ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page

Functional Medicine

Back Clinic Functional Medicine Team. Functional medicine is an evolution in the practice of medicine that better addresses the healthcare needs of the 21st century. By shifting the traditional disease-centered focus of medical practice to a more patient-centered approach, functional medicine addresses the whole person, not just an isolated set of symptoms.

Practitioners spend time with their patients, listening to their histories and looking at the interactions among genetic, environmental, and lifestyle factors that can influence long-term health and complex, chronic disease. In this way, functional medicine supports the unique expression of health and vitality for each individual.

By changing the disease-centered focus of medical practice to this patient-centered approach, our physicians are able to support the healing process by viewing health and illness as part of a cycle in which all components of the human biological system interact dynamically with the environment. This process helps to seek and identify genetic, lifestyle, and environmental factors that may shift a person’s health from illness to well-being.


Essential Vitamin Intake for Cardiovascular Disease | Wellness Clinic

Essential Vitamin Intake for Cardiovascular Disease | Wellness Clinic

The American Heart Association, or the AHA, has had a consistent, long-standing focus towards providing the public with the necessary information regarding the role of nutrition reducing the risk of cardiovascular disease. Periodic AHA Dietary Guidelines�support a dietary pattern that promotes the consumption of fruits, vegetables, whole grains, low-fat or nonfat dairy products, fish, legumes, poultry, and lean meats. An improper nutrition consisting of foods rich in saturated and trans fats, can raise the human body’s “bad” cholesterol levels, increasing the risk of cardiovascular disease.

 

How can vitamins improve the risk of cardiovascular disease?

 

The American Heart Association’s Dietary Guidelines can help with weight control as well as provide a high nutrient density to meet all nutritional needs.�As reviewed in the first AHA Science Advisory, epidemiological and population studies reported that some vitamins, such as vitamin C, vitamin E, vitamin D and vitamin B6 (pyridoxine), may beneficially affect cardiovascular disease. Reducing the overall risk of cardiovascular disease�can be achieved by the long-term consumption of dietary patterns consistent with the AHA Dietary Guidelines. Vitamin C, vitamin E, vitamin D and vitamin B6 (pyridoxine), each perform a specific function in the prevention and improvement of CVD. The following are described in detail, below.

 

Vitamin C

 

Vitamin C is a powerful water-soluble electron-donor. At physiologic levels, it is an antioxidant, although at supra-physiologic doses such as those achieved with intravenous vitamin C, it donates electrons to different enzymes in a pro-oxidative effect. At physiologic doses, vitamin C recycles vitamin E, improves ED and produces a diuresis. Intake of vitamin C and plasma ascorbate concentration in humans is related to heart rate, DBP and SBP.

 

A review of clinical trials suggest that vitamin C dosing in 250 mg twice daily will lower SBP 5-7 mmHg and diastolic BP 2-4 mmHg in more than 8 weeks. Vitamin C may give rise to a sodium water diuresis, enhance nitric oxide, improve endothelial function, increase nitric oxide and PGI2, decrease adrenal hormone production, improve sympathovagal balance, boost RBC Na/K ATPase, boost SOD, improve aortic elasticity and elasticity, enhance circulation conducive vaso-dilation, reduce pulse wave speed and augmentation index, raise cyclic GMP, trigger potassium channels, reduce cytosolic calcium and reduce serum aldehydes. Vitamin C prevents ED, decreasing the binding affinity of the AT 1 receptor for angiotensin II by disrupting the disulfide bridges, it enriches the antihypertensive effects of drugs and medications in the elderly with hypertension. In patients with hypertension already on maximum pharmacologic therapy, 600 mg of vitamin C lowered the BP in 20/16 mmHg. The lower the first ascorbate serum amount, the greater the blood pressure response. A serum level of 100 ?mol/L is recommended. The SBP and 24 ABM reveal the most important reductions with chronic oral administration of Vitamin C. Block et al within an elegant depletion-repletion study of vitamin C revealed an inverse correlation of plasma ascorbate levels, SBP and DBP. At a meta-analysis of thirteen clinical trials jointly with 284 patients, vitamin C in 500 mg/d in more than 6 weeks decreased SBP 3.9 mmHg and DBP 2.1 mmHg. Hypertensive individuals were found to have significantly lower plasma ascorbate levels in comparison with normotensive subjects (40 ?mol/L vs 57 ?mol/L respectively), and plasma ascorbate is inversely correlated with BP even in healthy, normotensive individuals.

 

Vitamin E

 

Most studies have not shown reductions in BP with most forms of tocopherols or tocotrienols.. Patients with T2DM and controlled hypertension (130/76 mmHg) on prescription drugs and medications with an average blood pressure of 136/76 mmHg were administered mixed tocopherols containing 60 percent gamma, 25 per cent delta and 15 percent alpha tocopherols. The BP really increased by 6.8/3.6 mmHg in the research patients (de < 0.0001) but was significantly less compared to this growth with alpha tocopherol of 7/5.3 mmHg (p< 0.0001). This might be a reflection of drug interactions with tocopherols via cytochrome P 450 (3A4 and 4F2) and reduction in the serum levels of the pharmacologic therapy treatments that were concurrently being granted to the patients. Gamma tocopherol could have natriuretic effects by inhibition of this potassium channel in the thick ascending limb of the loop of Henle and reduced BP. Insulin sensitivity improves and enhances adiponectin expression through gamma dependent procedures, which have the potential to serum glucose and lower BP. When vitamin E has an effect, it is most likely small and might be restricted to those with cardiovascular disease or untreated hypertensive patients or psychiatric problems, such as hyperlipidemia or diabetes.

 

Vitamin D

 

Vitamin D3 may have an independent and immediate role in the regulation of insulin metabolism and BP. Blood pressure, with its consequences, affects the RAA system, control of adrenal glands, immune system, calcium-phosphate metabolism and ED. The circulating PRA amounts are higher which increases angiotensin II if the vitamin D degree is below 30 ng/mL, increases BP and blunts plasma renal blood flow. The lower the degree of vitamin D, the greater the chance of hypertension, with the lowest quartile of serum Vitamin D with an incidence of hypertension in addition to the maximum quartile. Vitamin D3 markedly suppresses renin transcription. Its function in quantity, electrolytes and BP homeostasis indicates that Vitamin D3 is important in amelioration of hypertension. Vitamin D lowers ADMA, suppresses pro-inflammatory cytokines for example TNF-?, raises nitric oxide, improves endothelial function and arterial elasticity, decreases vascular smooth muscle hypertrophy, modulates electrolytes and blood glucose, increases insulin sensitivity, reduces free fatty acid concentration, regulates the expression of the natriuretic peptide receptor additionally reduces HS-CRP.

 

The hypotensive effect of vitamin D has been inversely related to the pretreatment serum levels of 1,25(OH)2D3and additive to antihypertensive drugs and medications. Pfeifer et al revealed that supplementation with vitamin D3 and calcium is more effective in reducing SBP. In a study, 148 women with low 25(OH)2D3 levels, the management of 1200 mg calcium and 800 IU of vitamin D3 decreased SBP 9.3 percent more (p< 0.02) in comparison to 1200 mg of calcium alone. The HR fell 5.4 percent (p = 0.02), but DBP wasn’t changed. The scope in BP reduction was 3.6/3.1 to 13.1/7.2 mmHg. The reduction in BP is about serum level of vitamin D3, the dose of vitamin D3 and the level of vitamin D3, but BP is reduced only in patients. Although vitamin D deficiency is associated with hypertension in observational studies, their meta-analysis and randomized clinical trials have yielded inconclusive results. Vitamin D receptor gene polymorphisms may effect the risk of hypertension. A 25 hydroxyvitamin D level of 60 ng/mL is suggested.

 

Vitamin B6 (Pyridoxine)

 

Low serum vitamin B6 (pyridoxine) levels are linked to hypertension in several individuals. One research study conducted by Aybak et al demonstrated that blood pressure was significantly reduced by high dose vitamin B6 at 5 mg/kg daily for 4 wk by 14/10 mmHg. Pyridoxine (vitamin B6) is a cofactor in neurotransmitter and hormone synthesis in the central nervous system(norepinephrine, epinephrine, serotonin, GABA and kynurenine), raises cysteine synthesis to neutralize aldehydes, improves the production of glutathione, blocks calcium channels, enhances insulin resistance, reduces central sympathetic tone and reduces end organ responsiveness to glucocorticoids and mineralo-corticoids. Vitamin B6 is decreased using pyrollactams and chronic therapy. Vitamin B6 has actions to diuretics alpha agonists and CCB’s. The proposed dose is 200 mg/d orally.

 

In conclusion, individuals with cardiovascular disease can benefit from the proper diet and nutrition. Essential vitamins found in the dietary patterns provided by the American Heart Association’s Dietary Guidelines can ultimately help reduce and prevent the risk of cardiovascular disease as well as help improve overall heart health. An improper nutrition consisting of foods rich in saturated and trans fats can increase the prevalence of cardiovascular disease. While diagnosis and drugs/medications can be prescribed to treat cardiovascular disease, a balanced nutrition can have similar effects.� The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

By Dr. Alex Jimenez

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: About Chiropractic

 

 

Omega-3-6-9 Fatty Acids and Cardiovascular Disease | Wellness Clinic

Omega-3-6-9 Fatty Acids and Cardiovascular Disease | Wellness Clinic

Since the original American Heart Association, or the AHA, Science Advisory was published in 1996, several fundamental new findings have been reported about the benefits of omega fatty acids on cardiovascular disease, CVD, particularly that of omega-3 fatty acids.�The evidence supporting the clinical benefits of omega fatty acids and CVD comes from a variety of research studies as well as randomized, controlled trials.

 

How are omega fatty acids beneficial for cardiovascular disease?

 

Large-scale epidemiologic studies suggest that people at risk for coronary heart disease, or CHD, benefit from consuming omega-3 fatty acids from plants and marine sources. Further research studies suggest that both omega 3 and omega 6 fatty acids are most essential towards improving heart health, although omega-9 fatty acids also provide beneficial properties for individuals with CVD, CHD and hypertension.

Omega-3 & Omega-6 Fatty Acids

The omega-3 fatty acids found in cold water fish, fish oils, flax, flax seed, flaxseed oil and nuts demonstrated they could lower blood pressure, or BP, obser-vational, epidemiologic and in prospective clinical trials The findings improved in response to hypertension and other cardiovascular diseases.

 

Studies indicate that DHA at 2 g/d reduces BP and heart rate. The reduction in BP is 8/5 mmHg and roughly 6 beats/min drops generally. Fish oil in 4-9 g/d or mix of DHA and EPA in 3-5 g/d may also lessen BP. However, the production of EPA and eventually DHA from ALA decreases in the presence of large LA (the crucial omega-6 fatty acid), saturated fats, trans fatty acids, alcohol, and several nutrient deficiencies (magnesium, vitamin B6) as well as aging, all of which inhibit the desaturase enzymes.) For reducing BP in hypertensive patients, eating cold water fish each week may be as effective as high dose fish oil, and the protein in the fish might provide additional beneficial effects. In patients with chronic kidney disease, for example, 4 g of omega-3 fatty acids decreased BP measured with 24 hours ABM over 8 weeks from 3.3/2.9 mmHg, compared to placebo (p < 0.0001).

 

The perfect ratio of omega-6 FA into omega-3 FA is between 1:1 to 1:4 with a polyunsaturated to saturated fat ratio greater than 1.5 to 2:0. ENOS while nitric oxide increases, improving function, enhancing insulin sensitivity to suppress ACE activity, reduce calcium spike and improve parasympathetic tone. The FA family includes GLA, LA, dihomo-GLA and AA, which generally do not considerably lower blood pressure, however, it might stop increases in BP. GLA can obstruct hypertension by reducing levels raising PGE1 and PGI2, reducing affinity and AT1R density.

 

The omega-3 FA possess a large number of additional effects that modulates reduction of ACE activity, growth in ED, reduction in plasma nor-epinephrine and boost in parasympathetic tone. Blood pressure, for instance, increases in nitric oxide and eNOS for the improvement of insulin resistance. The recommended daily dose is 3000 to 5000 mg/d of combined DHA and EPA in a ratio of 3 parts EPA to two parts DHA and roughly 50 percent of the dose as GLA along with gamma/delta tocopherol at 100 mg per gram of DHA and EPA to find the omega-3 index to 8 percent or higher to decrease BP and provide optimum cardioprotection. DHA is more effective than EPA and must be awarded at two g/d if administered independently.

 

Omega-9 Fatty Acids

 

Olive oil is abundant in the omega-9 monounsaturated fat (MUFA) lactic acid, that has been associated with BP and lipid decrease in Mediterranean diets and in other types of diets. MUFAs and olive oil show reductions in BP. In a single study, the SBP fell 8 mmHg (p? 0.05) and the DBP fell 6 mmHg (p? 0.01) at the practice and 24 hour ambulatory BP monitoring in the MUFA treated subjects compared to this PUFA handled issues. Additionally, the requirement for antihypertensive drugs was reduced by 48 percent in the MUFA group vs 4 per cent at the omega-6 PUFA group (de < 0.005).

