ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page

Treatments

Back Clinic Treatments. There are various treatments for all types of injuries and conditions here at Injury Medical & Chiropractic Clinic. The main goal is to correct any misalignments in the spine through manual manipulation and placing misaligned vertebrae back in their proper place. Patients will be given a series of treatments, which are based on the diagnosis. This can include spinal manipulation, as well as other supportive treatments. And as chiropractic treatment has developed, so have its methods and techniques.

Why do chiropractors use one method/technique over another?

A common method of spinal adjustment is the toggle drop method. With this method, a chiropractor crosses their hands and pressed down firmly on an area of the spine. They will then adjust the area with a quick and precise thrust. This method has been used for years and is often used to help increase a patient’s mobility.

Another popular method takes place on a special drop table. The table has different sections, which can be moved up or down based on the body’s position. Patients lie face down on their back or side while the chiropractor applies quick thrusts throughout the spinal area as the table section drops. Many prefer this table adjustment, as this method is lighter and does not include twisting motions used in other methods.

Chiropractors also use specialized tools to assist in their adjustments, i.e., the activator. A chiropractor uses this spring-loaded tool to perform the adjustment/s instead of their hands. Many consider the activator method to be the most gentle of all.

Whichever adjustment method a chiropractor uses, they all offer great benefits to the spine and overall health and wellness. If there is a certain method that is preferred, talk to a chiropractor about it. If they do not perform a certain technique, they may recommend a colleague that does.


Migraine Pain Treatment | Dr. Alex Jimenez

Migraine Pain Treatment | Dr. Alex Jimenez

A migraine is characterized as a moderate to severe headache, often accompanied by nausea and sensitivity to light and sound. Nearly 1 in 4 United States households include someone who suffers from migraine. As a matter of fact, migraine is considered to be the 3rd most prevalent condition in the world. Researchers haven’t identified a definitive cause for migraines, however, several factors are believed to trigger the complex headache pain, including a misalignment in the cervical spine. Chiropractic care is a well-known alternative treatment option used to help treat migraine headaches and improve the symptoms. The purpose of the following case study is to demonstrate the effects of chiropractic care on migraine pain management.

 

A Case of Chronic Migraine Remission After Chiropractic Care

 

Abstract

 

  • Objective: To present a case study of migraine sufferer who had a dramatic improvement after chiropractic spinal manipulative therapy (CSMT).
  • Clinical features: The case presented is a 72-year�old woman with a 60-year history of migraine headaches, which included nausea, vomiting, photophobia, and phonophobia.
  • Intervention and outcome: The average frequency of migraine episodes before treatment was 1 to 2 per week, including nausea, vomiting, photophobia, and phonophobia; and the average duration of each episode was 1 to 3 days. The patient was treated with CSMT. She reported all episodes being eliminated after CSMT. The patient was certain there had been no other lifestyle changes that could have contributed to her improvement. She also noted that the use of her medication was reduced by 100%. A 7-year follow-up revealed that the person had still not had a single migraine episode in this period.
  • Conclusion: This case highlights that a subgroup of migraine patients may respond favorably to CSMT. While a case study does not represent significant scientific evidence, in context with other studies conducted, this study suggests that a trial of CSMT should be considered for chronic, nonresponsive migraine headache, especially if migraine patients are nonresponsive to pharmaceuticals or prefer to use other treatment methods.
  • Key indexing terms: Migraine, Chiropractic, Spinal manipulative therapy

 

Introduction

 

Migraine remains a common and debilitating condition.[1, 2] It has an estimated incidence of 6% in males and 18% in females.[2] A study in Australia found the cost to industry to be an estimated $750 million.[3] Lipton et al found that migraine is one of the most frequent reasons for consultations with general practitioners, affecting between 12 million and 18 million people each year in the United States.[4] The estimated cost in the United States is $25 billion in lost productivity due to 156 million full-time work days being lost each year.[5] Recent information has suggested that these older figures above are still current, but also underestimated, because of many sufferers not stating their problem because of a perceived poor social stigma.[6]

