ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page

Health

Back Clinic Health Team. The level of functional and metabolic efficiency of a living organism. In humans, it is the ability of individuals or communities to adapt and self-manage when facing physical, mental, psychological, and social changes in an environment. Dr.Alex Jimenez D.C., C.C.S.T, a clinical pain doctor who uses cutting-edge therapies and rehabilitation procedures focused on total health, strength training, and complete conditioning. We take a global functional fitness treatment approach to regain complete functional health.

Dr. Jimenez presents articles both from his own experience and from a variety of sources that pertain to a healthy lifestyle or general health issues. I have spent over 30+ years researching and testing methods with thousands of patients and understand what truly works. We strive to create fitness and better the body through researched methods and total health programs.

These programs and methods are natural and use the body’s own ability to achieve improvement goals, rather than introducing harmful chemicals, controversial hormone replacement, surgery, or addictive drugs. As a result, individuals live a fulfilled life with more energy, a positive attitude, better sleep, less pain, proper body weight, and education on maintaining this way of life.


The Health Risks Of Genetically Modified (GM) Foods

The Health Risks Of Genetically Modified (GM) Foods

GMOs: We all know stories of tobacco, asbestos, and DDT. Originally declared safe, they caused widespread death and disease. Although their impact was vast, most of the population was spared. The same cannot be said for sweeping changes in the food supply. Everyone eats; everyone is affected. The increase in several diseases in North America may be due to the profound changes in our diet. The most radical change occurred a little over a decade ago when genetically modified (GM) crops were introduced. Their influence on health has been largely ignored, but recent studies show serious problems. Genetically modified organisms (GMOs) have been linked to thousands of toxic or allergic-type reactions, thousands of sick, sterile, and dead livestock, and damage to virtually every organ and system studied in lab animals.1 Nearly every independent animal feeding safety study shows adverse or unexplained effects.

GM foods were made possible by a technology developed in the 1970s whereby genes from one species are forced into the DNA of other species. Genes produce proteins, which in turn can generate characteristics or traits. The promised traits associated with GMOs have been sky high�vegetables growing in the desert, vitamin fortified grains, and highly productive crops feeding the starving millions. None of these are available. In fact, the only two traits that are found in nearly all commericialized GM plants are herbicide tolerance and/or pesticide production.

Herbicide tolerant soy, corn, cotton, and canola plants are engineered with bacterial genes that allow them to survive otherwise deadly doses of herbicides. This gives farmers more flexibility in weeding and gives the GM seed company lots more profit. When farmers buy GM seeds, they sign a contract to buy only that seed producer�s brand of herbicide. Herbicide tolerant crops comprise about 80% of all GM plants. The other 20% are corn and cotton varieties that produce a pesticide in every cell. This is accomplished due to a gene from a soil bacterium called Bacillus thuringiensis or Bt, which produces a natural insect-killing poison called Bt- toxin. In addition to these two traits, there are also disease resistant GM Hawaiian papaya, zucchini and crook neck squash, which comprise well under 1% of GMO acreage.

GMOs: The FDA’s “Non-Regulation” Of GM Foods

GMOs Bell peppersRhetoric from the United States government since the early 1990s proclaims that GM foods are no different from their natural counterparts that have existed for centuries. The Food and Drug Administration (FDA) has labeled them �Generally Recognized as Safe,� or GRAS. This status allows a product to be commercialized without any additional testing. According to US law, to be considered GRAS the substance must be the subject of a substantial amount of peer-reviewed published studies (or equivalent) and there must be overwhelming consensus among the scientific community that the product is safe. GM foods had neither. Nonetheless, in a precedent-setting move in 1992 that some experts contend was illegal, the FDA declared that GM crops are GRAS as long as their producers say they are. Thus, the FDA does not require any safety evaluations or labeling of GMOs. A company can even introduce a GM food to the market without telling the agency.

Such a lenient approach was largely the result of the influence of large agricultural corporations According to Henry Miller, who had a leading role in biotechnology issues at the FDA from 1979 to 1994, �In this area, the US government agencies have done exactly what big agribusiness has asked them to do and told them to do.�2 The Ag biotech company with the greatest influence was clearly Monsanto. According to the New York Times, �What Monsanto wished for from Washington, Monsanto and, by extension, the biotechnology industry got. . . . When the company abruptly decided that it needed to throw off the regulations and speed its foods to market, the White House quickly ushered through an unusually generous policy of self-policing.�3

This policy was heralded by Vice President Dan Quayle on May 26, 1992. He chaired the Council on Competitiveness, which had identified GM crops as an industry that could boost US exports. To take advantage, Quayle announced �reforms� to �speed up and simplify the process of bringing� GM products to market without �being hampered by unnecessary regulation.�4 Three days later, the FDA policy on non-regulation was unveiled.

The person who oversaw its development was the FDA�s Deputy Commissioner for Policy, Michael Taylor, whose position had been created especially for him in 1991. Prior to that, Taylor was an outside attorney for both Monsanto and the Food Biotechnology Council. After working at the FDA, he became Monsanto�s vice president. The Obama administration has put Talyor back into the FDA as the US Food Safety Czar.

The FDA Covers Up Health Risks

GMOs FDA press conferenceTaylor�s GMO policy needed to create the impression that unintended effects from GM crops were not an issue. Otherwise their GRAS status would be undermined and they would need the extensive testing and labels that are normally required for food additives. But internal memos made public from a lawsuit showed that the overwhelming consensus among the agency scientists was that GM crops can have unpredictable, hard-to-detect side effects. Various departments and experts spelled these out in detail, listing allergies, toxins, nutritional effects, and new diseases as potential dangers. They urged superiors to require long-term safety studies.5 In spite of the warnings, according to public interest attorney Steven Druker who studied the FDA�s internal files, �References to the unintended negative effects of bioengineering were progressively deleted from drafts of the policy statement (over the protests of agency scientists).�6

FDA microbiologist Louis Pribyl, PhD, wrote about the policy, �What has happened to the scientific elements of this document? Without a sound scientific base to rest on, this becomes a broad, general, �What do I have to do to avoid trouble�-type document. . . . It will look like and probably be just a political document. . . . It reads very pro-industry, especially in the area of unintended effects.�7

The scientists� concerns were not only ignored, their very existence was denied. The official FDA policy stated, �The agency is not aware of any information showing that foods derived by these new methods differ from other foods in any meaningful or uniform way.�8 In sharp contrast, an internal FDA report stated, �The processes of genetic engineering and traditional breeding are different and according to the technical experts in the agency, they lead to different risks.�9 The FDA�s deceptive notion of no difference was coined �substantial equivalence� and formed the basis of the US government position on GMOs.

Many scientists and organizations have criticized the US position. The National Academy of Sciences and even the pro-GM Royal Society of London10 describe the US system as inadequate and flawed. The editor of the prestigious journal Lancet said, �It is astounding that the US Food and Drug Administration has not changed their stance on genetically modified food adopted in 1992. . . . The policy is that genetically modified crops will receive the same consideration for potential health risks as any other new crop plant. This stance is taken despite good reasons to believe that specific risks may exist. . . . Governments should never have allowed these products into the food chain without insisting on rigorous testing for effects on health.�11 The Royal Society of Canada described substantial equivalence as �scientifically unjustifiable and inconsistent with precautionary regulation of the technology.� 12

GMOs Are Inherently Unsafe

safety signThere are several reasons why GM plants present unique dangers. The first is that the process of genetic engineering itself creates unpredicted alterations, irrespective of which gene is transferred. The gene insertion process, for example, is accomplished by either shooting genes from a �gene gun� into a plate of cells, or using bacteria to infect the cell with foreign DNA. Both create mutations in and around the insertion site and elsewhere.13 The �transformed� cell is then cloned into a plant through a process called tissue culture, which results in additional hundreds or thousands of mutations throughout the plants� genome. In the end, the GM plant�s DNA can be a staggering 2-4% different from its natural parent.14 Native genes can be mutated, deleted, or permanently turned on or off. In addition, the insertion process causes holistic and not-well-understood changes among large numbers of native genes. One study revealed that up to 5% of the natural genes altered their levels of protein expression as a result of a single insertion.

The Royal Society of Canada acknowledged that �the default prediction� for GM crops would include �a range of collateral changes in expression of other genes, changes in the pattern of proteins produced and/or changes in metabolic activities.�15 Although the FDA scientists evaluating GMOs in 1992 were unaware of the extent to which GM DNA is damaged or changed, they too described the potential consequences. They reported, �The possibility of unexpected, accidental changes in genetically engineered plants� might produce �unexpected high concentrations of plant toxicants.�16 GM crops, they said, might have �increased levels of known naturally occurring toxins,� and the �appearance of new, not previously identified� toxins.17 The same mechanism can also produce allergens, carcinogens, or substances that inhibit assimilation of nutrients.

Most of these problems would pass unnoticed through safety assessments on GM foods, which are largely designed on the false premise that genes are like Legos that cleanly snap into place. But even if we disregard unexpected changes in the DNA for the moment, a proper functioning inserted gene still carries significant risk. Its newly created GM protein, such as the Bt-toxin, may be dangerous for human health (see below). Moreover, even if that protein is safe in its natural organism, once it is transferred into a new species it may be processed differently. A harmless protein may be transformed into a dangerous or deadly version. This happened with at least one GM food crop under development, GM peas, which were destroyed before being commercialized.

FDA scientists were also quite concerned about the possibility of inserted genes spontaneously transferring into the DNA of bacteria inside our digestive tract. They were particularly alarmed at the possibility of antibiotic resistant marker (ARM) genes transferring. ARM genes are employed during gene insertion to help scientists identify which cells successfully integrated the foreign gene. These ARM genes, however, remain in the cell and are cloned into the DNA of all the GM plants produced from that cell. One FDA report wrote in all capital letters that ARM genes would be �A SERIOUS HEALTH HAZARD,� due to the possibility of that they might transfer to bacteria and create super diseases, untreatable with antibiotics.

Although the biotech industry confidently asserted that gene transfer from GM foods was not possible, the only human feeding study on GM foods later proved that it does take place. The genetic material in soybeans that make them herbicide tolerant transferred into the DNA of human gut bacteria and continued to function18. That means that long after we stop eating a GM crop, its foreign GM proteins may be produced inside our intestines. It is also possible that the foreign genes might end up inside our own DNA, within the cells of our own organs and tissues.

Another worry expressed by FDA scientists was that GM plants might gather �toxic substances from the environment� such as �pesticides or heavy metals,�19 or that toxic substances in GM animal feed might bioaccumulate into milk and meat products. While no studies have looked at the bioaccumulation issue, herbicide tolerant crops certainly have higher levels of herbicide residues. In fact, many countries had to increase their legally allowable levels�by up to 50 times�in order to accommodate the introduction of GM crops.

The overuse of the herbicides due to GM crops has resulted in the development of herbicide resistant weeds. USDA statistics show�that herbicide use is rapidly accelerating. Its use was up by 527 million pounds in the first 16 years of GM crops (1996-2011).�Glyphosate use per acre on Roundup Ready soybeans was up by 227% while use on non-GMO soy acreage decreased by 20% over�the same time period. The rate of application is accelerating due in large part to the emergence of herbicide tolerant weeds, now�found on millions of acres. According to a study by Charles Benbrook, the incremental increase per year was 1.5 million pounds in�1999, 18 million in 2003, 79 million in 2009, and about 90 million in 2011. And as Roundup becomes less effective, farmers are�now using more toxic herbicides, such as 2-4D.

The pesticide-producing Bt crops do reduce the amount of sprayed on insecticides, but the total amount produced by the crops is far�greater than the amount of displaced spray. For example, Bt corn that kills the corn rootworm produces one to two pounds of Bt�toxin per acre, but reduces sprayed insecticides by only about 0.19 pounds. SmartStax corn with eight genes produces 3.7 pounds of�Bt toxin per acre, but displaces only 0.3 pounds of sprayed insecticides. 20

All of the above risks associated with GM foods are magnified for high-risk groups, such as pregnant women, children, the sick, and the elderly. The following section highlights some of the problems that have been identified.

GM Diet Shows Toxic Reactions In The Digestive Tract

gmos digestive abdomenThe very first crop submitted to the FDA�s voluntary consultation process, the FlavrSavr tomato, showed evidence of toxins. Out of 20 female rats fed the GM tomato, 7 developed stomach lesions.21 The director of FDA�s Office of Special Research Skills wrote that the tomatoes did not demonstrate a �reasonable certainty of no harm,�22 which is their normal standard of safety. The Additives Evaluation Branch agreed that �unresolved questions still remain.�23 The political appointees, however, did not require that the tomato be withdrawn.1

According to Arpad Pusztai, PhD, one of the world�s leading experts in GM food safety assessments, the type of stomach lesions linked to the tomatoes �could lead to life-endangering hemorrhage, particularly in the elderly who use aspirin to prevent [blood clots].�24 Dr. Pusztai believes that the digestive tract, which is the first and largest point of contact with foods, can reveal various reactions to toxins and should be the first target of GM food risk assessment. He was alarmed, however, to discover that studies on the FlavrSavr never looked passed the stomach to the intestines. Other studies that did look found problems.

Mice fed potatoes engineered to produce the Bt-toxin developed abnormal and damaged cells, as well as proliferative cell growth in the lower part of their small intestines (ileum).25 Rats fed potatoes engineered to produce a different type of insecticide (GNA lectin from the snowdrop plant) also showed proliferative cell growth in both the stomach and intestinal walls (see photos).26 Although the guts of rats fed GM peas were not examined for cell growth, the intestines were mysteriously heavier; possibly as a result of such growth.27 Cell proliferation can be a precursor to cancer and is of special concern.

GMOs Rat GM Potato InfoGM Diets Cause Liver Damage

The state of the liver�a main detoxifier for the body�is another indicator of toxins.

  • Rats fed the GNA lectin potatoes described above had smaller and partially atrophied livers.28
  • Rats fed Monsanto�s Mon 863 corn, engineered to produce Bt-toxin, had liver lesions and other indications of toxicity.29
  • Rabbits fed GM soy showed altered enzyme production in their livers as well as higher metabolic activity.30
  • The livers of rats fed Roundup Ready canola were 12%�16% heavier, possibly due to liver disease or inflammation.31
  • Microscopic analysis of the livers of mice fed Roundup Ready soybeans revealed altered gene expression and structural and functional changes (see photos).32 Many of these changes reversed after the mice diet was switched to non-GM soy, indicating that GM soy was the culprit. The findings, according to molecular geneticist Michael Antoniou, PhD, �are not random and must reflect some �insult� on the liver by the GM soy.� Antoniou, who does human gene therapy research in King�s College London, said that although the long-term consequences of the GM soy diet are not known, it �could lead to liver damage and consequently general toxemia.�33
  • Rats fed Roundup Ready soybeans also showed structural changes in their livers. 34

GMOs Liver Cells Soy Fed Mice

GMOs Livers Soy Fed RatsGM Fed Animals Had Higher Death Rates & Organ Damage

In the FlavrSavr tomato study, a note in the appendix indicated that 7 of 40 rats died within two weeks and were replaced.35 In another study, chickens fed the herbicide tolerant �Liberty Link� corn died at twice the rate of those fed natural corn.36 But in these two industry-funded studies, the deaths were dismissed without adequate explanation or follow-up.

In addition, the cells in the pancreas of mice fed Roundup Ready soy had profound changes and produced significantly less digestive enzymes;37 in rats fed a GM potato, the pancreas was enlarged.38 In various analyses of kidneys, GM-fed animals showed lesions, toxicity, altered enzyme production or inflammation.39,40 Enzyme production in the hearts of rabbits was altered by GM soy.41 And GM potatoes caused slower growth in the brain of rats.42 A team of independent scientists re-analyzed the raw data in three Monsanto 90-day rat feeding studies and saw signs of toxicity in the liver and kidneys, as well as effects in the heart, adrenal glands, spleen, and blood.43 In one of the only long-term feeding studies, rats fed Roundup Ready corn for three years for 24 months (or even just low concentrations of Roundup in their drinking water) suffered significant damage to their kidneys, livers, and pituitary glands. They also died prematurely and had many massive tumors�as large as 25% of their body weight.44

Reproductive Failures & Infant Mortality

The testicles of both mice and rats fed Roundup Ready soybeans showed dramatic changes. In rats, the organs were dark blue instead of pink (see photos on next page).45 In mice, young sperm cells were altered.46 Embryos of GM soy-fed mice also showed temporary changes in their DNA function, compared to those whose parents were fed non-GM soy.47�Female rats fed GM soy showed changes in their uterus, ovaries, and hormonal balance.48 By the third generation, most hamsters fed GM soy were unable to have babies. The infant mortality was 4-5 times greater than controls, and many of the GMO-fed third generation had hair growing in their mouths.49

GMOs Testicles of Rats

An Austrian government study showed that mice fed GM corn (Bt and Roundup Ready) had fewer babies and smaller babies.50 More dramatic results were discovered by a leading scientist at the Russian National Academy of sciences. Female rats were fed GM soy, starting two weeks before they were mated.

  • Over a series of three experiments, 51.6 percent of the offspring from the GM-fed group died within the first three weeks, compared to 10 percent from the non-GM soy group, and 8.1 percent for non-soy controls.
  • �High pup mortality was characteristic of every litter from mothers fed the GM soy flour.�51
  • The average size and weight of the GM-fed offspring was quite a bit smaller (see photo on next page).52
  • In a preliminary study, the GM-fed offspring were unable to conceive.53After the three feeding trials, the supplier of rat food used at the Russian laboratory began using GM soy in their formulation. Since all the rats housed at the facility were now eating GM soy, no non-GM fed controls were available for subsequent GM feeding trials; follow-up studies were canceled. After two months on the GM soy diet, however, the infant mortality rate of rats throughout the facility had skyrocketed to 55.3 percent (99 of 179).54
GMOs 20 Day old rat 19 day old rat

Farmers Report Livestock Sterility & Deaths

gmos pigsAbout two dozen farmers reported that their pigs had reproductive problems when fed certain varieties of Bt corn. Pigs were sterile, had false pregnancies, or gave birth to bags of water. Cows and bulls also became sterile. Bt corn was also implicated by farmers in the deaths of cows, horses, water buffaloes, and chickens.55

When Indian shepherds let their sheep graze continuously on Bt cotton plants, within 5-7 days, one out of four sheep died. There was an estimated 10,000 sheep deaths in the region in 2006, with more reported in 2007. Post mortems on the sheep showed severe irritation and black patches in both intestines and liver (as well as enlarged bile ducts). Investigators said preliminary evidence �strongly suggests that the sheep mortality was due to a toxin. . . . most probably Bt-toxin.�56 In a small feeding study, 100% of sheep fed Bt cotton died within 30 days. Those fed natural plants had no symptoms.

Buffalo that grazed on natural cotton plants for years without incident react to the Bt variety. In one village in Andhra Pradesh, for example, 13 buffalo grazed on Bt cotton plants for a single day. All died within 3 days.57 Investigators in the state of Haryana, India, report that most buffalo that ate GM cottonseed had reproductive complications such as premature deliveries, abortions, infertility, and prolapsed uteruses. Many young calves and adult buffaloes died.

GM Crops Trigger Immune Reactions & May Cause Allergies

gmos cropsAllergic reactions occur when the immune system interprets something as foreign, different, and offensive, and reacts accordingly. All GM foods, by definition, have something foreign and different. And several studies show that they provoke reactions. Rats fed Monsanto�s GM corn, for example, had a significant increase in blood cells related to the immune system.58 GM potatoes caused the immune system of rats to respond more slowly.59 And GM peas provoked an inflammatory response in mice, suggesting that it might cause deadly allergic reactions in people.60

It might be difficult to identify whether GM foods were triggering allergic responses in the population, since very few countries conduct regular studies or keep careful records. One country that does have an annual evaluation is the UK. Soon after GM soy was introduced into the British diet, researchers at the York Laboratory reported that allergies to soy had skyrocketed by 50% in a single year.61 Although no follow-up studies were conducted to see if GM soy was the cause, there is evidence showing several ways in which it might have contributed to the rising incidence of allergies:

  • The only significant variety of GM soy is Monsanto�s �Roundup Ready� variety, planted in 89% of US soy acres. A foreign gene from bacteria (with parts of virus and petunia DNA) is inserted, which allows the plant to withstand Roundup herbicide. The protein produced by the bacterial gene has never been part of the human food supply. Because people aren�t usually allergic to a food until they have eaten it several times, it would be difficult to know in advance if the protein was an allergen. Without a surefire method to identify allergenic GM crops, the World Health Organization (WHO) and others recommend examining the properties of the protein to see if they share characteristics with known allergens. One method is to compare the amino acid sequence of the novel protein with a database of allergens. If there is a match, according to the WHO, the GM crop should either not be commercialized or additional testing should be done. Sections of the protein produced in GM soy are identical to shrimp and dust mite allergens,62 but the soybean was introduced before WHO criteria were established and the recommended additional tests were not conducted. If the protein does trigger reactions, the danger is compounded by the finding that the Roundup Ready gene transfers into the DNA of human gut bacteria and may continuously produce the protein from within our intestines.63
  • In addition to the herbicide tolerant protein, GM soybeans contain a unique, unexpected protein, which likely came about from the changes incurred during the genetic engineering process. Scientists found that this new protein was able to bind with IgE antibodies, suggesting that it may provoke dangerous allergic reactions. The same study revealed that one human subject showed a skin prick immune response only to GM soy, but not to natural soy.64 These results must be considered preliminary,�as the non-GM soy was a wild type and not necessarily comparable to the GM variety. Another study showed that the levels of one known soy allergen, called trypsin inhibitor, were as much as seven times higher in cooked GM soy compared to a non-GM control.65 This was Monsanto�s own study, and did use comparable controls.
  • GM soy also produces an unpredicted side effect in the pancreas of mice�the amount of digestive enzymes produced is dramatically reduced.66 If a shortage of enzymes caused food proteins to breakdown more slowly, then they have more time to trigger allergic reactions. Thus, digestive problems from GM soy might promote allergies to a wide range of proteins, not just soy.
  • The higher amount of Roundup herbicide residues on GM soy might create reactions in consumers. In fact, many of the symptoms identified in the UK soy allergy study are among those related to glyphosate exposure. [The allergy study identified irritable bowel syndrome, digestion problems, chronic fatigue, headaches, lethargy, and skin complaints, including acne and eczema, all related to soy consumption. Symptoms of glyphosate exposure include nausea, headaches, lethargy, skin rashes, and burning or itchy skin. It is also possible that glyphosate�s breakdown product aminomethylphosphonic acid (AMPA), which accumulates in GM soybeans after each spray, might contribute to allergies.]