 

Extra virgin olive oil (EVOO) was more powerful than sunflower oil in lowering SBP at a group of 31 elderly hypertensive patients in a double blind randomized cross-over study. The SBP has been 136 mmHg from the EVOO treated subjects vs 150 mmHg in the sunflower treated group (p < 0.01). Olive oil also reduces BP in diabetic subjects. It is the high oleic acid content in oil which reduces BP. In stageIhypertensive sufferers, oleuropein-olive leaf (Olea Eurpoaea) extract 500 mg bid for 8 wk decreased BP 11.5/4.8 mmHg which was similar to captopril 25 mg bid. Olea Eupopea L aqueous infusion administered to 12 patients using hypertension in 400 mg qid for 3 mo significantly reduced BP (p < 0.001). Oil ingestion in the EPIC study of 20343 subjects was associated with both systolic and diastolic BP. In sunlight analysis of 6863 areas, BP was inversely associated with olive oil consumption, but just in males. At doses of 500 to 1000 in comparison to placebo leaf extract demonstrated a dose response reduction in a study of 40 hypertensive twins.

 

The very low dose groups diminished BP 3/1 mmHg and the dose 11/4 mmHg. A double blind, randomized, crossover dietary intervention study over 4 mo using polyphenol rich olive oil 30 mg/d decreased BP in the study group by 7.91/6.65 mmHg and improved endothelial function. OxLDL, the ADMA levels and HS-CRP were decreased in the olive oil group. Plasma nitrites and nitrates improved and region after ischemia improved in the treated group. Jojoba oil exerts calcium channel antagonist impacts inhibits the receptor that is AT1R and enhances wave reflections and augmentation index. EVOO is also contains lipid-soluble phytonutrients such as polyphenols. Approximately 5 mg of phenols are found in 10 g of EVOO. About 4 tablespoons of EVOO is equivalent to 40 gram of EVOO that’s the overall necessary to get substantial reductions.

 

In conclusion, research studies and randomized, controlled trials,�have convincingly documented that omega fatty acids can significantly reduce the occurrence of cardiovascular disease, CHD and hypertension. Additional clinical studies are needed to confirm the� benefits of omega fatty acids. A food-based approach to increasing omega-3-6-9 fatty acids is preferable, although supplements are a suitable alternative. Additional clinical and mechanistic studies are needed to confirm and further define the health benefits of omega fatty acids for both primary and secondary prevention.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

Green-Call-Now-Button-24H-150x150-2-3.png

By Dr. Alex Jimenez

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: About Chiropractic

 

 

How Amino Acids Can Benefit Cardiovascular Disease | Wellness Clinic

How Amino Acids Can Benefit Cardiovascular Disease | Wellness Clinic

Among the numerous risk factors which can lead to cardiovascular disease and hypertension, dietary and nutritional imbalances are among some of the most prevalent causes behind heart health issues, according to various research studies. While vitamin and mineral deficiencies have been commonly linked to the development of CVD and hypertension, other related compound deficiencies may be just as important towards heart health.

 

What’s the significance between amino acids and cardiovascular disease?

 

Many research studies have found a fundamental correlation between the proper intake of amino acids and cardiovascular disease, as well as the increased risk of hypertension. As previously discussed, protein plays a crucial role in almost all biological processes and amino acids are the building blocks of it.�A large proportion of our cells are made up of amino acids, meaning they carry out many important bodily functions, such as giving cells their structure as well as transporting and storing nutrients. Amino acids have an influence on the function of organs, glands, tendons and arteries.

 

Amino Acids for Cardiovascular Disease

 

Researchers believe that almost every disease is the result of imbalances to our metabolism and amino acids are mainly responsible for achieving a balanced metabolism.�The objective is that there is a complete amino acid content, maintained in the correct combination. If the one or more amino acids are not available in sufficient quantities, the production of protein is weakened and the metabolism may only function in a limited way. The following are several of the amino acids necessary to sustain overall health and wellness, improving the risk of cardiovascular disease and hypertension.

 

L-Arginine

 

L-arginine and endogenous methylarginines are the precursors for the production of NO, or nitric oxide, which has beneficial cardiovascular effects, mediated through conversion of L-arginine to nitric oxide, or NO from eNOS. Patients with hypertension, hyperlipidemia, diabetes mellitus and atherosclerosis have increased levels of HSCRP and inflammation, greater microalbumin, low levels of apelin (stimulates NO in the endothelium), elevated amounts of arginase (breaks down arginine) and increased serum levels of ADMA, which inactivates NO.

 

Under normal physiological conditions, intracellular arginine levels significantly exceed the Km of eNOS that is less than 5 ?mol. But, endogenous NO formation is dependent on extracellular arginine concentration. The intracellular concentrations of L-arginine are 0.1-3.8 mmol/L in endothelial cells while the plasma concentration of arginine is 80-120 ?mol/L that is about 20-25 times greater than the MMC. Despite this, mobile NO formation depends on exogenous L-arginine and this really is actually the paradox. Arginine can be a more powerful antioxidant and blocks the formation of endothelin, reduces renal sodium reabsorption and modulates BP. The NO production in endothelial cells is closely coupled to arginine uptake indicating that transport mechanics play a significant part in the regulation of function. Arginine can raise vascular and NO bioavailability and influence perfusion, function and BP. Molecular eNOS might occur in the absence of tetrahydrobiopterin which stabilizes eNOS, which leads to production of ROS.

 

Individual studies in hypertensive and normotensive subjects of L-arginine of parenteral and oral administrations demonstrate an antihypertensive effect as well as progress in coronary artery blood flow and peripheral blood circulation in PAD. The BP decreased by 6.2/6.8 mmHg on 10 g/d of L-arginine when provided as a nutritional supplement or even organic foods to a group of hypertensive subjects. Arginine produces a significant decrease in BP and improved impact in normotensive and hypertensive individuals that is comparable in magnitude to that plan. Arginine awarded in g/d also significantly reduced BP in women with gestational hypertension without proteinuria, decreased the demand for anti-hypertensive therapy, decreased maternal and neonatal complications and protracted the maternity. The combination of arginine (1200 mg/d) and N-acetyl cysteine (NAC) (600 mg bid) administered over 6 mo to hypertensive patients with type 2 diabetes, lowered SBP and DBP (p < 0.05), greater HDL-C, diminished LDL-C and oxLDL, decreased HSCRP, ICAM, VCAM, PAI-I, fibrinogen and IMT. An analysis of 54 hypertensive subjects given grams three times every day for four weeks had significant reductions in 24 h ABM. A meta-analysis of 11 trials with 383 subjects administered arginine 4-24 g/d discovered average reduction in BP of 5.39/2.66 mmHg (p < 0.001) in 4 wk. Although these doses of L-arginine seem to be secure, no long term studies in humans have been released at this time and there are worries of a pro-oxidative influence or even an increase in mortality in individuals who might have severely dysfunctional endothelium, advanced atherosclerosis, CHD, ACS or MI. In addition to the path, there is an pathway that is connected to nitrates out of berries, beetroot juice along with the DASH diet which are converted into nitrites by salivary symbiotic, GI and oral bacteria. Administration of extract or beetroot juice at 500 mg/d improve endothelial function and lower BP, increases nitrites, increase peripheral, coronary and cerebral blood flow.

 

L-Carnitine and Acetyl-L-Carnitine

 

L-carnitine is a nitrogenous muscle. Animal studies suggest that carnitine has both hereditary anti-hypertensive effects and anti-oxidant consequences in the heart by up-regulation of both eNOS and PPAR gamma, inhibition of RAAS, modulation of NF-?B and down regulation of NOX2, NOX4, TGF-? and CTGF that reduces vascular fibrosis. While BP and cognitive stress are reduced, endothelial NO function and oxidative defense are improved.

 

Studies on the effects of L-carnitine and acetyl-L-carnitine are limited. In patients with MS, acetyl-L-carnitine, improved dysglycemia and decreased SBP from 7-9 mmHg, but diastolic BP was significantly decreased only in people with sugar. Low amounts are correlated with a nondipping BP routine in Type 2 DM. Carnitine might be beneficial in the treatment of essential hypertension, type II DM with hyperlipidemia, hypertension, cardiac arrhythmias, CHF and cardiac ischemic syndromes and has anti-inflammatory and antioxidant results. Doses of 2-3 grams per day are recommended.

 

Taurine

 

Taurine is a sulfonic acid that is regarded as a conditionally-essential amino acid, which is not used in protein synthesis, but is located free or in easy peptides with its concentration in the brain, retina and myocardium. In cardiomyocytes, it has a role of inotropic factor, an osmoregulator and agent and reflects approximately 50 percent of the amino acids.

 

Human studies have noted that essential hypertensive subjects have reduced urinary taurine as well as other sulfur amino acids. Taurine lowers BP, SVR and HR, reduces arrhythmias, CHF symptoms and SNS activity, raises urinary sodium and water excretion, raises atrial natriuretic factor, improves insulin resistance, raises NO and improves endothelial function. Taurine also decreases A-II, PRA, aldosterone, SNS activity, plasma norepinephrine, plasma and urinary epinephrine, lowers homocysteine, enhances insulin sensitivity, kinins and acetyl choline responsiveness, reduces intracellular sodium and calcium, reduces reaction to beta receptors and has antioxidant, anti-atherosclerotic and anti-inflammatory activities, reduces IMT and arterial stiffness and may shield from risk of CHD. There is A urinary taurine associated with greater risk of CVD and hypertension. A study of 31 males with hypertension showed a 26 percent increase in taurine levels and also a 287 percent growth in cysteine levels. The BP reduction of 14.8/6.6 mmHg was proportional to increases in serum taurine and discounts in plasma norepinephrine. Fujita et al revealed a reduction in BP of 9/4.1 mmHg (p< 0.05) in 19 hypertension issues given 6 grams of taurine for 2 days. Taurine has numerous beneficial effects on the cardiovascular system and BP. Taurine’s dose is 2 to 3 g/d at but doses around 6 g/d could be required to reduce BP.

 

In conclusion, amino acids, as well as proteins in this case, are ultimately essential towards improving cardiovascular disease and hypertension. As the essential building block of a majority of the human body’s biological processes, amino acids, as well as the proper consumption of protein, can help maintain a balanced metabolism in order to continue improving cardiovascular disease and hypertension. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

Green-Call-Now-Button-24H-150x150-2-3.png

By Dr. Alex Jimenez

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: About Chiropractic

 

 

How Protein Can Affect Heart Health | Wellness Clinic

How Protein Can Affect Heart Health | Wellness Clinic

Protein is an essential part of a balanced nutrition. The human�body utilizes protein to build and repair tissues. Protein is also used to make enzymes, hormones, and other fundamental body chemicals. Protein is an important building block of bones, muscles, cartilage, skin, and blood. However, for many individuals, the source of these proteins can often also be full of saturated fats, and too much of it can increase the risk of cardiovascular disease.

 

Can protein cause cardiovascular disease and hypertension?

 

Protein can be found in�chicken, pork, fish, beef, tofu, beans, lentils, yogurt, milk, cheese, seeds, nuts, and eggs. The issue with consuming some of these sources of protein that are rich in saturated fats as well is that such can increase the levels of low-density lipoprotein cholesterol (LDL), or in other words, the “bad” cholesterol. Increased levels of LDL cholesterol have been associated with cardiovascular disease and even hypertension. Research studies focusing on the connection between protein intake and CVD as well as hypertension have been conducted to reveal this correlation.

 

Protein & Cardiovascular Disease

 

Observational and epidemiologic studies have demonstrated a decrease in blood pressure, or BP, and a consistent association between a high protein consumption and incident BP. The protein source is an important element when it comes to the effect of blood pressure in the body; where animal protein has become less effective than non-animal or plant protein, especially that in almonds. At the Inter-Salt Study of over 10,000 subjects, individuals who have a dietary protein consumption of about 30 percent over the average had reduced BP by 3.0/2.5 mmHg compared to those that were 30 percent below the average. However, wild or lean animal protein with essential and less saturated fats and fatty acids may decrease CHD, lipids and BP risk.

 

A meta-analysis supported these findings and also indicated that hypertensive individuals and the elderly have the BP reduction with protein intake. Still another meta-analysis of 40 trials with 3277 patients found reductions in BP of 1.76/1.15 mmHg compared to carbohydrate consumption (p < 0.001). Both vegetable and animal protein significantly and equally reduced BP at 2.27/1.26 mmHg and 2.54/0.95 mmHg respectively. Dietary protein consumption is inversely related to risk for stroke. A randomized cross-over study in 352 adults with pre-hypertension and stageIhypertension found a significant decrease in SBP of 2.0 mmHg with soy protein and 2.3 mmHg with milk protein compared to a high glycemic index diet over each of the 8 wk treatment periods. A non-significant decrease has been in DBP. Another RDB parallel study over 4 weeks of 94 subjects with prehypertension and stageIhypertension found significant reductions on office BP of 4.9/2.7 mmHg in those given a combo of 25 percent protein intake vs the control group awarded 15 percent protein within an isocaloric manner. The protein consisted of pea , 20 percent soy, egg that is 30 percent and isolate. The daily recommended intake of nourishment from many sources is 1.0 to 1.5 g/kg body weight, varying with exercise level, age, renal function and other factors.