 

The Brain Foundation in Australia notes that 23% of households contain at least one migraine sufferer. Nearly all migraine sufferers and 60% of those with tension-type headache experience reductions in social activities and work capacity. The direct and indirect costs of migraine alone would be about $1 billion per annum.[3]

 

The Headache Classification Committee of the International Headache Society (IHS) defines migraines as having the following: unilateral location, pulsating quality, moderate or severe intensity, and aggravated by routine physical activity. During the headache, the person must also experience nausea and/or vomiting, photophobia, and/or phonophobia.[7] In addition, there is no suggestion either by history or by physical or neurologic examination that the person has a headache listed in groups 5 to 11 of their classification system.[7] Groups 5 to 11 of the classification system include headache associated with head trauma, vascular disorder, nonvascular intracranial disorder, substances or their withdrawal, noncephalic infection, or metabolic disorder, or with disorders of cranium, neck, eyes, nose, sinuses, teeth, mouth, or other facial or cranial structures.

 

Some confusion relates to the �aura� feature that distinguishes migraine with aura (MA) and migraine without aura (MW). An aura usually consists of homonymous visual disturbances, unilateral paresthesias and/or numbness, unilateral weakness, aphasia, or unclassifiable speech difficulty.[7] Some migraineurs describe the aura as an opaque object, or a zigzag line around a cloud; even cases of tactile hallucinations have been recorded.[8] The new terms MA and MW replace the old terms classic migraine and common migraine, respectively.

 

The IHS diagnostic criteria for MA (category 1.2) is at least 3 of the following:

 

  1. One or more fully reversible aura symptoms indicating focal cerebral cortex and/or brain stem dysfunction.
  2. At least 1 aura symptom develops gradually over more than 4 minutes or 2 or more symptoms occurring in succession.
  3. No aura symptom lasts more than 60 minutes.
  4. Headache follows aura with a free interval of less than 60 minutes.

 

Migraine is often still nonresponsive to treatment.[9] However, several studies have demonstrated statistically significant reduction in migraines after chiropractic spinal manipulative therapy (CSMT).[10-15]

 

This article will discuss a patient presenting with MW and her response after CSMT. The discussion will also outline specific diagnostic criteria for migraine and other headaches relevant to chiropractors, osteopaths, or other health practitioners.

 

Case Report

 

A 72-year�old 61-kg white woman presented with migraine headaches that had commenced in early childhood (approximately 12 years old). The patient could not relate anything to the commencement of her migraines, although she believed there was a family history (father) of the condition. During the history, the patient stated that she suffered regular migraine headaches (1-2 per week) with which she also experienced nausea, vomiting, vertigo, and photophobia. She needed to cease activities to alleviate the symptoms, and she often required acetaminophen and codeine medication (25 mg) or sumatriptan succinate for pain relief. The patient was also taking verapamil (calcium ion antagonist, for essential hypertension), calcitriol (calcium uptake, for osteoporosis), pnuemenium on a daily basis, and carbamazipine (antiepileptic, neurotropic medication) twice daily.

 

The patient reported that an average episode lasted 1 to 3 days and that she could not perform activities of daily living for a minimum of 12 hours. In addition, a visual analogue scale score for an average episode was 8.5 out of a possible maximum score of 10, corresponding to a description of �terrible� pain. The patient noted that stress or tension would precipitate a migraine and that light and noise aggravated her condition. She described the migraine as a throbbing head pain located in the parietotemporal region and was always left-sided.

 

The patient had a previous history of a pulmonary embolism (2 years before treatment) and had a partial hysterectomy 4 years before treatment. She also stated she had hypertension that was controlled. She was a widow with 2 children, and she had never smoked. The patient had tried acupuncture, physiotherapy, substantial dental treatment, and numerous other medications; but nothing had changed her migraine pattern. She stated that she had never had previous chiropractic treatment. The patient also stated that she had been treated by a neurologist for �migraines� over many years.