It is interesting to note that in the five years immediately after GM soy was introduced, US peanut allergies doubled. It is known that a protein in natural soybeans cross-reacts with peanut allergies, i.e. soy may trigger reactions in some people who are allergic to peanuts.67 Given the startling increase in peanut allergies, scientists should investigate whether this cross-reactivity has been amplified in GM soy.

Roundup, tumors, etc.

BT-Toxin, Produced In GM Corn & Cotton, May Cause Allergies

gmos Bt-toxin-crystalsFor years, organic farmers and others have sprayed crops with solutions containing natural Bt bacteria as a method of insect control. The toxin creates holes in their stomach and kills them. Genetic engineers take the gene that produces the toxin in bacteria and insert it into the DNA of crops so that the plant does the work, not the farmer. The fact that we consume that toxic pesticide in every bite of Bt corn is hardly appetizing.

Biotech companies claim that Bt-toxin has a history of safe use, is quickly destroyed in our stomach, and wouldn�t react with humans or mammals in any event. Studies verify, however, that natural Bt-toxin is not fully destroyed during digestion and does react with mammals. Mice fed Bt-toxin, for example, showed an immune response as potent as cholera toxin, 68, became immune sensitive to formerly harmless compounds,69 and had damaged and altered cells in their small intestines.70 A 2008 Italian government study found that Bt corn provoked immune responses in mice.71 Moreover, when natural Bt was sprayed over areas around Vancouver and Washington State to fight gypsy moths, about 500 people reported reactions�mostly allergy or flu-like symptoms.72,73 Farm workers and others also report serious reactions7475767778 and authorities have long acknowledged that �people with compromised immune systems or preexisting allergies may be particularly susceptible to the effects of Bt.�79

The Bt-toxin produced in GM crops is �vastly different from the bacterial [Bt-toxins] used in organic and traditional farming and forestry.�80 The plant produced version is designed to be more toxic than natural varieties,81 and is about 3,000-5,000 times more concentrated than the spray form. And just like the GM soy protein, the Bt protein in GM corn varieties has a section of its amino acid sequence identical to a known allergen (egg yolk). The Bt protein also fails other allergen criteria recommended by the WHO, i.e. the protein is too resistant to break down during digestion and heat.

A 2011 study published in the Journal of Applied Toxicology showed that when Bt-toxin derived from Monsanto�s corn was exposed to human cells, the toxin disrupts the membrane in just 24 hours, causing certain fluid to leak through the cell walls. The authors specifically note, �This may be due to pore formation like in insect cells.� In other words, the toxin may be creating small holes in human cells in the same manner that it kills insects. The researchers �documented that modified Bt toxins [from GM plants] are not inert on human cells, but can exert toxicity.�82 A 2011 Canadian study conducted at Sherbrooke Hospital discovered that�93% of the pregnant women they tested had Bt-toxin from Monsanto�s corn in their blood. And so did 80% of their unborn�fetuses. 83

If Bt-toxin causes allergies, then gene transfer carries serious ramifications. If Bt genes relocate to human gut bacteria, our intestinal flora may be converted into living pesticide factories, possibly producing Bt-toxin inside of us year after year. The UK Joint Food Safety and Standards Group also described gene transfer from a different route. They warned that genes from inhaled pollen might transfer into the DNA of bacteria in the respiratory system.84 Although no study has looked into that possibility, pollen from a Bt cornfield appears to have been responsible for allergic-type reactions.

In 2003, during the time when an adjacent Bt cornfield was pollinating, virtually an entire Filipino village of about 100 people was stricken by mysterious skin, respiratory, and intestinal reactions.85 The symptoms started with those living closest to the field and spread to those further away. Blood samples from 39 individuals showed antibodies in response to Bt-toxin, supporting�but not proving�a link. When the same corn was planted in four other villages the following year, however, the symptoms returned in all four areas�only during the time of pollination.86

Bt-toxin might also trigger reactions by skin contact. In 2005, a medical team reported that hundreds of agricultural workers in India are developing allergic symptoms when exposed to Bt cotton, but not when
axposed to natural varieties.87 They say reactions come from picking the cotton, cleaning it in factories, loading it onto trucks, or even leaning against it. Their symptoms are virtually identical to those described by the 500 people in Vancouver and Washington who were sprayed with Bt.

Government Evaluations Miss Most Health Problems

gmos Example FDA Decision Making ProcessAlthough the number of safety studies on GM foods is quite small, it has validated the concerns expressed by FDA scientists and others. Unfortunately, government safety assessments worldwide are not competent to even identify most of the potential health problems described above, let alone protect its citizens from the effects.88

A 2000 review of approved GM crops in Canada by professor E. Ann Clark, PhD, for example, reveals that 70% (28 of 40) �of the currently available GM crops . . . have not been subjected to any actual lab or animal toxicity testing, either as refined oils for direct human consumption or indirectly as feedstuffs for livestock. The same finding pertains to all three GM tomato decisions, the only GM flax, and to five GM corn crops.� In the remaining 30% (12) of the other crops tested, animals were not fed the whole GM feed. They were given just the isolated GM protein that the plant was engineered to produce. But even this protein was not extracted from the actual GM plant. Rather, it was manufactured in genetically engineered bacteria. This method of testing would never identify problems associated with collateral damage to GM plant DNA, unpredicted changes in the GM protein, transfer of genes to bacteria or human cells, excessive herbicide residues, or accumulation of toxins in the food chain, among others. Clark asks, �Where are the trials showing lack of harm to fed livestock, or that meat and milk from livestock fed on GM feedstuffs are safe?�89

Epidemiologist and GM safety expert Judy Carman, PhD, MPH, shows that assessments by Food Safety Australia New Zealand (FSANZ) also overlook serious potential problems, including cancer, birth defects, or long-term effects of nutritional deficiencies. 90

�A review of twelve reports covering twenty-eight GM crops – four soy, three corn, ten potatoes, eight canola, one sugar beet and two cotton�revealed no feeding trials on people. In addition, one of the GM corn varieties had gone untested on animals. Some seventeen foods involved testing with only a single oral gavage (a type of forced-feeding), with observation for seven to fourteen days, and only of the substance that had been genetically engineered to appear [the GM protein], not the whole food. Such testing assumes that the only new substance that will appear in the food is the one genetically engineered to appear, that the GM plant- produced substance will act in the same manner as the tested substance that was obtained from another source [GM bacteria], and that the substance will create disease within a few days. All are untested hypotheses and make a mockery of GM proponents� claims that the risk assessment of GM foods is based on sound science. Furthermore, where the whole food was given to animals to eat,�sample sizes were often very low�for example, five to six cows per group for Roundup Ready soy�and they were fed for only four weeks.�91

Dr. Carman points out that GM �experiments used some very unusual animal models for human health, such as chickens, cows, and trout. Some of the measurements taken from these animals are also unusual measures of human health, such as abdominal fat pad weight, total de-boned breast meat yield, and milk production.� In her examination of the full range of submittals to authorities in Australia and New Zealand, she says that there was no proper evaluation of �biochemistry, immunology, tissue pathology, and gut, liver, and kidney function.�92 Writing on behalf of the Public Health Association of Australia, Dr. Carman says, �The effects of feeding people high concentrations of the new protein over tens of years cannot be determined by feeding 20 mice a single oral gavage of a given high concentration of the protein and taking very basic data for 13-14 days.�93

The FDA’s Fake Safety Assessments

gmos Safety assessmentSubmissions to the US Food and Drug Administraion (FDA) may be worse than in other countries, since the agency doesn�t actually require any data. Their policy says that biotech companies can determine if their own foods are safe. Anything submitted is voluntary and, according to former Environmental Protection Agency scientist Doug Gurian-Sherman, PhD, �often lack[s] sufficient detail, such as necessary statistical analyses needed for an adequate safety evaluation.� Using Freedom of Information Requests, Dr. Gurian-Sherman analyzed more than a fourth of the data summaries (14 of 53) of GM crops reviewed by the FDA. He says, �The FDA consultation process does not allow the agency to require submission of data, misses obvious errors in company- submitted data summaries, provides insufficient testing guidance, and does not require sufficiently detailed data to enable the FDA to assure that GE crops are safe to eat.�94 Similarly, a Friends of the Earth review of company and FDA documents concluded:

�If industry chooses to submit faulty, unpublishable studies, it does so without consequence. If it should respond to an agency request with deficient data, it does so without reprimand or follow-up. . . . If a company finds it disadvantageous to characterize its product, then its properties remain uncertain or unknown. If a corporation chooses to ignore scientifically sound testing standards . . . then faulty tests are conducted instead, and the results are considered legitimate. In the area of genetically engineered food regulation, the �competent� agencies rarely if ever (know how to) conduct independent research to verify or supplement industry findings.� 95

At the end of the consultation, the FDA doesn�t actually approve the crops. Rather, they issue a letter that includes a statement such as the following:

�Based on the safety and nutritional assessment you have conducted, it is our understanding that Monsanto has concluded that corn products derived from this new variety are not materially different in composition, safety, and other relevant parameters from corn currently on the market, and that the genetically modified corn does not raise issues that would require premarket review or approval by FDA. . . . As you are aware, it is Monsanto�s responsibility to ensure that foods marketed by the firm are safe, wholesome and in compliance with all applicable legal and regulatory requirements.�96

Company Research Is Secret, Inadequate & Flawed

GMOs FDA health inspectorsThe unpublished industry studies submitted to regulators are typically kept secret based on the claim that it is �confidential business information.� The Royal Society of Canada is one of many organizations that condemn this practice. They wrote:

�In the judgment of the Expert Panel, the more regulatory agencies limit free access to the data upon which their decisions are based, the more compromised becomes the claim that the regulatory process is �science based.� This is due to a simple but well- understood requirement of the scientific method itself�that it be an open, completely transparent enterprise in which any and all aspects of scientific research are open to full review by scientific peers. Peer review and independent corroboration of research findings are axioms of the scientific method, and part of the very meaning of the objectivity and neutrality of science.�97

Whenever private submissions are made public through lawsuits or Freedom of Information Act Requests, it becomes clear why companies benefit from secrecy. The quality of their research is often miserable, incompetent, and unacceptable for peer-review. In 2000, for example, after the potentially allergenic StarLink corn was found to have contaminated the food supply, the corn�s producer, Aventis CropScience, presented wholly inadequate safety data to the EPA�s scientific advisory panel. One frustrated panel member, Dean Metcalfe, MD,�the government�s top allergist�said during a hearing, �Most of us review for a lot of journals. And if this were presented for publication in the journals that I review for, it would be sent back to the authors with all of these questions. It would be rejected.�98

Unscientific Assumptions Are The Basis Of Approvals

Professor Clark, who analyzed submissions to Canadian regulators, concluded, �Most or all of the conclusions of food safety for individual GM crops are based on inferences and assumptions, rather than on actual testing.� For example, rather than actually testing to see if the amino acid sequence produced by their inserted gene is correct, �the standard practice,� according to research analyst William Freese, �is to sequence just 5 to 25 amino acids,�99 even if the protein has more than 600 in total. If the short sample matches what is expected, they assume that the rest are also fine. If they are wrong, however, a rearranged protein could be quite dangerous.

Monsanto�s submission to Australian regulators on their high lysine GM corn provides an excellent example of overly optimistic assumptions used in place of science. The gene inserted into the corn produces a protein that is naturally found in soil. Monsanto claimed that since people consume small residues of soil on fruits and vegetables, the protein has a history of safe consumption. Based on the amount of GM corn protein an average US citizen would consume (if all their corn were Monsanto�s variety), they would eat up to 4 trillion times the amount normally consumed through soil. In other words, �for equivalent exposure� of the protein from soil �people would have to eat . . . nearly as much as 10,000kg [22,000 pounds, every] second 24 hours a day seven days a week.�100

Studies Are Rigged To Avoid Finding Problems

gmos analysis microsopeIn addition, to relying on untested assumptions, industry-funded research is often designed specifically to force a conclusion of safety. In the high lysine corn described above, for example, the levels of certain nutritional components (i.e. protein content, total dietary fiber, acid detergent fiber, and neutral detergent fiber) were far outside the normal range for corn. Instead of comparing their corn to normal controls, which would reveal this disparity, Monsanto compared it to obscure corn varieties that were also substantially outside the normal range on precisely these values. Thus, their study found no statistical differences by design.

When Monsanto learned that independent researchers were to publish a study in July 1999 showing that GM soy contains 12%-14% less cancer-fighting phytoestrogens, the company responded with its own study, concluding that soy�s phytoestrogen levels vary too much to even carry out a statistical analysis. Researchers failed to disclose, however, that they had instructed the laboratory to use an obsolete method of detection�one that had been prone to highly variable results.101

When Aventis prepared samples to see if the potential allergen in StarLink corn remained intact after cooking, instead of using the standard 30-minute treatment, they heated corn for two hours.102

To show that pasteurization destroyed bovine growth hormone in milk from cows treated with rbGH, scientists pasteurized the milk 120 times longer than normal. Unable to destroy more than 19%, they then spiked the milk with a huge amount of the hormone and repeated the long pasteurization, destroying 90%.103 (The FDA reported that pasteurization destroys 90% of the hormone.104) To demonstrate that injections of rbGH did not interfere with cow�s fertility, Monsanto apparently added cows to the study that were pregnant prior to injection.105

And in order to prove that the protein from their GM crops breaks down quickly during simulated digestion, biotech companies used thousands of times the amount of digestive enzymes and a much stronger acid compared to that recommended by the World Health Organization.106

Other methods used to hide problems are varied and plentiful. For example, researchers:

  • Use highly variable animal starting weights to hinder detection of food-related changes
  • Keep feeding studies short to miss long-term impacts
  • Test effects of Roundup Ready soybeans that have not been sprayed with Roundup
  • Avoid feeding animals the actual GM crop, but give them instead a single dose of the GM protein that was produced inside GM bacteria
  • Use too few subjects to derive statistically significant results
  • Use poor statistical methods or simply leave out essential methods, data, or statistics
  • Use irrelevant control groups, and employ insensitive evaluation techniques

Roundup Ready Soybeans: Case Study Of Flawed Research

gmos soybeansMonsanto�s 1996 Journal of Nutrition studies on Roundup Ready soybeans107,108 provide plenty of examples of scientific transgressions. Although the study has been used often by the industry as validation for safety claims, experts working in the field were not impressed. For example, Dr. Arpad Pusztai was commissioned at the time by the UK government to lead a 20 member consortium in three institutions to develop rigorous testing protocols on GM foods�protocols that were never implemented. Dr. Pusztai, who had published several studies in that same nutrition journal, said the Monsanto paper was not �up to the normal journal standards.� He said, �It was obvious that the study had been designed to avoid finding any problems. Everybody in our consortium knew this.� Some of the flaws include:

  • Researchers tested GM soy on mature animals, not young ones. Young animals use protein to build their muscles, tissues, and organs. Problems with GM food could therefore show up in organ and body weight. But adult animals use the protein for tissue renewal and energy. �With a nutritional study on mature animals,� says Dr. Pusztai, �you would never see any difference in organ weights even if the food turned out to be anti-nutritional. The animals would have to be emaciated or poisoned to show anything.�
  • If there were an organ development problem, the study wouldn�t have picked it up since the researchers didn�t even weigh the organs.
  • In one of the trials, researchers substituted only one tenth of the natural protein with GM soy protein. In two others, they diluted their GM soy six- and twelve-fold. 109 Scientists Ian Pryme, PhD, of Norway and Rolf Lembcke, PhD, of Denmark wrote, the �level of the GM soy was too low, and would probably ensure that any possible undesirable GM effects did not occur.�
  • Pryme and Lembcke, who published a paper in Nutrition and Health that analyzed all published peer-reviewed feeding studies on GM foods (10 as of 2003), also pointed out that the percentage of protein in the feed used in the Roundup Ready study was �artificially too high.� This �would almost certainly mask, or at least effectively reduce, any possible effect of the [GM soy].� They said it was �highly likely that all GM effects would have been diluted out.� 110
  • Proper compositional studies filter out effects of weather or geography by comparing plants grown at the same time in the same location. Monsanto, however, pooled data from several locations, which makes it difficult for differences to be statistically significant. Nonetheless, the data revealed significant differences in the ash, fat, and carbohydrate content. Roundup Ready soy meal also contained 27% more trypsin inhibitor, a potential allergen. Also, cows fed GM soy produced milk with a higher fat content, demonstrating another disparity between the two types of soy.
  • One field trial, however, did grow GM and non-GM plants next to each other, but this data was not included in the paper. Years after the study appeared, medical writer Barbara Keeler recovered the data that had been omitted. It showed that Monsanto�s GM soy had significantly lower levels of protein, a fatty acid, and phenylalanine, an essential amino acid. Also, toasted GM soy meal contained nearly twice the amount of a lectin�a substance that may interfere with the body�s ability to assimilate other nutrients. And the amount of trypsin inhibitor in cooked GM soy was as much as seven times higher than in a cooked non-GM control.
  • The study also omitted many details normally required for a published paper. According to Pryme and Lembcke, �No data were given for most of the parameters.�
  • And when researchers tested the effects of Roundup Ready protein on animals, they didn�t extract the protein from the soybeans. Instead, they derived it from GM bacteria, claiming the two forms of protein were equivalent. There are numerous ways, however, in which the protein in the soy may be different. In fact, nine years after this study was published, another study showed that the gene inserted into the soybeans produced unintended aberrant RNA strands, meaning that the protein may be quite different than what was intended.111

In Pryme and Lembcke�s analysis, it came as no surprise that this Monsanto study, along with the other four peer-reviewed animal feeding studies that were �performed more or less in collaboration with private companies,� reported no negative effects of the GM diet. �On the other hand,� they wrote, �adverse effects were reported (but not explained) in [the five] independent studies.� They added, �It is remarkable that these effects have all been observed after feeding for only 10�14 days.�112

Toxic GM Foods Could Have Been Approved

Two GM foods whose commercialization was stopped because of negative test results give a chilling example of what may be getting through. Rats fed GM potatoes had potentially precancerous cell growth in the stomach and intestines, less developed brains, livers, and testicles, partial atrophy of the liver, and damaged immune systems.113 GM peas provoked an inflammatory response in mice, suggesting that the peas might trigger a deadly anaphylactic shock in allergic humans.114 Both of these dangerous crops, however, could easily have been approved. The problems were only discovered because the researchers used advanced tests that were never applied to GM crops already on the market. Both would have passed the normal tests that companies typically use to get their products approved.

Ironically, when Monsanto was asked to comment on the pea study, their spokesperson said it demonstrated that the regulatory system works. He failed to disclose that none of his company�s GM crops had been put through such rigorous tests.

Rampant, Unrelenting Industry Bias

Industry-funded research that favors the funders is not new. Bias has been identified across several industries. In pharmaceuticals, for example, positive results are four times more likely if the drug�s manufacturer funds the study.115 When companies pay for the economic analyses of their own cancer drugs, the results are eight times more likely to be favorable.116 Compared to drug research, the potential for industry manipulation in GM crop studies is considerably higher. Unlike pharmaceutical testing, GM research has no standardized procedures dictated by regulators. GM studies are not usually published in peer-reviewed journals and are typically kept secret by companies and governments. There is little money available for rigorous independent research, so company evidence usually goes unchallenged and unverified. Most importantly, whereas drugs can show serious side-effects and still be approved, GM food cannot. There is no tolerance for adverse reactions; feeding trials must show no problems.

Thus, when industry studies show problems (in spite of their efforts to avoid them), serious adverse reactions and even deaths among GM-fed animals are ignored or dismissed as �not biologically significant� or due to �natural variations.� In the critical arena of food safety research, the biotech industry is without accountability, standards, or peer-review. They�ve got bad science down to a science.

Promoting & Regulating Don’t Mix

While such self-serving behavior may be expected from corporations, how come government bodies let such blatant scientific contortions pass without comment? One reason is that several regulatory agencies are also charged with promoting the interests of biotechnology. This is the official position of the FDA and other US government bodies, for example. Suzanne Wuerthele, PhD, a US EPA toxicologist, says, �This technology is being promoted, in the face of concerns by respectable scientists and in the face of data to the contrary, by the very agencies which are supposed to be protecting human health and the environment. The bottom line in my view is that we are confronted with the most powerful technology the world has ever known, and it is being rapidly deployed with almost no thought whatsoever to its consequences.�117

Canadian regulators are similarly conflicted. The Royal Society of Canada reported that, �In meetings with senior managers from the various Canadian regulatory departments . . . their responses uniformly stressed the importance of maintaining a favorable climate for the biotechnology industry to develop new products and submit them for approval on the Canadian market. . . . The conflict of interest involved in both promoting and regulating an industry or technology . . . is also a factor in the issue of maintaining the transparency, and therefore the scientific integrity, of the regulatory process. In effect, the public interest in a regulatory system that is �science based�. . . is significantly compromised when that openness is negotiated away by regulators in exchange for cordial and supportive relationships with the industries being regulated.�118

Many scientists on the European Food Safety Authority (EFSA) GMO Panel are personally aligned with biotech interests. According to Friends of the Earth (FOE), �One member has direct financial links with the biotech industry and others have indirect links, such as close involvement with major conferences organized by the biotech industry. Two members have even appeared in promotional videos produced by the biotech industry. . . . Several members of the Panel, including the chair Professor Kuiper, have been involved with the EU-funded ENTRANSFOOD project. The aim of this project was to agree [to] safety assessment, risk management, and risk communication procedures that would �facilitate market introduction of GMOs in Europe, and therefore bring the European industry in a competitive position.� Professor Kuiper, who coordinated the ENTRANSFOOD project, sat on a working group that also included staff from Monsanto, Bayer CropScience, and Syngenta.� In a statement reminiscent of the deceptive policy statement by the FDA, the FOE report concludes that EFSA is �being used to create a false impression of scientific agreement when the real situation is one of intense and continuing debate and uncertainty.�119

The pro-GM European Commission repeats the same ruse. According to leaked documents obtained by FOE, while they privately appreciate �the uncertainties and gaps in knowledge that exist in relation to the safety of GM crops, . . . the Commission normally keeps this uncertainty concealed from the public whilst presenting its decisions about the safety of GM crops and foods as being certain and scientifically based.� For example, the Commission privately condemned the submission information for one crop as �mixed, scarce, delivered consecutively all over years, and not convincing.� They said there is �No sufficient experimental evidence to assess the safety.�120

With an agenda to promote GM foods, regulators regularly violate their own laws. In Europe, the law requires that when EFSA and member states have different opinions, they �are obliged to co-operate with a view to either resolving the divergence or preparing a joint document clarifying the contentious scientific issues and identifying the relevant uncertainties in the data.�121 According to FOE, in the case of all GM crop reviews, none of these legal obligations were followed.122 The declaration of GRAS status by the FDA also deviated from the Food and Cosmetic Act and years of legal precedent. Some violations are more blatant. In India, one official tampered with the report on Bt cotton to increase the yield figures to favor Monsanto.123 In Mexico, a senior government official allegedly threatened a University of California professor, implying �We know where your children go to school,� trying to get him not to publish incriminating evidence that would delay GM approvals.124 In Indonesia, Monsanto gave bribes and questionable payments to at least 140 officials, attempting to get their genetically modified (GM) cotton approved.125

Manipulation Of Public Opinion

gmos manipulationWhen governments fail in their duty to keep corporations in check, the �protector� role should shift to the media, which acts as a watchdog to expose public dangers and governmental shortcomings. But mainstream media around the world has largely overlooked the serious problems associated with GM crops and their regulation. The reason for this oversight is varied and includes contributions from an aggressive public relations and disinformation campaign by the biotech industry, legal threats by biotech companies, and in some cases, the fear of losing advertising accounts. This last reason is particularly prevalent among the farm press, which receives much of its income from the biotech industry.

