Delea CS, Bartter FC, Smith H. The effect of
high-sodium and low-sodium intakes on blood pressure and
other related variables in human subjects with idiopathic hypertension.
Am J Med 1978; 64: 193-198 [PMID: 629267 DOI:
10.1016/0002-9343(78)90045-1]
75 Toda N, Arakawa K. Salt-induced hemodynamic regulation
mediated by nitric oxide. J Hypertens 2011; 29: 415-424 [PMID:
21150639 DOI: 10.1097/HJH.0b013e328341d19e]
76 Whelton PK, He J. Potassium in preventing and treating
high blood pressure. Semin Nephrol 1999; 19: 494-499 [PMID:
10511389]
77 Gu D, He J, Wu X, Duan X, Whelton PK. Effect of potassium
supplementation on blood pressure in Chinese: a randomized,
placebo-controlled trial. J Hypertens 2001; 19: 1325-1331
[PMID: 11446724 DOI: 10.1097/00004872-200107000-00019]
78 He J, Gu D, Kelly TN, Hixson JE, Rao DC, Jaquish CE, Chen
J, Zhao Q, Gu C, Huang J, Shimmin LC, Chen JC, Mu J, Ji X,
Liu DP, Whelton PK. Genetic variants in the renin-angiotensin-aldosterone
system and blood pressure responses to
potassium intake. J Hypertens 2011; 29: 1719-1730 [PMID:
21799445 DOI: 10.1097/HJH.0b013e32834a4d1f]
79 O�Donnell MJ, Yusuf S, Mente A, Gao P, Mann JF, Teo K,
McQueen M, Sleight P, Sharma AM, Dans A, Probstfield J,
Schmieder RE. Urinary sodium and potassium excretion and
risk of cardiovascular events. JAMA 2011; 306: 2229-2238
[PMID: 22110105 DOI: 10.1001/jama.2011.1729]
80 Widman L, Wester PO, Stegmayr BK, Wirell M. The dosedependent
reduction in blood pressure through administration
of magnesium. A double blind placebo controlled crossover
study. Am J Hypertens 1993; 6: 41-45 [PMID: 8427660]
81 Laurant P, Touyz RM. Physiological and pathophysiological
role of magnesium in the cardiovascular system: implications
in hypertension. J Hypertens 2000; 18: 1177-1191 [PMID:
10994748 DOI: 10.1097/00004872-200018090-00003]
82 Houston M. The role of magnesium in hypertension and
cardiovascular disease. J Clin Hypertens (Greenwich) 2011;
13: 843-847 [PMID: 22051430 DOI: 10.1111/�j.1751-7176.2011.0
0538.x]
83 Rosanoff A, Weaver CM, Rude RK. Suboptimal magnesium
status in the United States: are the health consequences underestimated?
Nutr Rev 2012; 70: 153-164 [PMID: 22364157
DOI: 10.1111/j.1753-4887.2011.00465.x]
84 Song Y, Liu S. Magnesium for cardiovascular health: time
for intervention. Am J Clin Nutr 2012; 95: 269-270 [PMID:
22218155 DOI: 10.3945/ajcn.111.031104]
85 Kupetsky-Rincon EA, Uitto J. Magnesium: novel applications
in cardiovascular disease–a review of the literature.
Ann Nutr Metab 2012; 61: 102-110 [PMID: 22907037 DOI:
10.1159/000339380]
86 Cunha AR, Umbelino B, Correia ML, Neves MF. Magnesium
and vascular changes in hypertension. Int J Hypertens 2012;
2012: 754250 [PMID: 22518291 DOI: 10.1155/2012/754250]
87 Kass L, Weekes J, Carpenter L. Effect of magnesium supplementation
on blood pressure: a meta-analysis. Eur J Clin Nutr
2012; 66: 411-418 [PMID: 22318649 DOI: 10.1038/ejcn.2012.4]
88 McCarron DA. Role of adequate dietary calcium intake in
the prevention and management of salt-sensitive hypertension.
Am J Clin Nutr 1997; 65: 712S-716S [PMID: 9022571]
89 Resnick LM. Calcium metabolism in hypertension and allied
metabolic disorders. Diabetes Care 1991; 14: 505-520 [PMID:
1864222 DOI: 10.2337/diacare.14.6.505]
90 Garc�a Zozaya JL, Padilla Viloria M. [Alterations of calcium,
magnesium, and zinc in essential hypertension: their relation
to the renin-angiotensin-aldosterone system]. Invest Clin
1997; 38 Suppl 2: 27-40 [PMID: 9471228]
91 Carpenter WE, Lam D, Toney GM, Weintraub NL, Qin Z.
Zinc, copper, and blood pressure: Human population studies.
Med Sci Monit 2013; 19: 1-8 [PMID: 23291705 DOI: 10.12659/
MSM.883708]
92 Shahbaz AU, Sun Y, Bhattacharya SK, Ahokas RA, Gerling
IC, McGee JE, Weber KT. Fibrosis in hypertensive heart disease:
molecular pathways and cardioprotective strategies. J
Hypertens 2010; 28 Suppl 1: S25-S32 [PMID: 20823713 DOI:
10.1097/01.hjh.0000388491.35836.d2]
93 Bergomi M, Rovesti S, Vinceti M, Vivoli R, Caselgrandi E,
Vivoli G. Zinc and copper status and blood pressure. J Trace
Elem Med Biol 1997; 11: 166-169 [PMID: 9442464 DOI: 10.1016/
S0946-672X(97)80047-8]
94 Stamler J, Elliott P, Kesteloot H, Nichols R, Claeys G, Dyer
AR, Stamler R. Inverse relation of dietary protein markers
with blood pressure. Findings for 10,020 men and women in
the INTERSALT Study. INTERSALT Cooperative Research
Group. INTERnational study of SALT and blood pressure.
Circulation 1996; 94: 1629-1634 [PMID: 8840854 DOI:
10.1161/01.CIR.94.7.1629]
95 Altorf-van der Kuil W, Engberink MF, Brink EJ, van Baak
MA, Bakker SJ, Navis G, van �t Veer P, Geleijnse JM. Dietary
protein and blood pressure: a systematic review. PLoS One
2010; 5: e12102 [PMID: 20711407 DOI: 10.1371/journal.
pone.0012102]
96 Jenkins DJ, Kendall CW, Faulkner DA, Kemp T, Marchie
A, Nguyen TH, Wong JM, de Souza R, Emam A, Vidgen E,
Trautwein EA, Lapsley KG, Josse RG, Leiter LA, Singer W.
Long-term effects of a plant-based dietary portfolio of cholesterol-lowering
foods on blood pressure. Eur J Clin Nutr 2008;
62: 781-788 [PMID: 17457340 DOI: 10.1038/sj.ejcn.1602768]
97 Elliott P, Dennis B, Dyer AR. Relation of dietary protein
(total, vegetable, animal) to blood pressure: INTERMAP
epidemiologic study. Presented at the 18th Scientific Meeting
of the International Society of Hypertension, Chicago, IL,
August 20-24, 2000
98 Rebholz CM, Friedman EE, Powers LJ, Arroyave WD, He J,
Kelly TN. Dietary protein intake and blood pressure: a metaanalysis
of randomized controlled trials. Am J Epidemiol 2012;
176 Suppl 7: S27-S43 [PMID: 23035142 DOI: 10.1093/aje/
kws245]
99 Larsson SC, Virtamo J, Wolk A. Dietary protein intake and�risk of stroke in women. Atherosclerosis 2012; 224: 247-251 [PMID: 22854187]

100 He J, Wofford MR, Reynolds K, Chen J, Chen CS, Myers L,
Minor DL, Elmer PJ, Jones DW, Whelton PK. Effect of dietary
protein supplementation on blood pressure: a randomized,
controlled trial. Circulation 2011; 124: 589-595 [PMID:
21768541 DOI: 10.1161/CIRCULATIONAHA.110.009159]
101 Teunissen-Beekman KF, Dopheide J, Geleijnse JM, Bakker
SJ, Brink EJ, de Leeuw PW, van Baak MA. Protein supplementation
lowers blood pressure in overweight adults: effect
of dietary proteins on blood pressure (PROPRES), a randomized
trial. Am J Clin Nutr 2012; 95: 966-971 [PMID: 22357725
DOI: 10.3945/ajcn.111.029116]
102 FitzGerald RJ, Murray BA, Walsh DJ. Hypotensive peptides
from milk proteins. J Nutr 2004; 134: 980S-988S [PMID:
15051858]
103 Pins JJ, Keenan JM. Effects of whey peptides on cardiovascular
disease risk factors. J Clin Hypertens (Greenwich) 2006; 8:
775-782 [PMID: 17086017 DOI: 10.1111/�j.1524-6175.2006.0566
7.x]
104 Aihara K, Kajimoto O, Hirata H, Takahashi R, Nakamura
Y. Effect of powdered fermented milk with Lactobacillus
helveticus on subjects with high-normal blood pressure or
mild hypertension. J Am Coll Nutr 2005; 24: 257-265 [PMID:
16093403 DOI: 10.1080/07315724.2005.10719473]
105 Germino FW, Neutel J, Nonaka M, Hendler SS. The impact of
lactotripeptides on blood pressure response in stage 1 and stage
2 hypertensives. J Clin Hypertens (Greenwich) 2010; 12: 153-159
[PMID: 20433527 DOI: 10.1111/�j.1751-7176.2009.00250.x]
106 Geleijnse JM, Engberink MF. Lactopeptides and human
blood pressure. Curr Opin Lipidol 2010; 21: 58-63 [PMID:
19884823 DOI: 10.1097/MOL.0b013e3283333813]
107 Cicero AF, Aubin F, Azais-Braesco V, Borghi C. Do the lactotripeptides
isoleucine-proline-proline and valine-prolineproline
reduce systolic blood pressure in European subjects?
A meta-analysis of randomized controlled trials. Am J Hypertens
2013; 26: 442-449 [PMID: 23382495 DOI: 10.1093/ajh/
hps044]
108 Usinger L, Reimer C, Ibsen H. Fermented milk for hypertension.
Cochrane Database Syst Rev 2012; 4: CD008118 [PMID:
22513955 DOI: 10.1002/14651858.CD008118.pub2]
109 Ricci-Cabello I, Herrera MO, Artacho R. Possible role of
milk-derived bioactive peptides in the treatment and prevention
of metabolic syndrome. Nutr Rev 2012; 70: 241-255
[PMID: 22458697 DOI: 10.1111/j.1753-4887.2011.00448.x]
110 Jauhiainen T, Niittynen L, Ore�i? M, J�rvenp�� S, Hiltunen
TP, R�nnback M, Vapaatalo H, Korpela R. Effects of longterm
intake of lactotripeptides on cardiovascular risk factors
in hypertensive subjects. Eur J Clin Nutr 2012; 66: 843-849
[PMID: 22617279 DOI: 10.1038/ejcn.2012.44]
111 Pins JJ, Keenan JM. The antihypertensive effects of a hydrolyzed
whey protein isolate supplement. Cardiovasc Drugs
Ther 2002; 16: 68
112 Pal S, Radavelli-Bagatini S. The effects of whey protein
on cardiometabolic risk factors. Obes Rev 2013; 14: 324-343
[PMID: 23167434 DOI: 10.1111/obr.12005]
113 Zhu CF, Li GZ, Peng HB, Zhang F, Chen Y, Li Y. Therapeutic
effects of marine collagen peptides on Chinese patients
with type 2 diabetes mellitus and primary hypertension. Am
J Med Sci 2010; 340: 360-366 [PMID: 20739874 DOI: 10.1097/
MAJ.0b013e3181edfcf2]
114 De Leo F, Panarese S, Gallerani R, Ceci LR. Angiotensin converting
enzyme (ACE) inhibitory peptides: production and
implementation of functional food. Curr Pharm Des 2009; 15:
3622-3643 [PMID: 19925416 DOI: 10.2174/138161209789271834]
115 Lordan S, Ross RP, Stanton C. Marine bioactives as functional
food ingredients: potential to reduce the incidence
of chronic diseases. Mar Drugs 2011; 9: 1056-1100 [PMID:
21747748 DOI: 10.3390/md9061056]
116 Fujita H, Yoshikawa M. LKPNM: a prodrug-type ACEinhibitory
peptide derived from fish protein. Immunopharmacology
1999; 44: 123-127 [PMID: 10604535 DOI: 10.1016/�S0162
-3109(99)00118-6]
117 Kawasaki T, Seki E, Osajima K, Yoshida M, Asada K, Matsui
T, Osajima Y. Antihypertensive effect of valyl-tyrosine, a
short chain peptide derived from sardine muscle hydrolyzate,
on mild hypertensive subjects. J Hum Hypertens 2000;
14: 519-523 [PMID: 10962520 DOI: 10.1038/sj.jhh.1001065]
118 Kawasaki T, Jun CJ, Fukushima Y, Kegai K, Seki E, Osajima
K, Itoh K, Matsui T, Matsumoto K. [Antihypertensive effect
and safety evaluation of vegetable drink with peptides
derived from sardine protein hydrolysates on mild hypertensive,
high-normal and normal blood pressure subjects].
Fukuoka Igaku Zasshi 2002; 93: 208-218 [PMID: 12471719]
119 Yang G, Shu XO, Jin F, Zhang X, Li HL, Li Q, Gao YT, Zheng
W. Longitudinal study of soy food intake and blood pressure
among middle-aged and elderly Chinese women. Am J
Clin Nutr 2005; 81: 1012-1017 [PMID: 15883423]
120 Dong JY, Tong X, Wu ZW, Xun PC, He K, Qin LQ. Effect
of soya protein on blood pressure: a meta-analysis of randomised
controlled trials. Br J Nutr 2011; 106: 317-326 [PMID:
21342608 DOI: 10.1017/S0007114511000262]
121 Teede HJ, Giannopoulos D, Dalais FS, Hodgson J, McGrath
BP. Randomised, controlled, cross-over trial of soy protein
with isoflavones on blood pressure and arterial function in
hypertensive subjects. J Am Coll Nutr 2006; 25: 533-540 [PMID:
17229901 DOI: 10.1080/07315724.2006.10719569]
122 Welty FK, Lee KS, Lew NS, Zhou JR. Effect of soy nuts on
blood pressure and lipid levels in hypertensive, prehypertensive,
and normotensive postmenopausal women. Arch
Intern Med 2007; 167: 1060-1067 [PMID: 17533209 DOI:
10.1001/archinte.167.10.1060]
123 Rosero Arenas MA, Rosero Arenas E, Portaceli Armi�ana
MA, Garc�a Garc�a MA. [Usefulness of phyto-oestrogens in
reduction of blood pressure. Systematic review and metaanalysis].
Aten Primaria 2008; 40: 177-186 [PMID: 18405582]
124 Nasca MM, Zhou JR, Welty FK. Effect of soy nuts on adhesion
molecules and markers of inflammation in hypertensive
and normotensive postmenopausal women. Am
J Cardiol 2008; 102: 84-86 [PMID: 18572041 DOI: 10.1016/
j.amjcard.2008.02.100]
125 He J, Gu D, Wu X, Chen J, Duan X, Chen J, Whelton PK.
Effect of soybean protein on blood pressure: a randomized,
controlled trial. Ann Intern Med 2005; 143: 1-9 [PMID:
15998749 DOI: 10.7326/0003-4819-143-1-200507050-00004]
126 Hasler CM, Kundrat S, Wool D. Functional foods and cardiovascular
disease. Curr Atheroscler Rep 2000; 2: 467-475
[PMID: 11122780 DOI: 10.1007/s11883-000-0045-9]
127 Tikkanen MJ, Adlercreutz H. Dietary soy-derived isoflavone
phytoestrogens. Could they have a role in coronary
heart disease prevention? Biochem Pharmacol 2000; 60: 1-5
[PMID: 10807939]
128 Begg DP, Sinclair AJ, Stahl LA, Garg ML, Jois M, Weisinger
RS. Dietary protein level interacts with omega-3 polyunsaturated
fatty acid deficiency to induce hypertension. Am J
Hypertens 2010; 23: 125-128 [PMID: 19893499 DOI: 10.1038/
ajh.2009.198]
129 Vallance P, Leone A, Calver A, Collier J, Moncada S. Endogenous
dimethylarginine as an inhibitor of nitric oxide
synthesis. J Cardiovasc Pharmacol 1992; 20 Suppl 12: S60-S62
[PMID: 1282988 DOI: 10.1097/00005344-199204002-00018]
130 Sonmez A, Celebi G, Erdem G, Tapan S, Genc H, Tasci I,
Ercin CN, Dogru T, Kilic S, Uckaya G, Yilmaz MI, Erbil MK,
Kutlu M. Plasma apelin and ADMA Levels in patients with
essential hypertension. Clin Exp Hypertens 2010; 32: 179-183
[PMID: 20504125 DOI: 10.3109/10641960903254505]
131 Michell DL, Andrews KL, Chin-Dusting JP. Endothelial
dysfunction in hypertension: the role of arginase. Front Biosci
(Schol Ed) 2011; 3: 946-960 [PMID: 21622244]
132 Rajapakse NW, Mattson DL. Role of L-arginine in nitric oxide
production in health and hypertension. Clin Exp Pharmacol
Physiol 2009; 36: 249-255 [PMID: 19076168 DOI: 10.1111/j.1440-1681.2008.05123.x]

133 Tsioufis C, Dimitriadis K, Andrikou E, Thomopoulos C,
Tsiachris D, Stefanadi E, Mihas C, Miliou A, Papademetriou
V, Stefanadis C. ADMA, C-reactive protein, and albuminuria
in untreated essential hypertension: a cross-sectional study.
Am J Kidney Dis 2010; 55: 1050-1059 [PMID: 20189274 DOI:
10.1053/j.ajkd.2009.11.024]
134 Rajapakse NW, Mattson DL. Role of cellular L-arginine
uptake and nitric oxide production on renal blood flow and
arterial pressure regulation. Curr Opin Nephrol Hypertens
2013; 22: 45-50 [PMID: 23095292 DOI: 10.1097/�MNH.0b013e
32835a6ff7]
135 Ruiz-Hurtado G, Delgado C. Nitric oxide pathway in hypertrophied
heart: new therapeutic uses of nitric oxide donors.
J Hypertens 2010; 28 Suppl 1: S56-S61 [PMID: 20823718 DOI:
10.1097/01.hjh.0000388496.66330.b8]
136 Siani A, Pagano E, Iacone R, Iacoviello L, Scopacasa F, Strazzullo
P. Blood pressure and metabolic changes during dietary
L-arginine supplementation in humans. Am J Hypertens
2000; 13: 547-551 [PMID: 10826408 DOI: 10.1016/�S0895-7061(
99)00233-2]
137 Facchinetti F, Saade GR, Neri I, Pizzi C, Longo M, Volpe
A. L-arginine supplementation in patients with gestational
hypertension: a pilot study. Hypertens Pregnancy 2007; 26:
121-130 [PMID: 17454224 DOI: 10.1080/10641950601147994]
138 Neri I, Monari F, Sgarbi L, Berardi A, Masellis G, Facchinetti
F. L-arginine supplementation in women with chronic hypertension:
impact on blood pressure and maternal and neonatal
complications. J Matern Fetal Neonatal Med 2010; 23: 1456-1460
[PMID: 20958228 DOI: 10.3109/14767051003677962]
139 Martina V, Masha A, Gigliardi VR, Brocato L, Manzato E,
Berchio A, Massarenti P, Settanni F, Della Casa L, Bergamini
S, Iannone A. Long-term N-acetylcysteine and L-arginine
administration reduces endothelial activation and systolic
blood pressure in hypertensive patients with type 2 diabetes.
Diabetes Care 2008; 31: 940-944 [PMID: 18268065 DOI:
10.2337/dc07-2251]
140 Ast J, Jablecka A, Bogdanski P, Smolarek I, Krauss H, Chmara
E. Evaluation of the antihypertensive effect of L-arginine
supplementation in patients with mild hypertension assessed
with ambulatory blood pressure monitoring. Med Sci
Monit 2010; 16: CR266-CR271 [PMID: 20424555]
141 Dong JY, Qin LQ, Zhang Z, Zhao Y, Wang J, Arigoni F,
Zhang W. Effect of oral L-arginine supplementation on
blood pressure: a meta-analysis of randomized, doubleblind,
placebo-controlled trials. Am Heart J 2011; 162: 959-965
[PMID: 22137067 DOI: 10.1016/j.ahj.2011.09.012]
142 Miller GD, Marsh AP, Dove RW, Beavers D, Presley T,
Helms C, Bechtold E, King SB, Kim-Shapiro D. Plasma nitrate
and nitrite are increased by a high-nitrate supplement but
not by high-nitrate foods in older adults. Nutr Res 2012; 32:
160-168 [PMID: 22464802 DOI: 10.1016/j.nutres.2012.02.002]
143 Schulman SP, Becker LC, Kass DA, Champion HC, Terrin
ML, Forman S, Ernst KV, Kelemen MD, Townsend SN,
Capriotti A, Hare JM, Gerstenblith G. L-arginine therapy in
acute myocardial infarction: the Vascular Interaction With
Age in Myocardial Infarction (VINTAGE MI) randomized
clinical trial. JAMA 2006; 295: 58-64 [PMID: 16391217 DOI:
10.1001/jama.295.1.58]
144 Miguel-Carrasco JL, Monserrat MT, Mate A, V�zquez CM.
Comparative effects of captopril and l-carnitine on blood
pressure and antioxidant enzyme gene expression in the heart
of spontaneously hypertensive rats. Eur J Pharmacol 2010; 632:
65-72 [PMID: 20123095 DOI: 10.1016/�j.ejphar.2010.01.017]
145 Zambrano S, Blanca AJ, Ruiz-Armenta MV, Miguel-Carrasco
JL, Ar�valo M, V�zquez MJ, Mate A, V�zquez CM. L-Carnitine
protects against arterial hypertension-related cardiac
fibrosis through modulation of PPAR-? expression. Biochem
Pharmacol 2013; 85: 937-944 [PMID: 23295156 DOI: 10.1016/
j.bcp.2012.12.021]
146 Vilskersts R, Kuka J, Svalbe B, Cirule H, Liepinsh E, Grinberga
S, Kalvinsh I, Dambrova M. Administration of L-carnitine
and mildronate improves endothelial function and
decreases mortality in hypertensive Dahl rats. Pharmacol Rep
2011; 63: 752-762 [PMID: 21857086]
147 Mate A, Miguel-Carrasco JL, Monserrat MT, V�zquez CM.
Systemic antioxidant properties of L-carnitine in two different
models of arterial hypertension. J Physiol Biochem 2010; 66:
127-136 [PMID: 20506010 DOI: 10.1007/s13105-010-0017-7]
148 Digiesi V, Cantini F, Bisi G, Guarino G, Brodbeck B. L-carnitine
adjuvant therapy in essential hypertension. Clin Ter
1994; 144: 391-395 [PMID: 7924177]
149 Ghidini O, Azzurro M, Vita G, Sartori G. Evaluation of the
therapeutic efficacy of L-carnitine in congestive heart failure.
Int J Clin Pharmacol Ther Toxicol 1988; 26: 217-220 [PMID:
3403101]
150 Digiesi V, Palchetti R, Cantini F. [The benefits of L-carnitine
therapy in essential arterial hypertension with diabetes mellitus
type II]. Minerva Med 1989; 80: 227-231 [PMID: 2654758]
151 Ruggenenti P, Cattaneo D, Loriga G, Ledda F, Motterlini N,
Gherardi G, Orisio S, Remuzzi G. Ameliorating hypertension
and insulin resistance in subjects at increased cardiovascular
risk: effects of acetyl-L-carnitine therapy. Hypertension 2009;
54: 567-574 [PMID: 19620516]
152 Mate A, Miguel-Carrasco JL, V�zquez CM. The therapeutic
prospects of using L-carnitine to manage hypertension-related
organ damage. Drug Discov Today 2010; 15: 484-492 [PMID:
20363359 DOI: 10.1016/j.drudis.2010.03.014]
153 Korkmaz S, Y?ld?z G, K?l?�l? F, Y?lmaz A, Ayd?n H, I�a?as?o?lu
S, Candan F. [Low L-carnitine levels: can it be a cause of
nocturnal blood pressure changes in patients with type 2 diabetes
mellitus?]. Anadolu Kardiyol Derg 2011; 11: 57-63 [PMID:
21220248 DOI: 10.5152/akd.2011.008]
154 Huxtable RJ. Physiological actions of taurine. Physiol Rev
1992; 72: 101-163 [PMID: 1731369]
155 Fujita T, Ando K, Noda H, Ito Y, Sato Y. Effects of increased
adrenomedullary activity and taurine in young patients with
borderline hypertension. Circulation 1987; 75: 525-532 [PMID:
3815764 DOI: 10.1161/01.CIR.75.3.525]
156 Huxtable RJ, Sebring LA. Cardiovascular actions of taurine.
Prog Clin Biol Res 1983; 125: 5-37 [PMID: 6348796]
157 Feng Y, Li J, Yang J, Yang Q, Lv Q, Gao Y, Hu J. Synergistic
effects of taurine and L-arginine on attenuating insulin resistance
hypertension. Adv Exp Med Biol 2013; 775: 427-435
[PMID: 23392951 DOI: 10.1007/978-1-4614-6130-2_32]
158 W�jcik OP, Koenig KL, Zeleniuch-Jacquotte A, Pearte C,
Costa M, Chen Y. Serum taurine and risk of coronary heart
disease: a prospective, nested case-control study. Eur J Nutr
2013; 52: 169-178 [PMID: 22322924 DOI: 10.1007/�s00394-011-
0300-6]
159 Abebe W, Mozaffari MS. Role of taurine in the vasculature:
an overview of experimental and human studies. Am J Cardiovasc
Dis 2011; 1: 293-311 [PMID: 22254206]
160 Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori
M. Taurine in health and diseases: consistent evidence from
experimental and epidemiological studies. J Biomed Sci 2010; 17
Suppl 1: S6 [PMID: 20804626 DOI: 10.1186/1423-0127-17-S1-S6]
161 Yamori Y, Taguchi T, Mori H, Mori M. Low cardiovascular
risks in the middle aged males and females excreting greater
24-hour urinary taurine and magnesium in 41 WHO-CARDIAC
study populations in the world. J Biomed Sci 2010; 17 Suppl
1: S21 [PMID: 20804596 DOI: 10.1186/1423-0127-17-S1-S21]
162 Tanabe Y, Urata H, Kiyonaga A, Ikeda M, Tanaka H, Shindo
M, Arakawa K. Changes in serum concentrations of taurine
and other amino acids in clinical antihypertensive exercise
therapy. Clin Exp Hypertens A 1989; 11: 149-165 [PMID:
2565773]
163 Mori TA, Bao DQ, Burke V, Puddey IB, Beilin LJ. Docosahexaenoic
acid but not eicosapentaenoic acid lowers ambulatory
blood pressure and heart rate in humans. Hypertension
1999; 34: 253-260 [PMID: 10454450 DOI: 10.1161/01.
HYP.34.2.253]