 

On examination, she was found to have very sensitive suboccipital and upper cervical musculature and decreased range of motion at the joint between the occiput and first cervical vertebra (Occ-C1), coupled with pain on flexion and extension of the cervical spine. She also had significant reduction in thoracic spine motion and a marked increase in her thoracic kyphosis.

 

Blood pressure testing revealed she was hypertensive (178/94), which the patient reported was an average result (stage 2 hypertension using the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure 7 guidelines).

 

Based on the IHS Headache Classification Committee classification and diagnostic criteria, the patient had an MW�category 1.1, previously called common migraine (Table 1). This appeared secondary to moderate cervical segmental dysfunction with mild to moderate suboccipital and cervical paraspinal myofibrosis.

 

Table 1 Headache Classifications

Table 1: Headache classifications (IHS Headache Classification Committee)

 

The patient received CSMT (diversified chiropractic �adjustments�) to her Occ-C1 joint, upper thoracic spine (T2 through T7), and the affected hypertonic musculature. Hypertonic muscles were released through gentle massage and stretching. An initial course of 8 treatments was conducted at a frequency of twice a week for 4 weeks. The treatment program also included recording several features for every migraine episode. This included frequency, visual analogue scores, episode duration, medication, and time before they could return to normal activities.

 

The patient reported a dramatic improvement after her first treatment and noticed a reduction in the intensity of her head and neck pain. This continued with the patient reporting having no migraines in the initial month course of treatment. Further treatment was recommended to increase her range of motion, increase muscle tone, and reduce suboccipital muscle tension. In addition, monitoring of her migraine symptoms was continued. A program of treatment at a frequency of once a week for a further 8 weeks was instigated. After the next phase of treatment, the patient noted much less neck tension, better movement, and no migraine. In addition, she no longer used pain-relieving medication (acetaminophen, codeine, and sumatriptan succinate) and noted that she did not experience nausea, vomiting, photophobia, or phonophobia (Table 2). The patient continued treatment at 2-weekly intervals and stated that, after 6 months, her migraine episodes had disappeared completely. In addition, she was no longer experiencing neck pain. Examination revealed no pain on active neck movement; however, a passive motion restriction at the C1-2 motion segment was still present.

 

Table 2 Category 1 Migraine

Table 2: Category 1: migraine (IHS Headache Classification Committee)

 

The patient is currently having treatment every 4 weeks, and she still reports no return of her migraine episodes or neck pain. The patient has now not experienced any migraines for a period of more than 7 years since her last episode, which was immediately before her having her first chiropractic treatment.

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

Migraine pain is a debilitating symptom which can be effectively managed with chiropractic care. Chiropractic treatment provides a wide selection of services which can help patients with a variety of injuries and/or conditions, including symptoms of chronic pain, limited range of motion and many other health issues. Chiropractic care can also help control stress associated with migraine. Our staff is determined to treat patients by focusing on the source of the issue rather than temporarily relieving the symptoms using drugs and/or medications. The purpose of the article is to demonstrate evidence-based results on the improvement of migraine using chiropractic care and to educate patients on the best type of treatment for their specific health issues. Chiropractic treatment offers relief from migraine pain as well as overall health and wellness.

 

Discussion

 

Case studies do not form high levels of scientific data. However, some cases do present significant findings. For example, cases with long (chronic) and/or severe symptomatology can highlight alternative treatment options. With case studies such as this, there is always a possibility that the symptoms spontaneously resolved, with no effective from the treatment. The case presented highlights a potential alternative treatment option. A 7-year follow-up revealed that the person had still not had a single migraine episode in this period. The patient was certain that there had been no other lifestyle changes that could have contributed to her improvement. She also noted that the migraines had stopped after her first treatment.

 

The average frequency of her migraines before treatment was 1 to 2 per week, with episodes that always included nausea, vomiting, photophobia, and phonophobia. In addition, the average duration of each episode was 1 to 3 days before her receiving CSMT. The person also noted that the use of her pain-relieving medication was also reduced by 100% (Table 3).