Threatening letters from Monsanto�s attorneys have resulted in the cancellation of a five-part news series on their genetically engineered bovine growth hormone scheduled for a Fox TV station in Florida, as well as the cancellation of a book critical of Monsanto�s GMO products. A printer also shredded 14,000 copies of the Ecologist magazine issue entitled �The Monsanto Files,� due to fear of a Monsanto lawsuit. (See the chapter �Muscling the Media� in Seeds of Deception126 for more examples.)

The methods that biotech advocates use to manipulate public opinion research has become an art form. Consumer surveys by the International Food Information Council (IFIC), for example,whose supporters include the major biotech seed companies, offers conclusions such as �A growing majority of Americans support the benefits of food biotechnology as well as the US Food and Drug Administration�s (FDA) labeling policy.� But communications professor James Beniger, who was past president of the American Association for Public Opinion Research, described the surveys as �so biased with leading questions favoring positive responses that any results are meaningless.�127 The 2003 survey, for example, included gems such as:

�All things being equal, how likely would you be to buy a variety of produce, like tomatoes or potatoes, if it had been modified by biotechnology to taste better or fresher?� and

�Biotechnology has also been used to enhance plants that yield foods like cooking oils. If cooking oil with reduced saturated fat made from these new plants was available, what effect would the use of biotechnology have on your decision to buy this cooking oil?�128

A similar tactic was used at a December 11, 2007 focus group in Columbus, Ohio �designed� to show that consumers wanted to make it illegal for dairies to label their milk as free from Monsanto�s genetically engineered bovine hormone rBST. The facilitator said, �All milk contains hormones. There is no such thing as hormone-free milk. The composition of both types of milk is the same in all aspects. Now what do you think of a label that says �no added hormones?� Don�t you think it is deceiving and inappropriate to put �rBST-free� on labels?� Not only was the facilitator �leading the witness,� he presented false information. Milk from cows treated with rBST has substantially higher levels of Insulin-like Growth Factor-1,129 which has been linked to higher risk of cancer,130 and higher incidence of fraternal twins.131 It also has higher levels of bovine growth hormone, pus, and in some cases, antibiotics.

Another example of manipulated consumer opinion was found in a 2004 article in the British Food Journal, authored by four advocates of genetically modified (GM) foods.132 According to the peer-reviewed paper, when shoppers in a Canadian farm store were confronted with an informed and unbiased choice between GM corn and non-GM corn, most purchased the GM variety. This finding flew in the face of worldwide consumer resistance to GM foods, which had shut markets in Europe, Japan, and elsewhere. It also challenged studies that showed that the more information on genetically modified organisms (GMOs) consumers have, the less they trust them.133 The study, which was funded by the biotech-industry front group, Council for Biotechnology Information and the industry�s trade association, the Crop Protection Institute of Canada (now Croplife Canada), was given the Journal�s prestigious Award for Excellence for the Most Outstanding Paper of 2004 and has been cited often by biotech advocates.

Stuart Laidlaw, a reporter from Canada�s Toronto Star, visited the farm store several times during the study and described the scenario in his book Secret Ingredients. Far from offering unbiased choices, key elements appeared rigged to favor GM corn purchases. The consumer education fact sheets were entirely pro-GMO, and Doug Powell, the lead researcher, enthusiastically demonstrated to Laidlaw how he could convince shoppers to buy the GM varieties. He confronted a farmer who had already�purchased non-GM corn. After pitching his case for GMOs, Powell proudly had the farmer tell Laidlaw that he had changed his opinion and would buy GM corn in his next shopping trip.

Powell�s interference with shoppers� �unbiased� choices was nothing compared to the effect of the signs placed over the corn bins. The sign above the non-GM corn read, �Would you eat wormy sweet corn?� It further listed the chemicals that were sprayed during the season. By contrast, the sign above the GM corn stated, �Here�s What Went into Producing Quality Sweet Corn.� It is no wonder that 60% of shoppers avoided the �wormy corn.� In fact, it may be a testament to people�s distrust of GMOs that 40% still went for the �wormy� option.

Powell and his colleagues did not mention the controversial signage in their study. They claimed that the corn bins in the farm store were �fully labelled��either �genetically engineered Bt sweet corn� or �Regular sweet corn.� When Laidlaw�s book came out, however, Powell�s �wormy� sign was featured in a photograph,134 exposing what was later described by Cambridge University�s Dr. Richard Jennings as �flagrant fraud.� Jennings, who is a leading researcher on scientific ethics, says, �It was a sin of omission by failing to divulge information which quite clearly should have been disclosed.�135

In his defence, Powell claimed that his signs merely used the language of consumers and was �not intended to manipulate consumer purchasing patterns.� He also claimed that the �wormy� corn sign was only there for the first week of the trial and was then replaced by other educational messages. But eye witnesses and photographs demonstrate the presence of the sign long after Powell�s suggested date of replacement.136

Several scientists and outraged citizens say the paper should be withdrawn, but the Journal refused. In fact, the Journal�s editor has not even agreed to reconsider its Award for Excellence. A blatant propaganda exercise still stands validated as exemplary science.

Critics & Independent Scientists Are Attacked

gmos scientistOne of the most troubling aspects of the biotech debate is the attack strategy used on GMO critics and independent scientists. Not only are adverse findings by independent scientists often suppressed, ignored, or denied, researchers that discover problems from GM foods have been fired, stripped of responsibilities, deprived of tenure, and even threatened. Consider Dr. Pusztai, the world�s leading scientist in his field, who inadvertently discovered in 1998 that unpredictable changes in GM crops caused massive damage in rats. He went public with his concerns, was a hero at his prestigious institute for two days, and then, after the director received two phone calls allegedly from the UK Prime Minister�s office, was fired after 35 years and silenced with threats of a lawsuit. False statements were circulated to trash his reputation, which are recited by GMO advocates today.

After University of California Professor Ignacio Chapela, PhD, published evidence that GM corn contaminated Mexico�s indigenous varieties, two fictitious internet characters created by Monsanto�s PR firm, the Bivings Group, initiated a brutal internet smear campaign, lying about Dr. Chapela and his research.

Irina Ermakova, PhD, a leading scientist at the Russian National Academy of Sciences, fed female rats GM soy and was stunned to discover that more than half their offspring died within three weeks�compared to only 10% from mothers fed non-GM soy. Without funding to extend her analysis, she labeled her work �preliminary,� published it in a Russian journal, and implored the scientific community to repeat the study. Two years later, no one has repeated it, but advocates use false or irrelevant arguments to divert attention from the shocking results and have tried to vilify Dr. Ermakova.

A New Zealand MP testified at the 2001 Royal Commission of Inquiry on Genetic Modification, �I have been contacted by telephone and e-mail by a number of scientists who have serious concerns . . . but who are convinced that if they express these fears publicly. . . or even if they asked the awkward and difficult questions, they will be eased out of their institution.� Indeed in 2007, after Professor Christian Velot, PhD, raised the difficult questions on GMOs at public conferences, his 2008 research funds were confiscated, his student assistants were re-assigned, and his position at the University of Paris-Sud faces early termination.

We Are The Guinea Pigs

gmos family eatingSince GM foods are not properly tested before they enter the market, consumers are the guinea pigs. But this doesn�t even qualify as an experiment. There are no controls and no monitoring. Given the mounting of evidence of harm, it is likely that GM foods are contributing to the deterioration of health in the United States, Canada, and other countries where it is consumed. But without post- marketing surveillance, the chances of tracing health problems to GM food are low. The incidence of a disease would have to increase dramatically before it was noticed, meaning that millions may have to get sick before a change is investigated. Tracking the impact of GM foods is even more difficult in North America, where the foods are not labeled.

Regulators at Health Canada announced in 2002 that they would monitor Canadians for health problems from eating GM foods. A spokesperson said, �I think it�s just prudent and what the public expects, that we will keep a careful eye on the health of Canadians.� But according to CBC TV news, Health Canada �abandoned that research less than a year later saying it was �too difficult to put an effective surveillance system in place.�� The news anchor added, �So at this point, there is little research into the health effects of genetically modified food. So will we ever know for sure if it�s safe?�137

Not with the biotech companies in charge. Consider the following statement in a report submitted to county officials in California by pro-GM members of a task force. �[It is] generally agreed that long-term monitoring of the human health risks of GM food through epidemiological studies is not necessary because there is no scientific evidence suggesting any long-term harm from these foods.�138 Note the circular logic: Because no long-term epidemiological studies are in place, we have no evidence showing long- term harm. And since we don�t have any evidence of long-term harm, we don�t need studies to look for it.

What are these people thinking? Insight into the pro-GM mindset was provided by Dan Glickman, the US Secretary of Agriculture under President Clinton.

�What I saw generically on the pro-biotech side was the attitude that the technology was good, and that it was almost immoral to say that it wasn�t good, because it was going to solve the problems of the human race and feed the hungry and clothe the naked. . . . And there was a lot of money that had been invested in this, and if you�re against it, you�re Luddites, you�re stupid. That, frankly, was the side our government was on. Without thinking, we had basically taken this issue as a trade issue and they, whoever �they� were, wanted to keep our product out of their market. And they were foolish, or stupid, and didn�t have an effective regulatory system. There was rhetoric like that even here in this department. You felt like you were almost an alien, disloyal, by trying to present an open-minded view on some of the issues being raised. So I pretty much spouted the rhetoric that everybody else around here spouted; it was written into my speeches.�139

Fortunately, not everyone feels that questioning GM foods is disloyal. On the contrary, millions of people around the world are unwilling to participate in this uncontrolled experiment. They refuse to eat GM foods. Manufacturers in Europe and Japan have committed to avoid using GM ingredients. And the US natural foods industry, not waiting for the government to test or label GMOs, is now engaged in removing all remaining GM ingredients from their sector using a third party verification system. The Campaign for Healthier Eating in America will circulate non-GMO shopping guides in stores nationwide so that consumers have clear, healthy non-GMO choices. With no governmental regulation of biotech corporations, it is left to consumers to protect ourselves.

For a guide to avoiding GMOs, go to www.NonGMOShoppingGuide.com.

International bestselling author and independent filmmaker Jeffrey M. Smith is the Executive Director of the Institute for Responsible Technology and a leading spokesperson on the health dangers of GMOs. His first book, Seeds of Deception, is the world�s bestselling book on the subject. His second, Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods, identifies 65 risks of GMOs and demonstrates how superficial government approvals are not competent to find most of them. Mr. Smith has pioneered the Campaign for Healthier Eating in America, designed to create the tipping point of consumer rejection against GMOs. See www.ResponsibleTechnology.org, www.NonGMOShoppingGuide.com.

Blank
References:

1 Jeffrey M. Smith, Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods, Yes! Books, Fairfield, IA USA 2007
2 Kurt Eichenwald, et al, New York Times, �Biotechnology Food: From the Lab to a Debacle,� January 25, 2001
www.nytimes.com/2001/01/25/business/25FOOD.html?pagewanted=all
3 Kurt Eichenwald, et al, New York Times, �Biotechnology Food: From the Lab to a Debacle,� January 25, 2001
www.nytimes.com/2001/01/25/business/25FOOD.html?pagewanted=all
4 Dan Quayle, �Speech in the Indian Treaty Room of the Old Executive Office Building,� May 26, 1992.
5 For copies of FDA memos, see The Alliance for Bio-Integrity, www.biointegrity.org
6 Steven M. Druker, �How the US Food and Drug Administration approved genetically engineered foods despite the deaths one had caused and
the warnings of its own scientists about their unique risks,� Alliance for Bio-Integrity, www.biointegrity.org/ext-summary.html
7 Louis J. Pribyl, �Biotechnology Draft Document, 2/27/92,� March 6, 1992, www.biointegrity.org
www.biointegrity.org/FDAdocs/04/view1.html
8 �Statement of Policy: Foods Derived from New Plant Varieties,� Federal Register 57, no. 104 (May 29, 1992): 22991.
9 Linda Kahl, Memo to James Maryanski about Federal Register Document �Statement of Policy: Foods from Genetically Modified Plants,�
Alliance for Bio-Integrity(January 8, 1992) www.responsibletechnology.org/fraud/fda-quotes
10 See for example, �Good Enough To Eat?� New Scientist (February 9, 2002), 7.
11 �Health risks of genetically modified foods,� editorial, Lancet, 29 May 1999.
12 �Elements of Precaution: Recommendations for the Regulation of Food Biotechnology in Canada; An Expert Panel Report on the Future of
Food Biotechnology prepared by The Royal Society of Canada at the request of Health Canada Canadian Food Inspection Agency and
Environment Canada� The Royal Society of Canada, January 2001.
13 J. R. Latham, et al., �The Mutational Consequences of Plant Transformation,� The Journal of Biomedicine and Biotechnology 2006, Article ID
25376: 1-7; see also Allison Wilson, et. al., �Transformation-induced mutations in transgenic plants: Analysis and biosafety implications,�
Biotechnology and Genetic Engineering Reviews � Vol. 23, December 2006.
14 P. H. Bao, S. Granata, S. Castiglione, G. Wang, C. Giordani, E. Cuzzoni, G. Damiani, C. Bandi, S. K. Datta, K. Datta, I. Potrykus, A.
Callegarin and F. Sala, “Evidence for genomic changes in transgenic rice (Oryza sativa L.) recovered from protoplasts” Transgen Res 5 (1996):
97-103.; M. Labra, C. Savini, M. Bracale, N. Pelucchi, L. Colombo, M. Bardini and F. Sala, “Genomic changes in transgenic rice (Oryza sativa L.)
plants produced by infecting calli with Agrobacterium tumefaciens,” Plant Cell Rep 20 (2001): 325-330.
15 �Elements of Precaution: Recommendations for the Regulation of Food Biotechnology in Canada; An Expert Panel Report on the Future of
Food Biotechnology prepared by The Royal Society of Canada at the request of Health Canada Canadian Food Inspection Agency and
Environment Canada� The Royal Society of Canada, January 2001.
16 Edwin J. Mathews, Ph.D., in a memorandum to the Toxicology Section of the Biotechnology Working Group. Subject: Analysis of the Major
Plant Toxicants. Dated October 28, 1991
17 Division of Food Chemistry and Technology and Division of Contaminants Chemistry, �Points to Consider for Safety Evaluation of
Genetically Modified Foods: Supplemental Information,� November 1, 1991, www.responsibletechnology.org/fraud/fda-quotes
18 Netherwood et al, �Assessing the survival of transgenic plant DNA in the human gastrointestinal tract,� Nature Biotechnology 22 (2004): 2.
19 Division of Food Chemistry and Technology and Division of Contaminants Chemistry, �Points to Consider for Safety Evaluation of
Genetically Modified Foods: Supplemental Information,� November 1, 1991, www.biointegrity.org
20 Charles Benbrook, �Impacts of genetically engineered crops on pesticide use in the U.S. � the first sixteen years,� ENVIRONMENTAL SCIENCES
EUROPE, Vol. 24:24 doi:10.1186/2190-4715-24-24, 28 September 2012. www.enveurope.com/content/24/1/24/abstract.
21 Department of Veterinary Medicine, FDA, correspondence June 16, 1993. As quoted in Fred A. Hines, Memo to Dr. Linda Kahl. �Flavr Savr
Tomato: . . . Pathology Branch�s Evaluation of Rats with Stomach Lesions From Three Four-Week Oral (Gavage) Toxicity Studies . . . and an
Expert Panel�s Report,� Alliance for Bio-Integrity (June 16, 1993) www.biointegrity.org/FDAdocs/17/view1.html
22 Robert J. Scheuplein, Memo to the FDA Biotechnology Coordinator and others, �Response to Calgene Amended Petition,� Alliance for BioIntegrity
(October 27, 1993) www.responsibletechnology.org/fraud/fda-quotes
23 Carl B. Johnson to Linda Kahl and others, �Flavr Savr� Tomato: Significance of Pending DHEE Question,� Alliance for Bio-Integrity
(December 7, 1993) www.responsibletechnology.org/fraud/fda-quotes
24 Arpad Pusztai, �Genetically Modified Foods: Are They a Risk to Human/Animal Health?� June 2001 Action Bioscience
www.actionbioscience.org/biotech/pusztai.html
25 Nagui H. Fares, Adel K. El-Sayed, �Fine Structural Changes in the Ileum of Mice Fed on Endotoxin Treated Potatoes and Transgenic
Potatoes,� Natural Toxins 6, no. 6 (1998): 219�233.
26 Stanley W. B. Ewen and Arpad Pusztai, �Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat
small intestine,� Lancet, 1999 Oct 16; 354 (9187): 1353-4.
27 Arpad Pusztai, �Facts Behind the GM Pea Controversy: Epigenetics, Transgenic Plants & Risk Assessment,� Proceedings of the Conference,
December 1st 2005 (Frankfurtam Main, Germany: Literaturhaus, 2005). www.oeko.de/oekodoc/277/2006-002-en.pdf
28 Arpad Pusztai, �Can science give us the tools for recognizing possible health risks of GM food,� Nutrition and Health, 2002, Vol 16 Pp 73-84.
29 John M. Burns, �13-Week Dietary Subchronic Comparison Study with MON 863 Corn in Rats Preceded by a 1-Week Baseline Food
Consumption Determination with PMI Certified Rodent Diet #5002,� December 17, 2002
www.monsanto.com/pdf/products/fullratstudy863.pdf
30 R. Tudisco, P. Lombardi, F. Bovera, D. d�Angelo, M. I. Cutrignelli, V. Mastellone, V. Terzi, L. Avallone, F. Infascelli, �Genetically Modified
Soya Bean in Rabbit Feeding: Detection of DNA Fragments and Evaluation of Metabolic Effects by Enzymatic Analysis,� Animal Science 82
(2006): 193�199.
31 Comments to ANZFA about Applications A346, A362 and A363 from the Food Legislation and Regulation Advisory Group (FLRAG) of the
Public Health Association of Australia (PHAA) on behalf of the PHAA, �Food produced from glyphosate-tolerant canola line GT73.�
32 M. Malatesta, C. Caporaloni, S. Gavaudan, M. B. Rocchi, S. Serafini, C. Tiberi, G. Gazzanelli, �Ultrastructural Morphometrical and
Immunocytochemical Analyses of Hepatocyte Nuclei from Mice Fed on Genetically Modified Soybean,� Cell Struct Funct. 27 (2002): 173�180
33 Jeffrey M. Smith, Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods, Yes! Books, Fairfield, IA USA 2007
34 Irina Ermakova, �Experimental Evidence of GMO Hazards,� Presentation at Scientists for a GM Free Europe, EU Parliament, Brussels, June
12, 2007
35 Arpad Pusztai, �Can Science Give Us the Tools for Recognizing Possible Health Risks for GM Food?� Nutrition and Health 16 (2002): 73�84.
36 S. Leeson, �The Effect of Glufosinate Resistant Corn on Growth of Male Broiler Chickens,� Department of Animal and Poultry Sciences,
University of Guelph, Report No. A56379, July 12, 1996.
37 Malatesta, et al, �Ultrastructural Analysis of Pancreatic Acinar Cells from Mice Fed on Genetically modified Soybean,� J Anat. 2002
November; 201(5): 409�415; see also M. Malatesta, M. Biggiogera, E. Manuali, M. B. L. Rocchi, B. Baldelli, G. Gazzanelli, �Fine Structural
Analyses of Pancreatic Acinar Cell Nuclei from Mice Fed on GM Soybean,� Eur J Histochem 47 (2003): 385�388.
38 Arpad Pusztai, �Can science give us the tools for recognizing possible health risks of GM food,� Nutrition and Health, 2002, Vol 16 Pp 73-84
39 R. Tudisco, P. Lombardi, F. Bovera, D. d�Angelo, M. I. Cutrignelli, V. Mastellone, V. Terzi, L. Avallone, F. Infascelli, �Genetically Modified
Soya Bean in Rabbit Feeding: Detection of DNA Fragments and Evaluation of Metabolic Effects by Enzymatic Analysis,� Animal Science 82
(2006): 193�199.
40 John M. Burns, �13-Week Dietary Subchronic Comparison Study with MON 863 Corn in Rats Preceded by a 1-Week Baseline Food
Consumption Determination with PMI Certified Rodent Diet #5002,� December 17, 2002
www.monsanto.com/pdf/products/fullratstudy863.pdf
41 R. Tudisco, P. Lombardi, F. Bovera, D. d�Angelo, M. I. Cutrignelli, V. Mastellone, V. Terzi, L. Avallone, F. Infascelli, �Genetically Modified
Soya Bean in Rabbit Feeding: Detection of DNA Fragments and Evaluation of Metabolic Effects by Enzymatic Analysis,� Animal Science 82
(2006): 193�199.
42 Arpad Pusztai, �Can science give us the tools for recognizing possible health risks of GM food,� Nutrition and Health, 2002, Vol 16 Pp 73-84
43 de Vend�mois JS, Roullier F, Cellier D, S�ralini GE. A Comparison of the Effects of Three GM Corn Varieties on Mammalian Health. Int J
Biol Sci 2009; 5:706-726. Available from www.biolsci.org/v05p0706.htm
44 S�ralini, G.-E., et al. Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food
Chem. Toxicol. (2012), dx.doi.org/10.1016/j.fct.2012.08.005
45 Irina Ermakova, �Experimental Evidence of GMO Hazards,� Presentation at Scientists for a GM Free Europe, EU Parliament, Brussels, June
12, 2007
46 L. Vecchio et al, �Ultrastructural Analysis of Testes from Mice Fed on Genetically Modified Soybean,� European Journal of Histochemistry
48, no. 4 (Oct�Dec 2004):449�454.
47 Oliveri et al., �Temporary Depression of Transcription in Mouse Pre-implantion Embryos from Mice Fed on Genetically Modified Soybean,�
48th Symposium of the Society for Histochemistry, Lake Maggiore (Italy), September 7�10, 2006.
48 Fl�via Bittencourt Brasil, et al, �The Impact of Dietary Organic and Transgenic Soy on the Reproductive System of Female Adult Rat,� The
Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology Volume 292, Issue 4, pages 587-594, April 2009
onlinelibrary.wiley.com/doi/10.1002/ar.20878/abstract
49 Jeffrey M. Smith, �Genetically Modified Soy Linked to Sterility, Infant Mortality,� based on correspondence with study authors and press
reports, Institute for Responsible Technology www.responsibletechnology.org/article-gmo-soy-linked-to-sterility
50 Alberta Velimirov and Claudia Binter, �Biological effects of transgenic maize NK603xMON810 fed in long term reproduction studies in
mice,� Forschungsberichte der Sektion IV, Band 3/2008. Report-Federal Ministry of Health, Family and Youth. 2008.
www.biosicherheit.de/pdf/aktuell/zentek_studie_2008.pdf
51 I.V.Ermakova, �Genetically Modified Organisms and Biological Risks,� Proceedings of International Disaster Reduction Conference (IDRC)
Davos, Switzerland August 27th � September 1st, 2006: 168�172. eco-irina-ermakova.narod.ru/eng/art/art16.html
52 Irina Ermakova, �Genetically modified soy leads to the decrease of weight and high mortality of rat pups of the first generation. Preliminary
studies,� Ecosinform 1 (2006): 4�9.
53 Irina Ermakova, �Experimental Evidence of GMO Hazards,� Presentation at Scientists for a GM Free Europe, EU Parliament, Brussels, June
12, 2007
54 I.V.Ermakova �GMO: Life itself intervened into the experiments,� Letter, EcosInform N2 (2006): 3�4.
55 Jeffrey M. Smith, Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods, Yes! Books, Fairfield, IA USA 2007
56 �Mortality in Sheep Flocks after Grazing on Bt Cotton Fields�Warangal District, Andhra Pradesh� Report of the Preliminary Assessment,
April 2006, gmwatch.org/latest-listing/1-news-items/6416-mortality-in-sheep-flocks-after-grazing-on-bt-cotton-fields-warangal-districtandhra-pradesh-2942006