164 B�naa KH, Bjerve KS, Straume B, Gram IT, Thelle D. Effect
of eicosapentaenoic and docosahexaenoic acids on blood
pressure in hypertension. A population-based intervention
trial from the Troms� study. N Engl J Med 1990; 322: 795-801
[PMID: 2137901 DOI: 10.1056/NEJM199003223221202]
165 Mori TA, Burke V, Puddey I, Irish A, Cowpland CA, Beilin
L, Dogra G, Watts GF. The effects of [omega]3 fatty acids
and coenzyme Q10 on blood pressure and heart rate in
chronic kidney disease: a randomized controlled trial. J Hypertens
2009; 27: 1863-1872 [PMID: 19705518 DOI: 10.1097/
HJH.0b013e32832e1bd9]
166 Ueshima H, Stamler J, Elliott P, Chan Q, Brown IJ, Carnethon
MR, Daviglus ML, He K, Moag-Stahlberg A, Rodriguez
BL, Steffen LM, Van Horn L, Yarnell J, Zhou B. Food
omega-3 fatty acid intake of individuals (total, linolenic acid,
long-chain) and their blood pressure: INTERMAP study. Hypertension
2007; 50: 313-319 [PMID: 17548718]
167 Mori TA. Omega-3 fatty acids and hypertension in humans.
Clin Exp Pharmacol Physiol 2006; 33: 842-846 [PMID: 16922818
DOI: 10.1111/j.1440-1681.2006.04451.x]
168 Noreen EE, Brandauer J. The effects of supplemental fish
oil on blood pressure and morning cortisol in normotensive
adults: a pilot study. J Complement Integr Med 2012; 9:
1553-3840 [PMID: 23104856 DOI: 10.1515/1553-3840.1467]
169 Bhise A, Krishnan PV, Aggarwal R, Gaiha M, Bhattacharjee
J. Effect of low-dose omega-3 fatty acids substitution
on blood pressure, hyperinsulinemia and dyslipidemia in
Indians with essential hypertension: A pilot study. Indian J
Clin Biochem 2005; 20: 4-9 [PMID: 23105526 DOI: 10.1007/
BF02867393]
170 Cabo J, Alonso R, Mata P. Omega-3 fatty acids and blood
pressure. Br J Nutr 2012; 107 Suppl 2: S195-S200 [PMID:
22591893 DOI: 10.1017/S0007114512001584]
171 Huang T, Shou T, Cai N, Wahlqvist ML, Li D. Associations
of plasma n-3 polyunsaturated fatty acids with blood pressure
and cardiovascular risk factors among Chinese. Int J
Food Sci Nutr 2012; 63: 667-673 [PMID: 22263527 DOI: 10.310
9/09637486.2011.652076]
172 Sagara M, Njelekela M, Teramoto T, Taguchi T, Mori M,
Armitage L, Birt N, Birt C, Yamori Y. Effects of docosahexaenoic
Acid supplementation on blood pressure, heart rate,
and serum lipids in Scottish men with hypertension and hypercholesterolemia.
Int J Hypertens 2011; 2011: 809198 [PMID:
21423683 DOI: 10.4061/2011/809198]
173 Passfall J, Philipp T, Woermann F, Quass P, Thiede M,
Haller H. Different effects of eicosapentaenoic acid and olive
oil on blood pressure, intracellular free platelet calcium, and
plasma lipids in patients with essential hypertension. Clin
Investig 1993; 71: 628-633 [PMID: 8219660]
174 Liu JC, Conklin SM, Manuck SB, Yao JK, Muldoon MF.
Long-chain omega-3 fatty acids and blood pressure. Am J
Hypertens 2011; 24: 1121-1126 [PMID: 21753804 DOI: 10.1038/
ajh.2011.120]
175 Engler MM, Schambelan M, Engler MB, Ball DL, Goodfriend
TL. Effects of dietary gamma-linolenic acid on blood pressure
and adrenal angiotensin receptors in hypertensive rats.
Proc Soc Exp Biol Med 1998; 218: 234-237 [PMID: 9648942]
176 Chin JP. Marine oils and cardiovascular reactivity. Prostaglandins
Leukot Essent Fatty Acids 1994; 50: 211-222 [PMID:
8066094 DOI: 10.1016/0952-3278(94)90156-2]
177 Saravanan P, Davidson NC, Schmidt EB, Calder PC. Cardiovascular
effects of marine omega-3 fatty acids. Lancet
2010; 376: 540-550 [PMID: 20638121 DOI: 10.1016/S0140-
6736(10)60445-X]
178 Ferrara LA, Raimondi AS, d�Episcopo L, Guida L, Dello
Russo A, Marotta T. Olive oil and reduced need for antihypertensive
medications. Arch Intern Med 2000; 160: 837-842
[PMID: 10737284 DOI: 10.1001/archinte.160.6.837]
179 Alonso A, Ruiz-Gutierrez V, Mart�nez-Gonz�lez MA. Monounsaturated
fatty acids, olive oil and blood pressure: epidemiological,
clinical and experimental evidence. Public Health
Nutr 2006; 9: 251-257 [PMID: 16571180]
180 Ter�s S, Barcel�-Coblijn G, Benet M, Alvarez R, Bressani R,
Halver JE, Escrib� PV. Oleic acid content is responsible for
the reduction in blood pressure induced by olive oil. Proc
Natl Acad Sci USA 2008; 105: 13811-13816 [PMID: 18772370
DOI: 10.1073/pnas.0807500105]
181 Cherif S, Rahal N, Haouala M, Hizaoui B, Dargouth F,
Gueddiche M, Kallel Z, Balansard G, Boukef K. [A clinical
trial of a titrated Olea extract in the treatment of essential
arterial hypertension]. J Pharm Belg 1996; 51: 69-71 [PMID:
8786521]
182 Psaltopoulou T, Naska A, Orfanos P, Trichopoulos D,
Mountokalakis T, Trichopoulou A. Olive oil, the Mediterranean
diet, and arterial blood pressure: the Greek European
Prospective Investigation into Cancer and Nutrition (EPIC)
study. Am J Clin Nutr 2004; 80: 1012-1018 [PMID: 15447913]
183 Alonso A, Mart�nez-Gonz�lez MA. Olive oil consumption
and reduced incidence of hypertension: the SUN study. Lipids
2004; 39: 1233-1238 [PMID: 15736920 DOI: 10.1007/�s11745
-004-1352-x]
184 Perrinjaquet-Moccetti T, Busjahn A, Schmidlin C, Schmidt
A, Bradl B, Aydogan C. Food supplementation with an olive
(Olea europaea L.) leaf extract reduces blood pressure in borderline
hypertensive monozygotic twins. Phytother Res 2008;
22: 1239-1242 [PMID: 18729245 DOI: 10.1002/ptr.2455]
185 Moreno-Luna R, Mu�oz-Hernandez R, Miranda ML, Costa
AF, Jimenez-Jimenez L, Vallejo-Vaz AJ, Muriana FJ, Villar J,
Stiefel P. Olive oil polyphenols decrease blood pressure and
improve endothelial function in young women with mild
hypertension. Am J Hypertens 2012; 25: 1299-1304 [PMID:
22914255 DOI: 10.1038/ajh.2012.128]
186 Thomsen C, Rasmussen OW, Hansen KW, Vesterlund M,
Hermansen K. Comparison of the effects on the diurnal
blood pressure, glucose, and lipid levels of a diet rich in
monounsaturated fatty acids with a diet rich in polyunsaturated
fatty acids in type 2 diabetic subjects. Diabet Med 1995;
12: 600-606 [PMID: 7554782 DOI: 10.1111/j.1464-5491.1995.
tb00549.x]
187 Perona JS, Ca�izares J, Montero E, S�nchez-Dom�nguez JM,
Catal� A, Ruiz-Guti�rrez V. Virgin olive oil reduces blood
pressure in hypertensive elderly subjects. Clin Nutr 2004; 23:
1113-1121 [PMID: 15380903 DOI: 10.1016/j.clnu.2004.02.004]
188 Perona JS, Montero E, S�nchez-Dom�nguez JM, Ca�izares
J, Garcia M, Ruiz-Guti�rrez V. Evaluation of the effect of
dietary virgin olive oil on blood pressure and lipid composition
of serum and low-density lipoprotein in elderly type
2 diabetic subjects. J Agric Food Chem 2009; 57: 11427-11433
[PMID: 19902947 DOI: 10.1021/jf902321x]
189 Susalit E, Agus N, Effendi I, Tjandrawinata RR, Nofiarny
D, Perrinjaquet-Moccetti T, Verbruggen M. Olive (Olea europaea)
leaf extract effective in patients with stage-1 hypertension:
comparison with Captopril. Phytomedicine 2011; 18:
251-258 [PMID: 21036583 DOI: 10.1016/�j.phymed.2010.08.016]
190 L�pez-Miranda J, P�rez-Jim�nez F, Ros E, De Caterina R,
Badim�n L, Covas MI, Escrich E, Ordov�s JM, Soriguer F,
Abi� R, de la Lastra CA, Battino M, Corella D, ChamorroQuir�s
J, Delgado-Lista J, Giugliano D, Esposito K, Estruch
R, Fernandez-Real JM, Gaforio JJ, La Vecchia C, Lairon D,
L�pez-Segura F, Mata P, Men�ndez JA, Muriana FJ, Osada
J, Panagiotakos DB, Paniagua JA, P�rez-Martinez P, Perona
J, Peinado MA, Pineda-Priego M, Poulsen HE, Quiles JL,
Ram�rez-Tortosa MC, Ruano J, Serra-Majem L, Sol� R, Solanas
M, Solfrizzi V, de la Torre-Fornell R, Trichopoulou
A, Uceda M, Villalba-Montoro JM, Villar-Ortiz JR, Visioli
F, Yiannakouris N. Olive oil and health: summary of the II
international conference on olive oil and health consensus
report, Ja�n and C�rdoba (Spain) 2008. Nutr Metab Cardiovasc
Dis 2010; 20: 284-294 [PMID: 20303720 DOI: 10.1016/
j.numecd.2009.12.007]
191 Zhang J, Villacorta L, Chang L, Fan Z, Hamblin M, Zhu T,
Chen CS, Cole MP, Schopfer FJ, Deng CX, Garcia-Barrio MT,�Feng YH, Freeman BA, Chen YE. Nitro-oleic acid inhibits angiotensin II-induced hypertension. Circ Res 2010; 107: 540-548 [PMID: 20558825 DOI: 10.1161/CIRCRESAHA.110.218404]

192 Scheffler A, Rauwald HW, Kampa B, Mann U, Mohr FW,
Dhein S. Olea europaea leaf extract exerts L-type Ca(2+)
channel antagonistic effects. J Ethnopharmacol 2008; 120:
233-240 [PMID: 18790040 DOI: 10.1016/j.jep.2008.08.018]
193 Papamichael CM, Karatzi KN, Papaioannou TG, Karatzis
EN, Katsichti P, Sideris V, Zakopoulos N, Zampelas A,
Lekakis JP. Acute combined effects of olive oil and wine on
pressure wave reflections: another beneficial influence of
the Mediterranean diet antioxidants? J Hypertens 2008; 26:
223-229 [PMID: 18192835 DOI: 10.1097/�HJH.0b013e3282f25b
80]
194 He J, Whelton PK. Effect of dietary fiber and protein intake
on blood pressure: a review of epidemiologic evidence. Clin
Exp Hypertens 1999; 21: 785-796 [PMID: 10423101 DOI: 10.310
9/10641969909061008]
195 Pruijm M, Wuerzer G, Forni V, Bochud M, Pech�re-Bertschi
A, Burnier M. [Nutrition and hypertension: more than table
salt]. Rev Med Suisse 2010; 6: 1715-1716, 1718-1720, [PMID:
21294306]
196 Sherman DL, Keaney JF, Biegelsen ES, Duffy SJ, Coffman
JD, Vita JA. Pharmacological concentrations of ascorbic acid
are required for the beneficial effect on endothelial vasomotor
function in hypertension. Hypertension 2000; 35: 936-941
[PMID: 10775565]
197 Ness AR, Khaw KT, Bingham S, Day NE. Vitamin C status
and blood pressure. J Hypertens 1996; 14: 503-508 [PMID:
8761901]
198 Duffy SJ, Gokce N, Holbrook M, Huang A, Frei B, Keaney
JF, Vita JA. Treatment of hypertension with ascorbic acid.
Lancet 1999; 354: 2048-2049 [PMID: 10636373 DOI: 10.1016/
S0140-6736(99)04410-4]
199 Enstrom JE, Kanim LE, Klein MA. Vitamin C intake and
mortality among a sample of the United States population.
Epidemiology 1992; 3: 194-202 [PMID: 1591317 DOI: 10.1097/0
0001648-199205000-00003]
200 Block G, Jensen CD, Norkus EP, Hudes M, Crawford PB. Vitamin
C in plasma is inversely related to blood pressure and
change in blood pressure during the previous year in young
Black and White women. Nutr J 2008; 7: 35 [PMID: 19091068
DOI: 10.1186/1475-2891-7-35]
201 Hatzitolios A, Iliadis F, Katsiki N, Baltatzi M. Is the antihypertensive
effect of dietary supplements via aldehydes
reduction evidence based? A systematic review. Clin Exp
Hypertens 2008; 30: 628-639 [PMID: 18855266 DOI: 10.1080/1
0641960802443274]
202 Mahajan AS, Babbar R, Kansal N, Agarwal SK, Ray PC. Antihypertensive
and antioxidant action of amlodipine and vitamin
C in patients of essential hypertension. J Clin Biochem Nutr
2007; 40: 141-147 [PMID: 18188416 DOI: 10.3164/�jcbn.40.141]
203 Leclerc PC, Proulx CD, Arguin G, B�langer S, Gobeil F, Escher
E, Leduc R, Guillemette G. Ascorbic acid decreases the binding
affinity of the AT1 receptor for angiotensin II. Am J Hypertens
2008; 21: 67-71 [PMID: 18091746 DOI: 10.1038/�ajh.2007.1]
204 Plantinga Y, Ghiadoni L, Magagna A, Giannarelli C, Franzoni
F, Taddei S, Salvetti A. Supplementation with vitamins
C and E improves arterial stiffness and endothelial
function in essential hypertensive patients. Am J Hypertens
2007; 20: 392-397 [PMID: 17386345 DOI: 10.1016/�j.amjhyper.2006.09.021]
205 Sato K, Dohi Y, Kojima M, Miyagawa K, Takase H, Katada
E, Suzuki S. Effects of ascorbic acid on ambulatory blood
pressure in elderly patients with refractory hypertension.
Arzneimittelforschung 2006; 56: 535-540 [PMID: 16927536]
206 Block G, Mangels AR, Norkus EP, Patterson BH, Levander
OA, Taylor PR. Ascorbic acid status and subsequent diastolic
and systolic blood pressure. Hypertension 2001; 37: 261-267
[PMID: 11230282 DOI: 10.1161/01.HYP.37.2.261]
207 McRae MP. Is vitamin C an effective antihypertensive supplement?
A review and analysis of the literature. J Chiropr
Med 2006; 5: 60-64 [PMID: 19674673 DOI: 10.1016/�S0899-346
7(07)60134-7]
208 Simon JA. Vitamin C and cardiovascular disease: a review. J
Am Coll Nutr 1992; 11: 107-125 [PMID: 1578086]
209 Ness AR, Chee D, Elliott P. Vitamin C and blood pressure-an
overview. J Hum Hypertens 1997; 11: 343-350 [PMID:
9249227 DOI: 10.1038/sj.jhh.1000423]
210 Trout DL. Vitamin C and cardiovascular risk factors. Am J
Clin Nutr 1991; 53: 322S-325S [PMID: 1985405]
211 Fulwood R, Johnson CL, Bryner JD; National Center for
Health Statistics. Hematological and Nutritional Biochemistry
Reference Data for Persons 6 Months-74 Years of Age:
United States, 1976-1980. Washington, DC; US Public Health
Service; 1982 Vital and Health Statistics series 11, No. 232,
DHHS publication No. (PHS) 83-1682
212 Ward NC, Wu JH, Clarke MW, Puddey IB, Burke V, Croft
KD, Hodgson JM. The effect of vitamin E on blood pressure
in individuals with type 2 diabetes: a randomized, doubleblind,
placebo-controlled trial. J Hypertens 2007; 25: 227-234
[PMID: 17143195]
213 Murray ED, Wechter WJ, Kantoci D, Wang WH, Pham T,
Quiggle DD, Gibson KM, Leipold D, Anner BM. Endogenous
natriuretic factors 7: biospecificity of a natriuretic gammatocopherol
metabolite LLU-alpha. J Pharmacol Exp Ther 1997;
282: 657-662 [PMID: 9262327]
214 Gray B, Swick J, Ronnenberg AG. Vitamin E and adiponectin:
proposed mechanism for vitamin E-induced improvement
in insulin sensitivity. Nutr Rev 2011; 69: 155-161 [PMID:
21348879 DOI: 10.1111/j.1753-4887.2011.00377.x]
215 Lind L, H�nni A, Lithell H, Hvarfner A, S�rensen OH,
Ljunghall S. Vitamin D is related to blood pressure and other
cardiovascular risk factors in middle-aged men. Am J Hypertens
1995; 8: 894-901 [PMID: 8541004 DOI: 10.1016/0895-7061
(95)00154-H]
216 Bednarski R, Donderski R, Manitius J. [Role of vitamin D3
in arterial blood pressure control]. Pol Merkur Lekarski 2007;
23: 307-310 [PMID: 18293857]
217 Ngo DT, Sverdlov AL, McNeil JJ, Horowitz JD. Does vitamin
D modulate asymmetric dimethylarginine and C-reactive
protein concentrations? Am J Med 2010; 123: 335-341 [PMID:
20362753 DOI: 10.1016/j.amjmed.2009.09.024]
218 Rosen CJ. Clinical practice. Vitamin D insufficiency. N Engl
J Med 2011; 364: 248-254 [PMID: 21247315 DOI: 10.1056/
NEJMcp1009570]
219 Pittas AG, Chung M, Trikalinos T, Mitri J, Brendel M, Patel K,
Lichtenstein AH, Lau J, Balk EM. Systematic review: Vitamin
D and cardiometabolic outcomes. Ann Intern Med 2010; 152:
307-314 [PMID: 20194237 DOI: 10.7326/0003-4819-152-5-2010
03020-00009]
220 Motiwala SR, Wang TJ. Vitamin D and cardiovascular disease.
Curr Opin Nephrol Hypertens 2011; 20: 345-353 [PMID:
21519252 DOI: 10.1097/MNH.0b013e3283474985]
221 Bhandari SK, Pashayan S, Liu IL, Rasgon SA, Kujubu DA,
Tom TY, Sim JJ. 25-hydroxyvitamin D levels and hypertension
rates. J Clin Hypertens (Greenwich) 2011; 13: 170-177
[PMID: 21366848 DOI: 10.1111/j.1751-7176.2010.00408.x]
222 Kienreich K, Tomaschitz A, Verheyen N, Pieber TR, Pilz S.
Vitamin D and arterial hypertension: treat the deficiency!
Am J Hypertens 2013; 26: 158 [PMID: 23382398 DOI: 10.1093/
ajh/hps058]
223 Tamez H, Kalim S, Thadhani RI. Does vitamin D modulate
blood pressure? Curr Opin Nephrol Hypertens 2013; 22: 204-209
[PMID: 23299053 DOI: 10.1097/MNH.0b013e32835d919b]
224 Wang L, Ma J, Manson JE, Buring JE, Gaziano JM, Sesso HD.
A prospective study of plasma vitamin D metabolites, vitamin
D receptor gene polymorphisms, and risk of hypertension
in men. Eur J Nutr 2013; 52: 1771-1779 [PMID: 23262750
DOI: 10.1007/s00394-012-0480-8]
225 Pfeifer M, Begerow B, Minne HW, Nachtigall D, Hansen C.
Effects of a short-term vitamin D(3) and calcium supplementation on blood pressure and parathyroid hormone levels in elderly women. J Clin Endocrinol Metab 2001; 86: 1633-1637 [PMID: 11297596 DOI: 10.1210/jc.86.4.1633]

226 Keniston R, Enriquez J Sr. Relationship between blood pressure
and Plasma Vitamin B6 Levels in Healthy Middle-Aged
Adults. Ann N Y Acad Sci 1990; 585: 499-501 [DOI: 10.1111/
j.1749-6632.1990.tb28087.x]
227 Aybak M, Sermet A, Ayyildiz MO, Karakil�ik AZ. Effect of
oral pyridoxine hydrochloride supplementation on arterial
blood pressure in patients with essential hypertension. Arzneimittelforschung
1995; 45: 1271-1273 [PMID: 8595083]
228 Paulose CS, Dakshinamurti K, Packer S, Stephens NL. Sympathetic
stimulation and hypertension in the pyridoxinedeficient
adult rat. Hypertension 1988; 11: 387-391 [PMID:
3356457 DOI: 10.1161/01.HYP.11.4.387]
229 Dakshinamurti K, Lal KJ, Ganguly PK. Hypertension, calcium
channel and pyridoxine (vitamin B6). Mol Cell Biochem
1998; 188: 137-148 [PMID: 9823019]
230 Moline J, Bukharovich IF, Wolff MS, Phillips R. Dietary
flavonoids and hypertension: is there a link? Med
Hypotheses 2000; 55: 306-309 [PMID: 11000057 DOI:
10.1054/�mehy.2000.1057]
231 Knekt P, Reunanen A, J�rvinen R, Sepp�nen R, Heli�vaara
M, Aromaa A. Antioxidant vitamin intake and coronary
mortality in a longitudinal population study. Am J Epidemiol
1994; 139: 1180-1189 [PMID: 8209876]
232 Karatzi KN, Papamichael CM, Karatzis EN, Papaioannou
TG, Aznaouridis KA, Katsichti PP, Stamatelopoulos KS,
Zampelas A, Lekakis JP, Mavrikakis ME. Red wine acutely
induces favorable effects on wave reflections and central
pressures in coronary artery disease patients. Am J Hypertens
2005; 18: 1161-1167 [PMID: 16182104 DOI: 10.1016/�j.amjhyper.2005.03.744]
233 Biala A, Tauriainen E, Siltanen A, Shi J, Merasto S, Louhelainen
M, Martonen E, Finckenberg P, Muller DN, Mervaala
E. Resveratrol induces mitochondrial biogenesis and ameliorates
Ang II-induced cardiac remodeling in transgenic rats
harboring human renin and angiotensinogen genes. Blood
Press 2010; 19: 196-205 [PMID: 20429690 DOI: 10.3109/08037
051.2010.481808]
234 Wong RH, Howe PR, Buckley JD, Coates AM, Kunz I,
Berry NM. Acute resveratrol supplementation improves
flow-mediated dilatation in overweight/obese individuals
with mildly elevated blood pressure. Nutr Metab Cardiovasc
Dis 2011; 21: 851-856 [PMID: 20674311 DOI: 10.1016/
j.numecd.2010.03.003]
235 Bhatt SR, Lokhandwala MF, Banday AA. Resveratrol prevents
endothelial nitric oxide synthase uncoupling and
attenuates development of hypertension in spontaneously
hypertensive rats. Eur J Pharmacol 2011; 667: 258-264 [PMID:
21640096 DOI: 10.1016/j.ejphar.2011.05.026]
236 Rivera L, Mor�n R, Zarzuelo A, Galisteo M. Long-term resveratrol
administration reduces metabolic disturbances and
lowers blood pressure in obese Zucker rats. Biochem Pharmacol
2009; 77: 1053-1063 [PMID: 19100718 DOI: 10.1016/
j.bcp.2008.11.027]
237 Paran E, Engelhard YN. Effect of lycopene, an oral natural
antioxidant on blood pressure. J Hypertens 2001; 19: S74. Abstract
P 1.204
238 Engelhard YN, Gazer B, Paran E. Natural antioxidants
from tomato extract reduce blood pressure in patients with
grade-1 hypertension: a double-blind, placebo-controlled
pilot study. Am Heart J 2006; 151: 100 [PMID: 16368299]
239 Paran E, Novack V, Engelhard YN, Hazan-Halevy I. The effects
of natural antioxidants from tomato extract in treated
but uncontrolled hypertensive patients. Cardiovasc Drugs
Ther 2009; 23: 145-151 [PMID: 19052855 DOI: 10.1007/�s10557
-008-6155-2]
240 Ried K, Frank OR, Stocks NP. Dark chocolate or tomato
extract for prehypertension: a randomised controlled trial.
BMC Complement Altern Med 2009; 9: 22 [PMID: 19583878
DOI: 10.1186/1472-6882-9-22]
241 Paran E, Engelhard Y. P-333: Effect of tomato�s lycopene on
blood pressure, serum lipoproteins, plasma homocysteine
and oxidative stress markers in grade I hypertensive patients.
Am J Hypertens 2001; 14: 141A. Abstract P-333 [DOI:
10.1016/S0895-7061(01)01854-4]
242 Xaplanteris P, Vlachopoulos C, Pietri P, Terentes-Printzios D,
Kardara D, Alexopoulos N, Aznaouridis K, Miliou A, Stefanadis
C. Tomato paste supplementation improves endothelial
dynamics and reduces plasma total oxidative status in
healthy subjects. Nutr Res 2012; 32: 390-394 [PMID: 22652379
DOI: 10.1016/j.nutres.2012.03.011]
243 Hosseini S, Lee J, Sepulveda RT, Rohdewaldc P, Watson
RR. A randomized, double-blind, placebo-controlled, prospective
16 week crossover study to determine the role of
pycnogenol in modifying blood pressure in mildly hypertensive
patients. Nutr Res 2001; 21: 1251-1260 [DOI: 10.1016/
S0271-5317(01)00342-6]
244 Zibadi S, Rohdewald PJ, Park D, Watson RR. Reduction of
cardiovascular risk factors in subjects with type 2 diabetes
by Pycnogenol supplementation. Nutr Res 2008; 28: 315-320
[PMID: 19083426 DOI: 10.1016/j.nutres.2008.03.003]
245 Liu X, Wei J, Tan F, Zhou S, W�rthwein G, Rohdewald P.
Pycnogenol, French maritime pine bark extract, improves
endothelial function of hypertensive patients. Life Sci 2004;
74: 855-862 [PMID: 14659974 DOI: 10.1016/j.lfs.2003.07.037]
246 van der Zwan LP, Scheffer PG, Teerlink T. Reduction of
myeloperoxidase activity by melatonin and pycnogenol may
contribute to their blood pressure lowering effect. Hypertension
2010; 56: e34; author reply e35 [PMID: 20696986 DOI:
10.1161/HYPERTENSIONAHA.110.158170]
247 Cesarone MR, Belcaro G, Stuard S, Sch�nlau F, Di Renzo
A, Grossi MG, Dugall M, Cornelli U, Cacchio M, Gizzi G,
Pellegrini L. Kidney flow and function in hypertension: protective
effects of pycnogenol in hypertensive participants–a
controlled study. J Cardiovasc Pharmacol Ther 2010; 15: 41-46
[PMID: 20097689 DOI: 10.1177/1074248409356063]
248 Simons S, Wollersheim H, Thien T. A systematic review on
the influence of trial quality on the effect of garlic on blood
pressure. Neth J Med 2009; 67: 212-219 [PMID: 19749390]
249 Reinhart KM, Coleman CI, Teevan C, Vachhani P, White
CM. Effects of garlic on blood pressure in patients with and
without systolic hypertension: a meta-analysis. Ann Pharmacother
2008; 42: 1766-1771 [PMID: 19017826 DOI: 10.1345/
aph.1L319]
250 Ried K, Frank OR, Stocks NP. Aged garlic extract lowers
blood pressure in patients with treated but uncontrolled
hypertension: a randomised controlled trial. Maturitas
2010; 67: 144-150 [PMID: 20594781 DOI: 10.1016/�j.maturitas.2010.06.001]
251 Suetsuna K, Nakano T. Identification of an antihypertensive
peptide from peptic digest of wakame (Undaria pinnatifida).
J Nutr Biochem 2000; 11: 450-454 [PMID: 11091100 DOI:
10.1016/S0955-2863(00)00110-8]
252 Nakano T, Hidaka H, Uchida J, Nakajima K, Hata Y. Hypotensive
effects of wakame. J Jpn Soc Clin Nutr 1998; 20: 92
253 Krotkiewski M, Aurell M, Holm G, Grimby G, Szczepanik
J. Effects of a sodium-potassium ion-exchanging seaweed
preparation in mild hypertension. Am J Hypertens 1991; 4:
483-488 [PMID: 1873002 DOI: 10.1093/ajh/4.6.483]
254 Sato M, Oba T, Yamaguchi T, Nakano T, Kahara T, Funayama
K, Kobayashi A, Nakano T. Antihypertensive effects
of hydrolysates of wakame (Undaria pinnatifida) and
their angiotensin-I-converting enzyme inhibitory activity.
Ann Nutr Metab 2002; 46: 259-267 [PMID: 12464726 DOI:
10.1159/000066495]
255 Sato M, Hosokawa T, Yamaguchi T, Nakano T, Muramoto
K, Kahara T, Funayama K, Kobayashi A, Nakano T. Angiotensin
I-converting enzyme inhibitory peptides derived from
wakame (Undaria pinnatifida) and their antihypertensive
effect in spontaneously hypertensive rats. J Agric Food Chem2002; 50: 6245-6252 [PMID: 12358510 DOI: 10.1021/jf020482t]