 

Fermented milk supplemented with whey protein concentrate reduces BP in. Administration of 20 g/d of hydrolyzed whey protein nutritional supplement rich in bioactive peptides significantly decreased BP more than 6 weeks from 8.0 � 3.2 mmHg in SBP and 5.5 � 2.1 millimeters in diastolic BP. Milk peptides, which equal caseins and whey proteins, are a rich source of ACEI peptides. Val-Pro-Pro and Ile-Pro-Pro awarded at 5 to 60 mg/d have varying reductions in BP using an average reduction in pooled studies of approximately 1.28-4.8/0.59-2.2 mmHg. Yet recent meta-analysis did not reveal significant reductions in BP in people. Powdered fermented milk using Lactobacillus helveticus given at 12 g/d significantly lowered BP from 11.2/6.5 mmHg in 4 weeks. A dose response study revealed reductions in BP. The response is attributed to fermented milk peptides which inhibit ACE.

 

Pins et al administered 20 g of whey protein that is hydrolyzed and noticed that a BP reduction of 11/7 mmHg compared to controls. Whey protein is successful in enhancing arterial stiffness, insulin resistance, glucose, lipids and BP. These data indicate that the protein must be hydrolyzed so as to exhibit an antihypertensive effect, and also the maximum BP reaction is dose dependent. Bovine peptides and whey peptides that are protein-derived exhibit ACEI activity. These components comprise B-caseins, B-lg B2-microglobulin, fractions and serum albumin. ACEI peptides are released by the hydrolysis of whey protein isolates. Marine collagen peptides (MCPs) from deep sea fish have anti-hypertensive activity. A double-blind placebo controlled trial in 100 hypertensive subjects with diabetes who received MCPs twice a day for 3 months had significant reductions in DBP and mean. Bonito protein (Sarda Orientalis), from the tuna and mackerel family has natural ACEI inhibitory peptides and reduces BP 10.2/7 mmHg in 1.5 g/d.

 

Sardine muscle protein, which contains Valyl-Tyrosine (VAL-TYR), significantly lowers BP in hypertensive subjects. Kawasaki et al treated 29 hypertensive subjects with 3 milligrams of VAL-TYR sardine muscle focused extract for four wk and reduced BP 9.7/5.3 mmHg (p < 0.05). Levels of aldosterone and A-Iincreased as serum A-II diminished suggesting that VAL-TYR is a ACEI. BP was considerably lowered in a study using a vegetable drink with protein hydrolysates in 13 weeks.

 

Soy protein reduces BP in patients in most studies. Soy protein consumption was inversely and significantly correlated with both DBP and SBP in 45694 Chinese girls or more of soy protein within 3 years and the association increased with age. The SBP decrease was 1.9 to 4.9 mm reduced and the DBP 0.9 to 2.2 mmHg lower. However, meta-analysis and trials have shown mixed results on BP to reductions of 7 percent to 10 percent for SBP and DBP with no change in BP. The current meta-analysis of 27 trials found a substantial reduction in BP of 2.21/1.44 mmHg. Some studies suggest improvement in ACEI activity, reduction in inflammation and HS-CRP, cognitive function arterial compliance, decrease in tone activity and reduction in both oxidative stress and levels. Fermented soy at roughly 25 g/d is suggested.

 

Besides ACEI consequences, protein consumption may also alter responses and induce a natriuretic. Low protein intake coupled with low omega 3 fatty acid intake can lead to hypertension in animal models. The perfect protein intake, based on degree of activity, renal function, stress and other factors, is about 1.0 to 1.5 g/kg daily.

 

In conclusion, protein is an important part of a balanced diet, however, leaner alternatives containing less amounts of saturated fats are ideal to prevent the risk of cardiovascular disease and hypertension, promoting overall health and wellness. Many individuals consume higher amounts of proteins than necessary. A healthcare professional specializing in diet and nutrition can help you come up with the best nutritional plan for your and your specific health concerns. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

Green-Call-Now-Button-24H-150x150-2-3.png

By Dr. Alex Jimenez

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: About Chiropractic

 

 

Essential Mineral Intake for Cardiovascular Disease | Wellness Clinic

Essential Mineral Intake for Cardiovascular Disease | Wellness Clinic

An improper diet and nutrition can often lead to a variety of health issues, such as cardiovascular disease and hypertension. Additionally, other food-related risk factors can include, high blood pressure, or BP, obesity and type 2 diabetes. Saturated and trans fats, for example, can increase cholesterol in the blood. It’s this build-up of fatty deposits in the coronary arteries, which can lead to cardiovascular disease, hypertension and even heart attacks.

 

Which vitamins and minerals can improve cardiovascular disease and hypertension?

 

A healthy balance of vitamins and minerals can help manage and maintain heart health. According to research studies, the right intake of potassium, magnesium, calcium and zinc can substantially improve cardiovascular disease and hypertension. A proper diet and nutrition can have similar effects as taking cardiovascular disease and hypertension drugs and medications, but through a much more natural approach.

Potassium

The average U.S. dietary intake of potassium (K+) is 45 mmol/d with a potassium to sodium (K+/Na+) ratio of less than 1:2. The suggested intake of K+ is 4700 mg/d (120 mmol) with a K+/Na+ ratio of about 4-5 to 1. Several clinical and observational trials have demonstrated a substantial decrease in BP with greater K+ intake in hypertensive patients. The normal blood pressure reduction with a K+ supplementation of 60 to 120 mmol/d is 4.4/2.5 mmHg in hypertensive patients but may be as far as 8/4.1 mmHg with 120 mmol/d (4700 mg). In hypertensive patients, the linear dose response relationship is 1.0 mmHg reduction in systolic blood pressure, or SBP, and 0.52 mmHg decrease in diastolic blood pressure, or DBP, that a 0.6 g/d growth in dietary fiber intake. The solution can involve race (black > white), sodium, magnesium and calcium intake. Those on a higher sodium intake have a greater decrease in BP. Alteration of this K+/Na+ ratio is very important to the two polyunsaturated and outcomes. High potassium intake reduces the prevalence of cardiovascular disease independent of their BP reduction. Furthermore, If the serum potassium is less than 4.0 meq/dL, there is a higher risk of CVD mortality, ventricular tachycardia, and ventricular fibrillation. Red blood cell potassium is a sign of overall body stores and CVD risk in comparison to the serum potassium. Gu et al discovered that potassium supplementation in 60 mmol of KCl Daily for 12 wk significantly reduced SBP -5.0 mmHg (range -2.13 into -7.88 mmHg) (p < 0.001) in 150 Chinese men and women aged 35 to 64 decades.

 

Insulin raises natriuresis, modulates sensitivity, vasodilates, reduces the sensitivity to catecholamines and Angiotensin II, raises nitric oxide ATPase and DNA synthesis in the vascular smooth muscle cells and decreases sympathetic nervous system activity. In addition, potassium increases bradykinin and prostate kallikrein, decreases NADPH oxidase, which reduces oxidative stress and inflammation, improves insulin sensitivity, reduces ADMA, reduces intracellular sodium and reduces production of TGF-?.Each 1000 mg increase in potassium intake per day reduces all cause mortality by approximately 20 percent. Potassium intake of 4.7 g/d is estimated to decrease CVA by 8 percent to 15 percent and MI by 6 percent to 11 percent. Numerous SNP’s, such as nuclear receptor subfamily 3 group C, angiotensin IItype receptor and hydroxysteroid 11 beta dehydrogenase (HSD11B1 and B2) determine an individual’s reaction to dietary potassium intake towards their overall health and wellness.

 

Each 1000 mg drop in sodium intake daily will reduce all cause mortality. A recent study indicated a dose related response to CVA. There has been a RRR of CVA of 23 percent at 1.5-1.99 gram, 27% at 2.0-2.49 g, 29 percent at 2.5-3 g and 32 percent more than 3 g/d of potassium urinary excretion. The recommended daily dietary intake for individuals with hypertension is 4.7 to 5.0 g of potassium and less than 1500 milligrams of sodium. Potassium used out of supplementation should be decreased with care in patients with renal impairment or those ARB, DRI and serum aldosterone receptor antagonists.

 

Magnesium

 

A high dietary intake of magnesium of at least 500-1000 mg/d reduces BP in the majority of the reported observational epidemiologic and clinical trials, but the outcomes are much less consistent than those seen with K + and Na +. There’s an inverse relationship between BP and dietary magnesium intake. A report on 60 essential hypertensive subjects given magnesium supplements showed a substantial decrease in blood pressure in an eight week interval reported by 24 h ambulatory BP, office and home BP. The maximum decrease in clinical trials has been 5.6/2.8 mmHg but some studies have shown no change in BP. The blend of high potassium and low sodium intake with increased magnesium intake had.

 

Magnesium also raises the effectiveness of all anti-hypertensive drugs and medications, according to research studies. Magnesium competes with Na+ for binding sites on vascular smooth muscle and also functions as a direct vasodilator, . Magnesium increases prostaglandin E (PGE), modulates intracellular sodium, potassium, calcium and pH, increases nitric oxide, improves adrenal function, reduces oxLDL, reduces HS-CRP, TBxA2, A-II, and norepinephrine. Magnesium also enhances insulin resistance, glucose and MS, binds at a necessary cooperative manner with potassium, causing EDV and BP reduction, reduces CVD and cardiac arrhythmias, reduces carotid IMT, reduces cholesterol, reduces cytokine production, inhibits nuclear factor Kb, reduces oxidative stress and inhibits platelet aggregation to reduce thrombosis. Magnesium is an essential co-factor because of its delta-6-desaturase enzyme that for conversion of linoleic acid (LA) to gamma linolenic acid (GLA) required for synthesis of this vasodilator and platelet inhibitor PGE1.

 

A meta-analysis of all 241378 patients utilizing 6477 strokes showed a reverse relationship of dietary magnesium to the incidence of stroke. For each 100 milligrams of magnesium intake, stroke diminished. The mechanism comprise inhibition of induced glutamate release, NMDA receptor blockade, CCB actions reduction in vasodilation and ATP depletion of the arteries. A meta-analysis showed discounts mmHg in 22 trials of 1173 patients. Intracellular level of calcium (RBC) is more indicative of overall body shops and should be quantified along with serum and urinary magnesium. Magnesium might be supplemented in doses of 500. Magnesium formulations may improve absorption and reduce the incidence of diarrhea. Adding taurine in 1000 increases the ramifications of magnesium. Magnesium supplements should be avoided or used with caution in individuals with renal insufficiency.

 

Calcium

 

Population studies reveal a link between hypertension and calcium, but clinical trials that handled calcium supplements have shown consequences on blood pressure. The heterogeneous responses to calcium supplementation have been clarified through research studies. This is really the “ionic hypothesis” of hypertension, cardiovascular disease and associated cognitive, cognitive and functional disorders. Calcium supplementation is not recommended at this time as an effective method to decrease blood pressure due to insufficient research studies on its use.

 

Zinc

 

Low serum zinc levels in observational research and hypertension correlate as well as CHD, type II DM, hyperlipidemia, elevated lipoprotein that a [Lp(a)], increased 2 h post-prandial plasma glucose levels and insulin resistance. Zinc is hauled to vascular and cardiac muscle and cells by metallothionein. Deficiencies of metallothionein with intramuscular zinc deficiencies can lead to cardiomyocyte oxidative stress , mitochondrial dysfunction, dysfunction and apoptosis with cardiac remodeling hypertension, cardiovascular disease, heart failure, or fibrosis. Intracellular calcium increases oxidative.

 

Bergomi et al assessed Zinc (Zn++) status in 60 hypertensive subjects compared to 60 normotensive control subjects. A reverse correlation of serum Zn++ and BP has been observed. The BP was inversely associated with a Zn++ dependent enzyme lysyl oxidase activity. Zn++ inhibits gene expression and transcription through NF-?Band activated protein-1 and is now a significant co-factor for SOD. These impacts plus those on insulin resistance and SNS consequences, membrane ion exchange, RAAS might account for Zn++ antihypertensive effects. Intake needs to be 50 mg/d.

 

Individuals with cardiovascular disease and hypertension can benefit from the proper diet and nutrition. Essential vitamins and minerals found in a balanced, healthy nutrition, such as potassium, magnesium, calcium and zing, among others, can help improve heart health. Deficiencies in these and a diet full of saturated and trans fats can increase the prevalence of cardiovascular disease. While diagnosis and drugs/medications can be prescribed to treat cardiovascular disease and hypertension, a balanced diet and nutrition can have similar effects.� The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

By Dr. Alex Jimenez

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: About Chiropractic

 

 

GM Crops: The  Limitations, Risks, And Alternatives

GM Crops: The Limitations, Risks, And Alternatives

GM Crops: Proponents claim that genetically modified (GM) crops:

 

  • are safe to eat and more nutritious
  • beneft the environment
  • reduce use of herbicides and insecticides
  • increase crop yields, thereby helping farmers and solving the food crisis
  • create a more affuent, stable economy
  • are just an extension of natural breeding, and have no risks different from naturally bred crops.

However, a large and growing body of scientifc research and on-the-ground experience indicate that GMOs fail to live

up to these claims. Instead, GM crops:

 

  • can be toxic, allergenic or less nutritious than their natural counterparts
  • can disrupt the ecosystem, damage vulnerable wild plant and animal populations and harm biodiversity
  • increase chemical inputs (pesticides, herbicides) over the long term
  • deliver yields that are no better, and often worse, than conventional crops
  • cause or exacerbate a range of social and economic problems
  • are laboratory-made and, once released, harmful GMOs cannot be recalled from the environment.