57 Personal communication and visit by Jeffrey Smith with village members, near Warangal, Andhra Pradesh, January 2009.
58 John M. Burns, �13-Week Dietary Subchronic Comparison Study with MON 863 Corn in Rats Preceded by a 1-Week Baseline Food
Consumption Determination with PMI Certified Rodent Diet #5002,� December 17, 2002
www.monsanto.com/monsanto/content/sci_tech/prod_safety/fullratstudy.pdf, see also St�phane Foucart, �Controversy Surrounds a GMO,�
Le Monde, 14 December 2004; and Jeffrey M. Smith, �Genetically Modified Corn Study Reveals Health Damage and Cover-up,� Spilling the
Beans, June 2005, www.seedsofdeception.com/Public/Newsletter/June05GMCornHealthDangerExposed/index.cfm
59 Arpad Pusztai, �Can science give us the tools for recognizing possible health risks of GM food,� Nutrition and Health, 2002, Vol 16 Pp 73-84
60 V. E. Prescott, et al, �Transgenic Expression of Bean r-Amylase Inhibitor in Peas Results in Altered Structure and
Immunogenicity,� Journal of Agricultural Food Chemistry (2005): 53.
61 Yearly food sensitivity assessment of York Laboratory, as reported in Mark Townsend, �Why soya is a hidden destroyer,� Daily Express,
March 12, 1999.
62 G. A. Kleter and A. A. C. M. Peijnenburg, �Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino
acid sequences indentical to potential, IgE-binding linear epitopes of allergens,� BMC Structural Biology 2 (2002): 8�19.
63 Netherwood et al, �Assessing the survival of transgenic plant DNA in the human gastrointestinal tract,� Nature Biotechnology 22 (2004): 2.
64 Hye-Yung Yum, Soo-Young Lee, Kyung-Eun Lee, Myung-Hyun Sohn, Kyu-Earn Kim, �Genetically Modified and Wild Soybeans: An
immunologic comparison,� Allergy and Asthma Proceedings 26, no. 3 (May�June 2005): 210-216(7).
65 Stephen R. Padgette et al, �The Composition of Glyphosate-Tolerant Soybean Seeds Is Equivalent to That of Conventional Soybeans,� The
Journal of Nutrition 126, no. 4, (April 1996); including data in the journal archives from the same study; see also A. Pusztai and S. Bardocz,
�GMO in animal nutrition: potential benefits and risks,� Chapter 17, Biology of Nutrition in Growing Animals (Elsevier, 2005).
66 Manuela Malatesta, et al, �Ultrastructural Analysis of Pancreatic Acinar Cells from Mice Fed on Genetically modified Soybean,� Journal of
Anatomy 201, no. 5 (November 2002): 409; see also M. Malatesta, M. Biggiogera, E. Manuali, M. B. L. Rocchi, B. Baldelli, G. Gazzanelli, �Fine
Structural Analyses of Pancreatic Acinar Cell Nuclei from Mice Fed on GM Soybean,� Eur J Histochem 47 (2003): 385�388.
67 See for example, Scott H. Sicherer et al., �Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit
dial telephone survey: A 5-year follow-up study,� Journal of allergy and clinical immunology, March 2003, vol. 112, n 6, 1203-1207); and Ricki
Helm et al., �Hypoallergenic Foods�Soybeans and Peanuts,� Information Systems for Biotechnology News Report, October 1, 2002.
68 Vazquez et al, “Intragastric and intraperitoneal administration of Cry1Ac protoxin from Bacillus thuringiensis induces systemic and mucosal
antibody responses in mice,” Life Sciences, 64, no. 21 (1999): 1897�1912; Vazquez et al, �Characterization of the mucosal and systemic immune
response induced by Cry1Ac protein from Bacillus thuringiensis HD 73 in mice,� Brazilian Journal of Medical and Biological Research 33 (2000):
147�155.
69 R. I. V�zquez, L. Moreno-Fierros, L. Neri-Baz�n, et al., �Bacillus thuringiensis Cry1Ac Protoxin Is a Potent Systemic and Mucosal Adjuvant,�
Scandinavian Journal of Immunology 49 (1999): 578�84. See also Vazquez-Padron, RI. Et al. (2000b) Characterization of the mucosal and
systemic immune response induced by Cry1Ac protein from Bacillus thuringiensis HD 73 in mice. Brazilian Journal of Medical and Biological
Research 33, 147-155.
70 Nagui H. Fares, Adel K. El-Sayed, �Fine Structural Changes in the Ileum of Mice Fed on Endotoxin Treated Potatoes and Transgenic
Potatoes,� Natural Toxins 6, no. 6 (1998): 219�233.
71 Alberto Finamore, et al, �Intestinal and Peripheral Immune Response to MON810 Maize Ingestion in Weaning and Old Mice,� J. Agric. Food
Chem., 2008, 56 (23), pp 11533�11539, November 14, 2008
72 Washington State Department of Health, �Report of health surveillance activities: Asian gypsy moth control program,� (Olympia, WA:
Washington State Dept. of Health, 1993).
73 M. Green, et al., �Public health implications of the microbial pesticide Bacillus thuringiensis: An epidemiological study, Oregon, 1985-86,�
Amer. J. Public Health 80, no. 7(1990): 848�852.
74 M.A. Noble, P.D. Riben, and G. J. Cook, �Microbiological and epidemiological surveillance program to monitor the health effects of Foray
48B BTK spray� (Vancouver, B.C.: Ministry of Forests, Province of British Columbi, Sep. 30, 1992).
75 A. Edamura, MD, �Affidavit of the Federal Court of Canada, Trial Division. Dale Edwards and Citizens Against Aerial Spraying vs. Her
Majesty the Queen, Represented by the Minister of Agriculture,� (May 6, 1993); as reported in Carrie Swadener, �Bacillus thuringiensis (B.t.),�
Journal of Pesticide Reform, 14, no, 3 (Fall 1994).
76 J. R. Samples, and H. Buettner, �Ocular infection caused by a biological insecticide,� J. Infectious Dis. 148, no. 3 (1983): 614; as reported in
Carrie Swadener, �Bacillus thuringiensis (B.t.)�, Journal of Pesticide Reform 14, no. 3 (Fall 1994)
77 M. Green, et al., �Public health implications of the microbial pesticide Bacillus thuringiensis: An epidemiological study, Oregon, 1985-86,�
Amer. J. Public Health, 80, no. 7 (1990): 848�852.
78 A. Edamura, MD, �Affidavit of the Federal Court of Canada, Trial Division. Dale Edwards and Citizens Against Aerial Spraying vs. Her
Majesty the Queen, Represented by the Minister of Agriculture,� (May 6, 1993); as reported in Carrie Swadener, �Bacillus thuringiensis (B.t.),�
Journal of Pesticide Reform, 14, no, 3 (Fall 1994).
79 Carrie Swadener, �Bacillus thuringiensis (B.t.),� Journal of Pesticide Reform 14, no. 3 (Fall 1994).
80 Terje Traavik and Jack Heinemann, �Genetic Engineering and Omitted Health Research: Still No Answers to Ageing Questions, 2006. Cited in
their quote was: G. Stotzky, �Release, persistence, and biological activity in soil of insecticidal proteins from Bacillus thuringiensis,� found in
Deborah K. Letourneau and Beth E. Burrows, Genetically Engineered Organisms. Assessing Environmental and Human Health Effects (cBoca
Raton, FL: CRC Press LLC, 2002), 187�222.
81 See for example, A. Dutton, H. Klein, J. Romeis, and F. Bigler, �Uptake of Bt-toxin by herbivores feeding on transgenic maize and
consequences for the predator Chrysoperla carnea,� Ecological Entomology 27 (2002): 441�7; and J. Romeis, A. Dutton, and F. Bigler, �Bacillus
thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae),�
Journal of Insect Physiology 50, no. 2�3 (2004): 175�183.
82 Mesnage R, Clair E, Gress S, Then C, Sz�k�cs A, S�ralini, GE. (2012). Cytotoxicity on human cells of Cry1Ab and Cry1Ac Bt insecticidal
toxins alone or with a glyphosate-based herbicide. J. Appl. Toxicol. doi: 10.1002/jat.2712
83 Aris A, Leblanc S. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada.
Reprod Toxicol (2011), doi:10.1016/j.reprotox.2011.02.004 www.ncbi.nlm.nih.gov/pubmed/21338670
84 N. Tomlinson of UK MAFF’s Joint Food Safety and Standards Group 4, December 1998 letter to the U.S. FDA, commenting on its draft
document, �Guidance for Industry: Use of Antibiotic Resistance Marker Genes in Transgenic Plants.�
85 Jeffrey M. Smith, �Bt-maize (corn) during pollination, may trigger disease in people living near the cornfield,� Press Release, February 2004,
www.responsibletechnology.org/gmo-dangers/health-risks/articles-about-risks-by-jeffrey-smith/Genetically-Engineered-Foods-May-CauseRising-Food-Allergies-Genetically-Engineered-Corn-June-2007;
and Allen V. Estabillo, �Farmer’s group urges ban on planting Bt corn; says it
could be cause of illnesses,� Mindanews, October 19, 2004 www.gmwatch.org/latest-listing/43-2004/5635-farmers-group-urges-ban-onplanting-bt-corn-20102004
86 Mae-Wan Ho, �GM Ban Long Overdue, Dozens Ill & Five Deaths in the Philippines,� ISIS Press Release, June 2, 2006. www.isis.org.uk/GMBanLongOverdue.php
87 Ashish Gupta et. al., �Impact of Bt Cotton on Farmers� Health (in Barwani and Dhar District of Madhya Pradesh),� Investigation Report, Oct�
Dec 2005.
88 Jeffrey M. Smith, Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods, Yes! Books, Fairfield, IA USA 2007
89 E. Ann Clark, �Food Safety of GM Crops in Canada: toxicity and allergenicity,� GE Alert, 2000.
www.plant.uoguelph.ca/research/homepages/eclark/safety.htm
90 FLRAG of the PHAA of behalf of the PHAA, �Comments to ANZFA about Applications A372, A375, A378 and A379.�
91 Judy Carman, �Is GM Food Safe to Eat?� in R. Hindmarsh, G. Lawrence, eds., Recoding Nature Critical Perspectives on Genetic Engineering
(Sydney: UNSW Press, 2004): 82�93.
92 Judy Carman, �Is GM Food Safe to Eat?� in R. Hindmarsh, G. Lawrence, eds., Recoding Nature Critical Perspectives on Genetic Engineering
(Sydney: UNSW Press, 2004): 82�93.
93 FLRAG, �Comments to ANZFA about Applications A346, A362 and A363,� www.iher.org.au/
94 Doug Gurian-Sherman, �Holes in the Biotech Safety Net, FDA Policy Does Not Assure the Safety of Genetically Engineered Foods,� Center
for Science in the Public Interest, www.cspinet.org/new/pdf/fda_report__final.pdf
95 Bill Freese, �The StarLink Affair, Submission by Friends of the Earth to the FIFRA Scientific Advisory Panel considering Assessment of
Additional Scientific Information Concerning StarLink Corn,� July 17�19, 2001.
96 FDA Letter, Letter from Alan M. Rulis, Office of Premarket Approval, Center for Food Safety and Applied Nutrition, FDA to Dr. Kent Croon,
Regulatory Affairs Manager, Monsanto Company, Sept 25, 1996. See Letter for BNF No. 34 at
www.fda.gov/Food/Biotechnology/Submissions/ucm161107.htm
97 �Elements of Precaution: Recommendations for the Regulation of Food Biotechnology in Canada; An Expert Panel Report on the Future of
Food Biotechnology prepared by The Royal Society of Canada at the request of Health Canada Canadian Food Inspection Agency and
Environment Canada� The Royal Society of Canada, January 2001. www.canadians.org/food/documents/rsc_feb05.pdf
98 FIFRA Scientific Advisory Panel (SAP), Open Meeting, July 17, 2001. www.epa.gov/scipoly/sap/meetings/2001/july/julyfinal.pdf
99 Bill Freese, Crop testing, New Scientist, Letter to the Editor, issue 2530, December 17, 2005
100 M. Cretenet, J. Goven, J. A. Heinemann, B. Moore, and C. Rodriguez-Beltran, �Submission on the DAR for application A549 Food Derived
from High-Lysine Corn LY038: to permit the use in food of high-lysine corn, 2006, www.inbi.canterbury.ac.nz
101 Marc Lapp� and Britt Bailey, �ASA Response,� June 25, 1999, www.environmentalcommons.org/cetos/articles/asaresponse.html
102 Bill Freese, �The StarLink Affair, Submission by Friends of the Earth to the FIFRA Scientific Advisory Panel considering Assessment of
Additional Scientific Information Concerning StarLink Corn,� July 17-19, 2001
103 Paul P. Groenewegen, Brian W. McBride, John H. Burton, Theodore H. Elsasser. “Bioactivity of Milk from bST-Treated Cows.” J. Nutrition
120, 1990, pp. 514-519
104 Judith C. Juskevich and C. Greg Guyer. “Bovine Growth Hormone: Human Food Safety Evaluation.” Science, vol. 249. August 24, 1990, pp.
875-884
105 Pete Hardin, �rbGH: Appropriate Studies Haven�t Been Done,� The Milkweed, July 2000
106 See for example, Doug Gurian-Sherman, �Holes in the Biotech Safety Net, FDA Policy Does Not Assure the Safety of Genetically Engineered
Foods,� Center for Science in the Public Interest, www.cspinet.org/new/pdf/fda_report__final.pdf
107 S. R. Padgette, N. B.Taylor, D. L. Nida, M. R. Bailey, J. MacDonald, L. R. Holden, R. L. Fuchs, �The composition of glyphosate-tolerant
soybean seeds is equivalent to that of conventional soybeans,� J. Nutr. 126 (1996):702�716.
108 B. G. Hammond, J. L. Vicini, G. F. Hartnell, M. W. Naylor, C. D. Knight, E. H. Robinson, R. L. Fuchs, and S. R. Padgette, �The feeding
value of soybeans fed to rats, chickens, catfish, and dairy cattle is not altered by genetic incorporation of glyphosate tolerance,� J. Nutr. 126
(1996): 717�727.
109 A. Pusztai and S. Bardocz, �GMO in animal nutrition: potential benefits and risks,� Chapter 17, Biology of Nutrition in Growing Animals
(Elsevier, October 2005). earlier
110 Ian F. Pryme and Rolf Lembcke, �In Vivo Studies on Possible Health Consequences of Genetically Modified Food and Feed�with Particular
Regard to Ingredients Consisting of Genetically Modified Plan Materials,� Nutrition and Health 17(2003): 1�8.
111 Andreas Rang, et al, �Detection of RNA variants transcribed from the transgene in Roundup Ready soybean,� Eur Food
Res Technol 220 (2005): 438�443.
112 Ian F. Pryme and Rolf Lembcke, �In Vivo Studies on Possible Health Consequences of Genetically Modified Food and Feed�with Particular
Regard to Ingredients Consisting of Genetically Modified Plan Materials,� Nutrition and Health 17(2003): 1�8.
113 Arpad Pusztai, �Can science give us the tools for recognizing possible health risks of GM food,� Nutrition and Health, 2002, Vol 16 Pp 73-84;
Stanley W. B. Ewen and Arpad Pusztai, �Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small
intestine,� Lancet, 1999 Oct 16; 354 (9187): 1353-4; Arpad Pusztai, �Genetically Modified Foods: Are They a Risk to Human/Animal Health?�
June 2001 Action Bioscience www.actionbioscience.org/biotech/pusztai.html; and A. Pusztai and S. Bardocz, �GMO in animal nutrition:
potential benefits and risks,� Chapter 17, Biology of Nutrition in Growing Animals, R. Mosenthin, J. Zentek and T. Zebrowska (Eds.) Elsevier,
October 2005
114 V. E. Prescott, et al, �Transgenic Expression of Bean r-Amylase Inhibitor in Peas Results in Altered Structure and Immunogenicity,� Journal
of Agricultural Food Chemistry (2005): 53.
115 J. Lexchin, L. A. Bero, B. Djulbegovic, and O. Clark, �Pharmaceutical industry sponsorship and research outcome and quality: systematic
review,� BMJ 326 (2003):1167�1176.
116 Mark Friedberg, et al, �Evaluation of Conflict of Interest in Economic Analyses of New Drugs Used in Oncology,� JAMA 282 (1999):1453�
1457.
117 Suzanne Wuerthele quoted here: archive.sare.org/sanet-mg/archives/html-home/23-html/0195.html
118 �Elements of Precaution,� The Royal Society of Canada, January 2001. www.canadians.org/food/documents/rsc_feb05.pdf
119 Friends of the Earth Europe, �Throwing Caution to the Wind: A review of the European Food Safety Authority and its work on genetically
modified foods and crops,� November 2004.
120 European Communities submission to World Trade Organization dispute panel, 28 January 2005, reported in Hidden uncertainties – risks of
GMOs, 23 April 2006, Friends of the Earth / Greenpeace www.non-gm-farmers.com/news_print.asp?ID=2731
121 EU Regulation 178/2002 (Article 30.4)
122 Friends of the Earth Europe, �Throwing Caution to the Wind: A review of the European Food Safety Authority and its work on genetically
modified foods and crops,� November 2004.
123 �Greenpeace exposes Government-Monsanto nexus to cheat Indian farmers: calls on GEAC to revoke BT cotton permission,� Press release,
March 3, 2005, www.greenpeace.org/india_en/news/details?item_id=771071
124 Jeffrey M. Smith, Seeds of Deception, (Iowa: Yes! Books, 2003), 224.
125 �Monsanto Bribery Charges in Indonesia by DoJ and USSEC,� Third World Network, Malaysia, Jan 27, 2005,
www.mindfully.org/GE/2005/Monsanto-Indonesia-Bribery27jan05.htm
126 Jeffrey M. Smith, Seeds of Deception, Yes! Books, Fairfield, Iowa 2003
127 Karen Charman, The Professor Who Can Read Your Mind, PR Watch Newsletter Fourth Quarter 1999, Volume 6, No. 4
128 www.gmwatch.org/latest-listing/41-2002/3068-support-for-food-biotechnology-holds-in-the-us-
129 Estimates of increased IGF-1 levels vary considerably. In Mepham et al, �Safety of milk from cows treated with bovine somatotropin,� The
Lancet 2 (1994):197, IGF-1 levels were up to 10 times higher. The methods used may also underestimate IGF-1 levels considerably. See Samuel
S. Epstein, �Unlabeled Milk From Cows Treated With Biosynthetic Growth Hormones: A Case of Regulatory Abdication,� International Journal
of Health Services 26(1996): 173�185; and Samuel S. Epstein, What�s In Your Milk? (Victoria, British Columbia, Canada:Trafford Publishing,
2006), 197�204.
130 For a review of literature linking elevated levels of IGF-1 with increased risks of breast, colon and prostate cancers, see Samuel S. Epstein,
What�s In Your Milk?, 197�204.
131 Gary Steinman, �Mechanisms of Twinning VII. Effect of Diet and Heredity on the Human Twinning Rate,� Journal of Reproductive
Medicine, May 2006; S.E. Echternkamp et al, �Ovarian Follicular Development in Cattle Selected for Twin Ovulations and Births,� Journal of
Animal Science 82 no. 2 (2004): 459�471; and S. E. Echternkamp et al, �Concentrations of insulin-like growth factor-I in blood and ovarian
follicular fluid of cattle selected for twins,� Biology of Reproduction, 43(1990): 8�14.
132 Powell D.A.; Blaine K.; Morris S.; Wilson J., Agronomic and consumer considerations for Bt and conventional sweet-corn, British Food
Journal, Volume: 105, Issue: 10, Page: 700-713 (Nov 2003)
133 GM Nation? The findings of the public debate, www.gmnation.org.uk/ut_09/ut_9_6.htm#summary
134 To see the Toronto Star photo in Laidlaw�s book, go to www.gmwatch.org/p1temp.asp?pid=72&page=1 or
www.powerbase.info/index.php/Shane_Morris
135 Corn Fakes, Private Eye, No. 1194, 28 September-11 October 2007 www.gmwatch.org/latest-listing/46-2007/7525-award-winningpaper-qa-flagrant-fraudq-cambridge-expert-2692007
136 Tim Lambert, Would you eat wormy corn?, September 7 2007
scienceblogs.com/deltoid/2007/09/would_you_eat_wormy_sweet_corn.php
137 �Genetically modified foods, who knows how safe they are?� CBC News and Current Affairs, September 25, 2006.
138 Mike Zelina, et al., The Health Effects of Genetically Engineered Crops on San Luis Obispo County,� A Citizen Response to the SLO Health
Commission GMO Task Force Report, 2006.
139 Bill Lambrecht, Dinner at the New Gene Caf�, St. Martin’s Press, September 2001, pg 139
Photo credits
Stanley W. B. Ewen and Arpad Pusztai, �Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small
intestine,� Lancet, 1999 Oct 16; 354 (9187): 1353-4.
M. Malatesta, C. Caporaloni, S. Gavaudan, M. B. Rocchi, S. Serafini, C. Tiberi, G. Gazzanelli, �Ultrastructural Morphometrical and
Immunocytochemical Analyses of Hepatocyte Nuclei from Mice Fed on Genetically Modified Soybean,� Cell Struct Funct. 27 (2002): 173�180
Irina Ermakova, �Experimental Evidence of GMO Hazards,� Presentation at Scientists for a GM Free Europe, EU Parliament, Brussels, June 12,
2007
Irina Ermakova, �Genetically modified soy leads to the decrease of weight and high mortality of rat pups of the first generation. Preliminary
studies,� Ecosinform 1 (2006): 4�9.