256 Sankar D, Sambandam G, Ramakrishna Rao M, Pugalendi
KV. Modulation of blood pressure, lipid profiles and redox
status in hypertensive patients taking different edible oils.
Clin Chim Acta 2005; 355: 97-104 [PMID: 15820483 DOI:
10.1016/j.cccn.2004.12.009]
257 Sankar D, Rao MR, Sambandam G, Pugalendi KV. Effect of
sesame oil on diuretics or Beta-blockers in the modulation
of blood pressure, anthropometry, lipid profile, and redox
status. Yale J Biol Med 2006; 79: 19-26 [PMID: 17876372]
258 Miyawaki T, Aono H, Toyoda-Ono Y, Maeda H, Kiso Y,
Moriyama K. Antihypertensive effects of sesamin in humans.
J Nutr Sci Vitaminol (Tokyo) 2009; 55: 87-91 [PMID: 19352068]
259 Wichitsranoi J, Weerapreeyakul N, Boonsiri P, Settasatian
C, Settasatian N, Komanasin N, Sirijaichingkul S, Teerajetgul
Y, Rangkadilok N, Leelayuwat N. Antihypertensive
and antioxidant effects of dietary black sesame meal in prehypertensive
humans. Nutr J 2011; 10: 82 [PMID: 21827664
DOI: 10.1186/1475-2891-10-82]
260 Sudhakar B, Kalaiarasi P, Al-Numair KS, Chandramohan G,
Rao RK, Pugalendi KV. Effect of combination of edible oils
on blood pressure, lipid profile, lipid peroxidative markers,
antioxidant status, and electrolytes in patients with hypertension
on nifedipine treatment. Saudi Med J 2011; 32: 379-385
[PMID: 21483997]
261 Sankar D, Rao MR, Sambandam G, Pugalendi KV. A pilot
study of open label sesame oil in hypertensive diabetics. J
Med Food 2006; 9: 408-412 [PMID: 17004907 DOI: 10.1089/
jmf.2006.9.408]
262 Harikumar KB, Sung B, Tharakan ST, Pandey MK, Joy B,
Guha S, Krishnan S, Aggarwal BB. Sesamin manifests chemopreventive
effects through the suppression of NF-kappa
B-regulated cell survival, proliferation, invasion, and angiogenic
gene products. Mol Cancer Res 2010; 8: 751-761 [PMID:
20460401 DOI: 10.1158/1541-7786.MCR-09-0565]
263 Nakano D, Ogura K, Miyakoshi M, Ishii F, Kawanishi H, Kurumazuka
D, Kwak CJ, Ikemura K, Takaoka M, Moriguchi S,
Iino T, Kusumoto A, Asami S, Shibata H, Kiso Y, Matsumura
Y. Antihypertensive effect of angiotensin I-converting enzyme
inhibitory peptides from a sesame protein hydrolysate
in spontaneously hypertensive rats. Biosci Biotechnol Biochem
2006; 70: 1118-1126 [PMID: 16717411]
264 Karatzi K, Stamatelopoulos K, Lykka M, Mantzouratou
P, Skalidi S, Manios E, Georgiopoulos G, Zakopoulos N,
Papamichael C, Sidossis LS. Acute and long-term hemodynamic
effects of sesame oil consumption in hypertensive
men. J Clin Hypertens (Greenwich) 2012; 14: 630-636 [PMID:
22947362 DOI: 10.1111/j.1751-7176.2012.00649.x]
265 Hodgson JM, Puddey IB, Burke V, Beilin LJ, Jordan N. Effects
on blood pressure of drinking green and black tea. J
Hypertens 1999; 17: 457-463 [PMID: 10404946 DOI: 10.1097/0
0004872-199917040-00002]
266 Kurita I, Maeda-Yamamoto M, Tachibana H, Kamei M.
Antihypertensive effect of Benifuuki tea containing O-methylated
EGCG. J Agric Food Chem 2010; 58: 1903-1908 [PMID:
20078079 DOI: 10.1021/jf904335g]
267 McKay DL, Chen CY, Saltzman E, Blumberg JB. Hibiscus
sabdariffa L. tea (tisane) lowers blood pressure in prehypertensive
and mildly hypertensive adults. J Nutr 2010; 140:
298-303 [PMID: 20018807 DOI: 10.3945/jn.109.115097]
268 Bogdanski P, Suliburska J, Szulinska M, Stepien M, PupekMusialik
D, Jablecka A. Green tea extract reduces blood
pressure, inflammatory biomarkers, and oxidative stress
and improves parameters associated with insulin resistance
in obese, hypertensive patients. Nutr Res 2012; 32: 421-427
[PMID: 22749178 DOI: 10.1016/j.nutres.2012.05.007]
269 Hodgson JM, Woodman RJ, Puddey IB, Mulder T, Fuchs
D, Croft KD. Short-term effects of polyphenol-rich black tea
on blood pressure in men and women. Food Funct 2013; 4:
111-115 [PMID: 23038021 DOI: 10.1039/c2fo30186e]
270 Medina-Rem�n A, Estruch R, Tresserra-Rimbau A, Vallverd�-Queralt A, Lamuela-Raventos RM. The effect of polyphenol
consumption on blood pressure. Mini Rev Med Chem
2013; 13: 1137-1149 [PMID: 22931531]
271 Jim�nez R, Duarte J, Perez-Vizcaino F. Epicatechin: endothelial
function and blood pressure. J Agric Food Chem 2012; 60:
8823-8830 [PMID: 22440087 DOI: 10.1021/jf205370q]
272 Taubert D, Roesen R, Sch�mig E. Effect of cocoa and tea
intake on blood pressure: a meta-analysis. Arch Intern Med
2007; 167: 626-634 [PMID: 17420419 DOI: 10.1001/�archinte.16
7.7.626]
273 Grassi D, Lippi C, Necozione S, Desideri G, Ferri C. Shortterm
administration of dark chocolate is followed by a
significant increase in insulin sensitivity and a decrease in
blood pressure in healthy persons. Am J Clin Nutr 2005; 81:
611-614 [PMID: 15755830]
274 Taubert D, Roesen R, Lehmann C, Jung N, Sch�mig E. Effects
of low habitual cocoa intake on blood pressure and bioactive
nitric oxide: a randomized controlled trial. JAMA 2007;
298: 49-60 [PMID: 17609490 DOI: 10.1001/jama.298.1.49]
275 Cohen DL, Townsend RR. Cocoa ingestion and hypertension-another
cup please? J Clin Hypertens (Greenwich)
2007; 9: 647-648 [PMID: 17673887 DOI: 10.1111/
j.1524-6175.2007.07291.x]
276 Ried K, Sullivan T, Fakler P, Frank OR, Stocks NP. Does
chocolate reduce blood pressure? A meta-analysis. BMC Med
2010; 8: 39 [PMID: 20584271 DOI: 10.1186/1741-7015-8-39]
277 Egan BM, Laken MA, Donovan JL, Woolson RF. Does dark
chocolate have a role in the prevention and management of
hypertension?: commentary on the evidence. Hypertension
2010; 55: 1289-1295 [PMID: 20404213 DOI: 10.1161/HYPERTENSIONAHA.110.151522]
278 Desch S, Kobler D, Schmidt J, Sonnabend M, Adams V,
Sareban M, Eitel I, Bl�her M, Schuler G, Thiele H. Low vs.
higher-dose dark chocolate and blood pressure in cardiovascular
high-risk patients. Am J Hypertens 2010; 23: 694-700
[PMID: 20203627 DOI: 10.1038/ajh.2010.29]
279 Desch S, Schmidt J, Kobler D, Sonnabend M, Eitel I, Sareban
M, Rahimi K, Schuler G, Thiele H. Effect of cocoa products
on blood pressure: systematic review and meta-analysis. Am
J Hypertens 2010; 23: 97-103 [PMID: 19910929 DOI: 10.1038/
ajh.2009.213]
280 Grassi D, Desideri G, Necozione S, Lippi C, Casale R,
Properzi G, Blumberg JB, Ferri C. Blood pressure is reduced
and insulin sensitivity increased in glucose-intolerant, hypertensive
subjects after 15 days of consuming high-polyphenol
dark chocolate. J Nutr 2008; 138: 1671-1676 [PMID: 18716168]
281 Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti
P, Desideri G, Blumberg JB, Ferri C. Cocoa reduces blood
pressure and insulin resistance and improves endotheliumdependent
vasodilation in hypertensives. Hypertension
2005; 46: 398-405 [PMID: 16027246 DOI: 10.1161/01.
HYP.0000174990.46027.70]
282 Ellinger S, Reusch A, Stehle P, Helfrich HP. Epicatechin
ingested via cocoa products reduces blood pressure in
humans: a nonlinear regression model with a Bayesian approach.
Am J Clin Nutr 2012; 95: 1365-1377 [PMID: 22552030
DOI: 10.3945/ajcn.111.029330]
283 Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm
EB, Cassidy A. Effects of chocolate, cocoa, and flavan-3-ols
on cardiovascular health: a systematic review and meta-analysis
of randomized trials. Am J Clin Nutr 2012; 95: 740-751
[PMID: 22301923 DOI: 10.3945/ajcn.111.023457]
284 Yamaguchi T, Chikama A, Mori K, Watanabe T, Shioya Y,
Katsuragi Y, Tokimitsu I. Hydroxyhydroquinone-free coffee:
a double-blind, randomized controlled dose-response study
of blood pressure. Nutr Metab Cardiovasc Dis 2008; 18: 408-414
[PMID: 17951035 DOI: 10.1016/j.numecd.2007.03.004]
285 Chen ZY, Peng C, Jiao R, Wong YM, Yang N, Huang Y.
Anti-hypertensive nutraceuticals and functional foods. J
Agric Food Chem 2009; 57: 4485-4499 [PMID: 19422223 DOI:
10.1021/jf900803r]

286 Ochiai R, Chikama A, Kataoka K, Tokimitsu I, Maekawa Y,
Ohishi M, Rakugi H, Mikami H. Effects of hydroxyhydroquinone-reduced
coffee on vasoreactivity and blood pressure.
Hypertens Res 2009; 32: 969-974 [PMID: 19713967 DOI:
10.1038/hr.2009.132]
287 Kozuma K, Tsuchiya S, Kohori J, Hase T, Tokimitsu I. Antihypertensive
effect of green coffee bean extract on mildly
hypertensive subjects. Hypertens Res 2005; 28: 711-718 [PMID:
16419643 DOI: 10.1291/hypres.28.711]
288 Palatini P, Ceolotto G, Ragazzo F, Dorigatti F, Saladini F,
Papparella I, Mos L, Zanata G, Santonastaso M. CYP1A2
genotype modifies the association between coffee intake
and the risk of hypertension. J Hypertens 2009; 27: 1594-1601
[PMID: 19451835 DOI: 10.1097/HJH.0b013e32832ba850]
289 Scheer FA, Van Montfrans GA, van Someren EJ, Mairuhu
G, Buijs RM. Daily nighttime melatonin reduces blood pressure
in male patients with essential hypertension. Hypertension
2004; 43: 192-197 [PMID: 14732734 DOI: 10.1161/01.
HYP.0000113293.15186.3b]
290 Cavallo A, Daniels SR, Dolan LM, Khoury JC, Bean JA.
Blood pressure response to melatonin in type 1 diabetes.
Pediatr Diabetes 2004; 5: 26-31 [PMID: 15043687 DOI: 10.1111
/�j.1399-543X.2004.00031.x]
291 Cavallo A, Daniels SR, Dolan LM, Bean JA, Khoury JC.
Blood pressure-lowering effect of melatonin in type 1 diabetes.
J Pineal Res 2004; 36: 262-266 [PMID: 15066051 DOI:
10.1111/j.1600-079X.2004.00126.x]
292 Cagnacci A, Cannoletta M, Renzi A, Baldassari F, Arangino
S, Volpe A. Prolonged melatonin administration decreases
nocturnal blood pressure in women. Am J Hypertens 2005; 18:
1614-1618 [PMID: 16364834]
293 Grossman E, Laudon M, Yalcin R, Zengil H, Peleg E, Sharabi
Y, Kamari Y, Shen-Orr Z, Zisapel N. Melatonin reduces night
blood pressure in patients with nocturnal hypertension. Am
J Med 2006; 119: 898-902 [PMID: 17000226 DOI: 10.1016/
j.amjmed.2006.02.002]
294 Rechci?ski T, Kurpesa M, Trzos E, Krzeminska-Paku?a M.
[The influence of melatonin supplementation on circadian
pattern of blood pressure in patients with coronary artery
disease–preliminary report]. Pol Arch Med Wewn 2006; 115:
520-528 [PMID: 17263223]
295 Merkur�eva GA, Ryzhak GA. [Effect of the pineal gland peptide
preparation on the diurnal profile of arterial pressure in
middle-aged and elderly women with ischemic heart disease
and arterial hypertension]. Adv Gerontol 2008; 21: 132-142
[PMID: 18546838]
296 Zaslavskaia RM, Shcherban� EA, Logvinenko SI. [Melatonin
in combined therapy of patients with stable angina and arterial
hypertension]. Klin Med (Mosk) 2008; 86: 64-67 [PMID:
19048842]
297 Zamotaev IuN, Enikeev AKh, Kolomoets NM. [The use of
melaxen in combined therapy of arterial hypertension in
subjects occupied in assembly line production]. Klin Med
(Mosk) 2009; 87: 46-49 [PMID: 19670717]
298 Rechci?ski T, Trzos E, Wierzbowska-Drabik K, Krzemi?skaPaku?a
M, Kurpesa M. Melatonin for nondippers with coronary
artery disease: assessment of blood pressure profile and
heart rate variability. Hypertens Res 2010; 33: 56-61 [PMID:
19876062 DOI: 10.1038/hr.2009.174]
299 Kozir�g M, Poliwczak AR, Duchnowicz P, Koter-Michalak
M, Sikora J, Broncel M. Melatonin treatment improves
blood pressure, lipid profile, and parameters of oxidative
stress in patients with metabolic syndrome. J Pineal Res
2011; 50: 261-266 [PMID: 21138476 DOI: 10.1111/j.1600-
079X.2010.00835.x]
300 De Leersnyder H, de Blois MC, Vekemans M, Sidi D, Villain
E, Kindermans C, Munnich A. beta(1)-adrenergic antagonists
improve sleep and behavioural disturbances in a circadian
disorder, Smith-Magenis syndrome. J Med Genet 2001; 38:
586-590 [PMID: 11546826]
301 Morand C, Dubray C, Milenkovic D, Lioger D, Martin JF,
Scalbert A, Mazur A. Hesperidin contributes to the vascular
protective effects of orange juice: a randomized crossover
study in healthy volunteers. Am J Clin Nutr 2011; 93: 73-80
[PMID: 21068346 DOI: 10.3945/ajcn.110.004945]
302 Basu A, Penugonda K. Pomegranate juice: a heart-healthy
fruit juice. Nutr Rev 2009; 67: 49-56 [PMID: 19146506 DOI:
10.1111/j.1753-4887.2008.00133.x]
303 Aviram M, Rosenblat M, Gaitini D, Nitecki S, Hoffman A,
Dornfeld L, Volkova N, Presser D, Attias J, Liker H, Hayek
T. Pomegranate juice consumption for 3 years by patients
with carotid artery stenosis reduces common carotid intimamedia
thickness, blood pressure and LDL oxidation. Clin
Nutr 2004; 23: 423-433 [PMID: 15158307 DOI: 10.1016/�j.
clnu.2003.10.002]
304 Aviram M, Dornfeld L. Pomegranate juice consumption
inhibits serum angiotensin converting enzyme activity and
reduces systolic blood pressure. Atherosclerosis 2001; 158:
195-198 [PMID: 11500191]
305 Feringa HH, Laskey DA, Dickson JE, Coleman CI. The effect
of grape seed extract on cardiovascular risk markers:
a meta-analysis of randomized controlled trials. J Am Diet
Assoc 2011; 111: 1173-1181 [PMID: 21802563 DOI: 10.1016/�j.
jada.2011.05.015]
306 Sivaprakasapillai B, Edirisinghe I, Randolph J, Steinberg
F, Kappagoda T. Effect of grape seed extract on blood pressure
in subjects with the metabolic syndrome. Metabolism
2009; 58: 1743-1746 [PMID: 19608210 DOI: 10.1016/�j.metabol.2009.05.030]
307 Edirisinghe I, Burton-Freeman B, Tissa Kappagoda C. Mechanism
of the endothelium-dependent relaxation evoked by a
grape seed extract. Clin Sci (Lond) 2008; 114: 331-337 [PMID:
17927567 DOI: 10.1042/CS20070264]
308 Rosenfeldt FL, Haas SJ, Krum H, Hadj A, Ng K, Leong JY,
Watts GF. Coenzyme Q10 in the treatment of hypertension: a
meta-analysis of the clinical trials. J Hum Hypertens 2007; 21:
297-306 [PMID: 17287847]
309 Burke BE, Neuenschwander R, Olson RD. Randomized,
double-blind, placebo-controlled trial of coenzyme Q10
in isolated systolic hypertension. South Med J 2001; 94:
1112-1117 [PMID: 11780680 DOI: 10.1097/00007611-20011100
0-00015]
310 Mikhin VP, Kharchenko AV, Rosliakova EA, Cherniatina
MA. [Application of coenzyme Q(10) in combination therapy
of arterial hypertension]. Kardiologiia 2011; 51: 26-31 [PMID:
21878067]
311 Tsai KL, Huang YH, Kao CL, Yang DM, Lee HC, Chou HY,
Chen YC, Chiou GY, Chen LH, Yang YP, Chiu TH, Tsai CS,
Ou HC, Chiou SH. A novel mechanism of coenzyme Q10
protects against human endothelial cells from oxidative
stress-induced injury by modulating NO-related pathways.
J Nutr Biochem 2012; 23: 458-468 [PMID: 21684136 DOI:
10.1016/j.jnutbio.2011.01.011]
312 Sohet FM, Delzenne NM. Is there a place for coenzyme Q
in the management of metabolic disorders associated with
obesity? Nutr Rev 2012; 70: 631-641 [PMID: 23110642 DOI:
10.1111/j.1753-4887.2012.00526.x]
313 Digiesi V, Cantini F, Oradei A, Bisi G, Guarino GC, Brocchi
A, Bellandi F, Mancini M, Littarru GP. Coenzyme Q10
in essential hypertension. Mol Aspects Med 1994; 15 Suppl:
s257-s263 [PMID: 7752838]
314 Langsjoen P, Langsjoen P, Willis R, Folkers K. Treatment of
essential hypertension with coenzyme Q10. Mol Aspects Med
1994; 15 Suppl: S265-S272 [PMID: 7752851 DOI: 10.1016/009
8-2997(94)90037-X]
315 Ankola DD, Viswanad B, Bhardwaj V, Ramarao P, Kumar
MN. Development of potent oral nanoparticulate formulation
of coenzyme Q10 for treatment of hypertension: can
the simple nutritional supplements be used as first line
therapeutic agents for prophylaxis/therapy? Eur J Pharm
Biopharm 2007; 67: 361-369 [PMID: 17452099 DOI: 10.1016/
j.ejpb.2007.03.010]

316 Trimarco V, Cimmino CS, Santoro M, Pagnano G, Manzi
MV, Piglia A, Giudice CA, De Luca N, Izzo R. Nutraceuticals
for blood pressure control in patients with high-normal or
grade 1 hypertension. High Blood Press Cardiovasc Prev 2012;
19: 117-122 [PMID: 22994579 DOI: 10.2165/11632160-0000000
00-00000]
317 Young JM, Florkowski CM, Molyneux SL, McEwan RG,
Frampton CM, Nicholls MG, Scott RS, George PM. A randomized,
double-blind, placebo-controlled crossover study
of coenzyme Q10 therapy in hypertensive patients with the
metabolic syndrome. Am J Hypertens 2012; 25: 261-270 [PMID:
22113168 DOI: 10.1038/ajh.2011.209]
318 McMackin CJ, Widlansky ME, Hamburg NM, Huang AL,
Weller S, Holbrook M, Gokce N, Hagen TM, Keaney JF, Vita
JA. Effect of combined treatment with alpha-Lipoic acid and
acetyl-L-carnitine on vascular function and blood pressure
in patients with coronary artery disease. J Clin Hypertens
(Greenwich) 2007; 9: 249-255 [PMID: 17396066 DOI: 10.1111/
j.1524-6175.2007.06052.x]
319 Salinthone S, Schillace RV, Tsang C, Regan JW, Bourdette
DN, Carr DW. Lipoic acid stimulates cAMP production
via G protein-coupled receptor-dependent and -independent
mechanisms. J Nutr Biochem 2011; 22: 681-690 [PMID:
21036588 DOI: 10.1016/j.jnutbio.2010.05.008]
320 Rahman ST, Merchant N, Haque T, Wahi J, Bhaheetharan S,
Ferdinand KC, Khan BV. The impact of lipoic acid on endothelial
function and proteinuria in quinapril-treated diabetic
patients with stage I hypertension: results from the QUALITY
study. J Cardiovasc Pharmacol Ther 2012; 17: 139-145 [PMID:
21750253 DOI: 10.1177/1074248411413282]
321 Morcos M, Borcea V, Isermann B, Gehrke S, Ehret T, Henkels
M, Schiekofer S, Hofmann M, Amiral J, Tritschler H,
Ziegler R, Wahl P, Nawroth PP. Effect of alpha-lipoic acid on
the progression of endothelial cell damage and albuminuria
in patients with diabetes mellitus: an exploratory study. Diabetes
Res Clin Pract 2001; 52: 175-183 [PMID: 11323087]
322 Jiang B, Haverty M, Brecher P. N-acetyl-L-cysteine enhances
interleukin-1beta-induced nitric oxide synthase expression.
Hypertension 1999; 34: 574-579 [PMID: 10523329]
323 Vasdev S, Singal P, Gill V. The antihypertensive effect of
cysteine. Int J Angiol 2009; 18: 7-21 [PMID: 22477470 DOI:
10.1055/s-0031-1278316]
324 Meister A, Anderson ME, Hwang O. Intracellular cysteine
and glutathione delivery systems. J Am Coll Nutr 1986; 5:
137-151 [PMID: 3722629 DOI: 10.1080/07315724.1986.107201
21]
325 Asher GN, Viera AJ, Weaver MA, Dominik R, Caughey M,
Hinderliter AL. Effect of hawthorn standardized extract on
flow mediated dilation in prehypertensive and mildly hypertensive
adults: a randomized, controlled cross-over trial.
BMC Complement Altern Med 2012; 12: 26 [PMID: 22458601
DOI: 10.1186/1472-6882-12-26]
326 Ko�yildiz ZC, Birman H, Olga� V, Akg�n-Dar K, Meliko?lu
G, Meri�li AH. Crataegus tanacetifolia leaf extract prevents
L-NAME-induced hypertension in rats: a morphological
study. Phytother Res 2006; 20: 66-70 [PMID: 16397846 DOI:
10.1002/ptr.1808]
327 Schr�der D, Weiser M, Klein P. Efficacy of a homeopathic
Crataegus preparation compared with usual therapy for
mild (NYHA II) cardiac insufficiency: results of an observational
cohort study. Eur J Heart Fail 2003; 5: 319-326 [PMID:
12798830 DOI: 10.1016/S1388-9842(02)00237-4]
328 Walker AF, Marakis G, Simpson E, Hope JL, Robinson PA,
Hassanein M, Simpson HC. Hypotensive effects of hawthorn
for patients with diabetes taking prescription drugs: a
randomised controlled trial. Br J Gen Pract 2006; 56: 437-443
[PMID: 16762125]
329 Walker AF, Marakis G, Morris AP, Robinson PA. Promising
hypotensive effect of hawthorn extract: a randomized double-blind
pilot study of mild, essential hypertension. Phytother
Res 2002; 16: 48-54 [PMID: 11807965 DOI: 10.1002/�ptr.947]
330 Larson A, Witman MA, Guo Y, Ives S, Richardson RS, Bruno
RS, Jalili T, Symons JD. Acute, quercetin-induced reductions
in blood pressure in hypertensive individuals are not secondary
to lower plasma angiotensin-converting enzyme activity
or endothelin-1: nitric oxide. Nutr Res 2012; 32: 557-564
[PMID: 22935338 DOI: 10.1016/j.nutres.2012.06.018]
331 Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD,
Jalili T. Quercetin reduces blood pressure in hypertensive
subjects. J Nutr 2007; 137: 2405-2411 [PMID: 17951477]
332 Egert S, Bosy-Westphal A, Seiberl J, K�rbitz C, Settler U,
Plachta-Danielzik S, Wagner AE, Frank J, Schrezenmeir J,
Rimbach G, Wolffram S, M�ller MJ. Quercetin reduces systolic
blood pressure and plasma oxidised low-density lipoprotein
concentrations in overweight subjects with a high-cardiovascular
disease risk phenotype: a double-blinded, placebocontrolled
cross-over study. Br J Nutr 2009; 102: 1065-1074
[PMID: 19402938 DOI: 10.1017/�S0007114509359127]
333 Trovato A, Nuhlicek DN, Midtling JE. Drug-nutrient interactions.
Am Fam Physician 1991; 44: 1651-1658 [PMID: 1950962]

Close Accordion
Assessment and Treatment of Piriformis

Assessment and Treatment of Piriformis

These assessment and treatment recommendations represent a synthesis of information derived from personal clinical experience and from the numerous sources which are cited, or are based on the work of researchers, clinicians and therapists who are named (Basmajian 1974, Cailliet 1962, Dvorak & Dvorak 1984, Fryette 1954, Greenman 1989, 1996, Janda 1983, Lewit 1992, 1999, Mennell 1964, Rolf 1977, Williams 1965).