The scientifically demonstrated risks and clear absence of real benefits have led experts to see GM as a clumsy, outdated technology. They present risks that we need not incur, given the availability of effective, scientifically proven, energy-efficient and safe ways of meeting current and future global food needs.

This paper presents the key scientific evidence � 114 research studies and other authoritative documents � documenting the limitations and risks of GM crops and the many safer, more effective alternatives available today.

Is GM An Extension Of Natural Plant Breeding?

Natural reproduction or breeding can only occur between closely related forms of life (cats with cats, not cats with dogs; wheat with wheat, not wheat with tomatoes or fish). In this way, the genes that offspring inherit from parents, which carry information for all parts of the body, are passed down the generations in an orderly way.

GM is not like natural plant breeding. GM uses laboratory techniques to insert artificial gene units to re-program the DNA blueprint of the plant with completely new properties. This process would never happen in nature. The artificial gene units are created in the laboratory by joining fragments of DNA, usually derived from multiple organisms, including viruses, bacteria, plants and animals. For example, the GM gene in the most common herbicide resistant soya beans was pieced together from a plant virus, a soil bacterium and a petunia plant.

The GM transformation process of plants is crude, imprecise, and causes widespread mutations, resulting in major changes to the plant�s DNA blueprint1. These mutations unnaturally alter the genes� functioning in unpredictable and potentially harmful ways2, as detailed below. Adverse effects include poorer crop performance, toxic effects, allergic reactions, and damage to the environment.Are GM foods safe to eat?Contrary to industry claims, GM foods are not properly tested for human safety before they are released for sale3 4. In fact, the only published study directly testing the safety of a GM food on humans found potential problems5. To date, this study has not been followed up. Typically the response to the safety question is that people have been eating GM foods in the United States and elsewhere for more than ten years without ill effects and that this proves that the products are safe. But GM foods are not labelled in the US and other nations where they are widely eaten and consumers are not monitored for health effects.

Because of this, any health effects from a GM food would have to meet unusual conditions before they would be noticed. The health effects would have to:

� occur immediately after eating a food that was known to be GM (in spite of its not being labeled). This kind of response is called acute toxicity.

� cause symptoms that are completely different from common diseases. If GM foods caused a rise in common or slow-onset diseases like allergies or cancer, nobody would know what caused the rise.

� be dramatic and obvious to the naked eye. Nobody examines a person�s body tissues with a microscope for harm after they eat a GM food. But just this type of examination is needed to give early warning of problems such as pre-cancerous changes.

To detect important but more subtle effects on health, or effects that take time to appear (chronic effects), long-term controlled studies on larger populations are required.

Under current conditions, moderate or slow-onset health effects of GM foods could take decades to become known, just as it took decades for the damaging effects of trans-fats (another type of artificial food) to be recognized. �Slow poison� effects from trans-fats have caused millions of premature deaths across the world6 .

Another reason why any harmful effects of GM foods will be slow to surface and less obvious is because, even in the United States, which has the longest history of GM crop consumption, GM foods account for only a small part of the US diet (maize is less than 15% and soya bean products are less than 5%).

Nevertheless, there are signs that all is not well with the US food supply. A report by the US Centers for Disease Control shows that food-related illnesses increased 2- to 10-fold in the years between 1994 (just before GM food was commercialized) and 19997 . Is there a link with GM food? No one knows, because studies on humans have not been done.

Animal Studies On GM Foods Give Cause For Concern

Although studies on humans have not been done, scientists are reporting a growing number of studies that examine the effects of GM foods on laboratory animals. These studies, summarized below, raise serious concerns regarding the safety of GM foods for humans as well as animals.

Small Animal Feeding Studies

� Rats fed GM tomatoes developed stomach ulcerations8

� Liver, pancreas and testes function was disturbed in mice fed GM soya9 10 11

� GM peas caused allergic reactions in mice12

� Rats fed GM oilseed rape developed enlarged livers, often a sign of toxicity13

� GM potatoes fed to rats caused excessive growth of the lining of the gut similar to a pre-cancerous condition14 15

� Rats fed insecticide-producing GM maize grew more slowly, suffered problems with liver and kidney function, and showed higher levels of certain fats in their blood16

� Rats fed GM insecticide-producing maize over three generations suffered damage to liver and kidneys and showed alterations in blood biochemistry17

� Old and young mice fed with GM insecticide-producing maize showed a marked disturbance in immune system cell populations and in biochemical activity18

� Mice fed GM insecticide-producing maize over four generations showed a buildup of abnormal structural changes in various organs (liver, spleen, pancreas), major changes in the pattern of gene function in the gut, reflecting disturbances in the chemistry of this organ system (e.g. in cholesterol production, protein production and breakdown), and, most significantly, reduced fertility19

� Mice fed GM soya over their entire lifetime (24 months) showed more acute signs of aging in their liver20

� Rabbits fed GM soya showed enzyme function disturbances in kidney and heart21.

Feeding Studies With Farm Animals

Farm animals have been fed GM feed for many years. Does this mean that GM feed is safe for livestock? Certainly it means that effects are not acute and do not show up immediately. However, longer-term studies, designed to assess slow-onset and more subtle health effects of GM feed, indicate that GM feed does have adverse effects, confirming the results described above for laboratory animals.

The following problems have been found:

� Sheep fed Bt insecticide-producing GM maize over three generations showed disturbances in the functioning of the digestive system of ewes and in the liver and pancreas of their lambs22.

� GM DNA was found to survive processing and to be detectable in the digestive tract of sheep fed GM feed. This raises the possibility that antibiotic resistance and Bt insecticide genes can move into gut bacteria23, a process known as horizontal gene transfer. Horizontal gene transfer can lead to antibiotic resistant disease causing bacteria (�superbugs�) and may lead to Bt insecticide being produced in the gut with potentially harmful consequences. For years, regulators and the biotech industry claimed that horizontal gene transfer would not occur with GM DNA, but this research challenges this claim

� GM DNA in feed is taken up by the animal�s organs. Small amounts of GM DNA appear in the milk and meat that people eat24 25 26. The effects on the health of the animals and the people who eat them have not been researched.

Do Animal Feeding Studies Highlight Potential Health Problems For People?

Before food additives and new medicines can be tested on human subjects, they have to be tested on mice or rats. If harmful effects were to be found in these initial animal experiments, then the drug would likely be disqualified for human use. Only if animal studies reveal no harmful effects can the drug be further tested on human volunteers.

But GM crops that caused ill effects in experimental animals have been approved for commercialization in many countries. This suggests that less rigorous standards are being used to evaluate the safety of GM crops than for new medicines.

In fact, in at least one country � the United States � safety assessment of GMOs is voluntary and not required by law, although, to date, all GMOs have undergone voluntary review. In virtually all countries, safety assessment is not scientifically rigorous. For instance, the animal feeding studies that GM crop developers routinely conduct to demonstrate the safety of their products are too short in duration and use too few subjects to reliably detect important harmful effects.27

While industry conducts less than rigorous studies on its own GM products, 28 it has, in parallel, systematically and persistently interfered with the ability of independent scientists to conduct more rigorous and incisive independent research on GMOs. Comparative and basic agronomic studies on GMOs, assessments of safety and composition, and assessments of environmental impact have all been restricted and suppressed by the biotechnology industry.29 30

Patent rights linked with contracts are used to restrict access of independent researchers to commercialized GM seed. Permission to study patented GM crops is either withheld or made so difficult to obtain that research is effectively blocked. In cases where permission is finally given, biotech companies keep the right to block publication, resulting in much significant research never being published.31 32

The industry and its allies also use a range of public relations strategies to discredit and/or muzzle scientists who do publish research that is critical of GM crops.33

Are GM Foods More Nutritious?

There are no commercially available GM foods with improved nutritional value. Currently available GM foods are no better and in some cases are less nutritious than natural foods. Some have been proven in tests to be toxic or allergenic.

Examples include:

� GM soya had 12�14% lower amounts of cancer-fighting isoflavones than non-GM soya34

� Oilseed rape engineered to have vitamin A in its oil had much reduced vitamin E and altered oil-fat composition35

� Human volunteers fed a single GM soya bean meal showed that GM DNA can survive processing and is detectable in the digestive tract. There was evidence of horizontal gene transfer to gut bacteria36 37. Horizontal gene transfer of antibiotic resistance and Bt insecticide genes from GM foods into gut bacteria is an extremely serious issue. This is because the modified gut bacteria could become resistant to antibiotics or become factories for Bt insecticide. While Bt in its natural form has been safely used for years as an insecticide in farming, Bt toxin genetically engineered into plant crops has been found to have potential ill health effects on laboratory animals38 39 40

� In the late 1980s, a food supplement produced using GM bacteria was toxic41, initially killing 37 Americans and making more than 5,000 others seriously ill.

� Several experimental GM food products (not commercialized) were found to be harmful:

� People allergic to Brazil nuts had allergic reactions to soya beans modified with a Brazil nut gene42

� The GM process itself can cause harmful effects. GM potatoes caused toxic reactions in multiple organ systems43 44. GM peas caused a 2-fold allergic reaction � the GM protein was allergenic and stimulated an allergic reaction to other food components45. This raises the question of whether GM foods cause an increase in allergies to other substances.

Can GM Foods Help Alleviate The World Food Crisis?

The root cause of hunger is not a lack of food, but a lack of access to food. The poor have no money to buy food and increasingly, no land on which to grow it. Hunger is fundamentally a social, political, and economic problem, which GM technology cannot address.

gm crops GM-quote.jpg

Recent reports from the World Bank and the United Nations Food and Agriculture Organization have identified the biofuels boom as the main cause of the current food crisis46 47. But GM crop producers and distributors continue to promote the expansion of biofuels. This suggests that their priority is to make a profit, not to feed the world.

GM companies focus on producing cash crops for animal feed and biofuels for affluent countries, not food for people.

GM crops contribute to the expansion of industrial agriculture and the decline of the small farmer around the world. This is a serious development as there is abundant evidence that small farms are more efficient than large ones, producing more crops per hectare of land48 49 50 51 52.

Do GM Crops Increase Yield Potential?

At best, GM crops have performed no better than their non-GM counterparts, with GM soya beans giving consistently lower yields for over a decade54. Controlled comparative field trials of GM/non-GM soya suggest that 50% of the drop in yield is due to the genetic disruptive effect of the GM transformation process55. Similarly, field tests of Bt insecticide-producing maize hybrids showed that they took longer to reach maturity and produced up to 12% lower yields than their non-GM counterpart56.

A US Department of Agriculture report confirms the poor yield performance of GM crops, saying, �GE crops available for commercial use do not increase the yield potential of a variety. In fact, yield may even decrease…. Perhaps the biggest issue raised by these results is how to explain the rapid adoption of GE crops when farm financial impacts appear to be mixed or even negative57.�

The failure of GM to increase yield potential was emphasized in 2008 by the United Nations International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD) report58. This report on the future of farming, authored by 400 scientists and backed by 58 governments, stated that yields of GM crops were �highly variable� and in some cases, �yields declined�. The report noted, �Assessment of the technology lags behind its development, information is anecdotal and contradictory, and uncertainty about possible benefits and damage is unavoidable.�

Failure To Yield

The definitive study to date on GM crops and yield is �Failure to Yield: Evaluating the Performance of Genetically Engineered Crops�. Published in 2009, the study is authored by former US EPA and Center for Food Safety scientist, Dr Doug Gurian-Sherman. It is based on published, peer-reviewed studies conducted by academic scientists and using adequate experimental controls.

In the study, Dr Gurian-Sherman distinguishes between intrinsic yield (also called potential yield), defined as the highest yield which can be achieved under ideal conditions, with operational yield, the yield achieved under normal field conditions when the farmer factors in crop reductions due to pests, drought, or other environmental stresses.

The study also distinguishes between effects on yield caused by conventional breeding methods and those caused by GM traits. It has become common for biotech companies to use conventional breeding and marker assisted breeding to produce higher-yielding crops and then finally to engineer in a gene for herbicide tolerance or insect resistance. In such cases, higher yields are not due to genetic engineering but to conventional breeding. �Failure to Yield� teases out these distinctions and analyses what contributions genetic engineering and conventional breeding make to increasing yield.

Based on studies on corn and soybeans, the two most commonly grown GM crops in the United States, the study concludes that genetically engineering herbicide-tolerant soybeans and herbicide-tolerant corn has not increased yields. Insect-resistant corn, meanwhile, has improved yields only marginally. The increase in yields for both crops over the last 13 years, the report finds, was largely due to traditional breeding or improvements in agricultural practices.

The author concludes: �commercial GE crops have made no inroads so far into raising the intrinsic or potential yield of any crop. By contrast, traditional breeding has been spectacularly successful in this regard; it can be solely credited with the intrinsic yield increases in the United States and other parts of the world that characterized the agriculture of the twentieth century.�59

Critics of the study have objected that it does not use data from developing countries. The Union of Concerned Scientists responds that there are few peer-reviewed papers evaluating the yield contribution of GM crops in developing countries � not enough to draw clear and reliable conclusions. However, the most widely grown food/feed crop in developing countries, herbicide-tolerant soybeans, offers some hints. Data from Argentina, which has grown more GM soybeans than any other developing country, suggest that yields for GM varieties are the same or lower than for conventional non-GE soybeans.60

�If we are going to make headway in combating hunger due to overpopulation and climate change, we will need to increase crop yields,� says Dr Gurian-Sherman. �Traditional breeding outperforms genetic engineering hands down.�61

If GM cannot improve intrinsic (potential) yield even in the affluent United States, where high-input, irrigated, heavily subsidized farming is the norm, it would seem irresponsible to assume that it would improve yields in the developing world, where increased food production is most needed. Initiatives promoting GM crops for the developing world are experimental and appear to be founded on expectations that are not consistent with data obtained in the West.