Close Accordion
Body Composition Evaluation: A Clinical Practice Tool

Body Composition Evaluation: A Clinical Practice Tool

Body Composition: Key Words

  • Fat-free mass
  • Fat mass
  • Undernutrition
  • Bioelectrical impedance analysis
  • Sarcopenic obesity
  • Drug toxicity

Abstract

Undernutrition is insufficiently detected in in- and outpatients, and this is likely to worsen during the next decades. The increased prevalence of obesity together with chronic illnesses associated with fat-free mass (FFM) loss will result in an increased prevalence of sarcopenic obesity. In patients with sarcopenic obesity, weight loss and the body mass index lack accuracy to detect FFM loss. FFM loss is related to increasing mortality, worse clinical outcomes, and impaired quality of life. In sarcopenic obesity and chronic diseases, body composition measurement with dual-energy X-ray absorptiometry, bioelectrical impedance analysis, or computerized tomography quantifies the loss of FFM. It allows tailored nutritional support and disease-specific therapy and reduces the risk of drug toxicity. Body composition evaluation should be integrated into routine clinical practice for the initial assessment and sequential follow-up of nutritional status. It could allow objective, systematic, and early screening of undernutrition and promote the rational and early initiation of optimal nutritional support, thereby contributing to reducing malnutrition-induced morbidity, mortality, worsening of the quality of life, and global health care costs.

Introduction

man overweight 3D modelChronic undernutrition is characterized by a progressive reduction of the�fat-free mass (FFM) and fat mass (FM)�and �which has deleterious consequences on health. Undernutrition is insufficiently screened and treated in hospitalized or at-risk patients despite its high prevalence and negative impact on mortality, morbidity, length of stay (LOS), quality of life, and costs [1�4]. The risk of underestimating hospital undernutrition is likely to worsen in the next decades because of the increasing prevalence of overweight, obesity, and chronic diseases and the increased number of elderly subjects. These clinical conditions are associated with FFM loss (sarcopenia). Therefore, an increased number of patients with FFM loss and sarcopenic obesity will be seen in the future.

Sarcopenic obesity is associated with decreased survival and increased therapy toxicity in cancer patients [5�10], whereas FFM loss is related to decreased survival, a negative clinical outcome, increased health care costs [2], and impaired overall health, functional capacities, and quality of life [4�11]. Therefore, the detection and treatment of FFM loss is a major issue of public health and health costs [12].

Weight loss and the body mass index (BMI) lack sensitivity to detect FFM loss [13]. In this review, we support the systematic assessment of FFM with a method of body composition evaluation in order to improve the detection, management, and follow-up of undernutrition. Such an approach should in turn reduce the clinical and functional consequences of diseases in the setting of a cost- effective medico-economic approach (fig. 1). We discuss the main applications of body composition evaluation in clinical practice (fig. 2).

body composition fig 1

Fig. 1. Conceptualization of the expected impact of early use of body composition for the screening of fat-free loss and�under-nutrition in sarcopenic overweight and obese subjects. An increased prevalence of overweight and obesity is observed in all Western and emerging countries. Simultaneously, the aging of the population, the reduction of the level of physical activity, and the higher prevalence of chronic dis- eases and cancer increased the number of patients with or at risk of FFM impairment, i.e. sarcopenia. Thus, more patients are presenting with �sarcopenic over- weight or obesity�. In these patients, evaluation of nutritional status using anthropometric methods, i.e. weight loss and calculation of BMI, is not sensitive enough to detect FFM impairment. As a result, undernutrition is not detected, worsens, and negatively impacts morbidity, mortality, LOS, length of recovery, quality of life, and health care costs. On the contrary, in patients with �sarcopenic overweight or obesity�, early screening of undernutrition with a dedicated method of body composition evaluation would allow early initiation of nutritional support and, in turn, improvements of nutritional status and clinical outcome.

Rationale for a New Strategy for the Screening of Undernutrition

Screening of Undernutrition Is Insufficient

checklistAcademic societies encourage systematic screening of undernutrition at hospital admission and during the hospital stay [14]. The detection of undernutrition is generally based on measurements of weight and height, calculations of BMI, and the percentage of weight loss. Nevertheless, screening of undernutrition is infrequent in hospitalized or nutritionally at-risk ambulatory patients. For example, in France, surveys performed by the French Health Authority [15] indicate that: (i) weight alone, (ii) weight with BMI or percentage of weight loss, and (iii) weight, BMI,�and percentage of weight loss are reported in only 55, 30, and 8% of the hospitalized patients� records, respectively. Several issues, which could be improved by specific educational programs, explain the lack of implementation of nutritional screening in hospitals (table 1). In addition, the accuracy of the clinical screening of undernutrition could be limited at hospital admission. Indeed, patients with undernutrition may have the same BMI as sex- and age- matched healthy controls but a significantly decreased FFM hidden by an expansion of the FM and the total body water which can be measured by bioelectrical impedance analysis (BIA) [13]. This example illustrates that body composition evaluation allows a more accurate identification of FFM loss than body weight loss or BMI decrease. The lack of sensitivity and specificity of weight, BMI, and percentage of weight loss argue for the need for other methods to evaluate the nutritional status.

Changes in Patients� Profiles

patient consulting a doctorIn 2008, twelve and thirty percent of the worldwide adult population was obese or overweight; this is two times higher than in 1980 [16]. The prevalence of overweight and obesity is also increasing in hospitalized patients. A 10-year comparative survey performed in a European hospital showed an increase in patients� BMI, together with a shorter LOS [17]. The BMI increase masks undernutrition and FFM loss at hospital admission. The increased prevalence of obesity in an aging population has led to the recognition of a new nutritional entity: �sarcopenic obesity� [18]. Sarcopenic obesity is characterized by increased FM and reduced FFM with a normal or high body weight. The emergence of the concept of sarcopenic obesity will increase the number of situations associated with a lack of sensitivity of the calculations of BMI and�body weight change for the early detection of FFM loss. This supports a larger use of body composition evaluation for the assessment and follow-up of nutritional status in clinical practice (fig. 1).

body composition fig 2Fig. 2. Current and potential applications of body composition evaluation in clinical practice. The applications are indicated in the boxes, and the body composition methods that could be used for each application are indicated inside the circles. The most used application of body composition evaluation is the measurement of bone mineral density by DEXA for the diagnosis and management of osteoporosis. Although a low FFM is associated with worse clinical outcomes, FFM evaluation is not yet implemented enough in clinical practice. However, by allowing early detection of undernutrition, body composition evaluation could improve the clinical outcome. Body composition evaluation could also be used to follow up nutritional status, calculate energy needs, tailor nutritional support, and assess fluid changes during perioperative period and renal insufficiency. Recent evidence indicates that�a low FFM is associated with a higher toxicity of some chemo- therapy drugs in cancer patients. Thus, by allowing tailoring of the chemotherapy doses to the FFM in cancer patients, body com- position evaluation should improve the tolerance and the efficacy of chemotherapy. BIA, L3-targeted CT, and DEXA could be used for the assessment of nutritional status, the calculation of energy needs, and the tailoring of nutritional support and therapy. Further studies are warranted to validate BIA as an accurate method for fluid balance measurement. By integrating body composition evaluation into the management of different clinical conditions, all of these potential applications would lead to a better recognition of nutritional care by the medical community, the health care facilities, and the health authorities, as well as to an increase in the medico-economic benefits of the nutritional evaluation.

Body Composition Evaluation For The Assessment Of Nutritional Status

Body composition evaluation is a valuable technique to assess nutritional status. Firstly, it gives an evaluation of nutritional status through the assessment of FFM. Secondly, by measuring FFM and phase angle with BIA, it allows evaluation of the disease prognosis and outcome.

body composition table 1

body composition table 2Body Composition Techniques For FFM Measurement

Body composition evaluation allows measurement of the major body compartments: FFM (including bone mineral tissue), FM, and total body water. Table 2 shows indicative values of the body composition of a healthy subject weighing 70 kg. In several clinical situations, i.e. hospital admission, chronic obstructive pulmonary dis- ease (COPD) [21�23], dialysis [24�26], chronic heart failure [27], amyotrophic lateral sclerosis [28], cancer [5, 29], liver transplantation [30], nursing home residence [31], and Alzheimer�s disease [32], changes in body compartments are detected with the techniques of body composition evaluation. At hospital admission, body composition evaluation could be used for the detection of FFM loss and undernutrition. Indeed, FFM and the FFM index (FFMI) [FFM (kg)/height (m2)] measured by BIA are significantly lower in hospitalized patients (n = 995) than in age-, height-, and sex-matched controls (n = 995) [3]. Conversely, clinical tools of nutritional status assessment, such as BMI, subjective global assessment, or mini-nutritional assessment, are not accurate enough to estimate FFM loss and nutritional status [30, 32�34]. In 441 patients with non-small cell lung cancer, FFM loss deter- mined by computerized tomography (CT) was observed in each BMI category [7], and in young adults with all�types of cancer, an increase in FM together with a de- crease in FFM were reported [29]. These findings reveal the lack of sensitivity of BMI to detect FFM loss. More- over, the FFMI is a more sensitive determinant of LOS than a weight loss over 10% or a BMI below 20 [3]. In COPD, the assessment of FFM by BIA is a more sensitive method to detect undernutrition than anthropometry [33, 35]. BIA is also more accurate at assessing nutrition- al status in children with severe neurologic impairment than the measurement of skin fold thickness [36].

Body Composition For The Evaluation Of Prognosis & Clinical Outcome

FFM loss is correlated with survival in different clinical settings [5, 21�28, 37]. In patients with amyotrophic lateral sclerosis, an FM increase, but not an FFM in- crease, measured by BIA, was correlated with survival during the course of the disease [28]. The relation between body composition and mortality has not yet been demonstrated in the intensive care unit. The relation between body composition and mortality has been demonstrated with anthropometric methods, BIA, and CT. Measurement of the mid-arm muscle circumference is an easy tool to diagnose sarcopenia [38]. The mid-arm muscle circumference has been shown to be correlated with survival in patients with cirrhosis [39, 40], HIV infection [41], and COPD in a stronger way than BMI [42]. The relation between FFM loss and mortality has been extensively shown with BIA [21�28, 31, 37], which is the most used method. Recently, very interesting data suggest that CT could evaluate the disease prognosis in relation to muscle wasting. In obese cancer patients, sarcopenia as assessed by CT measurement of the total skeletal muscle cross-sectional area is an independent predictor of the survival of patients with bronchopulmonary [5, 7], gastrointestinal [5], and pancreatic cancers [6]. FFM assessed by measurement of the mid-thigh muscle cross- sectional area by CT is also predictive of mortality in COPD patients with severe chronic respiratory insufficiency [43]. In addition to mortality, a low FFMI at hospital admission is significantly associated with an in- creased LOS [3, 44]. A bicentric controlled population study performed in 1,717 hospitalized patients indicates that both loss of FFM and excess of FM negatively affect the LOS [44]. Patients with sarcopenic obesity are most at risk of increased LOS. This study also found that ex- cess FM reduces the sensitivity of BMI to detect nutritional depletion [44]. Together with the observation that the BMI of hospitalized patients has increased during the last decade [17], these findings suggest that FFM and�FFMI measurement should be used to evaluate nutritional status in hospitalized patients.

BIA measures the phase angle [45]. A low phase angle is related to survival in oncology [46�50], HIV infection/ AIDS [51], amyotrophic lateral sclerosis [52], geriatrics [53], peritoneal dialysis [54], and cirrhosis [55]. The phase angle threshold associated with reduced survival is variable: less than 2.5 degrees in amyotrophic lateral sclerosis patients [52], 3.5 degrees in geriatric patients [53], from less than 1.65 to 5.6 degrees in oncology patients [47�50], and 5.4 degrees in cirrhotic patients [55]. The phase angle is also associated with the severity of lymphopenia in AIDS [56], and with the risk of postoperative complications among gastrointestinal surgical patients [57]. The relation of phase angle with prognosis and disease severity reinforces the interest in using BIA for the clinical management of patients with chronic diseases at high risk of undernutrition and FFM loss.

In summary, FFM loss or a low phase angle is related to mortality in patients with chronic diseases, cancer (in- cluding obesity cancer patients), and elderly patients in long-stay facilities. A low FFM and an increased FM are associated with an increased LOS in adult hospitalized patients. The relation between FFM loss and clinical out- come is clearly shown in patients with sarcopenic obesity. In these patients, as the sensitivity of BMI for detecting FFM loss is strongly reduced, body composition evalua- tion appears to be the method of choice to detect under- nutrition in routine practice. Overall, the association between body composition, phase angle, and clinical outcome reinforces the pertinence of using a body com- position evaluation in clinical practice.

Which Technique Of Body Composition Evaluation Should Be Used For The Assessment Of Nutritional Status?

Numerous methods of body composition evaluation have been developed: anthropometry, including the 4-skinfold method [58], hydrodensitometry [58], in vivo neutron activation analysis [59], anthropogammametry from total body potassium-40 [60], nuclear magnetic resonance [61], dual-energy X-ray absorptiometry (DEXA) [62, 63], BIA [45, 64�66], and more recently CT [7, 43, 67]. DEXA, BIA, and CT appear to be the most convenient methods for clinical practice (fig. 2), while the other methods are reserved for scientific use.

Compared with other techniques of body composition evaluation, the lack of reproducibility and sensitivity of the 4-skinfold method limits its use for the accurate measurement of body composition in clinical practice [33,�34]. However, in patients with cirrhosis [39, 40], COPD [34], and HIV infection [41], measurement of the mid- arm muscle circumference could be used to assess sarcopenia and disease-related prognosis. DEXA allows non- invasive direct measurement of the three major components of body composition. The measurement of bone mineral tissue by DEXA is used in clinical practice for the diagnosis and follow-up of osteoporosis. As the clinical conditions complicated by osteoporosis are often associated with undernutrition, i.e. elderly women, patients with organ insufficiencies, COPD [68], inflammatory bowel diseases, and celiac disease, DEXA could be of the utmost interest for the follow-up of both osteoporosis and nutritional status. However, the combined evaluation of bone mineral density and nutritional status is difficult to implement in clinical practice because the reduced accessibility of DEXA makes it impossible to be performed in all nutritionally at-risk or malnourished patients. The principles and clinical utilization of BIA have been largely described in two ESPEN position papers [45, 66]. BIA is based on the capacity of hydrated tissues to conduct electrical energy. The measurement of total body impedance allows estimation of total body water by assuming that total body water is constant. From total body water, validated equations allow the calculation of FFM and FM [69], which are interpreted according to reference values [70]. BIA is the only technique which allows calculation of the phase angle, which is correlated with the prognosis of various diseases. BIA equations are valid for: COPD [65]; AIDS wasting [71]; heart, lung, and liver transplantation [72]; anorexia nervosa [73] patients, and elderly subjects [74]. However, no BIA-specific equations have been validated in patients with extreme BMI (less than 17 and higher than 33.8) and dehydration or fluid overload [45, 66]. Nevertheless, because of its simplicity, low cost, quickness of use at bedside, and high interoperator reproducibility, BIA appears to be the technique of choice for the systematic and repeated evaluation of FFM in clinical practice, particularly at hospital admission and in chronic diseases. Finally, through written and objective re- ports, the wider use of BIA should allow improvement of the traceability of nutritional evaluation and an increase in the recognition of nutritional care by the health authorities. Recently, several data have suggested that CT images targeted on the 3rd lumbar vertebra (L3) could strongly predict whole-body fat and FFM in cancer patients, as compared with DEXA [7, 67]. Interestingly, the evaluation of body composition by CT presents great practical significance due to its routine use in patient diagnosis, staging, and follow-up. L3-targeted CT images�evaluate FFM by measuring the muscle cross-sectional area from L3 to the iliac crest by use of Hounsfield unit (HU) thresholds (�29 to +150) [5, 7]. The muscles included in the calculation of the muscle cross-sectional area are psoas, paraspinal muscles (erector spinae, quadratus lumborum), and abdominal wall muscles (transversus abdominis, external and internal obliques, rectus ab- dominis) [6]. CT also provided detail on specific muscles, adipose tissues, and organs not provided by DEXA or BIA. L3-targeted CT images could be theoretically per- formed solely, since they result in X-ray exposition similar to that of a chest radiography.

In summary, DEXA, BIA, and L3-targeted CT images could all measure body composition accurately. The technique selection will depend on the clinical context, hard- ware, and knowledge availability. Body composition evaluation by DEXA should be performed in patients having a routine assessment of bone mineral density. Also, analysis of L3-targeted CT is the method of choice for body composition evaluation in cancer patients. Body composition evaluation should also be done for every abdominal CT performed in patients who are nutritionally at risk or undernourished. Because of its simplicity of use, BIA could be widely implemented as a method of body com- position evaluation and follow-up in a great number of hospitalized and ambulatory patients. Future research will aim to determine whether a routine evaluation of body composition would allow early detection of the in- creased FFM catabolism related to critical illness [75].

Body Composition Evaluation For The Calculation Of Energy Needs

vegetable-juicesThe evaluation of FFM could be used for the calculation of energy needs, thus allowing the optimization of nutritional intakes according to nutritional needs. This could be of great interest in specific situations, such as severe neurologic disability, overweight, and obesity. In 61 children with severe neurologic impairment and intellectual disability, an equation integrating body composition had good agreement with the doubly labeled water method. It gave a better estimation of energy expenditure than did the Schofield predictive equation [36]. However, in 9 anorexia nervosa patients with a mean BMI of 13.7, pre- diction formulas of resting energy expenditure including FFM did not allow accurate prediction of the resting energy expenditure measured by indirect calorimetry [76]. In overweight or obese patients, the muscle catabolism in response to inflammation was the same as that observed�in patients with normal BMI. Indeed, despite a higher BMI, the FFM of overweight or obese individuals is similar (or slightly increased) to that of patients with normal BMI. Thus, the use of actual weight for the assessment of the energy needs of obese patients would result in over- feeding and its related complications. Therefore, the ex- perts recommend the use of indirect calorimetry or calculation of the energy needs of overweight or obese patients as follows: 15 kcal/kg actual weight/day or 20�25 kcal/kg ideal weight/day [77, 78], although these predictive formulas could be inaccurate in some clinical conditions [79]. In a US prospective study conducted in 33 ICU medical and surgical ventilated ICU patients, daily measurement of the active cell mass (table 2) by BIA was used to assess the adequacy between energy/protein intakes and needs. In that study, nutritional support with 30 kcal/ kg actual body weight/day energy and 1.5 g/kg/day protein allowed stabilization of the active cell mass [75]. Thus, follow-up of FFM by BIA could help optimize nutritional intakes when indirect calorimetry cannot be performed.

In summary, the measurement of FFM should help ad- just the calculation of energy needs (expressed as kcal/kg FFM) and optimize nutritional support in critical cases other than anorexia nervosa.