 

Table 3 Summary of Key Changes for this Case

Table 3: Summary of key changes for this case

 

Migraines are a common and debilitating condition; yet because they have an uncertain etiology, the most appropriate treatment regime is often unclear.[16] Previous etiological models described vascular causes of migraine, where episodes seem to be initiated by a decreased blood flow to the cerebrum followed by extracranial vasodilation during the headache phase.[8] However, other etiological models seem connected with vascular changes related to neurologic changes and associated serotonergic disturbances.[9] Therefore, previous treatments have focused on pharmacological modification of blood flow or serotonin antagonist block.[17]

 

Studies examining the role of the cervical spine to headache (ie, �cervicogenic headache�) have been well described in the literature.[18-30] However, the relation of the cervical spine to migraine is less well documented.[10-15] Previous studies by this author have demonstrated an apparent reduction in migraines after CSMT.[10, 11] In addition, other studies have suggested that CSMT may be an effective intervention for migraine.[14, 15] Although, previous studies have some limitations (inaccurate diagnosis, overlapping symptoms, inadequate control groups), the level of evidence gives support for CSMT in migraine treatment.[11] However, practitioners need to be critically aware of potential overlap of diagnoses when reviewing migraine research or case studies on effectiveness of their treatment.[18-22] This is especially important in comparison of migraine patients who may be suitable for chiropractic manipulative therapy.[23-28]

 

Between 40% and 66% of patients with migraine, particularly those with severe or frequent migraine attacks, do not seek help from a physician.[29] Among those who do, many do not continue regular physician visits.[30] This may be due to patients’ perceived lack of empathy from the physician and a belief that physicians cannot effectively treat migraine. In a 1999 British survey, 17% of 9770 migraineurs had not consulted a physician because they believed their condition would not be taken seriously; and 8% had not seen a physician because they believed existing migraine medications were ineffective.[30] The most common reason for not seeking a physician’s advice (cited by 76% of patients) was the patients’ belief that they did not need a physician’s opinion to treat their migraine attacks.

 

The case was presented to assist practitioners making a more informed decision on the treatment of choice for migraines. The outcome of this case is also relevant in relation to other research that concludes that CSMT is a very effective treatment for some people. Practitioners could consider CSMT for migraine based on the following:

 

  1. Limitation of passive neck movements.
  2. Changes in neck muscle contour, texture, or response to active and passive stretching and contraction.
  3. Abnormal tenderness of the suboccipital area.
  4. Neck pain before or at the onset of the migraine.
  5. Initial response to CSMT.

 

As with all case reports, results are limited in application to larger populations. Careful clinical decision making should be used when applying these results to other patients and clinical situations.

 

Conclusion

 

This case demonstrates that some migraine sufferers may respond well with manual therapies, which includes CSMT. Therefore, migraine patients who have not received a trial of CSMT should be encouraged to consider this treatment and assess any potential response. Where there are no contraindications to CSMT, an initial trial of treatment may be warranted. Following evidence-based medicine guidelines, medical practitioners should discuss CSMT with migraine patients as an option for treatment.[31, 32] Subsequent studies should address this issue and the role that CSMT has in migraine management.

 

In conclusion, migraine pain is a common condition which affects a large number of the population. Although the cause of migraines is not fully understood, treatment for the complex head pain can ultimately help manage the symptoms. Chiropractic spinal manipulative therapy, or CSMT, may improve migraine in patients and may be a valuable treatment option to consider. However, further research studies are required to demonstrate further results. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Neck Pain

 

Neck pain is a common complaint which can result due to a variety of injuries and/or conditions. According to statistics, automobile accident injuries and whiplash injuries are some of the most prevalent causes for neck pain among the general population. During an auto accident, the sudden impact from the incident can cause the head and neck to jolt abruptly back-and-forth in any direction, damaging the complex structures surrounding the cervical spine. Trauma to the tendons and ligaments, as well as that of other tissues in the neck, can cause neck pain and radiating symptoms throughout the human body.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: A Healthier You!