In the West, crop failure is often underwritten by governments, which bail out farmers with compensation. Such support systems are rare in the developing world. There, farmers may literally bet their farms and their entire livelihoods on a crop. Failure can have severe consequences.

Three GM Crops For Africa

GM sweet potato The virus-resistant sweet potato has been the ultimate GM showcase project for Africa, generating a vast amount of global media coverage. Florence Wambugu, the Monsanto trained scientist fronting the project, has been proclaimed an African heroine and the savior of millions, based on her claims about the GM sweet potato doubling output in Kenya. Forbes magazine even declared her one of a tiny handful of people around the globe who would �reinvent the future�.62 It eventually emerged, however, that the claims being made for the GM sweet potato were untrue, with field trial results showing the GM crop to be a failure.63 64

In contrast with the unproven GM sweet potato variety, a successful conventional breeding program in Uganda had produced a new high-yielding variety which is virus resistant and has �raised yields by roughly 100%�. The Ugandan project achieved success at a small cost and in just a few years. The GM sweet potato, in contrast, in over 12 years in the making, consumed funding from Monsanto, the World Bank, and USAID to the tune of $6 million.65

GM Cassava

The potential of genetic engineering to massively boost the production of cassava � one of Africa�s most important foods � by defeating a devastating virus has been heavily promoted since the mid-1990s. There has even been talk of GM solving hunger in Africa by increasing cassava yields as much as tenfold.66 But almost nothing appears to have been achieved. Even after it became clear that the GM cassava had suffered a major technical failure67, media stories continued to appear about its curing hunger in Africa.68 69 Meanwhile, conventional (non-GM) plant breeding has quietly produced virus resistant cassavas that are already making a remarkable difference in farmers� fields, even under drought conditions.70

Bt Cotton

In Makhatini, South Africa, often cited as the showcase Bt cotton project for small farmers, 100,000 hectares were planted with Bt cotton in 1998. By 2002, that had crashed to 22,500 hectares, an 80% reduction in 4 years. By 2004, 85% of farmers who used to grow Bt cotton had given up. The farmers found pest problems and no increase in yield. Those farmers who still grew the crop did so at a loss, continuing only because the South African government subsidized the project and there was a guaranteed market for the cotton.71

A study published in Crop Protection journal concluded, �cropping Bt cotton in Makhathini Flats did not generate sufficient income to expect a tangible and sustainable socioeconomic improvement due to the way the crop is currently managed. Adoption of an innovation like Bt cotton seems to pay only in an agro-system with a sufficient level of intensification.�72

How Will Climate Change Impact Agriculture?

Industrial agriculture is a major contributor to global warming, producing up to 20 per cent of greenhouse gas emissions, and some methods of increasing yield can exacerbate this negative impact. For example, crops that achieve higher intrinsic yield often need more fossil fuel based nitrogen fertilizer, some of which is converted by soil microbes into nitrous oxide, a greenhouse gas nearly 300 times more potent than carbon dioxide. Minimizing global agriculture�s future climate impact will require investment in systems of agriculture less dependent on industrial fertilizers and agroecological methods of improving soil water-holding capacity and resilience.

GM seeds are created by agrochemical companies and are heavily dependent on costly external inputs such as synthetic fertilizer, herbicides, and pesticides. It would seem risky to promote such crops in the face of climate change.

Peak Oil & Agriculture

According to some analysts, peak oil, when the maximum rate of global petroleum extraction is reached, has already arrived. This will have drastic effects on the type of agriculture we practice. GM crops are designed to be used with synthetic herbicides and fertilizers. But synthetic pesticides are made from oil and synthetic fertilizer from natural gas. Both these fossil fuels are running out fast, as are phosphates, a major ingredient of synthetic fertilizers.

Farming based on the current US GM and chemical model that depends on these fossil fuel-based inputs will become increasingly expensive and unsustainable. The statistics tell the story:

In the US food system, 10 kcal of fossil energy is required for every kcal of food consumed.73

� Approximately 7.2 quads of fossil energy are consumed in the production of crops and livestock in the U.S. each year.74 75

� Approximately 8 million kcal/ha are required to produce an average corn crop and other similar crops.76

� Two-thirds of the energy used in crop production is for fertilizers and mechanization.77

Proven technologies that can reduce the amount of fossil energy used in farming include reducing fertilizer applications, selecting farm machinery appropriate for each task, managing soil for conservation, limiting irrigation, and organic farming techniques.78

In the Rodale Institute Farming Systems Trial (FST), a comparative analysis of energy inputs conducted by Dr David Pimentel of Cornell University found that organic farming systems use just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy required to synthesize nitrogen fertilizer, followed by herbicide production.79

Studies show that the low-input organic model of farming works well in African countries. The Tigray project in Ethiopia, part-funded by the UN Food and Agriculture Organisation (FAO), compared yields from the application of compost and chemical fertilizer in farmers� fields over six years. The results showed that compost can replace chemical fertilizers and that it increased yields by more than 30 percent on average. As side-benefits to using compost, the farmers noticed that the crops had better resistance to pests and disease and that there was a reduction in �difficult weeds�.80

GM Crops & Climate Change

Climate change brings sudden, extreme, and unpredictable changes in weather. If we are to survive, the crop base needs to be as flexible, resilient and diverse as possible. GM technology offers just the opposite � a narrowing of crop diversity and an inflexible technology that requires years and millions of dollars in investment for each new variety.

Each GM crop is tailor-made to fit a particular niche. With climate change, no one knows what kind of niches will exist and where. The best way to insure against the destructive effects of climate change is to plant a wide variety of highperforming crops that are genetically diverse.

GM companies have patented plant genes that they believe are involved in tolerance to drought, heat, flooding, and salinity � but have not succeeded in using these genes to produce a single new crop with these properties. This is because these functions are highly complex and involve many different genes working together in a precisely regulated way. It is beyond existing GM technology to engineer crops with these sophisticated, delicately regulated gene networks for improved tolerance traits.

Conventional natural cross-breeding, which works holistically, is much better adapted to achieving this aim, using the many varieties of virtually every common crop that tolerate drought, heat, flooding, and salinity.

In addition, advances in plant breeding have been made using marker-assisted selection (MAS), a largely uncontroversial branch of biotechnology that can speed up the natural breeding process by identifying important genes. MAS does not involve the risks and uncertainties of genetic engineering.

The controversies that exist around MAS relate to gene patenting issues. It is important for developing countries to consider the implications of patent ownership relating to such crops.

Non-GM Successes For Niche Crops

If it is accepted that niche speciality crops may be useful in helping adaptation to climate change, there are better ways of creating them than genetic engineering. Conventional breeding and marker-assisted selection have produced many advances in breeding speciality crops, though these have garnered only a fraction of the publicity given to often speculative claims of GM miracles.

An example of such a non-GM success is the �Snorkel� rice that adapts to flooding by growing longer stems, preventing the crop from drowning.81 While genetic engineering was used as a research tool to identify the desirable genes, only conventional breeding � guided by Marker Assisted Selection � was used to generate the Snorkel rice line. Snorkel rice is entirely non-GM. This is an excellent example of how the whole range of biotechnology tools, including GM, can be used most effectively to work with the natural breeding process to develop new crops that meet the critical needs of today.

Are GM Crops Environmentally Friendly?

Two kinds of GM crops dominate the marketplace:

� Crops that resist broad-spectrum (kill-all) herbicides such as Roundup. These are claimed to enable farmers to spray herbicide less frequently to kill weeds but without killing the crop

� Crops that produce the insecticide Bt toxin. These are claimed to reduce farmers� need for chemical insecticide sprays.

Both claims require further analysis.

GM Crops & Herbicide Use

The most commonly grown herbicide-resistant GM crops are engineered to be resistant to Roundup. But the increasing use of Roundup has led to the appearance of numerous weeds resistant to this herbicide82. Roundup resistant weeds are now common and include pigweed83, ryegrass84, and marestail85. As a result, in the US, an initial drop in average herbicide use after GM crops were introduced has been followed by a large increase as farmers were forced to change their farming practices to kill weeds that had developed resistance to Roundup86 87. Farmers have increased radically the amounts of Roundup applied to their fields and are being advised to use increasingly powerful mixtures of multiple herbicides and not Roundup alone88 89.

All of these chemicals are toxic and a threat to both the farmers who apply them and the people and livestock that eat the produce. This is the case even for Roundup, which has been shown to have a range of damaging cellular effects indicating toxicity at levels similar to those found on crops engineered to be resistant to the herbicide90.

A Canadian government study in 2001 showed that after just 4-5 years of commercial growing, herbicide-resistant GM oilseed rape (canola) had cross-pollinated to create �superweeds� resistant to up to three different broadspectrum herbicides. These superweeds have become a serious problem for farmers both within91 92 and outside their fields93.

In addition, GM oilseed rape has also been found to crosspollinate with and pass on its herbicide resistant genes to related wild plants, for example, charlock and wild radish/turnip. This raises the possibility that these too may become superweeds and difficult for farmers to control94. The industry�s response has been to recommend use of higher amounts and complex mixtures of herbicides95 96 and to start developing crops resistant to additional or multiple herbicides. These developments are clearly creating a chemical treadmill that would be especially undesirable for farmers in developing countries.

Insecticide-Producing GM Crops

Bt insecticide-producing GM crops have led to resistance in pests, resulting in rising chemical applications97 98 99.

In China and India, Bt cotton was initially effective in suppressing the boll weevil. But secondary pests, especially mirids and mealy bugs, that are highly resistant to Bt toxin, soon took its place. The farmers suffered massive crop losses and had to apply costly pesticides, wiping out their profit margins100 101 102 103. Such developments are likely to be more damaging to farmers in developing countries, who cannot afford expensive inputs.

The claim that Bt GM crops reduce pesticide use is disingenuous, since Bt crops are in themselves pesticides. Prof Gilles-Eric S�ralini of the University of Caen, France states: �Bt plants, in fact, are designed to produce toxins to repel pests. Bt brinjal (eggplant/aubergine) produces a very high quantity of 16-17mg toxin per kg. They affect animals. Unfortunately, tests to ascertain their effect on humans have not been conducted.�104

GM Crops & Wildlife

Farm-scale trials sponsored by the UK government showed that the growing of herbicide-resistant GM crops (sugar beet, oilseed rape) can reduce wildlife populations105 106.

The Case Of Argentina

In Argentina, the massive conversion of agriculture to GM soya production has had disastrous effects on rural social and economic structures. It has damaged food security and caused a range of environmental problems, including the spread of herbicide-resistant weeds, soil depletion, and increased pests and diseases107 108.

GM Crops, Non-Target Insects & Organisms

Bt insecticide-producing GM crops harm non-target insect populations, including butterflies109 110 111 and beneficial pest predators112. Bt insecticide released from GM crops can also be toxic to water life113 and soil organisms114. One study reveals more negative than positive impacts on beneficial insects from GM Bt insecticide-producing crops.115

Can GM & Non-GM Crops Co-Exist?

The biotech industry argues that farmers should be able to choose to plant GM crops if they wish. It says GM and non-GM crops can peacefully �co-exist�. But experience in North America has shown that �coexistence� of GM and non-GM crops rapidly results in widespread contamination of non-GM crops.

This not only has significant agroecological effects, but also serious economic effects, damaging the ability of organic farmers to receive premiums, and blocking export markets to countries that have strict regulations regarding GM contamination.

Contamination occurs through cross-pollination, spread of GM seed by farm machinery, and inadvertent mixing during storage. The entry of GM crops into a country removes choice � everyone is gradually forced to grow GM crops or to have their non-GM crop contaminated.

Here are a few examples of GM contamination incidents:

� In 2006 GM rice grown for only one year in field trials was found to have widely contaminated the US rice supply and seed stocks116. Contaminated rice was found as far away as Africa, Europe, and Central America. In March 2007 Reuters reported that US rice export sales were down by around 20 percent from those of the previous year as a result of the GM contamination117.

� In Canada, contamination from GM oilseed rape has made it virtually impossible to cultivate organic, nonGM oilseed rape118

� US courts reversed the approval of GM alfalfa because it threatened the existence of non-GM alfalfa through cross-pollination119

� Organic maize production in Spain has dropped significantly as the acreage of GM maize production has increased, because of cross-pollination problems120

� In 2009, the Canadian flax seed export market to Europe collapsed following the discovery of widespread contamination with an unauthorized GM variety121.

� In 2007 alone, there were 39 new instances of GM contamination in 23 countries, and 216 incidents have been reported since 2005122.

Alternatives To GM

Many authoritative sources, including the IAASTD report on the future of agriculture123, have found that GM crops have little to offer global agriculture and the challenges of poverty, hunger and climate change, because better alternatives are available. These go by many names, including integrated pest management (IPM), organic, sustainable, low-input, non-chemical pest management (NPM) and agroecological farming, but extend beyond the boundaries of any particular category. Projects employing these sustainable strategies in the developing world have produced dramatic increases in yields and food security124 125 126 127 128 129.