 

Clinical Application of Neuromuscular Techniques: Piriformis

 

Assessment of Shortened Piriformis

 

Test (a) Stretch test. When short, piriformis will cause the affected side leg of the supine patient to appear to be short and externally rotated. With the patient supine, the tested leg is placed into flexion at the hip and knee so that the foot rests on the table lateral to the contralateral knee (the tested leg is crossed over the straight non-tested leg, in other words as shown in Fig. 4.17). The angle of hip flexion should not exceed 60� (see notes on piriformis in Box 4.6).

 

Figure 4 17 MET Treatment of Piriformis Muscle with Patient Supine Image 1

 

Figure 4.17 MET treatment of piriformis muscle with patient supine. The pelvis must be maintained in a stable position as the knee (right in this example) is adducted to stretch piriformis following an isometric contraction.

 

The non-tested side ASIS is stabilised to prevent pelvic motion during the test and the knee of the tested side is pushed into adduction to place a stretch on piriformis. If there is a short piriformis the degree of adduction will be limited and the patient will report discomfort behind the trochanter.

 

Test (b) Palpation test (Fig. 4.18) The patient is side-lying, tested side uppermost. The practitioner stands at the level of the pelvis in front of and facing the patient, and, in order to contact the insertion of piriformis, draws imaginary lines between:

 

  • ASIS and ischial tuberosity, and
  • PSIS and the most prominent point of trochanter.

 

Where these reference lines cross, just posterior to the trochanter, is the insertion of the muscle, and pressure here will produce marked discomfort if the structure is short or irritated.

 

Figure 4 18 Bony Landmarks Used as Coordinates in Piriformis Image 2

 

Figure 4.18 Using bony landmarks as coordinates the commonest tender areas are located in piriformis, in the belly and at the attachment of the muscle.

 

If the most common trigger point site in the belly of the muscle is sought, then the line from the ASIS should be taken to the tip of the coccyx rather than to the ischial tuberosity. Pressure where this line crosses the other will access the mid-point of the belly of piriformis where triggers are common. Light compression here which produces a painful response is indicative of a stressed muscle and possibly an active myofascial trigger point.

 

Piriformis Strength Test

 

The patient lies prone, both knees flexed to 90�, with practitioner at foot of table grasping lower legs at the limit of their separation (which internally rotates the hip and therefore allows comparison of range of movement permitted by shortened external rotators such as the piriformis).

 

The patient attempts to bring the ankles together as the practitioner assesses the relative strength of the two legs. Mitchell et al (1979) suggest that if there is relative shortness (as evidenced by the lower leg not being able to travel as far from the mid-line as its pair in this position), and if that same side also tests strong, then MET is called for. If there is shortness but also weakness then the reasons for the weakness need to be dealt with prior to stretching using MET.

 

Box 4.6 Notes on Piriformis

 

  • Piriformis paradox. The performance of external rotation of the hip by piriformis occurs when the angle of hip flexion is 60� or less. Once the angle of hip flexion is greater than 60� piriformis function changes, so that it becomes an internal rotator of the hip (Gluck & Liebenson 1997, Lehmkuhl & Smith 1983). The implications of this are illustrated in Figures 4.17 and 4.19.
  • This postural muscle, like all others which have a predominence of type l fibres, will shorten if stressed. In the case of piriformis, the effect of shortening is to increase its diameter and because of its location this allows for direct pressure to be exerted on the sciatic nerve, which passes under it in 80% of people. In the other 20% the nerve passes through the muscle so that contraction will produce veritable strangulation of the sciatic nerve.
  • In addition, the pudendal nerve and the blood vessels of the internal iliac artery, as well as common perineal nerves, posterior femoral cutaneous nerve and nerves of the hip rotators, can all be affected.
  • If there is sciatic pain associated with piriformis shortness, then on straight leg raising, which reproduces the pain, external rotation of the hip should relieve it, since this slackens piriformis. (This clue may, however, only apply to any degree if the individual is one of those in whom the nerve actually passes through the muscle.)
  • The effects can be circulatory, neurological and functional, inducing pain and paraesthesia of the affected limb as well as alterations to pelvic and lumbar function. Diagnosis usually hinges on the absence of spinal causative factors and the distributions of symptoms from the sacrum to the hip joint, over the gluteal region and down to the popliteal space. Palpation of the affected piriformis tendon, near the head of the trochanter, will elicit pain and the affected leg will probably be externally rotated.
  • The piriformis muscle syndrome is frequently characterised by such bizarre symptoms that they may seem unrelated. One characteristic complaint is a persistent, severe, radiating low back pain extending from the sacrum to the hip joint, over the gluteal region and the posterior portion of the upper leg, to the popliteal space. In the most severe cases the patient will be unable to lie or stand comfortably, and changes in position will not relieve the pain. Intense pain will occur when the patient sits or squats since this type of movement requires external rotation of the upper leg and flexion at the knee.
  • Compression of the pudendal nerve and blood vessels which pass through the greater sciatic foramen and re-enter the pelvis via the lesser sciatic foramen is possible because of piriformis contracture. Any compression would result in impaired circulation to the genitalia in both sexes. Since external rotation of the hips is required for coitus by women, pain noted during this act could relate to impaired circulation induced by piriformis dysfunction. This could also be a basis for impotency in men. (See also Box 4.7.)
  • Piriformis involvement often relates to a pattern of pain which includes: pain near the trochanter; pain in the inguinal area; local tenderness over the insertion behind trochanter; SI joint pain on the opposite side; externally rotated foot on the same side; pain unrelieved by most positions with standing and walking being the easiest; limitation of internal rotation of the leg which produces pain near the hip; and a short leg on the affected side.
  • The pain itself will be persistent and radiating, covering anywhere from the sacrum to the buttock, hip and leg including inguinal and perineal areas.
  • Bourdillon (1982) suggests that piriformis syndrome and SI joint dysfunction are intimately connected and that recurrent SI problems will not stabilise until hypertonic piriformis is corrected.
  • Janda (1996) points to the vast amount of pelvic organ dysfunction to which piriformis can contribute due to its relationship with circulation to the area.
  • Mitchell et al (1979) suggest that (as in psoas example above) piriformis shortness should only be treated if it is tested to be short and stronger than its pair. If it is short and weak (see p. 110 for strength test), then whatever is hypertonic and influencing it should be released and stretched first (Mitchell et al 1979). When it tests strong and short, piriformis should receive MET treatment.
  • Since piriformis is an external rotator of the hip it can be inhibited (made to test weak) if an internal rotator such as TFL is hypertonic or if its pair is hypertonic, since one piriformis will inhibit the other.

 

Box 4.7 Notes on Working and Resting Muscles

 

  • Richard (1978) reminds us that a working muscle will mobilise up to 10 times the quantity of blood mobilised by a resting muscle. He points out the link between pelvic circulation and lumbar, ischiatic and gluteal arteries and the chance this allows to engineer the involvement of 2400 square metres of capillaries by using repetitive pumping of these muscles (including piriformis).
  • The therapeutic use of this knowledge involves the patient being asked to repetitively contract both piriformis muscles against resistance. The patient is supine, knees bent, feet on the table; the practitioner resists their effort to abduct their flexed knees, using pulsed muscle energy approach (Ruddy�s method) in which two isometrically resisted pulsation/contractions per second are introduced for as long as possible (a minute seems a long time doing this).

 

Figure 4 19 MET Treatment of Piriformis with Hip Fully Flexed & Externally Rotated Image 3

 

Figure 4.19 MET treatment of piriformis with hip fully flexed and externally rotated (see Box 4.6, first bullet point).

 

Figure 4 20 A Combined Ischaemic Compression & MET Side Lying Treatment of Piriformis Image 4

 

Figure 4.20 A combined ischaemic compression (elbow pressure) and MET side-lying treatment of piriformis. The pressure is alternated with isometric contractions/stretching of the muscle until no further gain is achieved.

 

MET Treatment of Piriformis

 

Piriformis method (a) Side-lying The patient is side-lying, close to the edge of the table, affected side uppermost, both legs flexed at hip and knee. The practitioner stands facing the patient at hip level.

 

The practitioner places his cephalad elbow tip gently over the point behind trochanter, where piriformis inserts. The patient should be close enough to the edge of the table for the practitioner to stabilise the pelvis against his trunk (Fig. 4.20). At the same time, the practitioner�s caudad hand grasps the ankle and uses this to bring the upper leg/hip into internal rotation, taking out all the slack in piriformis.

 

A degree of inhibitory pressure (sufficient to cause discomfort but not pain) is applied via the elbow for 5�7 seconds while the muscle is kept at a reasonable but not excessive degree of stretch. The practitioner maintains contact on the point, but eases pressure, and asks the patient to introduce an isometric contraction (25% of strength for 5�7 seconds) to piriformis by bringing the lower leg towards the table against resistance. (The same acute and chronic rules as discussed previously are employed, together with cooperative breathing if appropriate, see Box 4.2.)

 

After the contraction ceases and the patient relaxes, the lower limb is taken to its new resistance barrier and elbow pressure is reapplied. This process is repeated until no further gain is achieved.

 

Piriformis method (b)1 This method is a variation on the method advocated by TePoorten (1960) which calls for longer and heavier compression, and no intermediate isometric contractions.

 

In the first stage of TePoorten�s method the patient lies on the non-affected side with knees flexed and hip joints flexed to 90�.The practitioner places his elbow on the piriformis musculotendinous junction and a steady pressure of 20�30 lb (9�13 kg) is applied. With his other hand he abducts the foot so that it will force an internal rotation of the upper leg.

 

The leg is held in this rotated position for periods of up to 2 minutes. This procedure is repeated two or three times. The patient is then placed in the supine position and the affected leg is tested for freedom of both external and internal rotation.

 

Piriformis method (b)2 The second stage of TePoorten�s treatment is performed with the patient supine with both legs extended. The foot of the affected leg is grasped and the leg is flexed at both the knee and the hip. As knee and hip flexion is performed the practitioner turns the foot inward, so inducing an external rotation of the upper leg. The practitioner then extends the knee, and simultaneously turns the foot outward, resulting in an internal rotation of the upper leg.

 

During these procedures the patient is instructed to partially resist the movements introduced by the practitioner (i.e. the procedure becomes an isokinetic activity). This treatment method, repeated two or three times, serves to relieve the contracture of the muscles of external and internal hip rotation.

 

Piriformis method (c) A series of MET isometric contractions and stretches can be applied with the patient prone and the affected side knee flexed. The hip is rotated internally by the practitioner using the foot as a lever to ease it laterally, so putting piriformis at stretch. Acute and chronic guidelines described earlier are used to determine the appropriate starting point for the contraction (at the barrier for acute and short of it for chronic).

 

The patient attempts to lightly bring the heel back towards the midline against resistance (avoiding strong contractions to avoid knee strain in this position) and this is held for 7�10 seconds. After release of the contraction the hip is rotated further to move piriformis to or through the barrier, as appropriate. Application of inhibitory pressure to the attachment or belly of piriformis is possible via thumb, if deemed necessary.

 

Piriformis method (d) A general approach which balances muscles of the region, as well as the pelvic diaphragm, is achieved by having the patient squat while the practitioner stands and stabilises both shoulders, preventing the patient from rising as this is attempted, while the breath is held. After 7�10 seconds the effort is released; a deeper squat is performed, and the procedure is repeated several times.

 

Piriformis method (e) This method is based on the test position (see Fig. 4.17) and is described by Lewit (1992). With the patient supine, the treated leg is placed into flexion at the hip and knee, so that the foot rests on the table lateral to the contralateral knee (the leg on the side to be treated is crossed over the other, straight, leg). The angle of hip flexion should not exceed 60� (see notes on piriformis, Box 4.6, for explanation).

 

The practitioner places one hand on the contralateral ASIS to prevent pelvic motion, while the other hand is placed against the lateral flexed knee as this is pushed into resisted abduction to contract piriformis for 7�10 seconds. Following the contraction the practitioner eases the treated side leg into adduction until a sense of resistance is noted; this is held for 10�30 seconds.

 

Piriformis method (f) Since contraction of one piriformis inhibits its pair, it is possible to self-treat an affected short piriformis by having the patient lie up against a wall with the non-affected side touching it, both knees flexed (modified from Retzlaff 1974). The patient monitors the affected side by palpating behind the trochanter, ensuring that no contraction takes place on that side.

 

After a contraction lasting 10 seconds or so of the non-affected side (the patient presses the knee against the wall), the patient moves away from the wall and the position described for piriformis test (see Fig. 4.17) above is adopted, and the patient pushes the affected side knee into adduction, stretching piriformis on that side. This is repeated several times.

 

Dr. Alex Jimenez offers an additional assessment and treatment of the hip flexors as a part of a referenced clinical application of neuromuscular techniques by Leon Chaitow and Judith Walker DeLany. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

By Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

WELLNESS TOPIC: EXTRA EXTRA: Managing Workplace Stress

 

 

Psoriasis: Conventional And Alternative Treatment

Psoriasis: Conventional And Alternative Treatment

Psoriasis Abstract

Psoriasis is a common T-cell-mediated immune disorder characterized by circumscribed, red, thickened plaques with an overlying silver-white scale. It occurs worldwide, although the incidence is lower in warmer, sunnier climates. The primary cause of psoriasis is unknown. During an active disease state, an underlying inflammatory mechanism is frequently involved. Many conventional treatments focus on suppressing symptoms associated with psoriasis and have significant side effects. This article reviews several of the researched natural approaches to psoriasis treatment, while addressing its underlying cause. (Altern Med Rev 2007;12(4):319-330)

Introduction

Recent genetic and immunological advances have greatly increased understanding of the pathogenesis of psoriasis as a chronic, immune-mediated inflammatory disorder. The primary immune defect in psoriasis appears to be an increase in cell signaling via chemokines and cytokines that act on upregulated gene expression and cause hyper-proliferation of keratinocytes. A new understanding of this complex disease has catalyzed the development of targeted biological treatments. These revolutionary therapies are not without potential risk, however. A review of alternative natural therapies provides some options for increasing safety and efficacy in the management of psoriasis. Psoriasis � Pathophysiology, Conventional, and Alternative Approaches to Treatment Michael Traub, ND, and Keri Marshall MS, ND

Epidemiology

The prevalence of psoriasis varies widely depending on ethnicity. Psoriasis occurs most commonly in Caucasians, with an estimated occurrence of 60 cases per 100,000/year in this population. Its prevalence in the United States is 2-4 percent, although it is rare or absent in Native American and certain African-American populations. While common in Japan, it is much less common in China, with an estimated incidence of 0.3 percent. The prevalence in the general population of Northern Europe and Scandinavia is 1.5-3 percent. Women and men are equally affected by this condition. The observation that latitude affects prevalence is most likely related to the beneficial effect of sunlight on the disease.1 Although psoriasis can occur at any age, the mean age of onset for chronic plaque psoriasis is estimated at 33 years, with 75 percent of cases initiated before age 46.2 The age of onset appears to be slightly earlier in women than men. Longitudinal studies suggest spontaneous remission may occur in about one-third of patients with psoriasis.3

Pathophysiology

Until recently psoriasis was considered a disorder of epidermal keratinocytes; however, it is now recognized primarily as an immune-mediated disorder. In order to properly understand the immune dysfunction present in psoriasis, it is imperative to understand the normal immune response of skin. Skin is a primary lymphoid organ with an effective immunological surveillance system equipped with antigen presenting cells, cytokine synthesizing keratinocytes, epidermotropic T cells, dermal capillary endothelial cells, draining nodes, mast cells, tissue macrophages, granulocytes, fibroblasts, and non-Langerhans cells. Skin also has lymph nodes and circulating T lymphocytes. Together these cells communicate by means of cytokine secretion and respond accordingly via stimulation by bacteria, chemical, ultraviolet (UV) light, and other irritating factors. The primary cytokine released in response to antigen presentation is tumor necrosis factor-alpha (TNF-?). Generally, this is a controlled process unless the insult to the skin is prolonged, in which case imbalanced cytokine production leads to a pathological state such as psoriasis.

Debate continues whether psoriasis is an autoimmune disorder or a T-helper 1 (Th1) immune dysfunction. T-cell activation, TNF-?, and dendritic cells are pathogenic factors stimulated in response to a triggering factor, such as a physical injury, inflammation, bacteria, virus, or withdrawal of corticosteroid medication. Initially, immature dendritic cells in the epidermis stimulate T-cells from lymph nodes in response to as yet unidentified antigen stimulation. The lymphocytic infiltrate in psoriasis is predominately CD4 and CD8 T cells. Adhesion molecules that promote leukocyte adherence are highly expressed in psoriatic lesions.4 After T cells receive primary stimulation and activation, a resulting synthesis of mRNA for interleukin-2 (IL-2) occurs, resulting in a subsequent increase in IL-2 receptors. Psoriasis is considered a Th1-dominant disease due to the increase in cytokines of the Th1 pathway � interferon gamma (IFN-?), IL-2, and interleukin 12 (IL-12) � found in psoriatic plaques.

The increased IL-2 from activated T cells and IL-12 from Langerhans cells ultimately regulate genes that code for the transcription of cytokines such as IFN-?, TNF-?, and IL-2, responsible for differentiation, maturation, and proliferation of T cells into memory effector cells. Ultimately, T cells migrate to the skin, where they accumulate around dermal blood vessels. These are the first in a series of immunologic changes that result in the formation of acute psoriatic lesions. Because the above-described immune response is a somewhat normal response to antigen stimulation, it remains unclear why the T-cell activation that occurs, followed by subsequent migration of leukocytes into the epidermis and dermis, creates accelerated cellular proliferation. Upregulated gene regulation may be a causative factor. Vascular endothelial growth factor (VEGF) and interleukin-8 released from keratinocytes may contribute to the vascularization seen in psoriasis.5

Dendritic cells appear to be involved in the pathogenesis of psoriasis. One type of dendritic cell involved is the Langerhans cells, the outermost sentinel of the immune system that recognizes and captures antigens, migrates to local lymph nodes, and presents them to T cells. The activation of T lymphocytes releases pro-inflammatory cytokines such as TNF-? that lead to keratinocyte proliferation. This hyperproliferative response decreases epidermal transit time (the approximate time it takes for normal maturation of skin cells) from 28 days to 2-4 days and produces the typical erythematous scaly plaques of psoriasis. This understanding of pathogenic mechanisms has led to the development and therapeutic use of TNF-? blocking agents.

About 30 percent of individuals with psoriasis have a family history of the disease in a first- or seconddegree relative. At least nine chromosomal susceptibility loci have been elucidated (PSORS1-9). HLA-Cw6 is a major determinant of phenotypic expression. An association with the PSORS has been found with functional polymorphisms in modifier genes that mediate inflammation (e.g., TNF-?) and vascular growth (e.g., VEGF).6

It is known that psoriasis develops in bone marrow transplant recipients from donors with psoriasis, clears in recipients from donors without psoriasis, and that immunosuppressive drugs are effective in reducing psoriasis.7,8 Given the genetic predisposition to this disease, what can be done to reduce the genetic expression besides resorting to immunosuppressive therapies? A naturopathic approach consists of dietary modification,�therapeutic fasting, omega-3 supplementation, topical natural medicines, herbal medicine, and stress management.

Pizzorno and Murray propose the above-mentioned �unidentified antigens� result from incomplete protein digestion, increased intestinal permeability, and food allergies; bowel toxemia (endotoxins); impaired liver detoxification; bile acid deficiencies; alcohol consumption; excessive consumption of animal fats; nutrient deficiencies (vitamins A and E, zinc, and selenium); and stress.9 These hypotheses, although plausible, have not been adequately tested.

Co-Morbidities

Psoriasis is associated with several co-morbidities, including decreased quality of life, depression, increased cardiovascular risk, type 2 diabetes mellitus, metabolic syndrome, cancer, Crohn�s disease, and psoriatic arthritis. It remains unclear whether cancers, in particular skin cancer and lymphoma, are related to psoriasis or to its treatment. Phototherapy and immunosuppressive therapy can increase the risk of non-melanoma skin cancer, for example.10

Of particular concern is the observed link between psoriasis and cardiovascular disease. Evidence indicates psoriasis is an independent risk factor for cardiovascular disease.11 Dyslipidemia, coronary calcification, increased highly sensitive C-reactive protein (CRP), decreased folate, and hyperhomocysteinemia are found with significantly higher frequency in psoriasis patients.12 Inflammation is the common theme underlying both conditions, characterized by the presence of pro-inflammatory cytokines and endothelial activation.

The inflammatory processes underlying psoriasis also suggest the possibility of omega-3 fatty acid, folate, and vitamin B12 deficiencies, which are also often found in cardiovascular disease.13 High homocysteine and decreased folate levels correlate with Psoriasis Area and Severity Index (PASI). A rapid skin cell turnover rate in psoriasis may result in increased folate utilization and subsequent deficiency.14 The author of one study concludes: �Dietary supplementation of folic acid, B6, and B12 appears reasonable in psoriasis patients, particularly those with elevated homocysteine, low folate and additional cardiovascular risk factors.�15

Psoriatic arthritis is a clinical condition occurring in 25 percent of individuals afflicted with psoriasis.16 In approximately 10 percent of this population, the arthritic symptoms precede the skin lesions. Psoriatic arthritis often presents as seronegative inflammatory arthritis, with a classic presentation consisting of oligoarthritis, distal interphalangeal joint involvement, dactylitis (inflammation of the digits), and calcaneal inflammation.

Opinions conflict whether the skin condition and arthritis represent a differing manifestation of the same disease. Genetic evidence, immunological studies, and treatment response variability suggest they may be two different conditions, perhaps with similar underlying inflammation and immune irregularity.17,18

Although palmoplantar pustulosis (PP) is often described as a subtype of psoriasis, different demographics and genetic analysis suggests a different etiology than psoriasis. On appearance, PP has yellowbrown sterile pustules that appear on palms and soles. Only 25 percent of those affected report chronic plaque psoriasis. PP occurs more frequently in women (9:1/ female:male) and 95 percent of affected people have a current or previous history of smoking. As a result, PP may be considered a co-morbid condition rather than a distinct form of psoriasis.19

Diagnostic Criteria

Psoriasis is classified into several subtypes, with the chronic plaque (psoriasis vulgaris) form comprising approximately 90 percent of cases. Sharply demarcated erythematous silvery scaling plaques occur most commonly on the extensor surface of the elbows, knees, scalp, sacral, and groin regions. Other involved areas include the ears, glans penis, perianal region, and sites of repeated trauma. An active inflammatory case of psoriasis can demonstrate the Koebner phenomenon in which new lesions form at a site of trauma or pressure.