 

 

OTHER IMPORTANT TOPICS: EXTRA: Sports Injuries? | Vincent Garcia | Patient | El Paso, TX Chiropractor

 

Blank
References
1. Bigal M.E., Lipton R.B., Stewart W.F. The epidemiology and impact of migraine. Curr Neurol Neurosci Rep. 2004;4(2):98�104. [PubMed]
2. Lipton R.B., Stewart W.F., Diamond M.L., Diamond S., Reed M. Prevalence and burden of migraine in the United States: data from the American Migraine Study 11. Headache. 2001;41:646�657. [PubMed]
3. Alexander L. Migraine in the workplace. Brainwaves. Australian Brain Foundation; Hawthorn, Victoria: 2003. pp. 1�4.
4. Lipton R.B., Bigal M.E. The epidemiology of migraine. Am J Med. 2005;118(Suppl 1):3S�10S. [PubMed]
5. Lipton R.B., Bigal M.E. Migraine: epidemiology, impact, and risk factors for progression. Headache. 2005;45(Suppl 1):S3�S13. [PubMed]
6. Stewart W.F., Lipton R.B. Migraine headache: epidemiology and health care utilization. Cephalalgia. 1993;13(suppl 12):41�46. [PubMed]
7. Headache Classification Committee of the International Headache, Society Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalgia. 2004;24(Suppl. 1):1�151. [PubMed]
8. Goadsby P.J., Lipton R.B., Ferrari M.D. Migraine�current understanding and treatment. N Engl J Med. 2002;346:257�263. [PMID 11807151] [PubMed]
9. Goadsby P.J. The scientific basis of medication choice in symptomatic migraine treatment. Can J Neurol Sci. 1999;26(suppl 3):S20�S26. [PubMed]
10. Tuchin P.J., Pollard H., Bonello R. A randomized controlled trial of chiropractic spinal manipulative therapy for migraine. J Manipulative Physiol Ther. 2000;23:91�95. [PubMed]
11. Tuchin P.J. The efficacy of chiropractic spinal manipulative therapy (SMT) in the treatment of migraine�a pilot study. Aust Chiropr Osteopath. 1997;6:41�47. [PMC free article] [PubMed]
12. Tuchin P.J., Bonello R. Classic migraine or not classic migraine, that is the question. Aust Chiropr Osteopath. 1996;5:66�74. [PMC free article] [PubMed]
13. Tuchin P.J., Scwafer T., Brookes M. A case study of chronic headaches. Aust Chiropr Osteopath. 1996;5:47�53. [PMC free article] [PubMed]
14. Nelson C.F., Bronfort G., Evans R., Boline P., Goldsmith C., Anderson A.V. The efficacy of spinal manipulation, amitriptyline and the combination of both therapies for the prophylaxis of migraine headache. J Manipulative Physiol Ther. 1998;21:511�519. [PubMed]
15. Parker G.B., Tupling H., Pryor D.S. A controlled trial of cervical manipulation for migraine. Aust NZ J Med. 1978;8:585�593. [PubMed]
16. Dowson A.J., Lipscome S., Sender J. New guidelines for the management of migraine in primary care. Curr Med Res Opin. 2002;18:414�439. [PubMed]
17. Ferrari M.D., Roon K.I., Lipton R.B. Oral triptans (serotonin 5-HT1B/1D agonists) in acute migraine treatment: a meta-analysis of 53 trials. Lancet. 2001;358:1668�1675. [PubMed]