Strategies employed include:

� Sustainable, low-input, energy-saving practices that conserve and build soil, conserve water, and enhance natural pest resistance and resilience in crops

� Innovative farming methods that minimize or eliminate costly chemical pesticides and fertilizers

� Use of thousands of traditional varieties of each major food crop, which are naturally adapted to stresses such as drought, heat, harsh weather conditions, flooding, salinity, poor soil, and pests and diseases130

� Use of existing crops and their wild relatives in traditional breeding programs to develop varieties with useful traits

� Programs that enable farmers to cooperatively preserve and improve traditional seeds

� Use of beneficial and holistic aspects of modern biotechnology, such as Marker Assisted Selection (MAS), which uses the latest genetic knowledge to speed up traditional breeding131. Unlike GM technology, MAS can safely produce new varieties of crops with valuable, genetically complex properties such as enhanced nutrition, taste, yield potential, resistance to pests and diseases, and tolerance to drought, heat, salinity, and flooding132.

Organic & Low-Input Methods Improve Yields In Africa

There seems little reason to gamble with the livelihoods of poor farmers by persuading them to grow experimental GM crops when tried-and-tested, inexpensive methods of increasing food production are readily available. Several recent studies have shown that low-input methods such as organic can dramatically improve yields in African countries, along with other benefits. Such methods have the advantage of being knowledge-based rather than costly input-based. As a result they are more accessible to poor farmers than the more expensive technologies (which often have not helped in the past).

A 2008 United Nations report, �Organic Agriculture and Food Security in Africa�, looked at 114 farming projects in 24 African countries and found that organic or near-organic practices resulted in a yield increase of more than 100 percent. In East Africa, a yield increase of 128 percent was found.133 The Foreword to the study states: �The evidence presented in this study supports the argument that organic agriculture can be more conducive to food security in Africa than most conventional production systems, and that it is more likely to be sustainable in the long term.�134

Organic & Low-Input Methods Improve Farmer Incomes In Developing Countries

Poverty is a major contributory factor to food insecurity. According to the 2008 United Nations report, �Organic Agriculture and Food Security in Africa�, organic farming has a positive impact on poverty in a variety of ways. Farmers benefit from:

� cash savings, as organic farming does not require costly pesticides and fertilizers;

� extra incomes gained by selling the surplus produce (resulting from the change to organic);

� premium prices for certified organic produce, obtained primarily in Africa for export but also for domestic markets; and

� added value to organic products through processing activities.

These findings are backed up by studies from Asia and Latin America that concluded that organic farming can reduce poverty in an environmentally friendly way.135

A recent study found that certified organic farms involved in production for export were significantly more profitable than those involved in conventional production (in terms of net farm income earnings).136 Of these cases, 87 per cent showed increases in farmer and household incomes as a result of becoming organic, which contributed to reducing poverty levels and to increasing regional food security.

Who Owns The Technology?

In considering which agricultural technologies will most benefit the developing world, it is crucial to ask who owns those technologies. The �Gene Revolution� that is proposed for Africa will be rolled out via public-private partnerships. The public side of such partnerships will be provided by Africa, whereas the private side will be provided by biotechnology companies based in the United States and Europe.

The transgenes used in creating GM crops are patented and owned by biotech companies. In the United States and Canada, companies have launched lawsuits against farmers whose crops were alleged to contain a company�s patented GM genes. Farmers� claims that they have not intentionally planted GM crops have proved no defense in court against large fines being imposed.

When farmers buy GM seed, they sign a technology agreement promising not to save and replant seed. They have to buy new seed each year from the biotech company, thus transferring control of food production from farmers to seed companies. Consolidation of the seed industry increasingly means that farmers have little choice but to buy GM seed. Centuries of farmer knowledge that went into creating locally adapted and varied seed stocks are wiped out.

In contrast, low-input and organic farming methods do not involve patented technologies. Control of food production remains in the hands of farmers, keeping farmer skills alive and favoring food security.

Conclusion

GM crop technologies do not offer significant benefits. On the contrary, they present risks to human and animal health, the environment, farmers, food security, and export markets. There is no convincing reason to take such risks with the livelihoods of farmers when proven successful and widely acceptable alternatives are readily and cheaply available. These alternatives will maintain the independence of the food supply from foreign multinational control and offer the best insurance against the challenges of climate change.

Blank
References:

1. The Mutational Consequences of Plant Transformation. Latham
J.R. et al. J Biomed Biotech. 2006, Article ID 25376, 1-7, 2006.
2. Transformation-induced mutations in transgenic plants: Analysis
and biosafety implications. Wilson A.K. et al. Biotechnol Genet Eng
Rev., 23: 209-234, 2006.
3. Safety testing and regulation of genetically engineered foods. Freese
W and Schubert D. Biotechnol Genet Eng Rev., 21: 299-324, 2004.
4. GMO in animal nutrition: potential benefits and risks. Pusztai A.
and Bardocz S. In: Biology of Nutrition in Growing Animals, eds. R.
Mosenthin, J. Zentek and T. Zebrowska, Elsevier Limited, pp. 513-
540, 2006.
5. Assessing the survival of transgenic plant DNA in the human
gastrointestinal tract. Netherwood T. et al. Nat Biotech., 22: 204-
209, 2004.
6. Experts Weigh In: Will Trans Fat Bans Affect Obesity Trends? Meir
Stampfer. DOC News, Volume 4 (Number 5): p. 1, 1 May 2007.
7. Food related illness and death in the United States. Mead P.S. et al.
Emerging Infectious Diseases, 5: 607-625, 1999.
8. Food Safety – Contaminants and Toxins. Unpublished study
reviewed in J.P.F. D�Mello, CABI Publishing, 2003.
9. Fine structural analysis of pancreatic acinar cell nuclei from mice fed
on GM soybean. Malatesta M. et al. Eur J Histochem., 47: 385-388, 2003.
10. Ultrastructural morphometrical and immunocytochemical
analyses of hepatocyte nuclei from mice fed on genetically modified
soybean. Malatesta M et al. Cell Struct Funct., 27: 173-180, 2002.
11. Ultrastructural analysis of testes from mice fed on genetically
modified soybean. Vecchio L. et al. Eur J Histochem., 48: 448-454, 2004.
12. Transgenic expression of bean alpha-amylase inhibitor in peas
results in altered structure and immunogenicity. Prescott V.E. et al. J
Agric Food Chem., 53: 9023-9030, 2005.
13. Biotechnology Consultation Note to the File BNF No 00077.
Office of Food Additive Safety, Center for Food Safety and Applied
Nutrition, US Food and Drug Administration, 4 September 2002.
14. GMO in animal nutrition: potential benefits and risks. Pusztai
A. and Bardocz S. In: Biology of Nutrition in Growing Animals, eds.
R. Mosenthin, J. Zentek and T. Zebrowska, Elsevier Limited, pp. 513-
540, 2006.
15. Effects of diets containing genetically modified potatoes
expressing Galanthus nivalis lectin on rat small intestine. Ewen S.W.
and Pusztai A. The Lancet, 354: 1353-1354, 1999.
16. New analysis of a rat feeding study with a genetically modified
maize reveals signs of hepatorenal toxicity. S�ralini, G.-E. et al. Arch.
Environ Contam Toxicol., 52: 596-602, 2007.
17. A three generation study with genetically modified Bt corn in
rats: Biochemical and histopathological investigation. Kilic A and
Akay MT. Food and Chemical Toxicology, 46: 1164-1170, 2008.
18. Intestinal and Peripheral Immune Response to MON810 Maize
Ingestion in Weaning and Old Mice. Finamore A et al. J. Agric. Food
Chem., 56: 11533-11539, 2008.
19. Biological effects of transgenic maize NK603xMON810 fed
in long term reproduction studies in mice. Velimirov A et al.
Bundesministerium f�r Gesundheit, Familie und Jugend Report,
Forschungsberichte der Sektion IV Band 3/2008, Austria, 2008.
bmgfj.cms.apa.at/cms/site/attachments/3/2/9/ CH0810/
CMS1226492832306/forschungsbericht_3-2008_letztfassung.pdf
20. A long-term study on female mice fed on a genetically modified
soybean: effects on liver ageing. Malatesta M. et al. Histochem Cell
Biol., 130: 967-977, 2008.
21. Genetically modified soya bean in rabbit feeding: detection of
DNA fragments and evaluation of metabolic effects by enzymatic
analysis. R. Tudisco et al. Animal Science, 82: 193-199, 2006.
22. A three-year longitudinal study on the effects of a diet
containing genetically modified Bt176 maize on the health status
and performance of sheep. Trabalza-Marinucci M. et al. Livestock
Science, 113: 178-190, 2008.
23. Fate of genetically modified maize DNA in the oral cavity and
rumen of sheep. Duggan P.S. et al. Br J Nutr., 89: 159-166, 2003.
24. Detection of genetically modified DNA sequences in milk from the
Italian market. Agodi A. et al. Int J Hyg Environ Health, 209: 81-88, 2006.25. Assessing the transfer of genetically modified DNA from feed to
animal tissues. Mazza R. et al. Transgenic Res., 14: 775-784, 2005.
26. Detection of Transgenic and Endogenous Plant DNA in Digesta
and Tissues of Sheep and Pigs Fed Roundup Ready Canola Meal.
Mazza R. et al. J Agric Food Chem. 54: 1699-1709, 2006.
27. How Subchronic and Chronic Health Effects can be Neglected
for GMOs, Pesticides or Chemicals. S�ralini, G-E, et al. International
Journal of Biological Sciences, 2009; 5(5):438-443.
28. How Subchronic and Chronic Health Effects can be Neglected
for GMOs, Pesticides or Chemicals. S�ralini, G-E, et al. International
Journal of Biological Sciences, 2009; 5(5):438-443.
29. Under wraps � Are the crop industry�s strong-arm tactics and
close-fisted attitude to sharing seeds holding back independent
research and undermining public acceptance of transgenic crops?
Waltz, E., Nature Biotechnology, Vol. 27, No. 10, October 2009.
30. Crop Scientists Say Biotechnology Seed Companies Are
Thwarting Research. Pollack, A., New York Times, 20 February 2009.
31. The Genetic Engineering of Food and the Failure of Science �
Part 1: The Development of a Flawed Enterprise. Lotter, D., Int. Jrnl.
of Soc. of Agr. & Food, Vol. 16, No. 1, 2007, pp. 31�49.
32. The Genetic Engineering of Food and the Failure of Science
� Part 2: Academic Capitalism and the Loss of Scientific Integrity.
Lotter, D., Int. Jrnl. of Soc. of Agr. & Food, Vol. 16, No. 1, 2008, pp.
50�68.
33. Biotech proponents aggressively attack independent research
papers: GM crops: Battlefield. Waltz, E., Nature 461, 2009, 27�32.
34. Alterations in clinically important phytoestrogens in genetically
modified, herbicide-tolerant soybeans. Lappe M.A. et al. J Med Food,
1: 241-245, 1999.
35. Seed-specific overexpression of phytoene synthase: increase in
carotenoids and other metabolic effects. Shewmaker CK et al. Plant
J, 20: 401-412, 1999.
36. Assessing the survival of transgenic plant DNA in the human
gastrointestinal tract. Netherwood T. et al. Nat Biotech., 22: 204-
209, 2004.
37. The fate of transgenes in the human gut. Heritage J. Nat Biotech.,
22: 170-172, 2004.
38. Bacillus thuringiensis Cry1Ac Protoxin is a Potent Systemic and
Mucosal Adjuvant. V�zquez RI et al. Scand J Immunol., 49: 578-584,
1999.
39. Intragastric and intraperitoneal administration of Cry1Ac
protoxin from Bacillus thuringiensis induces systemic and mucosal
antibody responses in mice. V�zquez-Padr�n, RI et al. Life Sci., 64:
1897-1912, 1999.
40. Cry1Ac Protoxin from Bacillus thuringiensis sp. kurstaki HD73
Binds to Surface Proteins in the Mouse Small Intestine. V�zquezPadr�n,
RI et al. Biochem Biophys Res Comm., 271: 54-58, 2000.
41. Eosinophilia-myalgia syndrome and tryptophan production: a
cautionary tale. Mayeno A.N and Gleich G.J. Tibtech, 12: 346-352,
1994.
42. Identification of a Brazil-nut allergen in transgenic soybeans.
Nordlee J.E. et al. N England J Med., 334: 688-692, 1996.
43. GMO in animal nutrition: potential benefits and risks. Pusztai
A. and Bardocz S. In: Biology of Nutrition in Growing Animals, eds.
R. Mosenthin, J. Zentek and T. Zebrowska, Elsevier Limited, pp. 513-
540, 2006.
44. Effects of diets containing genetically modified potatoes
expressing Galanthus nivalis lectin on rat small intestine. Ewen S.W.
and Pusztai A. The Lancet, 354: 1353-1354, 1999.
45. Transgenic expression of bean alpha-amylase inhibitor in peas
results in altered structure and immunogenicity. Prescott V.E. et al. J
Agric Food Chem., 53: 9023-9030, 2005.
46. A Note on Rising Food Prices. Donald Mitchell. World Bank
report, 2008. image.guardian.co.uk/sys-files/Environment/
documents/2008/07/10/Biofuels.PDF
47. Soaring Food Prices: Facts, Perspectives, Impacts and Actions
Required. United Nations Food and Agriculture Organisation
conference and report, Rome, 3-5 June 2008. www.fao.org/
fileadmin/user_upload/foodclimate/HLCdocs/HLC08-inf-1-E.pdf
48. Small Is Beautiful: Evidence of Inverse Size Yield Relationship
in Rural Turkey. �nal, FG. The Levy Economics Institute of Bard
College, October 2006, updated December 2008. www.levy.
org/pubs/wp_551.pdf.
49. Farm Size, Land Yields and the Agricultural Production function:
An Analysis for Fifteen Developing Countries. Cornia, G. World
Development, 13: 513-34, 1985.
50. Rural market imperfections and the farm size-productivity
relationship: Evidence from Pakistan. Heltberg, R. World
Development 26: 1807-1826, 1998.
51. Is there a future for small farms? Hazell, P. Agricultural
Economics, 32: 93-101, 2005.
52. Is Small Beautiful? Farm Size, Productivity and Poverty in Asian
Agriculture. Fan S and Chan-Kang C. Agricultural Economics, 32:
135-146, 2005.
53. Hope for Africa lies in political reforms. Daniel Howden, Africa
correspondent, The Independent (London), 8 September 2008,
www.independent.co.uk/opinion/commentators/danielhowden-hope-for-africa-lies-in-political-reforms-922487.html
54. Evidence of the Magnitude and Consequences of the Roundup
Ready Soybean Yield Drag from University-Based Varietal Trials in
1998. Benbrook C. Benbrook Consulting Services Sandpoint, Idaho.
Ag BioTech InfoNet Technical Paper, Number 1, 13 Jul 1999. http://
www.mindfully.org/GE/RRS-Yield-Drag.htm
55. Glyphosate-resistant soyabean cultivar yields compared with
sister lines. Elmore R.W. et al. Agronomy Journal, 93: 408-412, 2001.
56. Development, yield, grain moisture and nitrogen uptake of
Bt corn hybrids and their conventional near-isolines. Ma B.L. and
Subedi K.D. Field Crops Research, 93: 199-211, 2005.
57. The Adoption of Bioengineered Crops. US Department of
Agriculture Report, May 2002, www.ers.usda.gov/publications/
aer810/aer810.pdf.
58. International Assessment of Agricultural Knowledge, Science and
Technology for Development: Global Summary for Decision Makers
(IAASTD); Beintema, N. et al., 2008. www.agassessment.org/
index.cfm?Page=IAASTD%20Reports&ItemID=2713
59. Failure to Yield: Evaluating the Performance of Genetically
Engineered Crops. Doug Gurian-Sherman. Union of Concerned
Scientists, April 2009, p. 13
60. Roundup ready Soybeans in Argentina: farm level and aggregate
welfare effects. Qaim, M. and G. Traxler. 2005. Agricultural Economics
32: 73�86.
61. Doug Gurian-Sherman, quoted on Union of Concerned
Scientists website, www.ucsusa.org/food_and_agriculture/
science_and_impacts/science/failure-to-yield.html.
62. Millions served. Lynn J. Cook. Forbes magazine, 23 December
2002.
63. GM technology fails local potatoes. Gatonye Gathura. The Daily
Nation (Kenya), 29 January 2004.
64. Monsanto�s showcase project in Africa fails. New Scientist, Vol.
181, No. 2433, 7 February 2004.
65. Genetically modified crops and sustainable poverty alleviation
in sub-Saharan Africa: An assessment of current evidence. Aaron
deGrassi. Third World Network-Africa, June 2003.66. Plant Researchers Offer Bumper Crop of Humanity. Martha
Groves. LA Times, 26 December 1997.
67. Danforth Center cassava viral resistance update. Donald
Danforth Plant Science Center, 30 June 2006.
68. Can biotech from St. Louis solve hunger in Africa? Kurt
Greenbaum. St. Louis Post-Dispatch, 9 December 2006.
69. St. Louis team fights crop killer in Africa. Eric Hand. St. Louis
Post-Dispatch, 10 December 2006.
70. Farmers get better yields from new drought-tolerant cassava.
IITA, 3 November 2008; Cassava�s comeback. United Nations Food
and Agriculture Organisation, 13 November 2008.
71. A Disaster in Search of Success: Bt Cotton in Global South. Film
by Community Media Trust, Pastapur, and Deccan Development
Society, Hyderabad, India, February 2007.
72. Impact of Bt cotton adoption on pesticide use by smallholders:
A 2-year survey in Makhatini Flats (South Africa). Hofs, J-L, et al.
Crop Protection, Volume 25, Issue 9, September 2006, pp. 984�988.
73. Food, energy and society. Pimentel, D., and M. Pimentel. Niwot:
Colorado University Press, 1996. Cited in Energy efficiency and
conservation for individual Americans. D. Pimentel, Environ Dev
Sustain, 1996.
74. Energy and economic inputs in crop production: Comparison
of developed, developing countries. Pimentel, D., Doughty, R.,
Carothers, C., Lamberson, S., Bora, N., & Lee, K. In L. Lal, D. Hansen,
N. Uphoff, & S. Slack (Eds.), Food security & environmental quality in
the developing world (pp. 129�151). Boca Raton: CRC Press, 2002.
75. U.S. energy conservation and efficiency: Benefits and costs.
Pimentel, D., Pleasant, A., Barron, J., Gaudioso, J., Pollock, N., Chae,
E., Kim, Y., Lassiter, A., Schiavoni, C., Jackson, A., Lee, M., & Eaton, A.
Environment Development and Sustainability, 6, 279�305, 2004.
76. Ethanol production using corn, switchgrass, and wood; and
biodiesel production using soybean and sunflower. Pimentel, D., &
Patzek, T. Natural Resources Research, 14(1), 65�76, 2005.
77. Energy and economic inputs in crop production: Comparison
of developed, developing countries. Pimentel, D., Doughty, R.,
Carothers, C., Lamberson, S., Bora, N., & Lee, K. In L. Lal, D. Hansen,
N. Uphoff, & S. Slack (Eds.), Food security & environmental quality in
the developing world (pp. 129�151). Boca Raton: CRC Press, 2002.
78. Energy efficiency and conservation for individual Americans. D.
Pimentel et al. Environ Dev Sustain., Vol. 11, No. 3, June 2009.
79. Environmental, Energetic, and Economic Comparisons of
Organic and Conventional Farming Systems. Pimentel, D. et al.
Bioscience, Vol. 55, No. 7, July 2005, pp. 573�582, www.bioone.
org/doi/full/10.1641/0006-3568(2005)055%5B0573%3AEEAECO%5
D2.0.CO%3B2#references
80. The impact of compost use on crop yields in Tigray,
Ethiopia. Institute for Sustainable Development (ISD). Edwards,
S. Proceedings of the International Conference on Organic
Agriculture and Food Security. FAO, Rom, 2007, ftp.fao.org/paia/
organicag/ofs/02-Edwards.pdf.
81. The ethylene response factors SNORKEL1 and SNORKEL2
allow rice to adapt to deep water. Hattori, Y. et al. Nature, Vol 460,
20 August 2009: 1026�1030.
82. Glyphosate-Resistant Weeds: Current Status and Future
Outlook. Nandula V.K. et al. Outlooks on Pest Management, August
2005: 183�187.
83. Syngenta module helps manage glyphosate-resistant weeds.
Delta Farm Press, 30 May 2008, deltafarmpress.com/mag/
farming_syngenta_module_helps/index.html.
84. Resistant ryegrass populations rise in Mississippi. Robinson R.
Delta Farm Press, Oct 30, 2008. deltafarmpress.com/wheat/
resistant-ryegrass-1030/
85. Glyphosate Resistant Horseweed (Marestail) Found in 9 More
Indiana Counties. Johnson B and Vince Davis V. Pest & Crop, 13
May 2005. extension.entm.purdue.edu/pestcrop/2005/issue8/
index.html
86. Genetically Engineered Crops and Pesticide Use in the United
States: The First Nine Years. Benbrook CM. BioTech InfoNet
Technical Paper Number 7, October 2004. www.biotech-info.
net/Full_version_first_nine.pdf
87. Agricultural Pesticide Use in US Agriculture. Center for Food
Safety, May 2008, www.centerforfoodsafety.org/pubs/USDA%20
NASS%20Backgrounder-FINAL.pdf.
88. A Little Burndown Madness. Nice G et al. Pest & Crop, 7 Mar
2008. extension.entm.purdue.edu/pestcrop/2008/issue1/
index.html
89. To slow the spread of glyphosate resistant marestail, always
apply with 2,4-D. Pest & Crop, issue 23, 2006. extension.entm.
purdue.edu/pestcrop/2006/issue23/table1.html
90. Glyphosate Formulations Induce Apoptosis and Necrosis in
Human Umbilical, Embryonic, and Placental Cells. Benachour, N. and
Gilles-Eric S�ralini. Chem. Res. Toxicol., 2009, 22 (1), pp 97�105.
91. Genetically-modified superweeds �not uncommon�. Randerson
J. New Scientist, 05 February 2002. www.newscientist.com/
article/dn1882-geneticallymodified-superweeds-not-uncommon.html
92. Elements of Precaution: Recommendations for the Regulation
of Food Biotechnology in Canada. An Expert Panel Report on the
Future of Food Biotechnology prepared by The Royal Society of
Canada at the request of Health Canada Canadian Food Inspection
Agency and Environment Canada, 2001. www.rsc.ca//files/
publications/ expert_panels/foodbiotechnology/GMreportEN.pdf
93. Gene Flow and Multiple Herbicide Resistance in Escaped Canola
Populations. Knispel AL et al. Weed Science, 56: 72-80, 2008.
94. Do escaped transgenes persist in nature? The case of an
herbicide resistance transgene in a weedy Brassica rapa population.
Warwick SI et al. Molecular Ecology, 17: 1387-1395, 2008.
95. A Little Burndown Madness. Nice G et al. Pest & Crop, 7 Mar
2008. extension.entm.purdue.edu/pestcrop/2008/issue1/
index.html
96. To slow the spread of glyphosate resistant marestail, always
apply with 2,4-D. Pest & Crop, issue 23, 2006. extension.entm.
purdue.edu/pestcrop/2006/issue23/table1.html
97. First report of field resistance by the stem borer, Busseola fusca
(Fuller) to Bt-transgenic maize. Rensburg J.B.J. S. Afr J Plant Soil., 24:
147-151, 2007.
98. Resistance of sugarcane borer to Bacillus thuringiensis Cry1Ab
toxin. Huang F et al. Entomologia Experimentalis et Applicata 124:
117-123, 2007.
99. Insect resistance to Bt crops: evidence versus theory. Tabashnik
BE et al. Nat Biotech., 26: 199-202, 2008.
100. Transgenic cotton drives insect boom. Pearson H. NatureNews.
Published online 25 July 2006. www.nature.com/
news/2006/060724/full/news060724-5.html
101. Bt-cotton and secondary pests. Wang S et al. Int. J.
Biotechnology, 10: 113-121, 2008.
102. India: Bt cotton devastated by secondary pests. Bhaskar
Goswami. Grain, 01 Sept 2007. www.grain.org/
btcotton/?id=398
103. Bt cotton not pest resistant. Gur Kirpal Singh Ashk. The Times
of India, 24 Aug 2007, timesofindia.indiatimes.com/Chandigarh/
Bt_cotton_not_pest_resistant/articleshow/2305806.cms
104. Prof Gilles-Eric S�ralini, in an interview with Savvy Soumya
Misra, Down to Earth, 15 April 2009, downtoearth.org.in/full6.
asp?foldername=20091031&filename=inv&sec_id=14&sid=1105. Transgenic crops take another knock. Giles J. NatureNews,
published online: 21 March 2005. www.nature.com/
news/2005/050321/full/050321-2.html
106. Effects on weed and invertebrate abundance and diversity of
herbicide management in genetically modified herbicide-tolerant
winter-sown oilseed rape. Bohan DA et al. Proc R Soc B, 272: 463-
474, 2005.
107. Argentina�s bitter harvest. Branford S. New Scientist, 17 April
2004.
108. Rust, resistance, run down soils, and rising costs � Problems
facing soybean producers in Argentina. Benbrook C.M. AgBioTech
InfoNet, Technical Paper No 8, Jan 2005.
109. Transgenic pollen harms monarch larvae. Losey J.E. et al.
Nature, 399: 214, 1999.
110. Field deposition of Bt transgenic corn pollen: lethal effects on
the monarch butterfly. Hansen L. C. and J. Obrycki J. Oecologia, 125:
241-245, 2000.
111. The effects of pollen consumption of transgenic Bt maize
on the common swallowtail, Papilio machaon L. (Lepidoptera,
Papilionidae). Lang A and Vojtech E. Basic and Applied Ecology, 7:
296-306, 2006.
112. A meta-analysis of effects of Bt cotton and maize on nontarget
invertebrates. Marvier M. et al. Science, 316: 1475-1477, 2007.
113. Toxins in transgenic crop byproducts may affect headwater
stream ecosystems. Rosi-Marshall E.J. et al. Proc. Natl. Acad. Sci.
USA, 104: 16204-16208, 2007.
114. Impact of Bt Corn on Rhizospheric and Soil Eubacterial
Communities and on Beneficial Mycorrhizal Symbiosis in
Experimental Microcosms. M. Castaldini M. et al. Appl Environ
Microbiol., 71: 6719-6729, 2005.
115. The impact of transgenic plants on natural enemies: a critical
review of laboratory studies. L�vei, G.L. and S. Arpaia, 2004.
Entomologia Experimentalis et Applicata vol. 114: 1�14.
116. Risky business: Economic and regulatory impacts from the
unintended release of genetically engineered rice varieties into the
rice merchandising system of the US. Report for Greenpeace, 2007.
117. Mexico Halts US Rice Over GMO Certification. Reuters, 16
March 2007.
118. Organic farmers seek Supreme Court hearing. Press release,
Organic Agriculture Protection Fund Committee, Saskatoon,
Canada, 1 August 2007.
119. The United States District Court for the Northern District
of California. Case 3:06-cv-01075-CRB Document 199 Filed
05/03/2007: Memorandum and Order Re: Permanent Injunction.
120. Coexistence of plants and coexistence of farmers: Is an
individual choice possible? Binimelis, R., Journal of Agricultural and
Environmental Ethics, 21: 437-457, 2008.
121. CDC Triffid Flax Scare Threatens Access To No. 1 EU Market.
Allan Dawson. Manitoba Co-operator, 17 September 2009; Changes
Likely For Flax Industry. Allan Dawson. Manitoba Cooperator, 24
September 2009.
122. Biotech companies fuel GM contamination spread. Greenpeace
International, 29 February 2008. www.greenpeace.org/
international/news/gm-ge-contamination-report290208
123. International Assessment of Agricultural Knowledge,
Science and Technology for Development: Global Summary
for Decision Makers (IAASTD); Beintema, N. et al., 2008.
www.agassessment.org/index.cfm?Page=IAASTD%20
Reports&ItemID=2713
124. Applying Agroecology to Enhance the Productivity of Peasant
Farming Systems in Latin America. Altieri M.A. Environment,
Development and Sustainability, 1: 197-217, 1999.
125. More Productivity with Fewer External Inputs: Central
American Case Studies of Agroecological Development and their
Broader Implications. Bunch R. Environment, Development and
Sustainability, 1: 219-233, 1999.
126. Can Sustainable Agriculture Feed Africa? New Evidence
on Progress, Processes and Impacts. Pretty J. Environment,
Development and Sustainability, 1: 253-274, 1999.
127. Organic Agriculture and Food Security in Africa. United
Nations Conference on Trade and Development, United Nations
Environment Programme, 2008. www.unep-unctad.org/cbtf/
publications/UNCTAD_DITC_TED_2007_15.pdf
128. Ecologising rice-based systems in Bangladesh. Barzman M. &
Das L. ILEIA Newsletter, 2: 16-17, 2000. www.leisa.info/index.
php?url=magazine-details.tpl&p[_id]=12434
129. Genetic diversity and disease control in rice. Zhu Y et al.
Nature, 406: 718-722, 2000.
130. Lost Crops of Africa, Vol.1: Grains. National Research
Council (Washington DC, USA) Report, 1996. www7.
nationalacademies.org/dsc/LostCropsGrains_Brief.pdf
131. Marker-assisted selection: an approach for precision plant
breeding in the twenty-first century. Collard BCY and Mackill DJ.
Phil Trans R Soc B, 363: 557-572, 2008.
132. Breeding for abiotic stresses for sustainable agriculture.
Witcombe J.R. et al. Phil Trans R Soc B, 363: 703-716, 2008.
133. �Organic Agriculture and Food Security in Africa�. Foreword by
Supachai Panitchpakdi, Secretary-General of UNCTAD, and Achim
Steiner, Executive Director of UNEP. United Nations Environment
Programme (UNEP) and United Nations Conference on Trade and
Development (UNCTAD), 2008, p. 16, www.unep-unctad.org/
cbtf/publications/UNCTAD_DITC_TED_2007_15.pdf
134. �Organic Agriculture and Food Security in Africa�. Foreword by
Supachai Panitchpakdi, Secretary-General of UNCTAD, and Achim
Steiner, Executive Director of UNEP. United Nations Environment
Programme (UNEP) and United Nations Conference on Trade and
Development (UNCTAD), 2008, www.unep-unctad.org/cbtf/
publications/UNCTAD_DITC_TED_2007_15.pdf
135. Certified organic export production. Implications for economic
welfare and gender equity among smallholder farmers in tropical
Africa. UNCTAD. 2008, www.unctad.org/trade_env/test1/
publications/UNCTAD_DITC_TED_2007_7.pdf; The economics
of certified organic farming in tropical Africa: A preliminary
analysis. Gibbon P and Bolwig S. 2007. SIDA DIIS Working Paper
no 2007/3, Subseries on Standards and Agro-Food-Exports (SAFE)
No. 7; Organic Agriculture: A Trade and Sustainable Development
Opportunity for Developing Countries. Twarog. 2006. In UNCTAD.
2006. Trade and Environment Review, UN, 2006, www.unctad.
org/en/docs/ditcted200512_en.pdf.
136. The economics of certified organic farming in tropical Africa: A
preliminary analysis. Gibbon P and Bolwig S. 2007. SIDA DIIS Working
Paper no 2007/3, Subseries on Standards and Agro-Food-Exports
(SAFE) No. 7; Certified organic export production. Implications for
economic welfare and gender equity among smallholder farmers in
tropical Africa. UNCTAD. 2008, www.unctad.org/trade_env/
test1/publications/UNCTAD_DITC_TED_2007_7.pdf.