Body Composition Evaluation For The Follow-Up & Tailoring Of Nutritional Support

towel different nutritionBody composition evaluation allows a qualitative assessment of body weight variations. The evaluation of body composition may help to document the efficiency of nutritional support during a patient�s follow-up of numerous clinical conditions, such as surgery [59], anorexia nervosa [76, 80], hematopoietic stem cell transplantation [81], COPD [82], ICU [83], lung transplantation [84], ulcerative colitis [59], Crohn�s disease [85], cancer [86, 87], HIV/AIDS [88], and acute stroke in elderly patients [89]. Body composition evaluation could be used for the follow-up of healthy elderly subjects [90]. Body composition evaluation allows characterization of the increase in body mass in terms of FFM and FM [81, 91]. After hematopoietic stem cell transplantation, the increase in BMI is the result of the increase in FM, but not of the increase in FFM [81]. Also, during recovery after an acute illness, weight gain 6 months after ICU discharge could be mostly related to an increase in FM (+7 kg) while FFM only increased by 2 kg; DEXA and air displacement plethysmography were used to measure the FM and FFM [91]. These two examples suggest that body composition evaluation could be helpful to decide the modification and/or the renewal of nutritional support. By identifying the patients gaining weight but reporting no or insufficient FFM, body composition evaluation could contribute to influencing the medical decision of continuing nutrition- al support that would have been stopped in the absence of body composition evaluation.

In summary, body composition evaluation is of the utmost interest for the follow-up of nutritional support and its impact on body compartments.

Body Composition Evaluation For Tailoring Medical Treatments

In clinical situations when weight and BMI do not reflect the FFM, the evaluation of body composition should be used to adapt drug doses to the FFM and/or FM absolute values in every patient. This point has been recently illustrated in oncology patients with sarcopenic obesity. FFM loss was determined by CT as described above. In cancer patients, some therapies could affect body com- position by inducing muscle wasting [92]. In patients with advanced renal cell carcinoma [92], sorafenib induces a significant 8% loss of skeletal muscular mass at 12 months. In turn, muscle wasting in patients with BMI less than 25 was significantly associated with sorafenib toxicity in patients with metastatic renal cancer [8]. In metastatic breast cancer patients receiving capecitabine treatment, and in patients with colorectal cancer receiving 5-fluorouracile, using the convention of dosing per unit of body surface area, FFM loss was the determinant of chemotherapy toxicity [9, 10] and time to tumor progression [10]. In colorectal cancer patients administered 5-fluoruracil, low FFM is a significant predictor of toxicity only in female patients [9]. The variation in toxicity between women and men may be partially explained by the fact that FFM was lower in females. Indeed, FFM rep- resents the distribution volume of most cytotoxic chemo- therapy drugs. In 2,115 cancer patients, the individual variations in FFM could change by up to three times the distribution volume of the chemotherapy drug per body area unit [5]. Thus, administering the same doses of chemotherapy drugs to a patient with a low FFM compared to a patient with a normal FFM would increase the risk of chemotherapy toxicity [5]. These data suggest that FFM loss could have a direct impact on the clinical outcome of cancer patients. Decreasing chemotherapy doses in case of FFM loss could contribute to improving cancer patients� prognosis through the improvement of the tolerance of chemotherapy. These findings justify the systematic evaluation of body composition in all cancer patients in order to detect FFM loss, tailor chemotherapy doses according to FFM values, and then improve the efficacy- tolerance and cost-efficiency ratios of the therapeutic strategies [93]. Body composition evaluation should also be used to tailor the doses of drugs which are calculated based on patients� weight, e.g. corticosteroids, immuno-suppressors (infliximab, azathioprine or methotrexate), or sedatives (propofol).

In summary, measurement of FFM should be implemented in cancer patients treated with chemotherapy. Clinical studies are needed to demonstrate the importance of measuring body composition in patients treated with other medical treatments.

Towards The Implementation Of Body Composition Evaluation In Clinical Practice

When There's No Cure For Your Aching Back E-book Cover

News Letter

hypertension blood pressure pillsThe implementation of body composition evaluation in routine care presents a challenge for the next decades. Indeed the concomitant increases in elderly subjects and patients with chronic diseases and cancer, and in the prevalence of overweight and obesity in the population, will increase the number of patients nutritionally at risk or undernourished, particularly those with sarcopenic obesity. Body composition evaluation should be used to improve the screening of undernutrition in hospitalized patients. The results of body composition should be based on the same principle as BMI calculation, towards the systematic normalization for body height of FFM (FFMI) and FM [FM (kg)/height (m)2 = FM index] [94]. The results could be expressed according to previously de- scribed percentiles of healthy subjects [95, 96]. Body com- position evaluation should be performed at the different stages of the disease, during the course of treatments and the rehabilitation phase. Such repeated evaluations of body composition could allow assessment of the nutritional status, adjusting the calculation of energy needs as kilocalories/kilogram FFM, following the efficacy of nutritional support, and tailoring drug and nutritional therapies. BIA, L3-targeted CT, and DEXA represent the techniques of choice to evaluate body composition in clinical practice (fig. 2). In the setting of cost-effective and pragmatic use, these three techniques should be alternatively chosen. In cancer, undernourished, and nutritionally at-risk patients, an abdominal CT should be completed by the analysis of L3-targeted images for the evaluation of body composition.

In other situations, BIA appears to be the simplest most reproducible and less expensive method, while DEXA, if feasible, remains the reference method for clinical practice. By allowing earlier management of undernutrition, body composition evaluation can contribute to reducing malnutrition-induced morbidity and mortality, improving the quality of life and, as a consequence, increasing the medico-economic benefits (fig. 1). The latter needs to be demonstrated. Moreover, based on a more scientific approach, i.e. allowing for printing reports, objective initial assessment and follow-up of nutritional status, and the adjustment of drug doses, body composition evaluation would contribute to a better recognition of the activities related to nutritional evaluation and care by the medical community, health care facilities, and health authorities (fig. 2).

Conclusion

woman buying fresh organic vegetables

Screening of undernutrition is insufficient to allow for optimal nutrition care. This is in part due to the lack of sensitivity of BMI and weight loss for detecting FFM loss in patients with chronic diseases. Methods of body com- position evaluation allow a quantitative measurement of FFM changes during the course of disease and could be used to detect FFM loss in the setting of an objective, systematic, and early undernutrition screening. FFM loss is closely related to impaired clinical outcomes, survival, and quality of life, as well as increased therapy toxicity in cancer patients. Thus, body composition evaluation should be integrated into clinical practice for the initial assessment, sequential follow-up of nutritional status, and the tailoring of nutritional and disease-specific therapies. Body composition evaluation could contribute to strengthening the role and credibility of nutrition in the global medical management, reducing the negative impact of malnutrition on the clinical outcome and quality of life, thereby increasing the overall medico-economic benefits.

Acknowledgements

R. Thibault and C. Pichard are supported by research grants from the public foundation Nutrition 2000 Plus.

Disclosure Statement

Ronan Thibault and Claude Pichard declare no conflict of interest.

 

blank
References:

1 Pirlich M, Schutz T, Norman K, Gastell S,
L�bke HJ, Bischoff SC, Bolder U, Frieling
T, G�ldenzoph H, Hahn K, Jauch KW,
Schindler K, Stein J, Volkert D, Weimann A,
Werner H, Wolf C, Z�rcher G, Bauer P, Lochs
H: The German hospital malnutrition study.
Clin Nutr 2006;25:563�572.
2 Amaral TF, Matos LC, Tavares MM, Subtil
A, Martins R, Nazar� M, Sousa Pereira N:
The economic impact of disease-related malnutrition
at hospital admission. Clin Nutr
2007;26:778�784.
3 Pichard C, Kyle UG, Morabia A, Perrier A,
Vermeulen B, Unger P: Nutritional assessment:
lean body mass depletion at hospital
admission is associated with increased
length of stay. Am J Clin Nutr 2004;79:613�
618.
4 Capuano G, Gentile PC, Bianciardi F, Tosti
M, Palladino A, Di Palma M: Prevalence and
influence of malnutrition on quality of life
and performance status in patients with locally
advanced head and neck cancer before
treatment. Support Care Cancer 2010;18:
433�437.
5 Prado CM, Lieffers JR, McCargar LJ, Reiman
T, Sawyer MB, Martin L, Baracos VE: Prevalence
and clinical implications of sarcopenic
obesity in patients with solid tumours of the
respiratory and gastrointestinal tracts: a
population-based study. Lancet Oncol 2008;
9:629�635.
6 Tan BHL, Birdsell LA, Martin L, Baracos VE,
Fearon KC: Sarcopenia in an overweight or
obese patient is an adverse prognostic factor
in pancreatic cancer. Clin Cancer Res 2009;
15:6973�6979.
7 Baracos VE, Reiman T, Mourtzakis M,
Gioulbasanis I, Antoun S: Body composition
in patients with non-small cell lung cancer:
a contemporary view of cancer cachexia
with the use of computed tomography image
analysis. Am J Clin Nutr 2010;91(suppl):
1133S�1137S.
8 Antoun S, Baracos VE, Birdsell L, Escudier
B, Sawyer MB: Low body mass index and sarcopenia
associated with dose-limiting toxicity
of sorafenib in patients with renal cell carcinoma.
Ann Oncol 2010;21:1594�1598
9 Prado CM, Baracos VE, McCargar LJ,
Mourtzakis M, Mulder KE, Reiman T, Butts
CA, Scarfe AG, Sawyer MB: Body composition
as an independent determinant of 5-fluorouracil-based
chemotherapy toxicity. Clin
Cancer Res 2007;13:3264�3268.
10 Prado CM, Baracos VE, McCargar LJ, Reiman
T, Mourtzakis M, Tonkin K, Mackey JR,
Koski S, Pituskin E, Sawyer MB: Sarcopenia
as a determinant of chemotherapy toxicity
and time to tumor progression in metastatic
breast cancer patients receiving capecitabine
treatment. Clin Cancer Res 2009;15:2920�
2926.
11 Hofhuis JG, Spronk PE, van Stel HF, Schrijvers
GJ, Rommes JH, Bakker J: The impact of
critical illness on perceived health-related
quality of life during ICU treatment, hospital
stay, and after hospital discharge: a longterm
follow-up study. Chest 2008;133:377�
385.
12 Guest JF, Panca M, Baeyens JP, de Man F,
Ljungqvist O, Pichard C, Wait S, Wilson L:
Health economic impact of managing patients
following a community-based diagnosis
of malnutrition in the UK. Clin Nutr 2011;
30:422�429.
13 Kyle UG, Morabia A, Slosman DO, Mensi N,
Unger P, Pichard C: Contribution of body
composition to nutritional assessment at
hospital admission in 995 patients: a controlled
population study. Br J Nutr 2001;86:
725�731.
14 Kondrup J, Allison SP, Elia M; Vellas B,
Plauth M: Educational and Clinical Practice
Committee, European Society of Parenteral
and Enteral Nutrition (ESPEN): ESPEN
guidelines for nutrition screening 2002. Clin
Nutr 2003;22:415�421.
15 Haute Autorit� de Sant�: IPAQSS: informations.
2010. www.has-sante.fr/portail/
jcms/c_970427/ipaqss-informations.
16 World Health Organization: Obesity and
overweight: fact sheet No. 311. 2011. http://
www.who.int/mediacentre/factsheets/fs311/
en/index.html.
17 Thibault R, Chikhi M, Clerc A, Darmon P,
Chopard P, Picard-Kossovsky M, Genton L,
Pichard C: Assessment of food intake in hospitalised
patients: a 10 year-comparative
study of a prospective hospital survey. Clin
Nutr 2011;30:289�296.
18 Stenholm S, Harris TB, Rantanen T, Visser
M, Kritchevsky SB, Ferrucci L: Sarcopenic
obesity: definition, cause and consequences.
Curr Opin Clin Nutr Metab Care 2008;11:
693�700.
19 Pichard C, Kyle UG: Body composition measurements
during wasting diseases. Curr
Opin Clin Nutr Metab Care 1998;1:357�361.
20 Wang ZM, Pierson RN Jr, Heymsfield SB:
The five-level model: a new approach to organizing
body-composition research. Am J
Clin Nutr 1992;56:19�28.
21 Schols AM, Broekhuizen R, Weling-Scheepers
CA, Wouters EF: Body composition and
mortality in chronic obstructive pulmonary
disease. Am J Clin Nutr 2005;82:53�59.
22 Slinde F, Gronberg A, Engstrom CP, Rossander-Hulthen
L, Larsson S: Body composition
by bioelectrical impedance predicts
mortality in chronic obstructive pulmonary
disease patients. Respir Med 2005;99:1004�
1009.
23 Vestbo J, Prescott E, Almdal T, Dahl M, Nordestgaard
BG, Andersen T, Sorensen TI,
Lange P: Body mass, fat-free body mass, and
prognosis in patients with chronic obstructive
pulmonary disease from a random population
sample: findings from the Copenhagen
City Heart Study. Am J Respir Crit Care
Med 2006;173:79�83.
24 Segall L, Mardare NG, Ungureanu S, Busuioc
M, Nistor I, Enache R, Marian S, Covic A:
Nutritional status evaluation and survival in
haemodialysis patients in one centre from
Romania. Nephrol Dial Transplant 2009;24:
2536�2540.
25 Beddhu S, Pappas LM, Ramkumar N, Samore
M: Effects of body size and body composition
on survival in hemodialysis patients. J
Am Soc Nephrol 2003;14:2366�2372.
26 F�rstenberg A, Davenport A: Assessment
of body composition in peritoneal dialysis
patients using bioelectrical impedance and
dual-energy X-ray absorptiometry. Am J
Nephrol 2011;33:150�156.
27 Futter JE, Cleland JG, Clark AL: Body mass
indices and outcome in patients with chronic
heart failure. Eur J Heart Fail 2011;13:207�
213.
28 Marin B, Desport JC, Kajeu P, Jesus P, Nicolaud
B, Nicol M, Preux PM, Couratier P: Alteration
of nutritional status at diagnosis is
a prognostic factor for survival of amyotrophic
lateral sclerosis patients. J Neurol
Neurosurg Psychiatry 2011;82:628�634.
29 Janiszewski PM, Oeffinger KC, Church TS,
Dunn AL, Eshelman DA, Victor RG, Brooks
S, Turoff AJ, Sinclair E, Murray JC, Bashore
L, Ross R: Abdominal obesity, liver fat, and
muscle composition in survivors of childhood
acute lymphoblastic leukemia. J Clin
Endocrinol Metab 2007;92:3816�3821.
30 Wagner D, Adunka C, Kniepeiss D, Jakoby
E, Schaffellner S, Kandlbauer M, Fahrleitner-Pammer
A, Roller RE, Kornprat P, M�ller
H, Iberer F, Tscheliessnigg KH: Serum albumin,
subjective global assessment, body
mass index and the bioimpedance analysis in
the assessment of malnutrition in patients up
to 15 years after liver transplantation. Clin
Transplant 2011;25:E396�E400.
31 Kimyagarov S, Klid R, Levenkrohn S, Fleissig
Y, Kopel B, Arad M, Adunsky A: Body
mass index (BMI), body composition and
mortality of nursing home elderly residents.
Arch Gerontol Geriatr 2010;51:227�230.
32 Buffa R, Mereu RM, Putzu PF, Floris G,
Marini E: Bioelectrical impedance vector
analysis detects low body cell mass and dehydration
in patients with Alzheimer�s disease.
J Nutr Health Aging 2010;14:823�827.
33 Schols AM, Wouters EF, Soeters PB, Westerterp
KR: Body composition by bioelectricalimpedance
analysis compared with deuterium
dilution and skinfold anthropometry in
patients with chronic obstructive pulmonary
disease. Am J Clin Nutr 1991;53:421�424.
34 Thibault R, Le Gallic E, Picard-Kossovsky
M, Darmaun D, Chambellan A: Assessment
of nutritional status and body composition
in patients with COPD: comparison of several
methods (in French). Rev Mal Respir
2010;27:693�702.
35 Kyle UG, Janssens JP, Rochat T, Raguso CA,
Pichard C: Body composition in patients
with chronic hypercapnic respiratory failure.
Respir Med 2006;100:244�252.
36 Rieken R, van Goudoever JB, Schierbeek H,
Willemsen SP, Calis EA, Tibboel D, Evenhuis
HM, Penning C: Measuring body composition
and energy expenditure in children with
severe neurologic impairment and intellectual
disability. Am J Clin Nutr 2011;94:759�
766
37 Avram MM, Fein PA, Borawski C, Chattopadhyay
J, Matza B: Extracellular mass/body
cell mass ratio is an independent predictor of
survival in peritoneal dialysis patients. Kidney
Int Suppl 2010;117:S37�S40.
38 Frisancho AR: New norms of upper limb fat
and muscle areas for assessment of nutritional
status. Am J Clin Nutr 1981;34:2540�2545.
39 Caregaro L, Alberino F, Amodio P, Merkel C,
Bolognesi M, Angeli P, Gatta A: Malnutrition
in alcoholic and virus-related cirrhosis.
Am J Clin Nutr l996;63:602�609.
40 Alberino F, Gatta A, Amodio P, Merkel C, Di
Pascoli L, Boffo G, Caregaro L: Nutrition and
survival in patients with liver cirrhosis. Nutrition
2001;17:445�450.
41 Liu E, Spiegelman D, Semu H, Hawkins C,
Chalamilla G, Aveika A, Nyamsangia S,
Mehta S, Mtasiwa D, Fawzi W: Nutritional
status and mortality among HIV-infected
patients receiving antiretroviral therapy in
Tanzania. J Infect Dis 2011;204:282�290.
42 Soler-Cataluna JJ, Sanchez-Sanchez L, Martinez-Garcia
MA, Sanchez PR, Salcedo E,
Navarro M: Mid-arm muscle area is a better
predictor of mortality than body mass index
in COPD. Chest 2005;128:2108�2115.
43 Marquis K, Debigar� R, Lacasse Y, LeBlanc P,
Jobin J, Carrier G, Maltais F: Midthigh muscle
cross-sectional area is a better predictor
of mortality than body mass index in patients
with chronic obstructive pulmonary
disease. Am J Respir Crit Care Med 2002;15;
166:809�813.
44 Kyle UG, Pirlich M, Lochs H, Schuetz T, Pichard
C: Increased length of hospital stay in
underweight and overweight patients at hospital
admission: a controlled population
study. Clin Nutr 2005;24:133�142.
45 Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg
P, Elia M, G�mez JM, Heitmann
BL, Kent-Smith L, Melchior JC, Pirlich M,
Scharfetter H, Schols AM, Pichard C, Composition
of the ESPEN Working Group. Bioelectrical
impedance analysis. 1. Review of
principles and methods. Clin Nutr 2004;23:
1226�1243.
46 Santarpia L, Marra M, Montagnese C, Alfonsi
L, Pasanisi F, Contaldo F: Prognostic
significance of bioelectrical impedance
phase angle in advanced cancer: preliminary
observations. Nutrition 2009;25:930�931.
47 Gupta D, Lammersfeld CA, Vashi PG, King
J, Dahlk SL, Grutsch JF, Lis CG: Bioelectrical
impedance phase angle in clinical practice:
implications for prognosis in stage IIIB and
IV non-small cell lung cancer. BMC Cancer
2009;9:37.
48 Gupta D, Lis CG, Dahlk SL, Vashi PG,
Grutsch JF, Lammersfeld CA: Bioelectrical
impedance phase angle as a prognostic indicator
in advanced pancreatic cancer. Br J
Nutr 2004;92:957�962.
49 Gupta D, Lammersfeld CA, Burrows JL,
Dahlk SL, Vashi PG, Grutsch JF, Hoffman S,
Lis CG: Bioelectrical impedance phase angle
in clinical practice: implications for prognosis
in advanced colorectal cancer. Am J Clin
Nutr 2004;80:1634�1638.
50 Paiva SI, Borges LR, Halpern-Silveira D, Assun��o
MC, Barros AJ, Gonzalez MC: Standardized
phase angle from bioelectrical impedance
analysis as prognostic factor for
survival in patients with cancer. Support
Care Cancer 2010;19:187�192.
51 Schwenk A, Beisenherz A, R�mer K, Kremer
G, Salzberger B, Elia M: Phase angle from
bioelectrical impedance analysis remains an
independent predictive marker in HIV-infected
patients in the era of highly active antiretroviral
treatment. Am J Clin Nutr 2000;
72:496�501.
52 Desport JC, Marin B, Funalot B, Preux PM,
Couratier P: Phase angle is a prognostic factor
for survival in amyotrophic lateral sclerosis.
Amyotroph Lateral Scler 2008;9:273�
278.
53 Wirth R, Volkert D, R�sler A, Sieber CC,
Bauer JM: Bioelectric impedance phase angle
is associated with hospital mortality of
geriatric patients. Arch Gerontol Geriatr
2010;51:290�294.
54 Mushnick R, Fein PA, Mittman N, Goel N,
Chattopadhyay J, Avram MM: Relationship
of bioelectrical impedance parameters to nutrition
and survival in peritoneal dialysis patients.
Kidney Int Suppl 2003;87:S53�S56.
55 Selberg O, Selberg D: Norms and correlates
of bioimpedance phase angle in healthy human
subjects, hospitalized patients, and patients
with liver cirrhosis. Eur J Appl Physiol
2002;86:509�516.
56 Shah S, Whalen C, Kotler DP, Mayanja H,
Namale A, Melikian G, Mugerwa R, Semba
RD: Severity of human immunodeficiency
virus infection is associated with decreased
phase angle, fat mass and body cell mass in
adults with pulmonary tuberculosis infection
in Uganda. J Nutr 2001;131:2843�2847.
57 Barbosa-Silva MC, Barros AJ: Bioelectric impedance
and individual characteristics as
prognostic factors for post-operative complications.
Clin Nutr 2005;24:830�838.
58 Durnin JV, Womersley J: Body fat assessed
from total body density and its estimation
from skinfold thickness: measurements on
481 men and women aged from 16 to 72
years. Br J Nutr 1974;32:77�97.
59 Hill GL: Body composition research: implications
for the practice of clinical nutrition.
JPEN J Parenter Enter Nutr 1992;16:197�218.
60 Pierson RN Jr, Wang J, Thornton JC, Van
Itallie TB, Colt EW: Body potassium by fourpi
40K counting: an anthropometric correction.
Am J Physiol 1984;246:F234�F239.
61 Sohlstr�m A, Forsum E: Changes in total
body fat during the human reproductive cycle
as assessed by magnetic resonance imaging,
body water dilution, and skinfold thickness:
a comparison of methods. Am J Clin
Nutr 1997;66:1315�1322.
62 Leonard CM, Roza MA, Barr RD, Webber
CE: Reproducibility of DXA measurements
of bone mineral density and body composition
in children. Pediatr Radiol 2009;39:148�
154.
63 Genton L, Karsegard VL, Zawadynski S, Kyle
UG, Pichard C, Golay A, Hans DB: Comparison
of body weight and composition measured
by two different dual energy X-ray absorptiometry
devices and three acquisition
modes in obese women. Clin Nutr 2006;25:
428�437.
64 Jaffrin MY: Body composition determination
by bioimpedance: an update. Curr Opin
Clin Nutr Metab Care 2009;12:482�486.
65 Kyle UG, Pichard C, Rochat T, Slosman DO,
Fitting JW, Thiebaud D: New bioelectrical
impedance formula for patients with respiratory
insufficiency: comparison to dual-energy
X-ray absorptiometry. Eur Respir J 1998;
12:960�966.
66 Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg
P, Elia M, Manuel G�mez J, Lilienthal
Heitmann B, Kent-Smith L, Melchior
JC, Pirlich M, Scharfetter H, Schols AMWJ,
Pichard C, ESPEN: Bioelectrical impedance
analysis. 2. Utilization in clinical practice.
Clin Nutr 2004;23:1430�1453.
67 Mourtzakis M, Prado CM, Lieffers JR, Reiman
T, McCargar LJ, Baracos VE: A practical
and precise approach to quantification of
body composition in cancer patients using
computed tomography images acquired during
routine care. Appl Physiol Nutr Metab
2008;33:997�1006.
68 Bolton CE, Ionescu AA, Shiels KM, Pettit RJ,
Edwards PH, Stone MD, Nixon LS, Evans
WD, Griffiths TL, Shale DJ: Associated loss
of fat-free mass and bone mineral density in
chronic obstructive pulmonary disease. Am
J Respir Crit Care Med 2004;170:1286�1293.
69 Kyle UG, Genton L, Karsegard L, Slosman
DO, Pichard C: Single prediction equation
for bioelectrical impedance analysis in
adults aged 20�94 years. Nutrition 2001;17:
248�253.
70 Kyle UG, Genton L, Slosman DO, Pichard C:
Fat-free and fat mass percentiles in 5,225
healthy subjects aged 15 to 98 years. Nutrition
2001;17(7�8):534�541.
71 Kotler DP, Burastero S, Wang J, Pierson RN
Jr: Prediction of body cell mass, fat-free
mass, and total body water with bioelectrical
impedance analysis: effects of race, sex, and
disease. Am J Clin Nutr 1996;64:489S�497S.
72 Kyle UG, Genton L, Mentha G, Nicod L, Slosman
DO, Pichard C: Reliable bioelectrical
impedance analysis estimate of fat-free mass
in liver, lung, and heart transplant patients.
JPEN J Parenter Enteral Nutr 2001;25:45�51.
73 Mattar L, Godart N, Melchior JC, Falissard
B, Kolta S, Ringuenet D, Vindreau C, Nordon
C, Blanchet C, Pichard C: Underweight
patients with anorexia nervosa: comparison
of bioelectrical impedance analysis using
five equations to dual X-ray absorptiometry.
Clin Nutr 2011, E-pub ahead of print.
74 Genton L, Karsegard VL, Kyle UG, Hans DB,
Michel JP, Pichard C: Comparison of four
bioelectrical impedance analysis formulas in
healthy elderly subjects. Gerontology 2001;
47:315�323.
75 Robert S, Zarowitz BJ, Hyzy R, Eichenhorn
M, Peterson EL, Popovich J Jr: Bioelectrical
impedance assessment of nutritional status
in critically ill patients. Am J Clin Nutr 1993;
57:840�844.
76 Pichard C, Kyle UG, Slosman DO, Penalosa
B: Energy expenditure in anorexia nervosa:
can fat-free mass as measured by bioelectrical
impedance predict energy expenditure in
hospitalized patients? Clin Nutr 1996;15:
109�114.
77 Kreymann KG, Berger MM, Deutz NE, Hiesmayr
M, Jolliet P, Kazandjiev G, Nitenberg
G, van den Berghe G, Wernerman J, DGEM
(German Society for Nutritional Medicine),
Ebner C, Hartl W, Heymann C, Spies C, ESPEN:
ESPEN guidelines on enteral nutrition:
intensive care. Clin Nutr 2006;25:210�223.
78 Singer P, Berger MM, van den Berghe G, Biolo
G, Calder P, Forbes A, Griffiths R, Kreyman
G, Leverve X, Pichard C, ESPEN: ESPEN
guidelines on parenteral nutrition: intensive
care. Clin Nutr 2009;28:387�400.
79 Magnuson B, Peppard A, Auer Flomenhoft
D: Hypocaloric considerations in patients
with potentially hypometabolic disease
states. Nutr Clin Pract 2011;26:253�260.
80 Rigaud D, Boulier A, Tallonneau I, Brindisi
MC, Rozen R: Body fluid retention and body
weight change in anorexia nervosa patients
during refeeding. Clin Nutr 2010;29:749�
755.
81 Kyle UG, Chalandon Y, Miralbell R, Karsegard
VL, Hans D, Trombetti A, Rizzoli R,
Helg C, Pichard C: Longitudinal follow-up of
body composition in hematopoietic stem cell
transplant patients. Bone Marrow Transplant
2005;35:1171�1177.
82 Pison CM, Cano NJ, Cherion C, Caron F,
Court-Fortune I, Antonini M, GonzalezBermejo
J, Meziane L, Molano LC, Janssens
JP, Costes F, Wuyam B, Similowski T, Melloni
B, Hayot M, Augustin J, Tardif C,
Lejeune H, Roth H, Pichard C, the IRAD Investigators:
Multimodal nutritional rehabilitation
improves clinical outcomes of malnourished
patients with chronic respiratory
failure: a controlled randomised trial. Thorax
2011;66:953�960.
83 Pichard C, Kyle U, Chevrolet JC, Jolliet P,
Slosman D, Mensi N, Temler E, Ricou B: Lack
of effects of recombinant growth hormone
on muscle function in patients requiring
prolonged mechanical ventilation: a prospective,
randomized, controlled study. Crit
Care Med 1996;24:403�413.
84 Pichard C, Kyle UG, Jolliet P, Slosman DO,
Rochat T, Nicod L, Romand J, Mensi N,
Chevrolet JC: Treatment of cachexia with recombinant
growth hormone in a patient before
lung transplantation: a case report. Crit
Care Med 1999;27:1639�1642.
85 Leslie WD, Miller N, Rogala L, Bernstein
CN: Body mass and composition affect bone
density in recently diagnosed inflammatory
bowel disease: the Manitoba IBD Cohort
Study. Inflamm Bowel Dis 2009;15:39�46.
86 van der Meij BS, Langius JA, Smit EF,
Spreeuwenberg MD, von Blomberg BM,
Heijboer AC, Paul MA, van Leeuwen PA:
Oral nutritional supplements containing (n-
3) polyunsaturated fatty acids affect the nutritional
status of patients with stage III nonsmall
cell lung cancer during multimodality
treatment. J Nutr 2010;140:1774�1780.
87 Ryan AM, Reynolds JV, Healy L, Byrne M,
Moore J, Brannelly N, McHugh A, McCormack
D, Flood P: Enteral nutrition enriched
with eicosapentaenoic acid (EPA) preserves
lean body mass following esophageal cancer
surgery: results of a double-blinded randomized
controlled trial. Ann Surg 2009;249:
355�363.
88 Ndekha MJ, Oosterhout JJ, Zijlstra EE, Manary
M, Saloojee H, Manary MJ: Supplementary
feeding with either ready-to-use fortified
spread or corn-soy blend in wasted
adults starting antiretroviral therapy in Malawi:
randomised, investigator blinded, controlled
trial. BMJ 2009;338:b1867�b1875.
89 Ha L, Hauge T, Iversen PO: Body composition
in older acute stroke patients after treatment
with individualized, nutritional supplementation
while in hospital. BMC Geriatrics
2010;10:75.
90 Genton L, Karsegard VL, Chevalley T, Kossovsky
MP, Darmon P, Pichard C: Body
composition changes over 9 years in
healthy elderly subjects and impact of physical
activity. Clin Nutr 2011;30:436�442.
91 Reid CL, Murgatroyd PR, Wright A, Menon
DK: Quantification of lean and fat tissue repletion
following critical illness: a case report.
Crit Care 2008;12:R79.
92 Antoun S, Birdsel Ll, Sawyer MB, Venner P,
Escudier B, Baracos VE: Association of skeletal
muscle wasting with treatment with
sorafenib in patients with advanced renal
cell carcinoma: results from a placebo-controlled
study. J Clin Oncol 2010;28:1054�
1060.
93 Prado CM, Antoun S, Sawyer MB, Baracos
VE: Two faces of drug therapy in cancer:
drug-related lean tissue loss and its adverse
consequences to survival and toxicity. Curr
Opin Clin Nutr Metab Care 2011;14:250�
254.
94 Schutz Y, Kyle UG, Pichard C: Fat-free mass
index and fat mass index percentiles in Caucasians
aged 18�98 y. Int J Obes 2002;26:
953�960.
95 Kyle UG, Schutz Y, Dupertuis YM, Pichard
C: Body composition interpretation: contributions
of the fat-free mass index and the
body fat mass index. Nutrition 2003;19:597�
604.
96 Kyle UG, Piccoli A, Pichard C: Body composition
measurements: interpretation finally
made easy for clinical use. Curr Opin Clin
Nutr Metab Care 2003;6:387�393.