18. Sjasstad O., Saunte C., Hovdahl H., Breivek H., Gronback E. Cervical headache: an hypothesis. Cephalgia. 1983;3:249�256.
19. Vernon H.T. Spinal manipulation and headache of cervical origin. J Manipulative Physiol Ther. 1989;12:455�468. [PubMed]
20. Sjasstad O., Fredricksen T.A., Stolt-Nielsen A. Cervicogenic headache, C2 rhizopathy, and occipital neuralgia: a connection. Cephalgia. 1986;6:189�195. [PubMed]
21. Bogduk N. Cervical causes of headache and dizziness. In: Greive G.P., editor. Modern manual therapy of the vertebral column. 2nd ed. Edinburgh; Churchill Livingstone: 1994. pp. 317�331.
22. Jull G.A. Cervical headache: a review. In: Greive GP, editor. Modern manual therapy of the vertebral column. 2nd ed. Edinburgh; Churchill Livingstone: 1994. pp. 333�346.
23. Boline P.D., Kassak K., Bronfort G. Spinal manipulations vs. amitriptyline for the treatment of chronic tension-type headaches: a randomized clinical trial. J Manipulative Physiol Ther. 1995;18:148�154. [PubMed]
24. Vernon H., Steiman I., Hagino C. Cervicogenic dysfunction in muscle contraction headache and migraine: a descriptive study. J Manipulative Physiol Ther. 1992;15:418�429. [PubMed]
25. Kidd R., Nelson C. Musculoskeletal dysfunction of the neck in migraine and tension headache. Headache. 1993;33:566�569. [PubMed]
26. Whittingham W., Ellis W.S., Molyneux T.P. The effect of manipulation (Toggle recoil technique) for headaches with upper cervical joint dysfunction: a case study. J Manipulative Physiol Ther. 1994;17:369�375. [PubMed]
27. Jull G., Trott P., Potter H., Zito G., Shirley D., Richardson C. A randomized controlled trial of exercise and spinal manipulation for cervicogenic headache. Spine. 2002;27:1835�1843. [PubMed]
28. Bronfort G, Nilsson N, Assendelft WJJ, Bouter L, Goldsmith C, Evans R, et al. Non-invasive physical treatments for chronic headache (a Cochrane review). In: The Cochrane Library Issue 2 2003. Oxford: Update Software.
29. Dowson A., Jagger S. The UK migraine patient survey: quality of life and treatment. Curr Med Res Opin. 1999;15:241�253. [PubMed]
30. Solomon G.D., Price K.L. Burden of migraine: a review of its socioeconomic impact. Pharmacoeconomics. 1997;11(Suppl 1):1�10. [PubMed]
31. Bronfort G., Assendelft W.J.J., Evans R., Haas M., Bouter L. Efficacy of spinal manipulation for chronic headache: a systematic review. J Manipulative Physiol Ther. 2001;24:457�466. [PubMed]
32. Vernon H.T. Spinal manipulation in the management of tension-type migraine and cervicogenic headaches: the state of the evidence. Top Clin Chiropr. 2002;9:14�21.
Close Accordion
Migraine Headache Treatment: Atlas Vertebrae Realignment