In the future, chronic plaque psoriasis might be found to consist of several related conditions with distinct phenotypical and genotypical characteristics, providing an explanation for its variable response to therapy, especially with biologic agents.

Inverse psoriasis occurs in intertriginous sites and skin folds and is red, shiny, and usually without scaling. Sebopsoriasis, which is often confused with seborrheic dermatitis, is characterized by greasy scales�in the eyebrows, nasolabial folds, and postauricular and presternal areas.

Acute guttate psoriasis occurs in children, adolescents, and young adults approximately two weeks after an acute beta-hemolytic streptococcal infection, such as tonsillitis or pharyngitis, or a viral infection. It manifests as an erythematous, papular eruption with lesions less than 1 cm in diameter on the trunk and extremities. Acute guttate psoriasis is usually self-limited, resolving within 3-4 months. One study indicated only one-third of individuals with guttate psoriasis develop classic plaque psoriasis.20

Pustular psoriasis (von Zumbusch) is also an acute psoriatic eruption. The patient presents with fever and small, monomorphic, painful, sterile pustules, often precipitated by an intercurrent infection or the abrupt withdrawal of systemic or superpotent topical steroids. It can be localized to the palms and soles (palmar-plantar psoriasis) or it can be generalized and potentially life-threatening.

Erythrodermic psoriasis, also life threatening, involves the entire body surface and can result in hypothermia, hypoalbuminemia, anemia, infection, and high-output cardiac failure.

Psoriatic nail disease occurs in approximately 50 percent of psoriasis patients and most commonly manifests as pitting. Other nail changes can include onycholysis, discoloration, thickening, and dystrophy.

Risk Factors

Development of psoriasis involves interaction of multiple genetic risk factors with environmental factors, such as beta-hemolytic streptococcal infection, HIV, stress, and medications (e.g., beta-blockers and lithium). As previously mentioned, folate and vitamin B12 deficiency can also predispose. In addition, there is evidence that alcoholism, cigarette smoking, obesity, type 2 diabetes mellitus, and metabolic syndrome increase risk for developing psoriasis.

With the exception of VEGF, no biomarkers have been found as reliable predictors of psoriasis activity. CRP, soluble adhesion molecules, and soluble cytokine receptors have been investigated but do not correlate with severity.21

Conventional Treatment

Conventional treatment of psoriasis is based on the degree of severity. Mild and limited psoriasis treatment includes topical corticosteroids, tars, anthralin, calcipotriene (a vitamin D3 analog), tazarotene (a retinoid), and phototherapy. Physicians can set realistic expectations for therapy, giving the patient control over the disease without expectation of complete cure. Scalp psoriasis usually responds to salicylic acid shampoos.

Narrow-band UVB is less effective but safer than psoralen plus ultraviolet A (PUVA), which carries with it an increased risk of skin cancer. Sun exposure is another form of phototherapy. UV exposure reduces antigen presenting and affects cell signaling, favoring development of T-helper 2 (Th2) immune responses. Antigen-presenting Langerhans cells are decreased in both number and function.22

A topical combination of calcipotriene and betamethasone (Taclonex�) has shown greater efficacy in severe psoriasis than monotherapy with either alone.23

Patient compliance must be considered when developing a treatment plan. The use of less messy topical solution and foam preparations of topical corticosteroids and calcipotriene (compared to ointments and creams) can improve compliance.

Systemic treatment of severe psoriasis usually involves the use of oral retinoids, methotrexate, cyclosporine, and biological agents that can significantly impact other bodily systems.

The oral retinoid acitretin is teratogenic and is converted to etretinate with concomitant alcohol ingestion. Etretinate has a longer half-life and is more teratogenic than acitretin. Female patients must use two forms of birth control and must not become pregnant for at least three years after treatment. Because of possible interaction with oral contraceptives, St. John�s wort (Hypericum perfoliatum) should be avoided. Other adverse effects include mucocutaneous effects, elevated triglycerides, alopecia, and hepatitis. Treatment with acitretin requires frequent monitoring of blood counts, comprehensive metabolic profiles, and urinalysis. Strategies to reduce acitretin toxicity include intermittent use, reduction of maintenance dose to every other day or every third day, combination treatment with PUVA or topical calcipotriene, low-fat diet, aerobic exercise, fish oil supplementation, and as stated above, alcohol avoidance.

Methotrexate (MTX) is the most commonly used systemic agent for psoriasis and, because it has been available for 35 years, most dermatologists are comfortable with its use. Methotrexate inhibits dihydrofolate reductase (resulting in a deficiency of active folic acid) and induces adenosine A1, a potent anti-inflammatory agonist. Its mechanism of action may be even more complex, evidenced by the fact that caffeine inhibits MTX�s anti-inflammatory effects in rheumatoid arthritis but not in psoriasis or psoriatic arthritis.24 The most common serious adverse effects of MTX are myelosuppression and liver fibrosis. While myelosuppression does not frequently occur, patients using MTX often report symptoms of headache, fatigue, and nausea. Folate supplementation reduces the incidence of megaloblastic anemia, hepatotoxicity, and gastrointestinal intolerance. Although folic acid and folinic acid appear to be equally effective, folic acid is more cost effective.25 However, a recent double-blind study of 22 psoriasis patients stable on long-term MTX therapy revealed folic acid reduced MTX�s efficacy in controlling psoriasis. Patients were randomly assigned to receive 5 mg/day folic acid or placebo for 12 weeks. The mean PASI increased (worsened) in the folic acid group, from 6.4 at baseline to 10.8 at 12 weeks. In the placebo group, the mean PASI fell from 9.8 at baseline to 9.2 at 12 weeks (p<0.05 for the difference in the change between groups).26

Cyclosporine, a potent and toxic drug, is sometimes considered for cases not controlled with acitretin, PUVA, or MTX, but is contraindicated in patients with abnormal renal function, poorly controlled hypertension, hepatic dysfunction, or immunosuppression. Prolonged use inevitably results in renal damage. Blood pressure and creatinine monitoring is essential.

Biological agents block T-cell activation and TNF-?. Alefacept (Amevive�) interferes with T-cell activation and reduces circulating CD 45 RO+ T cells. This drug is a fusion protein of the Fc receptor of human IgG1 and LFA3, a co-stimulatory ligand, which interacts with CD2 on the surface of T-cells. CD4 cells must be monitored weekly during treatment with this agent.

Efalizumab (Raptiva�) is a humanized antibody to CD11 that interferes with T-cell trafficking into inflamed tissues and prevents T-cell activation. Although it is rapidly effective, rebound may occur.

TNF-? blockers downregulate proinflammatory gene expression and reverse the psoriatic phenotype. Etanercept (Enbrel�) is a fusion protein directed against soluble TNF-?. Infliximab (Remicade�) is a mouse/human chimeric monoclonal antibody against soluble and cell-bound TNF-?, while adalimumab (Humira�) is a human monoclonal antibody against TNF-?. These TNF-? inhibitors are administered by injection and have been associated with the induction of various autoimmune phenomena. Like TNF-? itself, TNF-? inhibitors can have both proinflammatory and anti-inflammatory activities. Just because a particular agent blocks TNF-?, it does not necessarily benefit psoriasis. If a patient is genetically predisposed to overproducing TNF-?, blocking it may not be sufficient to produce benefit.27 Possible risks of TNF-? blockers include reactivation of latent tuberculosis, hepatotoxicity, lymphoma, and congestive heart failure.

Challenges that remain with biologics for psoriasis include: (1) understanding the predominant mechanism in psoriasis and psoriatic arthritis; (2) understanding different patient responses to therapy; (3) predicting clinical response before or early in therapy; (4) developing oral, inhaled, and topical formulations; and (5) determining whether treatment alters longterm outcome.

Fumaric acid is the primary psoriasis therapy in Germany. It decreases T-cell dependent cytokines, but is not as effective as other conventional treatments, and carries a high risk of toxicity and gastrointestinal intolerance.

Providing rotational and combination therapies increases efficacy and decreases toxicity of treatment. The future may bring stem-cell therapy and gene-based therapies, including �antisense� treatments that directly inhibit psoriasis-specific genes. However, the adverse effects and toxicity of conventional psoriasis treatments necessitate safer and effective natural treatments that can be used as alternatives or in an integrative fashion.

Natural Treatments For Psoriasis

Diet

An evidence-based approach suggests psoriasis, essentially an inflammatory disorder, should benefit from an anti-inflammatory diet, identification, elimination and/or rotation of allergenic foods, and therapeutic fasting.28-30 Although there is no published data on food allergy avoidance, many psoriasis patients show increased sensitivity to gluten and their psoriasis symptoms improve on a gluten-free diet.31 Measurement of antibodies to tissue transglutaminase and gliadin can help identify this subgroup. Evidence also suggests maintaining a healthy weight benefits psoriasis patients, since psoriasis positively correlates with increased body mass index.32

The balance between proinflammatory and anti-inflammatory eicosanoids is influenced in large part by the type of dietary fatty acids consumed. An antiinflammatory diet consists basically of an emphasis on �good fats� (cold water fish, nuts, seeds, olive oil, other high quality oils), whole grains, legumes, vegetables, and fruits and the avoidance of �bad fats� (saturated animal fats, trans fats, fried and processed foods, poor quality oils) and refined carbohydrates. In addition, an excessive amount of omega-6 fatty acids in the diet can contribute to an inflammatory response.33 The primary sources of dietary omega-6 oils are vegetable oils such as corn, soy, safflower, and sunflower, while the primary sources of arachidonic acid are meat, eggs, and dairy.

Prostaglandin E2 (PGE2) is a prominent eicosanoid derived from the omega-6 fatty acid arachidonic acid. A dominant action of PGE2 as a messenger molecule is to enhance sensitivity in pain neurons, increase swelling, and constrict blood vessels. Over-consumption of omega-6 oils provides excess substrate for the synthesis of PGE2, which drives an aggressive and sustained inflammatory response. Prostaglandin E3 (PGE3) is�derived from the omega-3 fatty acid, eicosapentaenoic acid (EPA). Higher levels of PGE3 reduce sensitivity to pain, relax blood vessels, increase blood flow, and support the body�s natural anti-inflammatory response (Figure 1).

psoriasis illustration

While both PGE2 and PGE3 are necessary for proper homeostasis, the relative amounts of these competing messenger molecules either contribute to or mitigate chronic inflammatory syndromes. EPA is thought to act by competing with arachidonic acid for binding sites on cyclooxygenase-2 (COX-2), producing a less potent inflammatory mediator, therefore reducing inflammation.34

Prior to the Industrial Revolution, there were no significant sources of omega-6 vegetable oils in the diet. Most cultures consumed diets low in these oils and high in fish or range-fed beef or bison higher in omega-3s, creating a ratio of omega-6:omega-3 that was approximately 3:1. The Industrial Revolution brought with it the knowledge and tools to refine vegetable oils, resulting in a rapid shift in dietary habits for most Western cultures. The ratio of omega-6:omega-3 was quickly pushed toward the current estimate of as high as 11:1 omega-6:omega-3.35 The human body has not been able to genetically adapt to this dramatic shift in fatty acid consumption.

Many modern cultures consume copious amounts of vegetable oils, mostly in processed foods. For example, soy oil production for food consumption increased 1,000-fold between 1909 and 1999.36 In addition, livestock, poultry, and farmed fish are being fed cornmeal and soy-based feed, which raises the omega-6 content of the meat and fish. When farm animals are raised on grass, worms, or other natural diets, the tissues are naturally higher in omega-3 fatty acids.37

The beef industry touts �marbling� in finished beef products, which is due to the corn and soy feed. Corn- and soy-fed cattle have a higher omega-6 fatty acid content compared to grass-fed cattle. While grassfed cattle can contain up to 4-percent omega-3 fatty acids, corn-fed cattle typically contains 0.5-percent omega-3s.37

The standard American diet supplies an average omega-6:omega-3 ratio of approximately 11:1. A vegetarian-based diet may put an individual at risk for�eating high amounts of vegetable oils and soy products, and low amounts of fish, which can tip the balance toward a pro-inflammatory state. Reducing dietary vegetable oils and increasing the omega-3 fats EPA and docosahexaenoic acid (DHA) by consuming fatty fish such as cod, salmon, mackerel, and sardines can benefit individuals experiencing chronic inflammatory conditions.33

Several herbs used as seasonings, including turmeric, red pepper, cloves, ginger, cumin, anise, fennel, basil, rosemary, garlic, and pomegranate, can block nuclear factor-kappaB (NF?B) activation of inflammatory cytokines.38

Dietary approaches that modify fatty acid intake can influence the eicosanoid profile in such a way that inflammatory processes such as arachidonic acid production and T-cell activation are dampened, while cytokines such as interleukin-4 (the primary cytokine responsible for stimulating a Th2 immune response) are upregulated.34

Nutritional Supplementation

Essential Fatty Acids

Essential fatty acids (EFAs) influence the pathophysiology of psoriasis in three ways: first, EFAs impact the kinetics of cell membranes; second, EFAs impact dermal and epidermal blood flow via improved endothelial function; and third, EFAs act as an immunomodulating agent through their impact on eicosanoids. EFAs are used as basic substrates in the development of the phospholipid bi-layer in virtually every cell in the human body, including the dermis and epidermis. They create structural integrity that regulates fluidity, which impacts cell transport, messenger binding, and cell communication. Omega-3 fatty acids can act both directly and indirectly on endothelial function by reducing mononuclear cell cytokines such as IL-1 and TNF?, 39 decreasing formation of chemo-attractant protein platelet-derived growth factor (PDGF), increasing bioavailability of nitric oxide, and reducing expression of adhesion molecules. The cumulative effect modulating these bioactive mediators is to prevent vascularization, or new blood vessel growth within the psoriatic plaque, while simultaneously allowing improved perfusion of dermal tissue.

Components of both natural and acquired immunity, including the production of key immune modulators, can be affected by omega-3 and -6 fatty acid intake, as discussed above. Immunomodulatory effects of omega-3 fatty acids include suppression of lymphoproliferation, CD4+ cells, antigen presentation, adhesion molecule presentation, Th1 and Th2 responses, and pro-inflammatory cytokine production.34

Several studies have demonstrated the benefit of intravenous or oral supplementation of fish oil for psoriasis.40-42 In a study by Mayser et al, intravenous infusions of omega-3 fatty acids led to an increase in the anti-inflammatory leukotriene B5 (LTB5) within 4-7 days of starting treatment, when compared to control patients.43 In this trial, patients received either an omega-3 or omega-6 preparation twice daily for 10 days. No side effects were noted.

EPA competes with arachidonic acid (AA) for 5-lipoxygenase and produces LTB5, which is only one-tenth as potent as the inflammatory mediator leukotriene B4 (LTB4). Levels of LTB4 have been shown to be elevated in psoriatic plaques and demonstrate chemotactic properties necessary for infiltration of leukocyte and keratinocyte proliferation.43

Ziboh�s review article on omega-3s and psoriasis references six studies conducted using oral fish oil supplementation with mixed results. Unfortunately, original references cannot be found. Two studies were double-blind and placebo-controlled, using 1.8 g EPA and DHA over courses of eight weeks and 12 weeks. The eight-week study demonstrated benefit in itching, scaling, and erythema, while the 12-week study showed no benefit.44

Three open studies were conducted, providing 10-18 g EPA and DHA daily for eight weeks. All studies showed improvement, with two studies demonstrating mild-to-moderate and one study demonstrating moderate-to-excellent improvement in scaling, itching, and lesion thickness. One open study combined with a low-fat diet showed a significant reduction in psoriatic symptoms.44,45

Several studies have explored the use of topical fish oil at varying EPA concentrations. Some studies reported benefits, including a reduction in plaque thickness and scaling.46,47 In one study by Puglia et al, fish oil extracts and ketoprofen were applied topically to�psoriatic lesions, with an observed reduction in erythema.48 The most significant drawback to topical fish oil application is compliance due to the odor.

Fish oil has also proven to be beneficial in autoimmune joint conditions such as rheumatoid arthritis (RA).49 While fish oil supplementation has not been used in clinical trials for the treatment of psoriatic arthritis, it may be beneficial in treating this condition, which has many similarities to RA, including a common underlying inflammatory mechanism and immune dysfunction.

Folate

Methotrexate therapy results in a folate deficiency. As mentioned above, in patients receiving MTX for psoriasis, folate supplementation reduced the incidence of hepatotoxicity and gastrointestinal intolerance but might impair the efficacy of MTX.24 When supplementing with folic acid or the active forms, folinic acid or 5-methyltetrahydrofolate, the recommended dose is 1-5 mg/day.

Bioactive Whey Protein Isolate

XP-828L is a novel dietary supplement made of a protein extract derived from bovine whey that has recently been shown to be beneficial in psoriasis.50,51 The bioactive profile of XP-828L is likely due to the presence of growth factors, immunoglobulins, and active peptides found in this specific whey extract. An in vitro study demonstrated XP-828L has immune-regulating effects, including inhibiting the production of Th1 cytokines such as IFN-g and IL-2, which may make it effective in treating T-helper 1-related disorders, such as psoriasis.52

An open-label study was conducted on 11 adult patients with chronic, stable plaque psoriasis on two percent or more of total body surface area. Study participants received 5 g twice daily of XP-828L for 56 days. Evaluations using PASI and Physician�s Global Assessment (PGA) scores were made on the initial screening day and again on days 1, 28, and 56. At the conclusion of the study, seven of the 11 subjects had a reduced PASI score that ranged from 9.5 percent to 81.3 percent.50 The results of a larger double-blind,�placebo-controlled study of 84 individuals with mildto-moderate psoriasis showed XP-828L (5 g/day for 56 days) significantly reduced the PGA score compared to placebo (p<0.05). No adverse affects were noted from any study participants in either study.50,51

Vitamin D

It has been established that patients with disseminated psoriasis have significantly decreased serum levels of the biologically active form of vitamin D, 1-alpha,25-dihydroxyvitamin D3 (1-?,25(OH)2D3; calcitriol) compared to age- and sex-matched controls and also compared to patients with moderate psoriasis.53 Whether this is a contributing factor to psoriasis or a result of the disorder has not been elucidated.

Keratinocytes in the epidermis convert 7-dehydrocholesterol to vitamin D3 in the presence of UVB. Sunlight, UVB phototherapy, oral calcitriol, and topical vitamin D analogs are effective therapy for psoriasis due to vitamin D�s anti-proliferative and pro-differentiating actions on keratinocytes.54-56

Calcitriol-binding to vitamin D receptors (VDR) in the skin modulates the expression of a large number of genes including cell cycle regulators, growth factors, and their receptors. Polymorphisms of the VDR gene are associated with psoriasis and may predispose to the development of psoriasis and resistance to calcipotriol therapy, as well as contribute to liver dysfunction in patients with psoriasis.57

Given vitamin D�s importance in psoriasis, cancer, inflammatory diseases, and other conditions, it has been suggested by some investigators that recommendations for sun protection and skin cancer prevention may need to be re-evaluated to allow for sufficient vitamin D status. A recent study showed abundant sun exposure in a sample of adults in Hawaii did not necessarily ensure vitamin D adequacy, which points to the need for vitamin D supplementation to achieve optimal blood levels.58

Studies have demonstrated that oral vitamin D can be safely taken in daily doses of up to 5,000 IU, with some experts recommending up to 10,000 IU daily to correct a deficiency.59-61 Oral and topical vitamin D, sunlight, and UVB phototherapy have shown considerable efficacy in the treatment of psoriasis.56

Topical Treatments Of Psoriasis

Several topical treatments for psoriasis may provide benefit, including calcipotriene (Dovonex�; a synthetic vitamin D3 analogue), Berberis aquifolium cream (10%)62 (Psoriaflora�; Relieva�), curcumin gel (1%), Aloe vera, and a flavonoid-rich salve (Flavsalve�).

Curcumin gel yielded 90-percent resolution of plaques in 50 percent of patients within 2-6 weeks; the remainder of the study subjects showed 50- to 85-percent improvement. Curcumin was found to be twice as effective as calcipotriol cream (which generally takes three months to exert its full effect). The mechanism of curcumin is as a selective phosphorylase kinase inhibitor, thereby reducing inflammation through inhibition of NF?B.63

A controlled trial of Aloe vera extract cream (0.5%) in 60 patients for 4-12 months demonstrated a significant clearing of psoriatic plaques (82.8%) compared to placebo (7.7%) (p<0.001). In addition, the PASI decreased to a mean of 2.2.64

The scaliness of psoriasis benefits from the use of emollients. Intercellular lipids such as ceramides (lipid molecules composed of fatty acids and sphingosine) play an important role in the regulation of skin-water barrier homeostasis and water-holding capacity. It has been shown that ceramides are decreased in the psoriatic epidermis. Newer ceramide-containing emollients (e.g., CeraVe�, Mimyx�, Aveeno Eczema Care) have shown benefit in psoriasis and may improve skin barrier function and decrease water loss.65

Botanical Influences

A Chinese herbal formula (Herose� Psoria Capsule) has demonstrated safety and efficacy in the treatment of severe plaque psoriasis.66 Herose consists of rhizoma Zingiberis, radix Salviae miltiorrhizae, radix Astragali, ramulus Cinnamomi, radix Paeoniae alba, radix Codonopsis pilosula, and semen Coicis. In an openlabel trial, 15 subjects took four Herose capsules (450 mg each) three times daily for 10 months. The investigator evaluated the PASI and therapeutic response to Herose for each patient. The formula is intended for warming the yang and promoting blood circulation.

Lifestyle Interventions

Lifestyle factors such as cigarette smoking and alcohol consumption are associated with severity of psoriasis.67 Physical activity and outdoor activities (taking precautions not to sunburn) are beneficial.68 Bathing and sunbathing at the Dead Sea for four weeks resulted in a decrease of PASI of 81.5 percent, a 78-percent decrease in keratinocyte hyperplasia, and almost total elimination of T lymphocytes from the epidermis, with a low number remaining in the dermis.69

Stress management can benefit individuals with psoriasis. Subjects who listened to a guided meditation tape while undergoing phototherapy cleared four times faster than those who received phototherapy only, as judged by two independent dermatologists. Psoriasis status was assessed in three ways: direct inspection by clinic nurses; direct inspection by physicians blinded to the patient�s study condition (tape or no-tape); and blinded physician evaluation of photographs of psoriasis lesions. Four sequential indicators of skin status were monitored during the study: a First Response Point, a Turning Point, a Halfway Point, and a Clearing Point. Subjects in the tape groups reached the Halfway Point (p= 0.013) and the Clearing Point (p=0.033) significantly more rapidly than those in the no-tape condition, for both UVB and PUVA treatments.70 Finally, psychotherapy can be an essential adjunct for individuals with persistent unresolved psychological issues such as anxiety, depression, and the psychosocial stress of this chronic skin disease.

Discussion

Psoriasis is characterized by T-cell activation that releases pro-inflammatory cytokines such as TNF-?, leading to keratinocyte proliferation and the typical skin lesions of psoriasis.

The conventional approach to psoriasis consists of utilizing topical and/or oral corticosteroids, other immunosuppressant drugs, oral retinoids, UV light, and several (not necessarily novel, having been used previously for Crohn�s and RA) biological agents. Although these treatments can be highly effective at controlling the disease, none are universally safe and effective, and each carries a considerable risk profile.

There is some evidence for the use of dietary modification and fish oil to decrease inflammation in psoriasis. More research is warranted to clarify the use�of these and various topical botanical therapies and lifestyle interventions for improving clinical symptoms, decreasing the phenotypic expression of psoriasis, and providing safe and effective treatments.

 

blank
References:

1. Griffiths CEM, Camp RDR, Barker JNWN.
Psoriasis. In: Burns DA, Breathnach SM, Cox N,
Griffiths CE, eds. Rook�s Textbook of Dermatology. 7th
ed. Oxford: Blackwell; 2005:35.1-35.69.
2. Nevitt GJ, Hutchinson PE. Psoriasis in the
community; prevalence, severity and patients belief
and attitudes towards the disease. Br J Dermatol
1996;135:533-537.
3. Farber EM, Nall ML. The natural history of psoriasis
in 5600 patients. Dermatologica 1974;148:1-18.
4. Robert C, Kupper TS. Inflammatory skin diseases,
T cells and immune surveillance. N Engl J Med
1999;341:1817-1828.
5. Simonetti O, Lucarini G, Goteri G, et al. VEGF is
likely a key factor in the link between inflammation
and angiogenesis in psoriasis: results of an
immunohistochemical study. Int J Immunopathol
Pharmacol 2006;19:751-760.
6. Capon F, Munro M, Barker J, Trembath R. Searching
for the major histocompatibility complex psoriasis
susceptibility gene. J Invest Dermatol 2002;118:745-
751.
7. Wahie S, Alexandroff A, Reynolds NJ, Meggit SJ.
Psoriasis occurring after myeloablative therapy and
autologous stem cell transplantation. Br J Dermatol
2006;154:194-195.
8. Eedy DJ, Burrows D, Bridges JM, Jones FG.
Clearance of severe psoriasis after allogenic bone
marrow transplantation. BMJ 1990;300:908.
9. Pizzorno JE, Murray MT. Textbook of Natural
Medicine. 3rd ed. St. Louis, MO: Churchill
Livingstone; 2006:2080.
10. Lindelof B, Eklund G, Liden S, Stern RS. The
prevalence of malignant tumors in patients with
psoriasis. J Am Acad Dermatol 1990;22:1056-1060.
11. Mrowietz U, Elder JT, Barker J. The importance of
disease associations and concomitant therapy for the
long-term management of psoriasis patients. Arch
Dermatol Res 2006;298:309-319.
12. Rocha-Pereira P, Santos-Silva A, Rebelo I, et al.
Dyslipidemia and oxidative stress in mild and in
severe psoriasis as a risk for cardiovascular disease.
Clin Chim Acta 2001;303:33-39.
13. Ludwig RJ, Herzog C, Rostock A, et al. Psoriasis:
a possible risk factor for development of coronary
artery calcification. Br J Dermatol 2007;156:271-276.