Close Accordion
Naturopathic Medicine: Safe For Your Family

Naturopathic Medicine: Safe For Your Family

For those millions of Americans with chronic conditions, naturopathic doctors are offering new views and treatment options which are quickly becoming a primary line of care. This popularity has led to license ND’s across the country.

Like chiropractic doctors, naturopathic physicians operate in outpatient, non-emergency centers. Naturopathic doctors work alongside medical doctors.

Combining the wisdom of nature with the rigors of contemporary science, ND’s are highly trained as thorough diagnosticians. Utilizing the body’s inherent ability to restore and maintain health, ND’s treat patients with the least invasive and least toxic treatments. These modalities that are noninvasive and gentle are among the several reasons why naturopathic medicine is safe for you and your family.

little girl at doctors el paso tx _01Naturopathic Physicians Treat Patients Using Noninvasive & Conservative Modalities

Naturopathic physicians specialize in preventative medication and are specialists in clinical nutrition and dietary interventions. They believe diet and lifestyle is the basis to health.

According to some 2014 National Health Report from the Center for Disease Control and Prevention, seven of the top ten leading causes of death are chronic ailments that could have been prevented or delayed, and quality of life could have been improved through lifestyle changes, including proper diet, physical activity, avoidance of tobacco, and other types of risk reduction. Naturopathic doctors help treat chronic diseases including heart disease and cancer, which account for roughly half of all deaths each year.

Research on naturopathic medicine treatments for the prevention of cardiovascular disease and stress reveal that treatments aren’t only safe but effective. The randomized controlled study regarding naturopathic care for anxiety involved the treatment of 75 participants that received nutritional supplements, deep breathing relaxation techniques, dietary counseling, and herbal medicine. According to the analysis, significant differences between groups were observed in mental health, concentration, fatigue, social functioning, energy, and quality of life. The treatments also resulted in no adverse responses in any group.

In addition to nutrition and lifestyle recommendations, naturopathic medicine utilizes other noninvasive modalities such as hydrotherapy, manipulative therapy, botanical medicine, and homeopathy. Every one of these modalities is gentle, safe, effective, and based on nature’s healing power.

Malpractice Claims In Naturopathic Medicine Are Unusual

naturopathic medicine malpractice suit el paso txBecause naturopathic doctors treat their patients via conservative and noninvasive methods, malpractice rates are much lower for naturopathic doctors when compared with conventional doctors. Annual premiums for ND’s are about $3,800 compared to medical doctors with annual premiums of approximately $18,600, based on NCMIC, the largest malpractice insurance coverage for ND’s.

According to 2014 report from the California Naturopathic Doctors Association, because licensure was granted in 2005, nearly 500 practicing naturopathic doctors have a security record that is pristine with no cases of injury. The same report in Washington State says that from 2004-2014, there have only been 25 disciplinary actions against naturopathic doctors in ten years, in comparison to more than 20,000 disciplinary actions for MD’s.

Naturopathic Physicians Are Well Trained

naturopathic medicine el paso txDoctors attend licensed, four-year, on-campus, naturopathic medical colleges in which they study the latest advances in science and natural methods to illness prevention and management. Students gain a comprehensive knowledge of sciences by taking biochemistry, physiology, anatomy, pathology, and pharmacology classes.

Before graduation, students must complete no less than 4,100 hours of course and clinical training, which comprises over 1,200 hours of hands-on, supervised, clinical training. These doctors must also pass board rigorous examinations, to become a licensed practitioner.

ND’s are trained to work in conjunction along with medical physicians. Along with their two years of science coursework students spend 100 hours studying pharmaceuticals . ND’s know how to safely use their treatments integratively with conventional medicine and they understand their limitations.

ND’s Are Trained To Treat A Wide Selection Of Conditions And Populations

naturopathic medicine foot massage el paso txND’s are rigorously trained to practice in a primary care setting in which they experience conditions of all sorts and age groups. A substantial section of an ND’s education is diagnostic training in order that they can treat or refer patients to medical professionals when necessary. This training involves diagnostic tools common in traditional medicine, such as detailed health, disease, prescription medication histories, physical examinations, and lab testing and imaging, according to the American Association of Naturopathic Practitioners.

ND’s consider diet, lifestyle habits and options, exercise history, and also social/emotional factors to evaluate patients’ needs. These approaches often open doors to new and effective treatment choices.

ND’s treat allergies, chronic pain, digestive issues, hormonal imbalances, obesity, respiratory conditions, heart disease, fertility issues, menopause, adrenal fatigue, cancer, fibromyalgia, and chronic fatigue syndrome.

States Are Recognizing And Licensing ND’s

naturopathic license el paso txCurrently 20 states, the District of Columbia and two U.S. territories license naturopathic physicians with three states gaining licensure approval in the last year: Rhode Island, Massachusetts and Pennsylvania. More legislators have started to acknowledge the value of the naturopathic medicine profession that is growing.

“[Naturopathic medicine] has assisted lots of individuals suffering from chronic diseases get relief without chemicals and pharmaceuticals which may have unintended side effects,” Pennsylvania State Reps. Bryan Cutler and Steve Mentzer said in a statement.

New laws create ND licensing boards in each state, requiring that those who set up practice as an ND hold a graduate degree from an accredited naturopathic medical school.�ND’s must also pass national board examinations, which cover therapeutic and diagnostic subjects, fundamental sciences and clinical sciences.

At the NUHS Whole Health Center at Lombard, Ill, medicine doctors offer you a variety of mild and safe treatments such as hydrotherapy, nutritional counseling, homeopathy, botanical medicine, and more.

Excessive Weight Gain, Obesity, And Cancer

Excessive Weight Gain, Obesity, And Cancer

Opportunities For Clinical Intervention

Even though the effects of overweight and obesity on diabetes, cardiovascular disease, all-cause mortality, and other health outcomes are widely known, there is less awareness that overweight, obesity, and weight gain are associated with an increased risk of certain cancers. A recent review of more than 1000 studies concluded that sufficient evidence existed to link weight gain, overweight, and obesity with 13 cancers, including adenocarcinoma of the esophagus; cancers of the gastric cardia, colon and rectum, liver, gallbladder, pancreas, corpus uteri, ovary, kidney, and thyroid; postmenopausal female breast cancer; meningioma; and multiple myeloma.1�An 18-year follow-up of almost 93?000 women in the Nurses� Health Study revealed a dose-response association of weight gain and obesity with several cancers.2

Obesity Increase

obesity man eating oversized burger outside el paso txThe prevalence of obesity in the United States has been increasing for almost 50 years. Currently, more than two-thirds of adults and almost one-third of children and adolescents are overweight or obese. Youths who are obese are more likely to be obese as adults, compounding their risk for health consequences such as cardiovascular disease, diabetes, and cancer. Trends in many of the health consequences of overweight and obesity (such as type 2 diabetes and coronary heart disease) also are increasing, coinciding with prior trends in rates of obesity. Furthermore, the sequelae of these diseases are related to the severity of obesity in a dose-response fashion.2�It is therefore not surprising that obesity accounts for a significant portion of health care costs.

Cancers

obesity cancer-cells microsope el paso tx

A report released on October 3, 2017, by the US Centers for Disease Control and Prevention assessed the incidence of the 13 cancers associated with overweight and obesity in 2014 and the trends in these cancers over the 10-year period from 2005 to 2014.3�In 2014, more than 630?000 people were diagnosed as having a cancer associated with overweight and obesity, comprising more than 55% of all cancers diagnosed among women and 24% of cancers among men. Most notable was the finding that cancers related to overweight and obesity were increasingly diagnosed among younger people.

obesity man sits at beach el paso txFrom 2005 to 2014, there was a 1.4% annual increase in cancers related to overweight and obesity among individuals aged 20 to 49 years and a 0.4% increase in these cancers among individuals aged 50 to 64 years. For example, if cancer rates had stayed the same in 2014 as they were in 2005, there would have been 43?000 fewer cases of colorectal cancer but 33?000 more cases of other cancers related to overweight and obesity. Nearly half of all cancers in people younger than 65 years were associated with overweight and obesity. Overweight and obesity among younger people may exact a toll on individuals� health earlier in their lifetimes.2�Given the time lag between exposure to cancer risk factors and cancer diagnosis, the high prevalence of overweight and obesity among adults, children, and adolescents may forecast additional increases in the incidence of cancers related to overweight and obesity.

Clinical Intervention

obesity doctor in surgery room el paso tx

Since the release of the landmark 1964 surgeon general�s report on the health consequences of smoking, clinicians have counseled their patients to avoid tobacco and on methods to quit and provided referrals to effective programs to reduce their risk of chronic diseases including cancer. These efforts, coupled with comprehensive public health and policy approaches to reduce tobacco use, have been effective�cigarette smoking is at an all-time low. Similar efforts are warranted to prevent excessive weight gain and treat children, adolescents, and adults who are overweight or obese. Clinician referral to intense, multicomponent behavioral intervention programs to help patients with obesity lose weight can be an important starting point in improving a patient�s health and preventing diseases associatedwith obesity. The benefits of maintaining a healthy weight throughout life include improvements in a wide variety of health outcomes, including cancer. There is emerging but very preliminary data that some of these cancer benefits may be achieved following weight loss among people with overweight or obesity.4

The US Preventive Services Task Force (USPSTF)

obesity woman doctors office blood pressure taken el paso txThe US Preventive Services Task Force (USPSTF) recommends screening for obesity and intensive behavioral interventions delivered over 12 to 16 visits for adults and 26 or more visits for children and adolescents with obesity.5,6�Measuring patients� weight, height, and body mass index (BMI), consistent with USPSTF recommendations, and counseling patients about maintaining a healthy weight can establish a foundation for preventive care in clinical care settings. Scientific data continue to emerge about the negative health effects of weight gain, including an increased risk of cancer.1�Tracking patients� weight over time can identify those who could benefit from counseling and referral early and help them avoid additional weight gain. Yet less than half of primary care physicians regularly assess the BMI of their adult, child, and adolescent patients. Encouraging discussions about weight management in multiple health care settings, including physicians� offices, clinics, emergency departments, and hospitals, can provide multiple opportunities for patients and reinforce messages across contexts and care environments.

Weight Loss Programs

obesity young men working out in gym el paso txImplementation of clinical interventions, including screening, counseling, and referral, has major challenges. Since 2011, Medicare has covered behavioral counseling sessions for weight loss in primary care settings. However, the benefit has not been widely utilized.7�Whether the lack of utilization is a consequence of lack of clinician or patient knowledge or for other reasons remains uncertain. Few medical schools and residency programs provide adequate training in prevention and management of obesity or in understanding how to make referrals to such services. Obesity is a highly stigmatized condition; many clinicians find it difficult to initiate a conversation about obesity with patients, and some may inadvertently use alienating language when they do. Studies indicate that patients with obesity prefer the use of terms such as�unhealthy weight�or�increased BMI�rather than�overweight�or�obesity�and�improved nutrition and physical activity�rather than�diet and exercise.8�However, it is unknown if switching to these terms will lead to more effective behavioral counseling. Effective clinical decision support tools to measure BMI and guide physicians through referral and counseling interventions can provide clinicians needed support within the patient-clinician encounter. Inclusion of recently developed competencies for prevention and management of obesity into the curricula of health care professionals may improve their ability to deliver effective care. Because few primary care clinicians are trained in behavior change strategies like cognitive behavioral therapy or motivational interviewing, other trained health care professionals, such as nurses, pharmacists, psychologists, and dietitians could assist by providing counseling and appropriate referrals and help people manage their own health.

woman being tempted devil angel shoulder cake fruit obesity el paso txAchieving sustainable weight loss requires comprehensive strategies that support patients� efforts to make significant lifestyle changes. The availability of clinical and community programs and services to which to refer patients is critically important. Although such programs are available in some communities, there are gaps in availability. Furthermore, even when these programs are available, enhancing linkages between clinical and community care could improve patients� access. Linking community obesity prevention, weight management, and physical activity programs with clinical services can connect people to valuable prevention and intervention resources in the communities where they live, work, and play. Such linkages can give individuals the encouragement they need for the lifestyle changes that maintain or improve their health.

two men stomach cut out healthy obesity unhealthy el paso txThe high prevalence of overweight and obesity in the United States will continue to contribute to increases in health consequences related to obesity, including cancer. Nonetheless, cancer is not inevitable; it is possible that many cancers related to overweight and obesity could be prevented, and physicians have an important responsibility in educating patients and supporting patients� efforts to lead healthy lifestyles. It is important for all health care professionals to emphasize that along with quitting or avoiding tobacco, achieving and maintaining a healthy weight are also important for reducing the risk of cancer.

Targeting Obesity

Article Information

Greta M.�Massetti,�PhD1;�William H.�Dietz,�MD, PhD2;�Lisa C.�Richardson,�MD, MPH1

Author Affiliations

Corresponding Author:�Greta M. Massetti, PhD, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341 (gmassetti@cdc.gov).