Migraine Headache Treatment: Atlas Vertebrae Realignment

Several types of headaches can affect the average individual and each may result due to a variety of injuries and/or conditions, however, migraine headaches can often have a much more complex reason behind them. Many healthcare professionals and numerous evidence-based research studies have concluded that a subluxation in the neck, or a misalignment of the vertebrae in the cervical spine, is the most common reason for migraine headaches. Migraine is characterized by severe head pain typically�affecting one side of the head, accompanied by nausea and disturbed vision. Migraine headaches can be debilitating. The information below describes a case study regarding the effect of atlas vertebrae realignment on patients with migraine.

 

Effect of Atlas Vertebrae Realignment in Subjects with Migraine: An Observational Pilot Study

 

Abstract

 

Introduction. In a migraine case study, headache symptoms significantly decreased with an accompanying increase in intracranial compliance index following atlas vertebrae realignment. This observational pilot study followed eleven neurologist diagnosed migraine subjects to determine if the case findings were repeatable at baseline, week four, and week eight, following a National Upper Cervical Chiropractic Association intervention. Secondary outcomes consisted of migraine-specific quality of life measures. Methods. After examination by a neurologist, volunteers signed consent forms and completed baseline migraine-specific outcomes. Presence of atlas misalignment allowed study inclusion, permitting baseline MRI data collection. Chiropractic care continued for eight weeks. Postintervention reimaging occurred at week four and week eight concomitant with migraine-specific outcomes measurement. Results. Five of eleven subjects exhibited an increase in the primary outcome, intracranial compliance; however, mean overall change showed no statistical significance. End of study mean changes in migraine-specific outcome assessments, the secondary outcome, revealed clinically significant improvement in symptoms with a decrease in headache days. Discussion. The lack of robust increase in compliance may be understood by the logarithmic and dynamic nature of intracranial hemodynamic and hydrodynamic flow, allowing individual components comprising compliance to change while overall it did not. Study results suggest that the atlas realignment intervention may be associated with a reduction in migraine frequency and marked improvement in quality of life yielding significant reduction in headache-related disability as observed in this cohort. Future study with controls is necessary, however, to confirm these findings. Clinicaltrials.gov registration number is NCT01980927.

 

Introduction

 

It has been proposed that a misaligned atlas vertebra creates spinal cord distortion disrupting neural traffic of brain stem nuclei in the medulla oblongata encumbering normal physiology [1�4].

 

The objective of the National Upper Cervical Chiropractic Association (NUCCA) developed atlas correction procedure is restoration of misaligned spinal structures to the vertical axis or gravity line. Described as the �restoration principle,� realignment aims to reestablish a patient’s normal biomechanical relationship of the upper cervical spine to the vertical axis (gravity line). Restoration is characterized as being architecturally balanced, being capable of unrestricted range of motion, and allowing a significant decrease in gravitational stress [3]. The correction theoretically removes the cord distortion, created by an atlas misalignment or atlas subluxation complex (ASC), as specifically defined by NUCCA. Neurologic function is restored, specifically thought to be in the brain stem autonomic nuclei, which affect the cranial vascular system that includes Cerebrospinal Fluid (CSF) [3, 4].

 

The intracranial compliance index (ICCI) appears to be a more sensitive assessment of changes made in craniospinal biomechanical properties in symptomatic patients than the local hydrodynamic parameters of CSF flow velocities and cord displacement measurements [5]. Based on that information, previously observed relationships of increased intracranial compliance to marked reduction in migraine symptoms following atlas realignment provided incentive for using the ICCI as the study objective primary outcome.

 

ICCI affects the ability of the Central Nervous System (CNS) to accommodate physiologic volume fluctuations that occur, thereby avoiding ischemia of underlying neurologic structures [5, 6]. A state of high intracranial compliance enables any volume increase to occur in the intrathecal CNS space without causing an intracranial pressure increase that occurs primarily with arterial inflow during systole [5, 6]. Outflow occurs in the supine position via the internal jugular veins or when upright, via paraspinal or secondary venous drainage. This extensive venous plexus is valveless and anastomotic, allowing blood to flow in a retrograde direction, into the CNS through postural changes [7, 8]. Venous drainage plays an important role in regulating the intracranial fluid system [9]. Compliance appears to be functional and dependent on the free egress of blood via these extracranial venous drainage pathways [10].

 

Head and neck injury could create abnormal function of the spinal venous plexus that may impair spinal venous drainage, possibly because of autonomic dysfunction secondary to spinal cord ischemia [11]. This decreases accommodation of volume fluctuations within the cranium creating a state of decreased intracranial compliance.

 

Damadian and Chu describe return of a normal CSF outflow measured at mid-C-2, exhibiting a 28.6% reduction of the measured CSF pressure gradient in the patient where the atlas had been optimally realigned [12]. The patient reported freedom from symptoms (vertigo and vomiting when recumbent) consistent with the atlas remaining in alignment.