14. Vanizor Kural B, Orem A, Cimsit G, et al.
Plasma homocysteine and its relationships with
atherothrombotic markers in psoriatic patients. Clin
Chim Acta 2003;332:23-30.
15. Malerba M, Gisondi P, Radaeli A, et al. Plasma
homocysteine and folate levels in patients
with chronic plaque psoriasis. Br J Dermatol
2006;155:1165-1169.
16. Zachariae H. Prevalence of joint disease in patients
with psoriasis: implications for therapy. Am J Clin
Dermatol 2003;4:441-447.
17. Ho P, Bruce IN, Silman A, et al. Evidence for
common genetic control in pathways of inflammation
for Crohn�s disease and psoriatic arthritis. Arthritis
Rheum 2005;52:3596-3602.
18. Pitzalis C, Cauli A, Pipitone N, et al. Cutaneous
lymphocyte antigen-positive T lymphocytes
preferentially migrate to the skin but not to the joint
in psoriatic arthritis. Arthritis Rheum 1996;39:137-
145.
19. Asumalahti K, Ameen M, Suomela S, et al. Genetic
analysis of PSORS1 distinguishes guttate psoriasis
and palmoplantar pustulosis. J Invest Dermatol
2003;120:627-632.
20. Martin BA, Chalmers RJ, Telfer NR. How great
is the risk of further psoriasis following a single
episode of acute guttate psoriasis? Arch Dermatol
1996:132:717-718.
21. Creamer D, Allen MH, Groves RW, Barker JN.
Circulating vascular permeability factor/vascular
endothelial growth factor in erythroderma. Lancet
1996;348:1101.
22. Zanolli MD, Camisa C, Feldman S, et al. Psoriasis:
the high notes on current treatment. Program of the
American Academy of Dermatology, Academy 2000;
August 5, 2000; Nashville, TN.
23. Kaufmann R, Bibby AJ, Bissonnette R, et al. A new
calcipotriol/betamethasone dipropionate formulation
(Daivobet) is an effective once-daily treatment for
psoriasis vulgaris. Dermatology 2002;205:389-393.
24. Swanson DL, Barnes SA, Mengden Koon SJ, elAzhary
RA. Caffeine consumption and methotrexate
dosing requirement in psoriasis and psoriatic arthritis.
Int J Dermatol 2007;46:157-159.
25. Strober BE, Menon K. Folate supplementation during
methotrexate therapy for patients with psoriasis. J
Am Acad Dermatol 2005;53:652-659.
26. Salim A, Tan E, Ilchyshyn A, Berth-Jones J. Folic acid
supplementation during treatment of psoriasis with
methotrexate: a randomized, double-blind, placebocontrolled
trial. Br J Dermatol 2006;154:1169-1174.
27. Fiorentino D. The yin and yang of TNF-(alpha)
inhibition. Arch Dermatol 2007;143:233-236.
28. Wolters M. Diet and psoriasis: experimental data and
clinical evidence. Br J Dermatol 2005;153:706-714.
29. Brown AC, Hairfield M, Richards DG, et al. Medical
nutrition therapy as a potential complementary
treatment for psoriasis � five case reports. Altern Med
Rev 2004;9:297-307.
30. Lithell H, Bruce A, Gustafsson IB, et al. A fasting
and vegetarian diet treatment trial on chronic
inflammatory disorders. Acta Derm Venereol
1983;63:397-403.
31. Chalmers RJ, Kirby B. Gluten and psoriasis. Br J
Dermatol 2000;142:5-7.
32. Naldi L, Parazzini F, Peli L, et al. Dietary factors and
the risk of psoriasis. Results of an Italian case-control
study. Br J Dermatol 1996;134:101-106.
33. Adam O, Beringer C, Kless T, et al. Antiinflammatory
effects of a low arachidonic acid diet
and fish oil in patients with rheumatoid arthritis.
Rheumatol Int 2003;23:27-36.
34. Calder PC. n-3 Polyunsaturated fatty acids,
inflammation, and inflammatory diseases. Am J Clin
Nutr 2006;83:1505S-1519S.
35. Yehuda S.Omega-6/omega-3 ratio and brain-related
functions. World Rev Nutr Diet 2003;92:37-56.
36. Sirtori CR. Risks and benefits of soy phytoestrogens
in cardiovascular diseases, cancer, climacteric
symptoms and osteoporosis. Drug Saf 2001;24:665-
682.
37. Marchello MJ, Driskell JA. Nutrient composition of
grass- and grain-finished bison. Great Plains Research
2001;11:65-82.
38. Aggarwal BB, Shishodia S. Suppression of the
nuclear factor-kappaB activation pathway by spicederived
phytochemicals: reasoning for seasoning. Ann
N Y Acad Sci 2004;1030:434-441.
39. Yaqoob P. Fatty acids as gatekeepers of immune cell
regulation. Trends Immunol 2003;24:639-645.
40. Bittiner SB, Tucker WF, Cartwright I, Bleehen SS. A
double-blind, randomised, placebo-controlled trial of
fish oil in psoriasis. Lancet 1988;1:378-380.
41. Gupta AK, Ellis CN, Tellner DC, et al. Double-blind,
placebo-controlled study to evaluate the efficacy
of fish oil and low-dose UVB in the treatment of
psoriasis. Br J Dermatol 1989;120:801-807.
42. Mayser P, Mrowietz U, Arenberger P, et al. Omega-3
fatty acid-based lipid infusion in patients with
chronic plaque psoriasis: results of a double-blind,
randomized, placebo-controlled, multicenter trial. J
Am Acad Dermatol 1998;38:539-547.
43. Mayser P, Grimm H, Grimminger F. n-3 fatty acids in
psoriasis. Br J Nutr 2002;87:S77-S82.
44. Ziboh VA. The role of n-3 fatty acids in psoriasis. In:
Kremer J, ed. Medicinal Fatty Acids in Inflammation.
Basel, Switzerland: Birkhauser Verlag; 1998:45-53.

45. Calder PC. n-3 Polyunsaturated fatty acids,
inflammation and immunity: pouring oil on troubled
waters or another fishy tale? Nutr Res 2001;21:309-
341.
46. Zulfakar MH, Edwards M, Heard CM. Is there a role
for topically delivered eicosapentaenoic acid in the
treatment of psoriasis? Eur J Dermatol 2007;17:284-
291.
47. Richards H, Thomas CP, Bowen JL, Heard CM.
In vitro transcutaneous delivery of ketoprofen and
polyunsaturated fatty acids from a pluronic lecithin
organogel vehicle containing fish oil. J Pharm
Pharmacol 2006;58:903-908.
48. Puglia C, Tropea S, Rizza L, et al. In vitro
percutaneous absorption studies and in vivo
evaluation of anti-inflammatory activity of essential
fatty acids (EFA) from fish oil extracts. Int J Pharm
2005;299:41-48.
49. Cleland LG, James MJ. Fish oil and rheumatoid
arthritis: antiinflammatory and collateral health
benefits. J Rheumatol 2000;27:2305-2307.
50. Poulin Y, Pouliot Y, Lamiot E, et al. Safety and
efficacy of a milk-derived extract in the treatment of
plaque psoriasis: an open-label study. J Cutan Med
Surg 2005;9:271-275.
51. Poulin Y, Bissonnette R, Juneau C, et al. XP-828L
in the treatment of mild to moderate psoriasis:
randomized, double-blind, placebo-controlled study. J
Cutan Med Surg 2006;10:241-248.
52. Aattouri N, Gauthier SF, Santure M, et al.
Immunosuppressive effect of a milk-derived extract.
12th International Congress of Immunology and 4th
Annual Conference of FOCIS. Montreal, Canada;
July 18-23, 2004.
53. Staberg B, Oxholm A, Klemp P, Christiansen C.
Abnormal vitamin D metabolism in patients with
psoriasis. Acta Derm Venereol 1987;67:65-68.
54. Reichrath J. Vitamin D and the skin: an ancient
friend, revisited. Exp Dermatol 2007;16:618-625.
55. Osmancevic A, Landin-Wilhelmsen K, Larko O,
et al. UVB therapy increases 25(OH) vitamin D
syntheses in postmenopausal women with psoriasis.
Photodermatol Photoimmunol Photomed 2007;23:172-
178.
56. Perez A, Raab R, Chen TC, et al. Safety and efficacy
of oral calcitriol (1,25-dihydroxyvitamin D3) for the
treatment of psoriasis. Br J Dermatol 1996;134:1070-
1078.
57. Okita H, Ohtsuka T, Yamakage A, Yamazaki
S. Polymorphism of the vitamin D(3) receptor
in patients with psoriasis. Arch Dermatol Res
2002;294:159-162.
58. Binkley N, Novotny R, Krueger D, et al. Low vitamin
D status despite abundant sun exposure. J Clin
Endocrinol Metab 2007;92:2130-2135.
59. Grant WB, Holick MF. Benefits and requirements of
vitamin D for optimal health: a review. Altern Med
Rev 2005;10:94-111.
60. Hollis BW. Circulating 25-hydroxyvitamin
D levels indicative of vitamin D sufficiency:
implications for establishing a new effective dietary
intake recommendation for vitamin D. J Nutr
2005;135:317-322.
61. Vieth R, Bischoff-Ferrari H, Boucher BJ, et al. The
urgent need to recommend an intake of vitamin D
that is effective. Am J Clin Nutr 2007;85:649-650.
62. Gulliver WP, Donsky HJ. A report on three recent
clinical trials using Mahonia aquifolium 10% topical
cream and a review of the worldwide clinical
experience with Mahonia aquifolium for the treatment
of plaque psoriasis. Am J Ther 2005;12:398-406.
63. Heng MC, Song MK, Harker J, Heng MK. Druginduced
suppression of phosphorylase kinase activity
correlates with resolution of psoriasis as assessed
by clinical, histological and immunohistochemical
parameters. Br J Dermatol 2000;143:937-949.
64. Syed TA, Ahmad SA, Holt AH, et al. Management
of psoriasis with Aloe vera extract in a hydrophilic
cream: a placebo-controlled, double-blind study. Trop
Med Int Health 1996;1:505-509.
65. Lew BL, Cho Y, Kim J, et al. Ceramides and cell
signaling molecules in psoriatic epidermis: reduced
levels of ceramides, PKC-alpha, and JNK. J Korean
Med Sci 2006;21:95-99.
66. Yuqi TT. Review of a treatment for psoriasis using
Herose, a botanical formula. J Dermatol 2005;32:940-
945.
67. Chodorowska G, Kwiatek J. Psoriasis and cigarette
smoking. Ann Univ Mariae Curie Sklodowska [Med]
2004;59:535-538.
68. Schiener R, Brockow T, Franke A, et al. Bath PUVA
and saltwater baths followed by UV-B phototherapy
as treatments for psoriasis: a randomized controlled
trial. Arch Dermatol 2007;143:586-596.
69. Hodak E, Gottlieb AB, Segal T, et al. Climatotherapy
at the Dead Sea is a remittive therapy for psoriasis:
combined effects on epidermal and immunologic
activation. J Am Acad Dermatol 2003;49:451-457.
70. Kabat-Zinn J, Wheeler E, Light T, et al. Influence
of a mindfulness meditation-based stress reduction
intervention on rates of skin clearing in patients
with moderate to severe psoriasis undergoing
phototherapy (UVB) and photochemotherapy
(PUVA). Psychosom Medicine 1998;60:625-632.

Close Accordion
Nutritional Regulation for Inflammatory Bowel Disease

Nutritional Regulation for Inflammatory Bowel Disease

Inflammatory bowel disease is an umbrella term used to describe a group of gastrointestinal diseases characterized by chronic, ongoing inflammation of all or part of the gastrointestinal tract, or GI tract, such as Crohn’s disease, or CD, and ulcerative colitis, UC. While many factors have been determined to cause inflammatory bowel disease, research studies have concluded that nutrition can increase the risk of gastrointestinal diseases, including inflammatory bowel disease.

 

How does nutrition affect inflammatory bowel disease?

 

Nutrient deficiencies are common among individuals with inflammatory bowel disease, or IBD. Both complete parenteral and enteral nutrition can provide significant supportive treatment for patients with IBD, however, in adults those alone may not be helpful as a form of primary treatment. Clinical intervention using omega-3 polyunsaturated fatty acids found in fish oil could be beneficial for the nutritional regulation of IBD patients and recent research studies have emphasized the function of PPAR on NF?B action towards its possible beneficial impact on dietary lipids for overall intestinal functioning.

 

Nutrition in Inflammatory Bowel Disease

 

Specific antibody isotypes of essential milk proteins are located in both UC and CD patients. In CD, the antibodies are associated with disease. Although cultural origin, rather than the IBD disease condition, seems to be the primary cause of lactose intolerance, the avoidance of milk products by IBD patients is extensive. Lack of breast-feeding during infancy was associated with CD but not UC. Additionally, higher carbohydrate intake was recorded in CD. Others have suggested a deficiency of dietary fiber as a predisposing factor for IBD. The growth of UC has also been associated with higher intakes of polyunsaturated fatty acids (MUFA), n6 polyunsaturated fatty acids (n6 PUFA), sulphur-containing diets and vitamin B6.

 

Deficiencies

 

Inflammatory bowel disease is related to several nutritional deficiencies, such as anemia, hypoalbuminemia, hypomagnesia, hypocalcemia and hypophosphatemia, including deficiencies in folic acid, niacin, vitamins A, B12, C, and D, in addition to deficiencies of iron, magnesium and zinc. Further research studies are needed to determine if reduced levels of micronutrients are of some significance to the result of gastrointestinal diseases. Plasma antioxidant concentrations are lower in IBD patients, especially those who have an active form of the disease. Antioxidant action, evaluated by measuring selenium levels and erythrocyte glutathione peroxidase activity, is inversely associated with inflammatory biomarkers, such as TNF?. Hyperhomocysteinemia is more prevalent in patients with IBD, and is characterized with low serum as well as reduced concentrations of vitamin B12, folate and B6.

 

Several mechanisms are responsible for the malnutrition observed in IBD patients. Primarily, there’s a decline in the oral consumption of nutrients due to abdominal pain and anorexia. Second, the mucosal inflammation and related diarrhea reduces blood, protein, minerals, electrolytes and trace components. Paradoxically, multiple resections or bacterial vaginosis might have an adverse nutrient impact; and finally, herbal remedies may also cause malnutrition. By way of instance, sulfasalazine reduces nitric acid absorption, and corticosteroids reduce calcium absorption in addition to negatively impacting protein metabolism. Alterations in energy metabolism may result in increased resting energy expenditure and lipid oxidation in patients with inflammatory bowel disease. There are many effects of malnutrition and each can decrease bone mineral density, in addition to growth retardation and delayed sexual maturity in children. Osteoporosis may also be involved as a consequence of pro-inflammatory cytokine profiles.

 

Nutritional treatment may take on a range of forms including Total Parenteral Nutrition (TPN) and Complete Enteral Nutrition (TEN). The diets used are elemental, polymeric, and exception diets. Elemental diets contain nutrients reduced to their fundamental elements: amino acids, such as proteins, sugar for carbs, and short-chain triglycerides, such as fats. Polymeric formulas contain entire proteins, such as nitrogen, glucose polymers for carbs and long-chain triglycerides for fat or starch.

 

Total Parenteral Nutrition (TPN)

 

Using TPN for the nutritional regulation of IBD is based on specific theoretical benefits, including how: gut rest may be beneficial since it reduces motor and transportation function in the diseased intestine; a drop in antigenic stimulation can remove the immunologic reactions to food, particularly in the presence of diminished intestinal permeability; TPN promotes protein synthesis in the gut which provides cell renewal, recovery, and alteration of impaired immunocompetence.

 

Researchers demonstrated remission rates of 63 percent to 89 percent with TPN in a large retrospective collection of CD patients which were difficult in standard medical management. But, Matuchansky et al highlighted that there have been high relapse rates (40%-62%) after two decades. It’s been implied that TPN be utilized exclusively in a nutritionally supportive function. In UC, there’s absolutely no evidence for much better results with TPN. Though remission rates of 9 percent to 80 percent are reported, TPN provided to patients with acute colitis seems to be beneficial as perioperative nutritional support. In patients with moderate disease, TPN is significantly more successful but isn’t better than steroid treatment, and so the invasiveness and price of TPN are unjustified. Any advantages related to TPN might be due to the nutritional regulation, rather than gut rest, as gut rest alone has no impact on disease activity. Accordingly, though TPN has a function in patients using a non-functioning gut or the brief gut syndrome because of excess resections, TPN is of limited use as a primary treatment in IBD. This isn’t designed to be an extensive breakdown of TPN, but it needs to be cautioned that in specialist centers, TPN is associated with complications like sepsis and cholestatic liver disease.

 

Total enteral nutrition (TEN), Elemental & Defined Formula Diets

 

TEN prevents possible toxic dietary variables and antigenic exposure, because there are only amino acids, sugar or oligosaccharides and very low lipid content. TEN isn’t associated with cholestasis, biliary sludge or gallstone formation, as can be observed with TPN. Atrophy of the small intestinal mucosa was discovered in animal models receiving long-term TPN, yet this atrophy is prevented with TEN. Additionally, a 6-wk TPN therapy in dogs led to marked decrease in pancreatic fat, a reduction in small intestinal mass as well as a decline in intestinal disaccharidase activity in puppies. Because of this, TEN is more preferable than TPN.

 

The subject of nutrition in gastrointestinal disorders which occur in IBD has been recently reviewd. In comparison to TPN, enteral nutrition yielded similar outcomes towards preventing and combating malnutrition. Though Voitk et al suggested that elemental diets could be an effective treatment for IBD, enteral nutrition as a primary therapy has failed to produce consistent results in several clinical trials. It’s correct that quite a few trials have shown remission levels in CD patients getting elemental diets, like the rates observed with prostate cancer treatment. But, it’s important to note that greater remission rates were detected in patients receiving steroid therapy versus standard diets when including all of the diet category fall outs (i.e., in an intent-to-treat foundation). The question remains concerning the best means of assessing the results when a sizable proportion of individuals receiving diet treatment fall out due to unpalatibility or intolerance. What’s more, a few research studies have demonstrated no distinction with elemental diets compared to steroid treatment. In children, elemental diets have been associated with higher linear gain, whereas in adults those diets maintain nitrogen equilibrium. The use of supplements in the context of pediatric onset illness was also reviewed. Therefore, enteral nutrition is simpler to use, is less costly, and it’s also a far better choice than TPN. Unfortunately, its unpalatability limits individual agreement, but with powerful encouragement this might be partly overcome.

 

The fat composition of enteral diets can influence the results that are obtained in the several clinical trials. Elemental diets include a reduced fat content, although a lot of healthier diets generally contain more fat, such as more lactic acid, which can be a precursor for the synthesis of possible pro-inflammatory eicosanoids.

 

Defined formula diets are often more palatable and more affordable than would be the elemental diets. When some researchers reported no gaps between utopian and defined formula diets in patients with severe CD, Giaffer et al discovered elemental diets are far more successful for active CD. A randomized double-blind study in Crohn’s patients revealed that elemental and polymeric, or characterized, diets differing only in their own source of nitrogen, were equally effective in lessening the Crohn’s disease activity index, or CDAI, also inducing clinical remission. Though defined formula diets supply less gut rest, they have the possible benefit of exposing the GI tract to the typical dietary substrates, which permit thereby for the complete manifestation of intestinal, biliary and pancreatic action. In animal research, it has also been discovered that luminal nutrition has trophic impacts on the intestine.

 

Can there be a beneficial effect of supplementing polymeric formulas with TGF-?1? In pediatric CD, reductions in pro-inflammatory cytokine concentrations and mRNA, paired with an up-regulation of TGF-? mRNA, was associated with enhanced macroscopic and microscopic mucosal inflammation. A meta-analysis along with a Cochrane review have demonstrated that in adults, corticosteroids are more effective than enteral diet treatment. It’s uncertain what is the use of supplements in adults with CD, even though there are some signs in Japan that enteral nutrition enjoys support as principal treatment. In contrast to this generally agreed part in adults of enteral nutrition being used to enhance the patient’s nutritional status because its principal advantage, in children with CD enteral nutrition has a far clearer benefit to enhance clinical, biochemical and growth parameters, and may as well have a steroid sparing effect.

 

Information referenced from the National Center for Biotechnology Information (NCBI) and the National University of Health Sciences. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

By Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

WELLNESS TOPIC: EXTRA EXTRA: Managing Workplace Stress

 

 