Close Accordion
Hypertension Associated with Sodium Loss | Wellness Clinic

Hypertension Associated with Sodium Loss | Wellness Clinic

Cardiovascular disease and hypertension can often occur due to a variety of factors, however, an improper diet and nutrition has been appointed to be one of the most prevalent causes behind the onset of cardiovascular disease and hypertension. While an improper diet and nutrition can lead to these issues, a balanced, healthy diet and nutrition can help prevent cardiovascular disease and hypertension, even treat the existing conditions.

 

What’s the best dietary and nutritional approach to treat cardiovascular disease and hypertension?

 

Many of the substances in food, particularly in nutraceutical supplements, antioxidants, vitamins or nutritional supplements, function in a manner that is similar to a category of drugs and medications to improve cardiovascular disease and hypertension. The effect is synergistic when used in combination with other nutritional supplements even though the drug might not be less than the potency of the compounds. These natural compounds have been outlined to the significant antihypertensive drug classes, such as diuretics, beta blockers, central alpha agonists, direct vasodilators, calcium channel blockers (CCB’s), angiotensin converting enzyme inhibitors (ACEI’s), angiotensin receptor blockers (ARB’s) and direct renin inhibitors (DRI).

 

Dietary Approaches to Stop Hypertension

 

The Dietary Approaches to Stop Hypertension (DASH) Iand II diets conclusively demonstrated significant reductions in BP in borderline and stageIhypertensive patients. Back in DASH I, untreated hypertensive subjects with SBP < 160 mmHg and DBP 80-95 mmHg were placed on one of three diets for 4 weeks, controled diet, vegetable and fruit diet (F + V) and combined diet, which added F + V and low fat milk. Sodium restriction was added by DASH II in every group. The control diet consisted of sodium at 3 g/d, potassium, calcium and magnesium in 25% of the US average, macronutrients at US average of 4 portions every day, a sodium/potassium ratio of 1.7 and fiber at 9 g/d. The F + V diet raised the potassium, calcium and magnesium to 75 percent, macronutrients compared to the US average, a sodium potassium ratio of 0.7, 31 gram of fiber and 8.5 portions of vegetables and fruits per day. The joint diet was similar to the F + V diet but additional fat milk. At 2 wk the BP was decreased by 10.7/5.2 mmHg from the hypertensive patients in DASHIand 11.5/6.8 mmHg from the hypertensive patients in DASH II. These reductions persisted provided that the patients were on the diet. The DASH diet increases plasma renin activity (PRA) and serum aldosterone levels in response to this BP reductions) The increase in PRA was 37 ng/mL every day. There has been an associated of reaction with the polymorphism of beta 2 adrenergic receptor. The A allele of G46A had blunted PRA and a higher BP reduction and aldosterone. The arachidonic acid (AA) genotype had the best response along with the GG genotype had no response. Adding an ARB, DRI or ACEI improved BP reaction due to blockade of the increase in PRA to the DASH diet at the GG group. A very low sodium DASH diet reduces oxidative stress (urine F2-isoprostanes), enhances vascular function (enhancement indicator) and lowers BP in salt sensitive areas. In addition, plasma nitrite increased and pulse wave velocity decreased on the DASH diet at week two.

 

Sodium (Na+) Loss and Hypertension

 

The average sodium intake in the US is 5000 mg/d with some regions of the nation consuming 15000-20000 mg/d. On the other hand, the minimal requirement for sodium is most likely roughly 500 mg/d. Epidemiologic, observational and controlled clinical trials reveal that an increased sodium intake is associated with increased risk for proteinuria, renal insufficiency, CVD LVH, CHD, MI and of the SNS as well as BP. A decrease in sodium intake in hypertensive patients the salt sensitive patients, will significantly lower BP by 4-6/2-3 mmHg that’s proportional to the level of sodium restriction and might stop or delay hypertension in high risk patients and decrease CV events.

 

Salt sensitivity (? 10% increase in MAP with salt loading) occurs in about 51 percent of hypertensive patients and is a vital variable in determining the cardiovascular, cerebrovascular, renal and BP responses to dietary salt intake. Cardiovascular events are prevalent in the salt patients than ones, independent of BP. An increased sodium intake has a direct positive correlation with BP and the risk of CHD and CVA. The risk is independent of BP to get CVA with a relative risk of 1.04 to 1.25 in the lowest to the highest quartile. In addition, patients may convert into a BP routine with increases in nocturnal BP as the sodium intake increases.

 

Increased sodium intake has a direct impact on endothelial cells. Sodium promotes cutaneous lymphangiogenesis, increases endothelial cell stiffness, reduces dimensions, surface area, volume, cytoskeleton, deformability and pliability, reduces eNOS and NO generation, raises asymmetric dimethyl arginine (ADMA), oxidative stress and TGF-?. Every one of these vascular responses are increased in the presence of aldosterone. These modifications occur independent of BP and may be partially counteract by potassium. The endothelial cells act as vascular salt sensors. Endothelial cells are targets for aldosterone which activate epithelial sodium channels (ENaCs) and also have a negative effects on discharge of NO and on endothelial function. The mechanical stimulation of the cell plasma membrane along with the submembranous actin network (endothelial glcyocalyx) (“shell”) serve as a “firewall” to protect the endothelial cells and are regulated by serum sodium, potassium and aldosterone within the physiological selection. Changes in shear-stress-dependent activity of the endothelial NO synthase located in the caveolae regulate the viscosity in this “shell”. High plasma sodium gelates the casing of the cell, whereas the casing is fluidized by high fructose. These communications between intracellular enzymes and extracellular ions happen in the plasma membrane barrier, whereas 90 percent of the cell mass remains uninvolved in such changes. Blockade of the ENaC using spironolactone (100%) or amiloride (84%) minimizes or prevent many of these vascular endothelial responses and boost NO. Nitric oxide release follows not vice versa and nanomechanics and decreases vascular endothelial cell stiffness which enhances circulation conducive vasodilation that is dependent. In the presence of HS-CRP that was increased and vascular inflammation, the effects of aldosterone on the ENaC is enhanced further raising vascular stiffness and BP. High sodium intake also abolishes the AT2R-mediated vasodilation immediately with complete abolition of endothelial vasodilation (EDV) within 30 d. Thus, it is now clear that high dietary sodium has adverse effects on the circulatory system, BP and CVD by changing the endothelial glycocalyx, which is a negatively charged biopolymer that lines the blood vessels and also serves as a protective barrier against sodium over-load, increased sodium permeability and sodium-induced TOD. Certain SNP’s of salt inducible kinaseIwhich alter Na+/K+ ATPase, determine LVH and sodium caused hypertension.

 

The sodium intake every day in patients must be between 1500. BP reduction improves in people on patients which are on treatment and the decrease in BP is additive with limitation of refined carbohydrates. Reducing sodium consumption may reduce damage to the brain, heart, kidney and vasculature through mechanisms dependent on the BP reduction that is little as well as those independent of the BP. A balance of sodium with nutrients, particularly calcium, magnesium and potassium is important, not just in reducing and controlling BP, but also in decreasing cerebrovascular and cardiovascular events. An increase in the sodium to potassium ratio is associated with risk of all-cause mortality and CVD. The Yanomamo Indians consume and excrete only 1 meq of sodium from 24 h and consume and excrete 152 meq of potassium in 24 h. BP doesn’t rise with age and is related to elevated PRA, although the Na + to K + percentage is 1/152. Currently 50 the BP in the Yanomamo is 100-108/64-69 mmHg.

 

In conclusion,�Cardiovascular disease and hypertension can often occur due to a variety of factors, however, an improper diet and nutrition has been appointed to be one of the most prevalent causes behind the onset of cardiovascular disease and hypertension. According to the above research studies, an imbalance in the intake of sodium can lead to cardiovascular disease and hypertension.� The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

Green-Call-Now-Button-24H-150x150-2-3.png

By Dr. Alex Jimenez

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: About Chiropractic

 

 

Mastodon