Conflict of Interest Disclosures:�All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflict of Interest. Dr Dietz reports receipt of scientific advisory board fees from Weight Watchers and consulting fees from RTI. No other disclosures were reported.

Disclaimer:�The findings and conclusions in this report are those of the authors and not necessarily the official position of the Centers for Disease Control and Prevention.

References

1. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K; International Agency for Research on Cancer Handbook Working Group. Body fatness and cancer�viewpoint of the IARC Working Group. N Engl J Med. 2016;375(8):794-798. PubMed Article

2. Zheng Y, Manson JE, Yuan C, et al. Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA. 2017;318(3):255-269. PubMed Article

3. Steele CB, Thomas CC, Henley SJ, et al. Vital Signs: Trends in Incidence of Cancers Related to Overweight and Obesity�United States, 2005-2014. October 3, 2017. www.cdc.gov/mmwr/volumes/66/wr/mm6639e1.htm?s_cid=mm6639e1_w.

4. Byers T, Sedjo RL. Does intentional weight loss reduce cancer risk? Diabetes Obes Metab. 2011;13(12):1063-1072. PubMed Article

5. Grossman DC, Bibbins-Domingo K, Curry SJ, et al; US Preventive Services Task Force. Screening for obesity in children and adolescents: US Preventive Services Task Force recommendation statement. JAMA. 2017;317(23):2417-2426. PubMed Article

6. US Preventive Services Task Force. Final Recommendation Statement: Obesity in Adults: Screening and Management. December 2016. www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/obesity-in-adults-screening-and-management. Accessed September 21, 2017.

7. Batsis JA, Bynum JPW. Uptake of the centers for Medicare and Medicaid obesity benefit: 2012-2013. Obesity (Silver Spring). 2016;24(9):1983-1988. PubMed Article

8. Puhl R, Peterson JL, Luedicke J. Motivating or stigmatizing? public perceptions of weight-related language used by health providers. Int J Obes (Lond). 2013;37(4):612-619. PubMed Article

Nutrition Counseling In A Clinical Practice

Nutrition Counseling In A Clinical Practice

Wellness Chiropractor, Dr. Alexander Jimenez takes a look at discussing nutrition with patients in a clinical setting.

How Clinicians Can Do Better

Despite overwhelming evidence that relatively small dietary changes can significantly improve health, clinicians seldom discuss nutrition with their patients. Poor nutritional intake and nutrition-related health conditions, such as cardiovascular disease (CVD), diabetes, obesity, hypertension, and many cancers, are highly prevalent in the United States,1 yet only 12% of office visits include counseling about diet.2 Even among high- risk patients with CVD, diabetes, or hyperlipidemia, only 1 in 5 receive nutrition counseling.2 It is likely that many patients receive most of their nutrition information from other, and often unreliable, sources.

These data may reflect the minimal training, time, and reimbursement allocated to nutrition counseling (and preventive services in general) in clinical practice.3 Most physicians and other health care professionals receive limited education on nutrition in medical school (or other professional schools) or in postgraduate training. Just 25% of medical schools offer a dedicated nutrition course, a decline since the status of nutrition education in US medical schools was first assessed in 1985, and few medical schools achieve the 30 hours of nutrition education recommended by the National Academy of Sciences.4 As a result, physicians report inadequate nutrition knowledge and low self-efficacy for counseling patients about diet.3 In addition, time pressures, especially in primary care, limit opportunities to counsel on nutrition or address preventive issues beyond patients� acute complaints. Lack of time is frequently cited as the greatest barrier to counseling on nutrition and obesity.3

Moreover, nutrition and behavioral counseling have traditionally been non-reimbursed services. Few state Medicaid programs cover nutrition or obesity counseling, and before 2012, Medicare explicitly excluded coverage for obesity counseling; although now a reimbursed service for Medicare beneficiaries, just 1% of eligible Medicare beneficiaries receive this counseling.5 Dietitian counseling is also excluded by Medicare, unless patients have diabetes or renal disease. Although the Affordable Care Act mandates coverage for services graded A or B by the US Preventive Services Task Force, including nutrition counseling for patients with CVD risk factors and obesity counseling for patients with a body mass index of 30 or greater, existing private health insurance benefits are in- consistent, and the covered services are often unclear to both clinicians and patients, thereby limiting use.

Furthermore, health behavior change counseling is often frustrating given the current food environment, in which less nutritious foods tend to be less expensive, larger portioned, more easily accessible, and more heavily marketed than healthier options, making patient adherence 6 to nutrition advice challenging. Conflicting and confusing nutrition messages from popular books, blogs, and other media further complicate patient decision making.

Despite these unfavorable trends, there has been progress in this area. The evidence base supporting the benefits of nutrition intervention and behavioral counseling is expanding. Renewed focus on nutrition education in health care professional training is being driven by both student demand and the health care system. Although time pressures and reimbursement remain impediments, incentives and reimbursement options for nutrition and behavioral counseling are growing, and value-based care and health care team approaches hold promise to better align time demands and incentives for long-term care management. Initiatives to integrate clinical care and community resources offer opportunities to leverage resources that alleviate the clinician�s time commitment. There is evidence of some success; for instance, the amount of sugar-sweetened beverages consumed by individuals in the United States has declined substantially over the past 10 years.7

Clinicians can take the following reasonable steps to include nutrition counseling into the flow of daily practice:

1. Start the conversation. Several short, validated screen- ing questionnaires are available to quickly assess need for nutrition counseling, such as the Starting the Conversation tool8 (Table). This approach can be efficiently used prior to seeing the patient at an appointment, either delivered by medical assistants as part of vital sign assessment or as prescreening paperwork for patients to complete online or in the waiting room.

2. Structure the encounter.�Using methods such as the �5 A�s� (assess, advise, agree, assist, arrange), which has been adapted from tobacco counseling. Motivational interviewing, which has documented efficacy in numerous behavior change settings, is particularly helpful to engage patients who are not yet committed or are hesitant to consider behavioral change.

3. Focus on small steps. Changing lifelong nutrition behaviors can seem overwhelming, but even exceedingly small shifts can have an effect (Table). For example, increasing fruit intake by just 1 serving per day has the estimated potential to reduce cardiovascular mortality risk by 8%, the equivalent of 60 000 fewer deaths annually in the United States and 1.6 million deaths globally.9 Other examples include reducing intake of sugar-sweetened beverages, fast food meals, processed meats, and sweets, while increasing vegetables, legumes, nuts, and whole grains. Emphasize to patients that every food choice is an opportunity to accrue benefits, and even small ones add up. Small substitutions still allow for �treats,� such as replacing potato chips and cheese dip with tortilla chips and salsa, the latter lowering trans fats and saturated fat and increasing whole grain and vegetable intake (Table).

4. Use available resources. Numerous extracurricular resources are readily available for clinicians. The Nutrition in Medicine program offers online, evidence-based nutrition education and tutorials for clinicians and an online, core nutrition curriculum for medical students. The Dietary Guidelines for Americans offers evidence- based and freely available nutrition guidance, tutorials, and tools for clinicians and patients alike. A companion website, Choose My Plate, offers nutrition and counseling advice for clinicians and handy resources for patients, including recently added videos with useful examples of small substitutions that patients will appreciate.

5. Do not do it all at once. Expecting to create long-term behavioral change during a single episode of care is a recipe for frustration and failure, for both the patient and clinician. Empowering and sup- porting patients is an ongoing process, not a 1-time curative event. Use a few minutes at the close of a patient visit to identify opportunities for future counseling, offer to serve as a resource, and be- gin a discussion and support that can be reinforced over time. Take solace in knowing that small initial steps can quickly improve health; for example, reducing trans fats at a single meal (eg, replacing baked goods with fruit or nuts or fried foods with non-fried alternatives) promptly improves endothelial function.10

6. Do not do it all alone.�The primary care physician need not be the sole clinician who provides nutrition counseling. Proactive use of physician extenders (eg, physician assistants, nurses, medical assistants, and health coaches) and referrals can alleviate much of the burden for the busy clinician. Receptionists can distribute assessment and screening questionnaires for patients to complete in the waiting room; medical assistants can document behavioral change progress while assessing vital signs; administrative staff can identify and con- tact patients who are overdue for interaction. Large practices may benefit from including nutrition or health coaches on staff. Referring to clinical specialists and community-based support programs can significantly extend the clinician�s reach.7 In addition to registered dietitians, numerous clinical and community resources are available and often covered by insurance plans. Board-certified obesity medicine specialists, certified diabetes educators, and physician nutrition specialists are available as referrals in many areas. Diabetes Prevention Program group counseling sessions are now covered by Medicare and available throughout communities, such as in many YMCA sites, and electronically.

Summary

Although there is no conclusive evidence that these steps will improve diet and health outcomes for patients, there is virtually no harm in counseling and the potential gains, especially at the population level, are substantial. Nutrition and health behavior change must become a core competency for virtually all physicians and any other health professionals working with patients who have or are at risk for nutrition-related chronic disease.

A Healthier You

 

Scott Kahan, MD, MPH Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; and George Washington University School of Medicine, Washington, DC.

JoAnn E. Manson, MD, DrPH Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts; and Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.

ARTICLE INFORMATION
Published Online: September 7, 2017. doi:10.1001/jama.2017.10434 Conflict of Interest Disclosures: All authors have
completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were reported.

REFERENCES

1. Ward BW, Schiller JS, Goodman RA. Multiple chronic conditions among US adults: a 2012 update. Prev Chronic Dis. 2014;11:E62.
2. Office of Disease Prevention and Health Promotion. Healthy People 2020. www.healthypeople.gov/2020/data-search/Search-the-Data#srch=nutrition. Accessed January 23, 2017.
3. Kolasa KM, Rickett K. Barriers to providing nutrition counseling cited by physicians. Nutr Clin Pract. 2010;25(5):502-509.
4. Adams KM, Kohlmeier M, Zeisel SH. Nutrition education in U.S. medical schools: latest update of a national survey. Acad Med. 2010;85(9):1537-1542.
5. Batsis JA, Bynum JPW. Uptake of the Centers for Medicare and Medicaid obesity benefit: 2012-2013. Obesity (Silver Spring). 2016;24(9):1983-1988.
6. Kahan S, Cheskin LJ. Obesity and eating behaviors and behavior change. In: Kahan S, Gielen AC, Fagan PJ, Green LW, eds. Health Behavior Change in Populations. Baltimore, MD: Johns Hopkins University Press; 2014:chap 13.
7. Rehm CD, Pe�alvo JL, Afshin A, Mozaffarian D. Dietary intake among US adults, 1999-2012.JAMA. 2016;315(23):2542-2553.
8. Paxton AE, Strycker LA, Toobert DJ, Ammerman AS, Glasgow RE. Starting the conversation performance of a brief dietary assessment and intervention tool for health professionals. Am J Prev Med. 2011;40(1):67-71.
9. Mozaffarian D, Capewell S. United Nations� dietary policies to prevent cardiovascular disease. BMJ. 2011;343:d5747.
10. Williams MJA, Sutherland WHF, McCormick MP, de Jong SA, Walker RJ, Wilkins GT. Impaired endothelial function following a meal rich in used cooking fat.J Am Coll Cardiol. 1999;33(4):1050-1055

1918 Flu Epidemic & Chiropractic Care

1918 Flu Epidemic & Chiropractic Care

Historical Chiropractic News

Editors Note: The information provided here was forwarded to Planet Chiropractic by a chiropractor in Texas. Far too many people (including chiropractors) are not aware of historical events that took place during the 1917 � 1918 Spanish Flu years, which involved chiropractors caring for thousands that suffered influenza infection during those times. With such a firestorm of media coverage and fear surrounding the Swine Flu Pandemic, it would be irresponsible not to attempt seeking knowledge regarding influenza events of the past.

The Official History of Chiropractic in Texas
By Walter R. Rhodes, DC
Published by the Texas Chiropractic Association � 1978

CHAPTER VI:
THE THREE GREAT SURVIVAL FACTORS
[Excerpts by Dan Murphy, DC]

�The 1917 � 1918 influenza epidemic swept silently across the world bringing death and fear to homes in every land. Disease and pestilence, especially the epidemics, are little understood even now and many of the factors that spread them are still mysterious shadows, but in 1917-1918 almost nothing was known about prevention, protection, treatment or cure of influenza. The whole world stood at its mercy, or lack of it.�

�But out of that particular epidemic, the young science of chiropractic grew into a new measure of safety. While many struggles would lie ahead this successful passage of the profession into early maturity assured its immediate survival and made the eventual outcome of chiropractic a matter for optimism. If there had been any lack of enthusiasm among the doctors of chiropractic, or a depleting of the sources of students then the epidemic took care of them too. These chiropractic survivors of the flu epidemic were sure, assured, determined, and ready to fight any battle that came up. The effect of the epidemic becomes evident in interviews made with old-timers practicing in those years. The refrain comes repeatedly,�

�I was about to go out of business when the flu epidemic came � but when it was over, I was firmly established in practice.�

�Why? The answer is reasonably simple. Chiropractors got fantastic results from influenza patients while those under medical care died like flies all around.� �Statistics reflect a most amazing, almost miraculous state of affairs. The medical profession was practically helpless with the flu victims but chiropractors seemed able to do no wrong.�

�In Davenport, Iowa, 50 medical doctors treated 4,953 cases, with 274 deaths. In the same city, 150 chiropractors including students and faculty of the Palmer School of Chiropractic, treated 1,635 cases with only one death.�

�In the state of Iowa, medical doctors treated 93,590 patients, with 6,116 deaths � a loss of one patient out of every 15. In the same state, excluding Davenport, 4,735 patients were treated by chiropractors with a loss of only 6 cases � a loss of one patient out of every 789.�

II.

�National figures show that 1,142 chiropractors treated 46,394 patients for influenza during 1918, with a loss of 54 patients � one out of every 886.�

�Reports show that in New York City, during the influenza epidemic of 1918, out of every 10,000 cases medically treated, 950 died; and in every 10,000 pneumonia cases medically treated 6,400 died. These figures are exact, for in that city these are reportable diseases.�

�In the same epidemic, under drugless methods, only 25 patients died of influenza out of every 10,000 cases; and only 100 patients died of pneumonia out of every 10,000 cases. This comparison is made more striking by the following table:�

Influenza Cases Deaths � Under medical methods � Under drugless methods �In the same epidemic reports show that chiropractors in Oklahoma treated 3,490 cases of influenza with only 7 deaths. But the best part of this is, in Oklahoma there is a clear record showing that chiropractors were called in 233 cases where medical doctors had cared for the patients, and finally gave them up as lost. The chiropractors saved all these lost cases but 25.�

�Statistics alone, however, don�t put in that little human element needed to spark the material properly. Dr. S. T. McMurrain [DC] had a makeshift table installed in the influenza ward in Base Hospital No. 84 unit stationed in Perigau, in Southwestern France, about 85 kilometers from Bordeaux [during WWI]. The medical officer in charge sent all influenza patients in for chiropractic adjustments from Dr. McMurrain [DC] for the several months the epidemic raged in that area. Lt. Col. McNaughton, the detachment commander, was so impressed he requested to have Dr. McMurrain [DC] commissioned in the Sanitary Corps.�

III.

�Dr. Paul Myers [DC] of Wichita Falls was pressed into service by the County Health Officer and authorized to write prescriptions for the duration of the epidemic there � but Dr. Myers [DC] said he never wrote any, getting better results without medication.�

Dr. Helen B. Mason [DC], whose �son, when only a year old, became very ill with bronchitis. My husband and I took him to several medical specialists without any worthwhile results. We called a chiropractor, as a last resort, and were amazed at the rapidity of his recovery. We discussed this amazing cure at length and came to the decision that if chiropractic could do as much for the health of other individuals as it had done for our son we wanted to become chiropractors.�

Dr. M. L. Stanphill [DC] recounts his experiences: �I had quite a bit of practice in 1918 when the flu broke out. I stayed (in Van Alstyne) until the flu was over and had the greatest success, taking many cases that had been given up and restoring them back to health. During the flu we didn�t have the automobile. I went horseback and drove a buggy day and night. I stayed overnight when the patients were real bad. When the rain and snow came I just stayed it out. There wasn�t a member of my family that had the flu.�

When he came to Denison he said: �I had a lot of trouble with pneumonia when I first came. Once again took all the cases that had been given up. C. R. Crabetree, who lived about 18 miles west of Denison, had double pneumonia and I went and stayed all night with him and until he came to the next morning. He is still living today. That gave me a boost on the west side of town.�

�And when interviews of the old timers are made it is evident that each still vividly remembers the 1917-1918 influenza epidemic. We now know about 20 million persons [recent estimates are as high as 100 million deaths] around the world died of the flu with about 500,000 Americans among that number. But most chiropractors and their patients were miraculously spared and we repeatedly hear about those decisions to become a chiropractor after a remarkable recovery or when a close family member given up for dead suddenly came back to vibrant health.�

�Some of these men and women were to become the major characters thrust upon the profession�s stage in the 20�s and 30�s and they had the courage, the background and the conviction to withstand all that would shortly be thrown against them� [including being thrown in jail for practicing medicine without a license].

�The publicity and reputation of such effectiveness in handling flu cases also brought new patients and much acclaim from people who knew nothing of chiropractic before 1918.�

IV.

�The first survival factor for chiropractic: they were the legal and legislative salvation. But the fabulous success of chiropractic in combating the 1917-1918 influenza outbreak was the public relations breakthrough that can certainly be called the second great survival factor. Better acceptance by the public followed and more patients meant financial safety for practicing chiropractors. Dedicated chiropractors came into the profession in increasing numbers and they had a sure sense of certainty, heady conviction, and a great willingness to fight for the cause.�

Other Texas Chiropractic History (view more at chirotexas.com)

1916 � Texas State Chiropractic Association Formed

1916 � First TSCA annual convention held at the St. Anthony Hotel in San Antonio

1917 � First chiropractic bill introduced into Texas Legislature

1923 � Second chiropractic bill introduced into Texas Legislature

Source:

PlanetChiropractic.com

Biocentrism and How it Applies to Health Care | Biocentric Chiropractic

Biocentrism and How it Applies to Health Care | Biocentric Chiropractic

In the last few decades, important puzzles of mainstream science have generated a re-evaluation of the nature of the world which goes far beyond anything we could have imagined. A more precise comprehension of the planet requires that we believe it is biologically centered.

 

It’s a very simple but wonderful notion that Biocentrism tries to clarify. Knowing this fully yields answers. This new version, blending physics and biology rather than keeping them separate, and placing observers to the equation, is called biocentrism. Its requirement is driven in part by the attempts to make a theory of everything, an overarching view.

 

What’s Biocentrism?

 

Biocentrism, in an ecological and political sense, as well as literally, is a moral standpoint that extends value that is inherent to all things. It’s an understanding of how the earth works as it relates to biodiversity. It stands in contrast to anthropocentrism, which centers only on humans value. The biocentrism extends value to the whole of nature.

 

The term biocentrism encompasses all environmental ethics that expand the standing of moral object from human beings to all living things in character. Ethics calls for a rethinking of the relationship between people and nature. It states that character does not exist only to be consumed or used by people, but that people are only one species among many, and that because we are a part of an ecosystem, any activities which negatively influence the living systems of which we’re a part adversely affect us as well, whether or not we maintain that a biocentric worldview.

 

Biocentrism and Human Health

 

Biocentrists endorse species’ equality. But is endorsing the equality of species compatible with maintaining the health of individuals, or should at least sometimes the health of humans be forfeited for the sake of other species? In the following guide, the compatibility of individual and biocentrism health is discussed in detail. It is asserted that maintaining the prestige of species is in no way in conflict. In fact, It can be additionally argued that there’s a relationship between the prerequisites for human well-being and the requirements of biocentrism.

 

Biocentrists are well known for their devotion to the equality of species. Yet if this dedication is to be defensible, it may be argued that it has to be understood by analogy with humans’ equality. Accordingly, just as we claim that people are equivalent, yet justifiably treat them otherwise, we ought to also have the ability to claim that all species are equal, yet justifiably treat them as such. In human ethics, there are interpretations which we give. Everybody is equally at liberty to pursue her or his own interests, but this allows us to always prefer ourselves to others, who are understood to be like competitions in a competitive match.

 

In fact, this belief �and how it could relate to human health and wellness can be closely correlated with the study of microbiology and it’s institution. Microbiology is a modern discipline intended to objectively study microorganisms, including pathogens and nonpathogens. Also, it can be argued that an exclusively biocentric microbiology is crucial for enhancing our understanding not only of the microbial world outside, but also that of our own guts, and our own species.

 

Since its birth, microbiology associated with biocentrism has been associated with human health and individual pursuits (e.g., cheese, yogurt, beer, wine, pickles, and recently fuel). Biology is largely microscopic; large plants, other animals that are macroscopic, and individuals are the exception. The simple fact that human eyes have a limited range shouldn’t stop individuals from embracing a realistic view of nature. Nevertheless, research institutions and funding agencies give priority to the analysis of microbes which interact with human health, the ones that make energy, or the ones that improve the taste and yield of individual foods, largely ignoring the vast majority of projected bacterial and archaeal cells on Earth.

 

The area of metagenomics has crossed the medical barrier, and it is becoming common to see that the gut and mouth microbiomes, by way of example, are being examined and explained similarly to those in other environments.

 

Biocentric microbiology helps us better understand pathogenesis. Classifying microbes into friends and foes, often preventing us from recognizing the main goal of each microbe, which will be not any different from the most important objective of every organism: survival. Biocentric microbiology will especially benefit genomics, phylogenomics evolutionary biology.

 

It may be argued that microbiology will progress fields associated with human health, including diagnostics, immunoprophylaxis, and therapeutics. The classical illustration of how diagnostics have profited from environmental microbiology is that the development of polymerase chain reaction (PCR)-based microbial analysis tools. PCR is essential in identifying and quantifying human pathogens, and is the only reliable method.

 

As with a variety of treatments and alternative care methods, biocentrism in the medical field can ultimately help health care professionals improve the well-being of humans simply from the understanding that the biology around us, by keeping it safe, can substantially help improve the overall health and wellness of human beings.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�
 

By Dr. Alex Jimenez

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center