Blank
References
1.�Liu Y, van Kruiningen HJ, West AB, Cartun RW, Cortot A, Colombel JF. Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn’s disease.�Gastroenterology.�1995;108:1396�1404.�[PubMed]
2.�Sartor R.�Microbial factors in the pathogenesis of Crohn’s disease, ulcerative colitis and experimental intestinal inflammation.�Baltimore: Williams & Wilkins; 1995.
3.�Wakefield AJ, Ekbom A, Dhillon AP, Pittilo RM, Pounder RE. Crohn’s disease: pathogenesis and persistent measles virus infection.�Gastroenterology.�1995;108:911�916.�[PubMed]
4.�Sartor RB. Current concepts of the etiology and pathogenesis of ulcerative colitis and Crohn’s disease.�Gastroenterol Clin North Am.�1995;24:475�507.�[PubMed]
5.�Sartor RB. Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases.�Am J Gastroenterol.�1997;92:5S�11S.�[PubMed]
6.�MacDermott RP. Alterations in the mucosal immune system in ulcerative colitis and Crohn’s disease.�Med Clin North Am.�1994;78:1207�1231.�[PubMed]
7.�Podolsky DK. Inflammatory bowel disease (1)�N Engl J Med.�1991;325:928�937.�[PubMed]
8.�Podolsky DK. Inflammatory bowel disease (2)�N Engl J Med.�1991;325:1008�1016.�[PubMed]
9.�Yang H, Rotter J.�The genetics of inflammatory disease.�Baltimore: Williams & Wilkins; 1994.
10.�Wurzelmann JI, Lyles CM, Sandler RS. Childhood infections and the risk of inflammatory bowel disease.�Dig Dis Sci.�1994;39:555�560.�[PubMed]
11.�Knoflach P, Park BH, Cunningham R, Weiser MM, Albini B. Serum antibodies to cow’s milk proteins in ulcerative colitis and Crohn’s disease.�Gastroenterology.�1987;92:479�485.�[PubMed]
12.�De Palma GD, Catanzano C. Removable self-expanding metal stents: a pilot study for treatment of achalasia of the esophagus.�Endoscopy.�1998;30:S95�S96.�[PubMed]
13.�Bernstein CN, Ament M, Artinian L, Ridgeway J, Shanahan F. Milk tolerance in adults with ulcerative colitis.�Am J Gastroenterol.�1994;89:872�877.�[PubMed]
14.�Matsui T, Iida M, Fujishima M, Imai K, Yao T. Increased sugar consumption in Japanese patients with Crohn’s disease.�Gastroenterol Jpn.�1990;25:271.�[PubMed]
15.�Kelly DG, Fleming CR. Nutritional considerations in inflammatory bowel diseases.�Gastroenterol Clin North Am.�1995;24:597�611.�[PubMed]
16.�Geerling BJ, Dagnelie PC, Badart-Smook A, Russel MG, Stockbr�gger RW, Brummer RJ. Diet as a risk factor for the development of ulcerative colitis.�Am J Gastroenterol.�2000;95:1008�1013.�[PubMed]
17.�Dudrick SJ, Latifi R, Schrager R. Nutritional management of inflammatory bowel disease.�Surg Clin North Am.�1991;71:609�623.�[PubMed]
18.�D’Odorico A, Bortolan S, Cardin R, D’Inca’ R, Martines D, Ferronato A, Sturniolo GC. Reduced plasma antioxidant concentrations and increased oxidative DNA damage in inflammatory bowel disease.�Scand J Gastroenterol.�2001;36:1289�1294.�[PubMed]
19.�Reimund JM, Hirth C, Koehl C, Baumann R, Duclos B. Antioxidant and immune status in active Crohn’s disease. A possible relationship.�Clin Nutr.�2000;19:43�48.�[PubMed]
20.�Romagnuolo J, Fedorak RN, Dias VC, Bamforth F, Teltscher M. Hyperhomocysteinemia and inflammatory bowel disease: prevalence and predictors in a cross-sectional study.�Am J Gastroenterol.�2001;96:2143�2149.�[PubMed]
21.�Lewis JD, Fisher RL. Nutrition support in inflammatory bowel disease.�Med Clin North Am.�1994;78:1443�1456.�[PubMed]
22.�Azcue M, Rashid M, Griffiths A, Pencharz PB. Energy expenditure and body composition in children with Crohn’s disease: effect of enteral nutrition and treatment with prednisolone.�Gut.�1997;41:203�208.[PMC free article][PubMed]
23.�Mingrone G, Capristo E, Greco AV, Benedetti G, De Gaetano A, Tataranni PA, Gasbarrini G. Elevated diet-induced thermogenesis and lipid oxidation rate in Crohn disease.�Am J Clin Nutr.�1999;69:325�330.[PubMed]
24.�Bjarnason I, Macpherson A, Mackintosh C, Buxton-Thomas M, Forgacs I, Moniz C. Reduced bone density in patients with inflammatory bowel disease.�Gut.�1997;40:228�233.�[PMC free article][PubMed]
25.�Griffiths AM, Nguyen P, Smith C, MacMillan JH, Sherman PM. Growth and clinical course of children with Crohn’s disease.�Gut.�1993;34:939�943.�[PMC free article][PubMed]
26.�Fischer JE, Foster GS, Abel RM, Abbott WM, Ryan JA. Hyperalimentation as primary therapy for inflammatory bowel disease.�Am J Surg.�1973;125:165�175.�[PubMed]
27.�Reilly J, Ryan JA, Strole W, Fischer JE. Hyperalimentation in inflammatory bowel disease.�Am J Surg.�1976;131:192�200.�[PubMed]
28.�Ganem D, Schneider RJ. Hepadnaviridae: The viruses and their replication. In: Knipe DM, Howley PM, editors.�Fields Virology. Volume 2.�Philadelphia: Lippincott, Williams & Wilkins; 2001. pp. 2923�2969.
29.�Jones VA, Dickinson RJ, Workman E, Wilson AJ, Freeman AH, Hunter JO. Crohn’s disease: maintenance of remission by diet.�Lancet.�1985;2:177�180.�[PubMed]
30.�Suzuki I, Kiyono H, Kitamura K, Green DR, McGhee JR. Abrogation of oral tolerance by contrasuppressor T cells suggests the presence of regulatory T-cell networks in the mucosal immune system.�Nature.�1986;320:451�454.�[PubMed]
31.�Ostro MJ, Greenberg GR, Jeejeebhoy KN. Total parenteral nutrition and complete bowel rest in the management of Crohn’s disease.�JPEN J Parenter Enteral Nutr.�1985;9:280�287.�[PubMed]
32.�Matuchansky C. Parenteral nutrition in inflammatory bowel disease.�Gut.�1986;27 Suppl 1:81�84.[PMC free article][PubMed]
33.�Payne-James JJ, Silk DB. Total parenteral nutrition as primary treatment in Crohn’s disease–RIP?�Gut.�1988;29:1304�1308.�[PMC free article][PubMed]
34.�Shiloni E, Coronado E, Freund HR. Role of total parenteral nutrition in the treatment of Crohn’s disease.�Am J Surg.�1989;157:180�185.�[PubMed]
35.�Dickinson RJ, Ashton MG, Axon AT, Smith RC, Yeung CK, Hill GL. Controlled trial of intravenous hyperalimentation and total bowel rest as an adjunct to the routine therapy of acute colitis.�Gastroenterology.�1980;79:1199�1204.�[PubMed]
36.�McIntyre PB, Powell-Tuck J, Wood SR, Lennard-Jones JE, Lerebours E, Hecketsweiler P, Galmiche JP, Colin R. Controlled trial of bowel rest in the treatment of severe acute colitis.�Gut.�1986;27:481�485.[PMC free article][PubMed]
37.�Greenberg GR, Fleming CR, Jeejeebhoy KN, Rosenberg IH, Sales D, Tremaine WJ. Controlled trial of bowel rest and nutritional support in the management of Crohn’s disease.�Gut.�1988;29:1309�1315.[PMC free article][PubMed]
38.�Hughes CA, Bates T, Dowling RH. Cholecystokinin and secretin prevent the intestinal mucosal hypoplasia of total parenteral nutrition in the dog.�Gastroenterology.�1978;75:34�41.�[PubMed]
39.�Stratton RJ, Smith TR. Role of enteral and parenteral nutrition in the patient with gastrointestinal and liver disease.�Best Pract Res Clin Gastroenterol.�2006;20:441�466.�[PubMed]
40.�O’Sullivan M, O’Morain C. Nutrition in inflammatory bowel disease.�Best Pract Res Clin Gastroenterol.�2006;20:561�573.�[PubMed]
41.�Gonz�lez-Huix F, Fern�ndez-Ba�ares F, Esteve-Comas M, Abad-Lacruz A, Cabr� E, Acero D, Figa M, Guilera M, Humbert P, de Le�n R. Enteral versus parenteral nutrition as adjunct therapy in acute ulcerative colitis.�Am J Gastroenterol.�1993;88:227�232.�[PubMed]
42.�Voitk AJ, Echave V, Feller JH, Brown RA, Gurd FN. Experience with elemental diet in the treatment of inflammatory bowel disease. Is this primary therapy?�Arch Surg.�1973;107:329�333.�[PubMed]
43.�Axelsson C, Jarnum S. Assessment of the therapeutic value of an elemental diet in chronic inflammatory bowel disease.�Scand J Gastroenterol.�1977;12:89�95.�[PubMed]
44.�Lochs H, Steinhardt HJ, Klaus-Wentz B, Zeitz M, Vogelsang H, Sommer H, Fleig WE, Bauer P, Schirrmeister J, Malchow H. Comparison of enteral nutrition and drug treatment in active Crohn’s disease. Results of the European Cooperative Crohn’s Disease Study. IV.�Gastroenterology.�1991;101:881�888.[PubMed]
45.�Malchow H, Steinhardt HJ, Lorenz-Meyer H, Strohm WD, Rasmussen S, Sommer H, Jarnum S, Brandes JW, Leonhardt H, Ewe K. Feasibility and effectiveness of a defined-formula diet regimen in treating active Crohn’s disease. European Cooperative Crohn’s Disease Study III.�Scand J Gastroenterol.�1990;25:235�244.�[PubMed]
46.�O’Brien CJ, Giaffer MH, Cann PA, Holdsworth CD. Elemental diet in steroid-dependent and steroid-refractory Crohn’s disease.�Am J Gastroenterol.�1991;86:1614�1618.�[PubMed]
47.�Okada M, Yao T, Yamamoto T, Takenaka K, Imamura K, Maeda K, Fujita K. Controlled trial comparing an elemental diet with prednisolone in the treatment of active Crohn’s disease.�Hepatogastroenterology.�1990;37:72�80.�[PubMed]
48.�O’Mor�in C, Segal AW, Levi AJ. Elemental diet as primary treatment of acute Crohn’s disease: a controlled trial.�Br Med J (Clin Res Ed)�1984;288:1859�1862.�[PMC free article][PubMed]
49.�Raouf AH, Hildrey V, Daniel J, Walker RJ, Krasner N, Elias E, Rhodes JM. Enteral feeding as sole treatment for Crohn’s disease: controlled trial of whole protein v amino acid based feed and a case study of dietary challenge.�Gut.�1991;32:702�707.�[PMC free article][PubMed]
50.�Rocchio MA, Cha CJ, Haas KF, Randall HT. Use of chemically defined diets in the management of patients with acute inflammatory bowel disease.�Am J Surg.�1974;127:469�475.�[PubMed]
51.�Saverymuttu S, Hodgson HJ, Chadwick VS. Controlled trial comparing prednisolone with an elemental diet plus non-absorbable antibiotics in active Crohn’s disease.�Gut.�1985;26:994�998.�[PMC free article][PubMed]
52.�Teahon K, Bjarnason I, Pearson M, Levi AJ. Ten years’ experience with an elemental diet in the management of Crohn’s disease.�Gut.�1990;31:1133�1137.�[PMC free article][PubMed]
53.�Teahon K, Smethurst P, Pearson M, Levi AJ, Bjarnason I. The effect of elemental diet on intestinal permeability and inflammation in Crohn’s disease.�Gastroenterology.�1991;101:84�89.�[PubMed]
54.�Heuschkel RB, Menache CC, Megerian JT, Baird AE. Enteral nutrition and corticosteroids in the treatment of acute Crohn’s disease in children.�J Pediatr Gastroenterol Nutr.�2000;31:8�15.�[PubMed]
55.�Sanderson IR, Boulton P, Menzies I, Walker-Smith JA. Improvement of abnormal lactulose/rhamnose permeability in active Crohn’s disease of the small bowel by an elemental diet.�Gut.�1987;28:1073�1076.[PMC free article][PubMed]
56.�Sanderson IR, Udeen S, Davies PS, Savage MO, Walker-Smith JA. Remission induced by an elemental diet in small bowel Crohn’s disease.�Arch Dis Child.�1987;62:123�127.�[PMC free article][PubMed]
57.�Ruemmele FM, Roy CC, Levy E, Seidman EG. Nutrition as primary therapy in pediatric Crohn’s disease: fact or fantasy?�J Pediatr.�2000;136:285�291.�[PubMed]
58.�O’Morain C, O’Sullivan M. Nutritional support in Crohn’s disease: current status and future directions.�J Gastroenterol.�1995;30 Suppl 8:102�107.�[PubMed]
59.�Rigaud D, Cosnes J, Le Quintrec Y, Ren� E, Gendre JP, Mignon M. Controlled trial comparing two types of enteral nutrition in treatment of active Crohn’s disease: elemental versus polymeric diet.�Gut.�1991;32:1492�1497.�[PMC free article][PubMed]
60.�Royall D, Wolever TM, Jeejeebhoy KN. Evidence for colonic conservation of malabsorbed carbohydrate in short bowel syndrome.�Am J Gastroenterol.�1992;87:751�756.�[PubMed]
61.�Giaffer MH, North G, Holdsworth CD. Controlled trial of polymeric versus elemental diet in treatment of active Crohn’s disease.�Lancet.�1990;335:816�819.�[PubMed]
62.�Verma S, Kirkwood B, Brown S, Giaffer MH. Oral nutritional supplementation is effective in the maintenance of remission in Crohn’s disease.�Dig Liver Dis.�2000;32:769�774.�[PubMed]
63.�Levine GM, Deren JJ, Steiger E, Zinno R. Role of oral intake in maintenance of gut mass and disaccharide activity.�Gastroenterology.�1974;67:975�982.�[PubMed]
64.�Weser E, Heller R, Tawil T. Stimulation of mucosal growth in the rat ileum by bile and pancreatic secretions after jejunal resection.�Gastroenterology.�1977;73:524�529.�[PubMed]
65.�Fell JM, Paintin M, Arnaud-Battandier F, Beattie RM, Hollis A, Kitching P, Donnet-Hughes A, MacDonald TT, Walker-Smith JA. Mucosal healing and a fall in mucosal pro-inflammatory cytokine mRNA induced by a specific oral polymeric diet in paediatric Crohn’s disease.�Aliment Pharmacol Ther.�2000;14:281�289.�[PubMed]
66.�Souba WW, Smith RJ, Wilmore DW. Glutamine metabolism by the intestinal tract.�JPEN J Parenter Enteral Nutr.�1985;9:608�617.�[PubMed]
67.�Windmueller HG, Spaeth AE. Uptake and metabolism of plasma glutamine by the small intestine.�J Biol Chem.�1974;249:5070�5079.�[PubMed]
68.�Higashiguchi T, Hasselgren PO, Wagner K, Fischer JE. Effect of glutamine on protein synthesis in isolated intestinal epithelial cells.�JPEN J Parenter Enteral Nutr.�1993;17:307�314.�[PubMed]
69.�Burke DJ, Alverdy JC, Aoys E, Moss GS. Glutamine-supplemented total parenteral nutrition improves gut immune function.�Arch Surg.�1989;124:1396�1399.�[PubMed]
70.�Souba WW, Herskowitz K, Klimberg VS, Salloum RM, Plumley DA, Flynn TC, Copeland EM. The effects of sepsis and endotoxemia on gut glutamine metabolism.�Ann Surg.�1990;211:543�549; discussion 543-551;.�[PMC free article][PubMed]
71.�Den Hond E, Hiele M, Peeters M, Ghoos Y, Rutgeerts P. Effect of long-term oral glutamine supplements on small intestinal permeability in patients with Crohn’s disease.�JPEN J Parenter Enteral Nutr.�1999;23:7�11.�[PubMed]
72.�Akobeng AK, Miller V, Stanton J, Elbadri AM, Thomas AG. Double-blind randomized controlled trial of glutamine-enriched polymeric diet in the treatment of active Crohn’s disease.�J Pediatr Gastroenterol Nutr.�2000;30:78�84.�[PubMed]
73.�Jacobs LR, Lupton JR. Effect of dietary fibers on rat large bowel mucosal growth and cell proliferation.�Am J Physiol.�1984;246:G378�G385.�[PubMed]
74.�Spaeth G, Berg RD, Specian RD, Deitch EA. Food without fiber promotes bacterial translocation from the gut.�Surgery.�1990;108:240�246; discussion 246-247;.�[PubMed]
75.�Roediger WE, Moore A. Effect of short-chaim fatty acid on sodium absorption in isolated human colon perfused through the vascular bed.�Dig Dis Sci.�1981;26:100�106.�[PubMed]
76.�Sakata T. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors.�Br J Nutr.�1987;58:95�103.�[PubMed]
77.�Roediger WE. The colonic epithelium in ulcerative colitis: an energy-deficiency disease?�Lancet.�1980;2:712�715.�[PubMed]
78.�Chapman MA, Grahn MF, Boyle MA, Hutton M, Rogers J, Williams NS. Butyrate oxidation is impaired in the colonic mucosa of sufferers of quiescent ulcerative colitis.�Gut.�1994;35:73�76.[PMC free article][PubMed]
79.�Den Hond E, Hiele M, Evenepoel P, Peeters M, Ghoos Y, Rutgeerts P. In vivo butyrate metabolism and colonic permeability in extensive ulcerative colitis.�Gastroenterology.�1998;115:584�590.�[PubMed]
80.�Simpson EJ, Chapman MA, Dawson J, Berry D, Macdonald IA, Cole A. In vivo measurement of colonic butyrate metabolism in patients with quiescent ulcerative colitis.�Gut.�2000;46:73�77.[PMC free article][PubMed]
81.�Tappenden KA, Thomson AB, Wild GE, McBurney MI. Short-chain fatty acid-supplemented total parenteral nutrition enhances functional adaptation to intestinal resection in rats.�Gastroenterology.�1997;112:792�802.�[PubMed]
82.�Senagore AJ, MacKeigan JM, Scheider M, Ebrom JS. Short-chain fatty acid enemas: a cost-effective alternative in the treatment of nonspecific proctosigmoiditis.�Dis Colon Rectum.�1992;35:923�927.[PubMed]
83.�Segain JP, Raingeard de la Bl�ti�re D, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blotti�re HM, Galmiche JP. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease.�Gut.�2000;47:397�403.�[PMC free article][PubMed]
84.�Aslan A, Triadafilopoulos G. Fish oil fatty acid supplementation in active ulcerative colitis: a double-blind, placebo-controlled, crossover study.�Am J Gastroenterol.�1992;87:432�437.�[PubMed]
85.�Shoda R, Matsueda K, Yamato S, Umeda N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan.�Am J Clin Nutr.�1996;63:741�745.�[PubMed]
86.�Vilaseca J, Salas A, Guarner F, Rodr�guez R, Mart�nez M, Malagelada JR. Dietary fish oil reduces progression of chronic inflammatory lesions in a rat model of granulomatous colitis.�Gut.�1990;31:539�544.�[PMC free article][PubMed]
87.�Campos FG, Waitzberg DL, Habr-Gama A, Logullo AF, Noronha IL, Jancar S, Torrinhas RS, F�rst P. Impact of parenteral n-3 fatty acids on experimental acute colitis.�Br J Nutr.�2002;87 Suppl 1:S83�S88.[PubMed]
88.�Loeschke K, Ueberschaer B, Pietsch A, Gruber E, Ewe K, Wiebecke B, Heldwein W, Lorenz R. n-3 fatty acids only delay early relapse of ulcerative colitis in remission.�Dig Dis Sci.�1996;41:2087�2094.[PubMed]
89.�Belluzzi A, Brignola C, Campieri M, Pera A, Boschi S, Miglioli M. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease.�N Engl J Med.�1996;334:1557�1560.�[PubMed]
90.�Hawthorne AB, Daneshmend TK, Hawkey CJ, Belluzzi A, Everitt SJ, Holmes GK, Malkinson C, Shaheen MZ, Willars JE. Treatment of ulcerative colitis with fish oil supplementation: a prospective 12 month randomised controlled trial.�Gut.�1992;33:922�928.�[PMC free article][PubMed]
91.�Hillier K, Jewell R, Dorrell L, Smith CL. Incorporation of fatty acids from fish oil and olive oil into colonic mucosal lipids and effects upon eicosanoid synthesis in inflammatory bowel disease.�Gut.�1991;32:1151�1155.�[PMC free article][PubMed]
92.�Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma)�J Biol Chem.�1995;270:12953�12956.�[PubMed]
93.�Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs.�J Biol Chem.�1997;272:3406�3410.�[PubMed]
94.�Delerive P, Furman C, Teissier E, Fruchart J, Duriez P, Staels B. Oxidized phospholipids activate PPARalpha in a phospholipase A2-dependent manner.�FEBS Lett.�2000;471:34�38.�[PubMed]
95.�Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma.�Proc Natl Acad Sci USA.�1997;94:4318�4323.�[PMC free article][PubMed]
96.�Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta.�Proc Natl Acad Sci USA.�1997;94:4312�4317.�[PMC free article][PubMed]
97.�Mans�n A, Guardiola-Diaz H, Rafter J, Branting C, Gustafsson JA. Expression of the peroxisome proliferator-activated receptor (PPAR) in the mouse colonic mucosa.�Biochem Biophys Res Commun.�1996;222:844�851.�[PubMed]
98.�Desreumaux P, Ernst O, Geboes K, Gambiez L, Berrebi D, M�ller-Alouf H, Hafraoui S, Emilie D, Ectors N, Peuchmaur M, et al. Inflammatory alterations in mesenteric adipose tissue in Crohn’s disease.�Gastroenterology.�1999;117:73�81.�[PubMed]
99.�Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, Flanigan A, Murthy S, Lazar MA, Wu GD. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response.�J Clin Invest.�1999;104:383�389.�[PMC free article][PubMed]
100.�Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, Witztum JL, Auwerx J, Palinski W, Glass CK. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein.�Proc Natl Acad Sci USA.�1998;95:7614�7619.�[PMC free article][PubMed]
101.�Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, Delerive P, Fadel A, Chinetti G, Fruchart JC, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators.�Nature.�1998;393:790�793.�[PubMed]
102.�Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J. PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease.�Arterioscler Thromb Vasc Biol.�1999;19:546�551.�[PubMed]
103.�Delerive P, Martin-Nizard F, Chinetti G, Trottein F, Fruchart JC, Najib J, Duriez P, Staels B. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway.�Circ Res.�1999;85:394�402.�[PubMed]
104.�Sakai M, Matsushima-Hibiya Y, Nishizawa M, Nishi S. Suppression of rat glutathione transferase P expression by peroxisome proliferators: interaction between Jun and peroxisome proliferator-activated receptor alpha.�Cancer Res.�1995;55:5370�5376.�[PubMed]
105.�Zhou YC, Waxman DJ. STAT5b down-regulates peroxisome proliferator-activated receptor alpha transcription by inhibition of ligand-independent activation function region-1 trans-activation domain.�J Biol Chem.�1999;274:29874�29882.�[PubMed]
106.�Desreumaux P, Dubuquoy L, Nutten S, Peuchmaur M, Englaro W, Schoonjans K, Derijard B, Desvergne B, Wahli W, Chambon P, et al. Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies.�J Exp Med.�2001;193:827�838.�[PMC free article][PubMed]
107.�Lewis JD, Lichtenstein GR, Stein RB, Deren JJ, Judge TA, Fogt F, Furth EE, Demissie EJ, Hurd LB, Su CG, et al. An open-label trial of the PPAR-gamma ligand rosiglitazone for active ulcerative colitis.�Am J Gastroenterol.�2001;96:3323�3328.�[PubMed]
108.�G�ttlicher M, Widmark E, Li Q, Gustafsson JA. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.�Proc Natl Acad Sci USA.�1992;89:4653�4657.[PMC free article][PubMed]
Close Accordion
Assessment and Treatment of Tensor Fascia Lata

Assessment and Treatment of Tensor Fascia Lata

These assessment and treatment recommendations represent a synthesis of information derived from personal clinical experience and from the numerous sources which are cited, or are based on the work of researchers, clinicians and therapists who are named (Basmajian 1974, Cailliet 1962, Dvorak & Dvorak 1984, Fryette 1954, Greenman 1989, 1996, Janda 1983, Lewit 1992, 1999, Mennell 1964, Rolf 1977, Williams 1965).

 

Clinical Application of Neuromuscular Techniques: Tensor Fascia Lata

 

�Assessment of shortness in tensor fascia lata (TFL)

 

The test recommended is a modified form of Ober�s test (see Fig. 4.14).

 

Figure 4 14 Assessment for Shortness of TFL Modified Obers Test Image 1

 

Figure 4.14 Assessment for shortness of TFL � modified Ober�s test. When the hand supporting the flexed knee is removed the thigh should fall to the table if TFL is not short.

 

Patient is side-lying with back close to the edge of the table. The practitioner stands behind the patient, whose lower leg is flexed at hip and knee and held in this position, by the patient, for stability. The tested leg is supported by the practitioner, who must ensure that there is no hip flexion, which would nullify the test.

 

The leg is extended only to the point where the iliotibial band lies over the greater trochanter. The tested leg is held by the practitioner at ankle and knee, with the whole leg in its anatomical position, neither abducted nor adducted and not forward or backward of the body.

 

Box 4.5 Notes on TFL

 

  • Mennell (1964) and Liebenson (1996) say that TFL shortness can produce all the symptoms of acute and chronic sacroiliac problems.
  • Pain from TFL shortness can be localised to the posterior superior iliac spine (PSIS), radiating to the groin or down any aspect of the thigh to the knee.
  • Although the pain may arise in the sacroiliac (SI) joint, dysfunction in the joint may be caused and maintained by taut TFL structures.
  • Pain from the band itself can be felt in the lateral thigh, with referral to hip or knee.
  • TFL can be �riddled� with sensitive fibrotic deposits and trigger point activity.
  • There is commonly a posteriority of the ilium associated with short TFL.
  • TFL�s prime phasic activity (all postural structures also have some phasic function) is to assist the gluteals in abduction of the thigh.
  • If TFL and psoas are short they may, according to Janda, �dominate� the gluteals on abduction of the thigh, so that a degree of lateral rotation and flexion of the hip will be produced, rotating the pelvis backwards.
  • Rolf (1977) points out that persistent exercise such as cycling will shorten and toughen the fascial iliotibial band �until it becomes reminiscent of a steel cable�. This band crosses both hip and knee, and spatial compression allows it to squeeze and compress cartilaginous elements such as the menisci. Ultimately, it will no longer be able to compress, and rotational displacement at knee and hip will take place.

 

The practitioner carefully introduces flexion at the knee to 90�, without allowing the hip to flex, and then, holding just the ankle, allows the knee to fall towards the table. If TFL is normal, the thigh and knee will fall easily, with the knee contacting the table surface (unless unusual hip width, or thigh length prevent this).

 

If the upper leg remains aloft, with little sign of �falling� towards the table, then either the patient is not letting go or the TFL is short and does not allow it to fall. As a rule the band will palpate as tender under such conditions.

 

Lewit�s TFL Palpation

(Lewit 1999; see also functional assessment method in Ch. 5)

 

Patient is side-lying and practitioner stands facing the patient�s front, at hip level. The practitioner�s cephalad hand rests over the anterior superior iliac spine (ASIS) so that it can also palpate over the trochanter. It should be placed so that the fingers rest on the TFL and trochanter with the thumb on gluteus medius. The caudad hand rests on the mid-thigh to apply slight resistance to the patient�s effort to abduct the leg.

 

The patient�s table-side leg is slightly flexed to provide stability, and there should be a vertical line to the table between one ASIS and the other (i.e. no forwards or backwards �roll� of the pelvis). The patient abducts the upper leg (which should be extended at the knee and slightly hyperextended at the hip) and the practitioner should feel the trochanter �slip away� as this is done.

 

If, however, the whole pelvis is felt to move rather than just the trochanter, there is inappropriate muscular imbalance. (In balanced abduction gluteus comes into action at the beginning of the movement, with TFL operating later in the pure abduction of the leg. If there is an overactivity (and therefore shortness) of TFL, then there will be pelvic movement on the abduction, and TFL will be felt to come into play before gluteus.)

 

The abduction of the thigh movement will then be modified to include external rotation and flexion of the thigh (Janda 1996). This confirms a stressed postural structure (TFL), which implies shortness.

 

It is possible to increase the number of palpation elements involved by having the cephalad hand also palpate (with an extended small finger) quadratus lumborum during leg abduction. In a balanced muscular effort to lift the leg sideways, quadratus should not become active until the leg has been abducted to around 25�30�. When quadratus is overactive it will often start the abduction along with TFL, thus producing a pelvic tilt.�(See also Fig. 5.11A and B)

 

Method (a) Supine MET treatment of shortened TFL (Fig. 4.15) The patient lies supine with the unaffected leg flexed at hip and knee. The affected side leg is adducted to its barrier which necessitates it being brought under the opposite leg/foot.

 

Figure 4 15 MET Treatment of TFL Image 2

 

Figure 4.15 MET treatment of TFL (see Fig. 1.4 for description of isolytic variation). If a standard MET method is being used, the stretch will follow the isometric contraction in which the patient will attempt to move the right leg to the right against sustained resistance. It is important for the practitioner to maintain stability of the pelvis during the procedure. Note: the hand positions in this figure are a variation of those described in the text.

 

Using guidelines for acute and chronic problems, the structure will either be treated at, or short of, the barrier of resistance, using light or fairly strong isometric contractions for short (7 second) or long (up to 20 seconds) durations, using appropriate breathing patterns as described earlier in this chapter (Box 4.2).

 

The practitioner uses his trunk to stabilise the patient�s pelvis by leaning against the flexed (nonaffected side) knee. The practitioner�s caudad arm supports the affected leg so that the knee is stabilised by the hand. The other hand maintains a stabilising contact on the affected side ASIS.

 

The patient is asked to abduct the leg against resistance using minimal force. After the contraction ceases and the patient has relaxed using appropriate breathing patterns, the leg is taken to or through the new restriction barrier (into adduction past the barrier) to stretch the muscular fibres of TFL (the upper third of the structure).

 

Care should be taken to ensure that the pelvis is not tilted during the stretch. Stability is achieved by the practitioner increasing pressure against the flexed knee/thigh. This whole process is repeated until no further gain is possible.

 

Method (b) Alternative supine MET treatment of shortened TFL (Fig. 4.16) The patient adopts the same position as for psoas assessment, lying at the end of the table with non-tested side leg in full hip flexion and held by the patient, with the tested leg hanging freely, knee flexed.

 

Figure 4 16 MET Treatment of Psoas Using Grieves Method Image 3

 

Figure 4.16 MET treatment of psoas using Grieve�s method, in which there is placement of the patient�s foot, inverted, against the operator�s thigh. This allows a more precise focus of contraction into psoas when the hip is flexed against resistance.

 

The practitioner stands at the end of the table facing the patient so that his left lower leg (for a right-sided TFL treatment) can contact the patient�s foot. The practitioner�s left hand is placed on the patient�s distal femur and with this he introduces internal rotation of the thigh, and external rotation of the tibia (by means of light pressure on the distal foot from his lower leg).

 

During this process the practitioner senses for resistance (the movement should have an easy �springy� feel, not wooden or harsh) and observes for a characteristic depression or groove on the lateral thigh, indicating shortness of TFL.

 

This resistance barrier is identified and the leg held just short of it for a chronic problem, as the patient is asked to externally rotate the tibia, and to adduct the femur, against resistance, for 7�10 seconds. Following this the practitioner eases the leg into a greater degree of internal hip rotation and external tibial rotation, and holds this stretch for 10�30 seconds.

 

Method (c) Isolytic variation If an isolytic contraction is introduced in order to stretch actively the interface between elastic and non-elastic tissues, then there is a need to stabilise the pelvis more efficiently, either by use of wide straps or another pair of hands holding the ASIS downwards towards the table during the stretch.

 

The procedure consists of the patient attempting to abduct the leg as the practitioner overcomes the muscular effort, forcing the leg into adduction. The contraction/stretch should be rapid (2�3 seconds at most to complete). Repeat several times.

 

Method (d) Side-lying MET treatment of TFL The patient lies on the affected TFL side with the upper leg flexed at hip and knee and resting forward of the affected leg. The practitioner stands behind patient and uses caudad hand and arm to raise the affected leg (which is on the table) while stabilising the pelvis with the cephalad hand, or uses both hands to raise the affected leg into slight adduction (appropriate if strapping used to hold pelvis to table).

 

The patient contracts the muscle against resistance by trying to take the leg into abduction (towards the table) using breathing assistance as appropriate (see notes on breathing, Box 4.2). After the effort, on an exhalation, the practitioner lifts the leg into adduction beyond the barrier to stretch the interface between elastic and non-elastic tissues. Repeat as appropriate or modify to use as an isolytic contraction by stretching the structure past the barrier during the contraction.

 

Additional TFL Methods

 

Mennell has described superb soft tissue stretching techniques for releasing TFL. These involve a series of snapping actions applied by thumbs to the anterior fibres with patient side-lying, followed by a series of heel of hand thrusts across the long axis of the posterior TFL fibres.

 

Additional release of TFL contractions is possible by use of elbow or heel of hand �stripping� of the structure, neuromuscular deep tissue approaches (using thumb or a rubber-tipped T-bar) applied to the upper fibres and those around the knee, and specific deep tissue release methods. Most of these are distinctly uncomfortable and all require expert tuition.

 

Self-Treatment and Maintenance

 

The patient lies on her side, on a bed or table, with the affected leg uppermost and hanging over the edge (lower leg comfortably flexed). The patient may then introduce an isometric contraction by slightly lifting the hanging leg a few centimeters, and holding this position for 10 seconds, before slowly releasing and allowing gravity to take the leg towards the floor, so introducing a greater degree of stretch.

 

This is held for up to 30 seconds and the process is then repeated several times in order to achieve the maximum available stretch in the tight soft tissues. The counterforce in this isometric exercise is gravity.

 

Dr. Alex Jimenez offers an additional assessment and treatment of the hip flexors as a part of a referenced clinical application of neuromuscular techniques by Leon Chaitow and Judith Walker DeLany. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

By Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

WELLNESS TOPIC: EXTRA EXTRA: Managing Workplace Stress

 

 

Environmental Factors for Autoimmune Diseases

Environmental Factors for Autoimmune Diseases

It has currently been accepted that the interaction between environmental factors, and that of certain genes, can influence the destructive immune response characterized in many autoimmune diseases. As a matter of fact, approximately less than 10 percent of those people with a higher genetic susceptibility to disease may actually develop autoimmunity. This implies a solid environmental cause behind the beginning of the autoimmune process. Environmental factors have also been believed to likely affect the results of the process as well as the rate of development of autoimmune diseases. One theory is that intestinal luminal antigens absorbed through the gut might be involved in the pathogenesis of autoimmune diseases. The intestinal epithelium is the largest mucosal surface in the human body and it provides a connection between the external environment and the mammalian host.

 

What environmental factors cause autoimmune diseases?

 

Healthy, mature intestinal mucosa with its absolute tight junctions, or TJs, is the most significant barrier for the passage of macromolecules, as seen on Figure 1. In a physiological state, quantitatively small but immunologically active antigens can cross the mucosal barrier. These antigens are absorbed through the mucosa via two practical paths. The massive collection of absorbed proteins, amounting to about 90 percent, cross the intestinal barrier throughout the transcellular pathway followed by lysosomal degradation which converts the proteins into smaller, non-immunogenic peptides. The remaining proteins are then carried as entire proteins, causing antigen-specific immune responses in the body. This occurrence utilizes the Microfold (M) cell pathway or the paracellular pathway, which requires a subtle but complex balance of intercellular TJs that can result in antigenic tolerance.

 

Figure 1 Macroscopic Arrangement and Microscopic Composition of Intercellular Tight Junctions Image 1

Figure 1

 

After the integrity of the intestinal barrier are compromised, best known as TJ disassembly, an immune response to environmental antigens that spanned the gut mucosa can grow, leading to autoimmune diseases or allergies. The cells that play a vital part in this immune response lie in close proximity to the intestinal epithelial barrier. Another critical component for this immune response is the human leukocyte antigen, or HLA, system. HLA class I and II genes encode the antigen presenting cell (APC) glycoprotein receptors that present antigens to T cells in the intestinal mucosa. Susceptibility to up to 50 diseases, such as celiac disease, or CD, and type 1 diabetes, or T1D, has been associated with certain HLA class I or class II alleles. A typical denominator of these diseases is the occurrence of numerous preexisting conditions which can lead to autoimmunity. The first is a hereditary susceptibility for the host immune system to recognize, and potentially misinterpret, an environmental antigen introduced within the gastrointestinal tract, or GI tract. Second, the host needs to be exposed to the antigen. Finally, the antigen needs to be introduced into the gastrointestinal mucosal immune system, following its M-cell passage or paracellular passage, usually blocked by TJ competency, from the intestinal lumen to acquire the intestine submucosa. In most instances, higher intestinal permeability precedes disease and triggers an abnormality in antigen delivery which triggers an immune response, ultimately causing autoimmunity. Researchers have therefore hypothesized that genes, environment, and decreased intestinal barrier function are all critical to develop autoimmune diseases, especially CD and T1D.

 

Gliadin as an Environmental Factor of Autoimmune Diseases

 

Celiac Disease

 

Gluten is a well-known environmental factor that triggers celiac disease. It is the gliadin fraction of wheat germ and equal alcohol-soluble proteins in distinct grains, known as prolamins, which are connected to the growth of intestinal damage. A standard characteristic of the prolamins of wheat, rye, and barley is a greater content of glutamine (>30%) and proline (>15%), whereas the non-toxic prolamins of rice and corn have decreased glutamine and proline content. However, the environmental factor that influenced the development CD is complex and unknown. Some aspects of gluten consumption might help determine the risk of CD incidence, particularly in: the amount of gluten intake, the higher the amount, the larger the risk; the caliber of consumed gluten, a few grains contain more hazardous epitopes than others; and the pattern/timing of infant feeding. Recent research studies suggest that the pattern of infant nutrition might have a very important role on the development of the CD as well as that of other autoimmune diseases. Breastfeeding is believed to delay or reduce the possibility of developing CD. The positive effects of breast milk may be attributed to its influence on the microbial colonization procedure for the own newborn’s intestine. The genus Bifidobacterium is predominant in the feces of breast-fed infants, while a larger variety of bacterial groups, including Bacteroides, Streptococcus, Clostridium, etc., are found in the fecal microbiota of all formula-fed infants. Changes in the composition of the intestinal microbiota also occur as a consequence of the following changes from breastfeeding or formula feeding to weaning and even the introduction of solid food. Alterations in the intestinal balance between favorable and possibly harmful bacteria have also been associated with allergy symptoms, type 1 diabetes and inflammatory bowel diseases, among others.

 

Type 1 Diabetes

 

It is believed that genetically predisposed individuals develop T1D after encountering one or more environmental factors of the disease. Fast improvements could be made in disease prevention and treatment if these environmental factors were identified. Amongst the others, gliadin has only been the subject of a series of research studies that aim at establishing its part in the pathogenesis of type 1 diabetes. Early introduction of gliadin-containing cereals were reported to raise the prospect of islet cell autoimmunity in humans. Gliadin-specific, lamina propria-derived T cells play an important role in the pathogenesis of CD. The same HLA class II haplotype, DQ (? 1 * 0501, �1 * 0201), that can be connected with gliadin peptides in CD is also one of two HLA class II haplotypes inherited most frequently by people with T1D. There are also signs of immunological activity in the intestine of T1D patients: jejunal specimens from T1D patients have been found to consist of much higher doses of interferon gamma (IFN?)- and tumor necrosis factor-alpha (TNF-?) positive cells in contrast to people with healthy controls, suggesting an inflammatory response. Still another study found substantially increased manifestation of HLA-DR and HLA-DP molecules on intestinal villi of jejunal specimens from T1D patients in comparison with specimens from healthy controls. Recent evidence confirmed these findings by assessing the mucosal immune response to gliadin in the jejunum of patients with T1D. Small intestinal biopsies from children with T1D were cultured with gliadin and evaluated for epithelial infiltration and lamina propria T-cell activation. The caliber of intraepithelial CD3+ cells and of lamina propria CD25+ mononuclear cells has been higher in jejunal biopsies from T1D patients versus control subjects. In the patients’ biopsies cultured with enzymatically treated gliadin, there was epithelial infiltration by CD3 cells, a more significant growth in lamina propria CD25+ and CD80+ cells, enhanced manifestation of lamina propria cells favorable into ligand and receptor molecules ?4/?7 and ICAM 1, along with enhanced expression of CD54 and crypt HLA-DR. Also, ?4 positive T cells have been recovered in the pancreatic islets of an T1D person, providing an immediate connection between gliadin-activated T cells and destruction of pancreatic islet cells.

 

Findings from research studies using non-obese diabetic, or NOD, mice in addition to the BioBreeding diabetes-prone, or BBDP, rats have also implicated wheat gliadin as a nutritional supplement diabetogen. In BBDP rats, gliadin vulnerability is accompanied by increased intestinal permeability, and changes in gut microbiota composition, as seen on Figure 2., presumably allow food antigens to grow in contact with all the underlying lamina propria. Feeding NOD mice and BBDP rats a gluten free hydrolyzed casein diet resulted in a delay and decline in T1D development. Interestingly, these T1D animal models additionally demonstrated the moment of exposure to wheat proteins is quite important to the development of T1D. Delaying the vulnerability of diabetogenic wheat proteins by prolonging the breastfeeding period decreased T1D expansion from the BBDP rats. What is more, exposing neonatal rats or mice to diabetogenic wheat components or bacterial antigens diminished T1D incidence, which is perhaps due to the induction of immunological tolerance.

 

Figure 2 Postulated Mechanism of Action of Gluten in T1D Pathogenesis Image 2

Figure 2

 

Rats that were fed corn protein-based diets developed T1D and demonstrated a moderate celiac-like enteropathy. Mesenteric lymph nodes, or MLNs, which drain the gut, are the substantial inductive site where dietary antigens are famous in the gut-associated connective tissue. The authors described an increase in the expression ratio of T-bet:Gata3, master transcription factors for Th1 and Th2 cytokines, respectively, in the MLN by wheat-fed BBDP rats compared to this by BBDR rats, mainly due to diminished Gata3 expression. Also, CD3+CD4+IFN?+ T cells were prevalent in the MLN of wheat-fed BBDP rats, but remained at control levels in BBDP rats fed with a diabetes-retardant wheat-free diet. BioBreeding diabetes-prone MLN cells increased quickly in response to wheat protein antigens in a particular, dose-dependent manner, and 93 percent of cells were CD3+CD4+ T cells. This proliferation was connected using a minimum proportion of CD4+CD25+ T cells and a greater proportion of dendritic cells in the MLN of BBDP rats. These results suggest that, before insulitis is established, the MLNs of wheat-fed BBDP rats contain a remarkably large proportion of Th1 cells that rapidly increased particularly in response to wheat protein antigens. Collectively, these research studies suggest a deranged mucosal immune response to gliadin in T1D and a direct connection between gliadin-induced stimulation of gut mucosal T cells and abuse of pancreatic islet cells, as seen on Figure 2.

 

Link between Gliadin, Zonulin & Increased Intestinal Permeability in Autoimmune Diseases

 

Researchers have generated enough evidence to support that gliadin can induce increased intestinal permeability by releasing preformed zonulin. Intestinal cell lines exposed to gliadin released zonulin from the cell medium with subsequent zonulin binding to the cell surface, rearrangement of the cell cytoskeleton, loss of occludin-ZO1 protein interaction, and increased monolayer permeability. Pre-treatment with all of the zonulin antagonist AT1001 blocked these alterations without affecting zonulin release. When exposed to luminal gliadin, intestinal biopsies from patients with celiac disease in remission expressed a continuous luminal zonulin discharge and increase in intestinal permeability. On the contrary, biopsies from non-CD patients showed a limited, transient zonulin release, which was paralleled by a decline in intestinal permeability that had not reached the level of permeability found in celiac disease cells. As a matter of fact, when gliadin was added to the basolateral side of cell lines or intestinal biopsies, no zonulin release was detected. The latter finding indicates that gliadin interacts using an intestinal luminal receptor, which encouraged researchers to comprehend this issue. In vitro experiments revealed specific colocalization of gliadin along with the chemokine receptor CXCR3 expressed in human and mouse intestinal epithelium and lamina propria. Gliadin vulnerability led to a tangible establishment of CXCR3 and MyD88. Ex vivo experiments revealed that gliadin exposure to intestinal segments from wild-type mice increased zonulin terminal and intestinal permeability, whereas CXCR3 intestinal segments failed to respond to gliadin. The increased intestinal permeability appeared cause a specific impact for gliadin, because the subsequent CXCR3 ligand, IP-10, did not affect intestinal barrier function. Based on these figures, researchers suggested that gliadin contrasts to CXCR3 additionally lead to stimulation of the zonulin pathway and improved intestinal permeability in a MyD88-dependent manner.

 

Conclusive Remarks

 

The classical paradigm of the pathogenesis of autoimmune diseases involving certain receptor makeup and exposure to environmental factors was contested with the addition of a third component, the decrease of intestinal barrier function. Genetic predisposition, miscommunication between innate and adaptive immunity, exposure to environmental factors and loss in intestinal barrier function secondary to the breakdown of intercellular tight junctions, or TJs, seem to be vital components in the pathogenesis of autoimmune disorders. Both in CD and T1D gliadin may play a role in inducing loss of intestinal barrier function or inducing the gastrointestinal response in genetically predisposed individuals. This new hypothesis suggests that after the digestive process is triggered, it is not auto-perpetuating, but rather, it might be balanced or reversed by preventing the continuous interaction between genes and the environment. Since TJ dysfunction allows this interaction, new treatment procedures targeted at re-establishing the intestinal barrier function supply innovative, unexplored procedures for caring for autoimmune diseases. Information referenced from the National Center for Biotechnology Information (NCBI) and the National University of Health Sciences. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

By Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

WELLNESS TOPIC: EXTRA EXTRA: Managing Workplace Stress

 

 

Blank
References
1.�Fasano A.�Tight Junctions.�CRC Press, Inc.; Boca Raton, FL: 2001. Pathological and therapeutic implications of macromolecule passage through the tight junction; pp. 697�722.
2.�Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens.�Nat. Rev. Immunol.�2003;3:331�341.�[PubMed]
3.�Fasano A. Intestinal zonulin: open sesame!�Gut.�2001;49:159�162.�[PMC free article][PubMed]
4.�Brandtzaeg P, Halstensen TS, Kett K, et al. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes.�Gastroenterol.�1989;97:1562�1584.�[PubMed]
5.�Brandtzaeg P. Overview of the mucosal immune system.�Curr. Top. Microbiol. Immunol.�1989;146:13�25.�[PubMed]
6.�Bjorkman PJ, Saper MA, Samraoui B, et al. Structure of the human class I histocompatibility antigen, HLA-A2.�Nature.�1987;329:506�512.�[PubMed]
7.�Bjorkman PJ, Saper MA, Samraoui B, et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens.�Nature.�1987;329:512�518.�[PubMed]
8.�Cuvelier C, Mielants H, De Vos M, et al. Major histocompatibility complex class II antigen (HLA-DR) expression by ileal epithelial cells in patients with seronegative spondylarthropathy.�Gut.�1990;31:545�549.[PMC free article][PubMed]
9.�Wendling D. Role of the intestine in the physiopathology of inflammatory rheumatism.�Rev. Rhum. Mal. Osteoartic.�1992;59:389�392.�[PubMed]
10.�Bjarnson I, Williams P, Smethurst P, et al. Effect of non-steroidal anti-inflammatory drugs and prostaglandins on the permeability of the human small intestine.�Gut.�1986;27:1292�1297.[PMC free article][PubMed]
11.�Bjarnason I, Peters TJ, Levi AJ. Intestinal permeability: clinical correlates.�Dig. Dis.�1986;4:83�92.[PubMed]
12.�Pratesi R, Gandolfi L, Garcia SG, et al. Prevalence of coeliac disease: unexplained age-related variation in the same population.�Scand. J. Gastroenterol.�2003;38:747�50.�[PubMed]
13.�Fasano A, Berti I, Gerarduzzi T, et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study.�Arch. Int. Med.�2003;163:286�292.�[PubMed]
14.�Nistico L, Fagnani C, Coto I, et al. Concordance, disease progression, and heritability of coeliac disease in Italian twins.�Gut.�2006;55:803�808.�[PMC free article][PubMed]
15.�Louka AS, Sollid LM. HLA in coeliac disease: unravelling the complex genetics of a complex disorder.�Tissue Antigens.�2003;61:105�117.�[PubMed]
16.�Vader W, Stepniak D, Kooy Y, et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses.�Proc. Natl. Acad. Sci. USA.�2003;100:12390�12395.�[PMC free article][PubMed]
17.�Monsuur AJ, Bakker PI, Alidazeh BZ, et al. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect.�Nat. Gen.�2005;37:1341�1344.�[PubMed]
18.�Wapenaar MC, Monsuur AJ, van Bodegraven AA, et al. Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis.�Gut.�2008;57:463�467.�[PubMed]
19.�Kelly MA, Rayner ML, Mijovic CH, et al. Molecular aspects of type 1 diabetes.�Mol. Pathol.�2003;56:1�10.�[PMC free article][PubMed]
20.�Santiago JL, Martinez A, Nunez C, et al. Association of MYO9B haplotype with type 1 diabetes.�Hum. Immunol.�2008;69:112�115.�[PubMed]
21.�Sollid LM. Breast milk against celiac disease.�Gut.�2002;51:767�768.�[PMC free article][PubMed]
22.�Gr�nlund M-M, Arvilommi H, Kero P, et al. Importance of intestinal colonization in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0�6 months.�Arch. Dis. Child. Fetal. Neon.�2000;83:F186�F192.�[PMC free article][PubMed]
23.�Kirjavainen PV, Arvola T, Salminen SJ, et al. Aberrant composition of gut microbiota of allergic infants: a target of bifidobacterial therapy at weaning?�Gut.�2002;51:51�55.�[PMC free article][PubMed]
24.�Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics.�Gastroenterol.�2004;126:1620�1633.�[PubMed]
25.�Lefebvre DE, Powell KL, Strom A, et al. Dietary proteins as environmental modifiers of type 1 diabetes mellitus.�Annu. Rev. Nutr.�2006;26:175�202.�[PubMed]
26.�Ziegler AG, Schmid S, Huber D, et al. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies.�JAMA.�2003;290:1721�1728.�[PubMed]
27.�Norris JM, Barriga K, Klingensmith G, et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity.�JAMA.�2003;290:1713�1720.�[PubMed]
28.�Lundin KEA, Scott H, Hansen T, et al. Gliadin-specific, HLA-DQ (?180501,�1 * 0201) restricted T cells isolated from the small intestinal mucosa of celiac patients.�J. Exp. Med.�1993;178:187�196.[PMC free article][PubMed]
29.�Agardh D, Nilsson A, Tuomi T, et al. Prediction of silent celiac disease at diagnosis of childhood type 1 diabetes by tissue transglutaminase autoantibodies and HLA.�Pediatric Diab.�2001;2:58�65.�[PubMed]
30.�Westerholm-Ormio M, Vaarala O, Pihkala P, et al. Imunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes.�Diabetes.�2003;52:2287�2295.�[PubMed]
31.�Savilahti E, Ormala T, Saukkonen U, et al. Jejuna of patients with insulin-dependent diabetes mellitus (IDDM) show signs of immune activation.�Clin. Exp. Immunol.�1999;116:70�77.�[PMC free article][PubMed]
32.�Auricchio R, Paparo F, Maglio M, et al. In vitro deranged intestinal immune response to gliadin in type 1 diabetes.�Diabetes.�2004;53:1680�1683.�[PubMed]
33.�Hanninen A, Salmi M, Simell O, et al. Endothelial cell-binding properties of lymphocytes infiltrated into human diabetic pancreas: Implications for pathogenesis in IDDM.�Diabetes.�2003;42:1656�1662.[PubMed]
34.�Chakir H, Lefebvre DE, Wang H, et al. Wheat protein-induced proinflammatory T helper 1 bias in mesenteric lymph nodes of young diabetes-prone rats.�Diabetologia.�2005;48:1576�1584.�[PubMed]
35.�Scott FW, Cloutier HE, Kleeman R, et al. Potential mechanisms by which certain foods promote or inhibit the development of spontaneous diabetes in BB rats. Dose, timing, early effect on islet area, and switch in infiltrate from Th1 to Th2 cells.�Diabetes.�1997;46:589�598.�[PubMed]
36.�Funda DP, Kaas A, Taskalova-Hogenova H, et al. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes.�Diab. Metab. Res. Rev.�2008;24:59�63.�[PubMed]
37.�Meddings JB, Jarand J, Urbanski SJ, et al. Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat.�Am. J. Physiol.�1999;276:G951�957.�[PubMed]
38.�Visser J, Brugman S, Klatter F, et al. Short-term dietary adjustment with a hydrolyzed casein-based diet postpones diabetes development in the diabetes-prone BB rat.�Metabolism.�2003;52:333�337.�[PubMed]
39.�Brugman S, Klatter F, Visser J, et al. Neonatal oral administration of DiaPep277, combined with hydrolysed casein diet, protects against Type 1 diabetes in BB-DP rats. An experimental study.�Diabetologia.�2004;47:1331�1333.�[PubMed]
40.�Brugman S, Klatter F, Visser J, et al. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes?�Diabetologia.�2006;49:2105�2108.�[PubMed]
41.�Visser J, Groen H, Klatter F, et al. The diabetes prone BB rat model of IDDM shows duration of breastfeeding to influence Type 1 diabetes development later in life.�Diabetologia.�2003;46:1711�1713.[PubMed]
42.�Scott FW, Rowsell P, Wang GS, et al. Oral exposure to diabetes-promoting food or immunomodulators in neonates alters gut cytokines and diabetes.�Diabetes.�2002;51:73�78.�[PubMed]
43.�Fasano A, Fiorentini C, Donelli G, et al. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization,�in vitro.�J. Clin. Invest.�1995;96:710�720.[PMC free article][PubMed]
44.�Fasano A, Uzzau S, Fiore C, et al. The enterotoxic effect of zonula occludens toxin (Zot) on rabbit small intestine involves the paracellular pathway.�Gastroenterol.�1997;112:839�846.�[PubMed]
45.�Marcial MA, Carlson SL, Madara JL. Partitioning of paracellular conductance along the ileal crypt-villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationships.�J. Membr. Biol.�1984;80:59�70.�[PubMed]
46.�Uzzau S, Lu R, Wang W, et al. Purification and preliminary characterization of the zonula occludens toxin receptor from human (CaCo2) and murine (IEC6) intestinal cell lines.�FEMS Microbiol. Lett.�2001;194:1�5.�[PubMed]
47.�Wang W, Uzzau S, Goldblum SE, et al. Human zonulin, a potential modulator of intestinal tight junctions.�J. Cell Sci.�2000;113:4435�4440.�[PubMed]
48.�Fasano A, Baudry B, Pumplin DW, et al.�Vibrio cholerae�produces a second enterotoxin, which affects intestinal tight junctions.�Proc. Natl. Acad. Sci. USA.�1991;88:5242�5246.�[PMC free article][PubMed]
49.�Baudry B, Fasano A, Ketley JM, et al. Cloning of a gene (zot) encoding a new toxin produced by�Vibrio cholerae.�Infect. Immun.�1992;60:428�434.�[PMC free article][PubMed]
50.�Di Pierro M, Lu R, Uzzau S, et al. Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain.�J. Biol. Chem.�2001;276:19160�19165.�[PubMed]
51.�El Asmar R, Panigrahi P, Bamford P, et al. Host-dependent activation of the zonulin system is involved in the impairment of the gut barrier function following bacterial colonization.�Gastroenterol.�2002;123:1607�1615.
52.�Fasano A, Not T, Wang W, et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease.�Lancet.�2000;358:1518�1519.�[PubMed]
53.�Watts T, Berti I, Sapone A, et al. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type-I diabetes in BB diabetic prone rats.�Proc. Natl. Acad. Sci. USA.�2005;102:2916�2921.�[PMC free article][PubMed]
54.�Sapone A, de Magistris L, Pietzak M, et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives.�Diabetes.�2006;55:1443�1449.�[PubMed]
55.�Clemente MG, Virgiliis S, Kang JS, et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function.�Gut.�2003;52:218�223.�[PMC free article][PubMed]
56.�Drago S, El Asmar R, De Pierro M, et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines.�Scand. J. Gastroenterol.�2006;41:408�419.�[PubMed]
57.�Lammers KM, Lu R, Brownley J, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3.�Gastroenterol.�2008;135:194�204.[PMC free article][PubMed]
58.�Barbeau WE, Bassaganya-Riera J, Hontecillas R. Putting the pieces of the puzzle together � a series of hypotheses on the etiology and pathogenesis of type 1 diabetes.�Med. Hypotheses.�2007;68:607�619.[PubMed]
Close Accordion