 

A hypertension study using the NUCCA intervention suggests a possible mechanism underlying the blood pressure decrease could be resultant from changes in cerebral circulation in relation to atlas vertebrae position [13]. Kumada et al. investigated a trigeminal-vascular mechanism in brain stem blood pressure control [14, 15]. Goadsby et al. have presented compelling evidence that migraine originates via a trigeminal-vascular system mediated through the brain stem and upper cervical spine [16�19]. Empirical observation reveals significant reduction of migraine patients’ headache disability after application of the atlas correction. Using migraine-diagnosed subjects seemed ideal for investigating proposed cerebral circulation changes following atlas realignment as originally theorized in the hypertension study conclusions and seemingly supported by a possible brain stem trigeminal-vascular connection. This would further advance a developing working pathophysiologic hypothesis of atlas misalignment.

 

Results from an initial case study demonstrated substantial increase in ICCI with decrease in migraine headache symptoms following the NUCCA atlas correction. A 62-year-old male with neurologist diagnosed chronic migraine volunteered for a before-after intervention case study. Using Phase Contrast-MRI (PC-MRI), changes in cerebral hemodynamic and hydrodynamic flow parameters were measured at baseline, 72 hours, and then four weeks after the atlas intervention. The same atlas correction procedure used in the hypertension study was followed [13]. 72 hours after study revealed a noteworthy change in the intracranial compliance index (ICCI), from 9.4 to 11.5, to 17.5 by week four, after intervention. Observed changes in venous outflow pulsatility and predominant secondary venous drainage in the supine position warranted additional investigation further inspiring a study of migraine subjects in this case series.

 

The possible effects of the atlas misalignment or ASC on venous drainage are unknown. Careful examination of intracranial compliance in relation to effects of an atlas misalignment intervention may provide insight into how the correction might influence migraine headache.

 

Using PC-MRI, this current study’s primary objective, and primary outcome, measured ICCI change from baseline to four and eight weeks following a NUCCA intervention in a cohort of neurologist selected migraine subjects. As observed in the case study, the hypothesis supposed that a subject’s ICCI would increase following the NUCCA intervention with a corresponding decrease in migraine symptoms. If present, any observed changes in venous pulsatility and drainage route were to be documented for further comparison. To monitor migraine symptoms response, the secondary outcomes included patient reported outcomes to measure any related change in Health Related Quality of Life (HRQoL), similarly used in migraine research. Throughout the study, subjects maintained headache diaries documenting the decrease (or increase) in the number of headache days, intensity, and medication used.

 

Conducting this observational case series, pilot study, allowed for additional investigation into aforementioned physiologic effects in further development of a working hypothesis into the pathophysiology of an atlas misalignment. Data required for estimation of statistically significant subject sample sizes and resolving procedural challenges will provide needed information for developing a refined protocol to conduct a blinded, placebo controlled migraine trial using the NUCCA correction intervention.

 

Methods

 

This research maintained compliance with the Helsinki Declaration for research on human subjects. The University of Calgary and Alberta Health Services Conjoint Health Research Ethics Board approved the study protocol and subject informed consent form, Ethics ID: E-24116. ClinicalTrials.gov assigned the number NCT01980927 after registration of this study (clinicaltrials.gov/ct2/show/NCT01980927).

 

Subject recruitment and screening occurred at the Calgary Headache Assessment and Management Program (CHAMP), a neurology-based specialist referral clinic (see Figure 1, Table 1). CHAMP evaluates patients resistant to standard pharmacotherapy and medical treatment for migraine headache that no longer provides migraine symptom relief. Family and primary care physicians referred potential study subjects to CHAMP making advertising unnecessary.

 

Figure 1 Subject Disposition and Study Flow

Figure 1: Subject disposition and study flow (n = 11). GSA: Gravity Stress Analyzer. HIT-6: Headache Impact Test-6. HRQoL: Health Related Quality of Life. MIDAS: Migraine Disability Assessment Scale. MSQL: Migraine-Specific Quality of Life Measure. NUCCA: National Upper Cervical Chiropractic Association. PC-MRI: Phase Contrast Magnetic Resonance Imaging. VAS: Visual Analog Scale.

 

Table 1 Subject Inclusion and Exclusion Criteria

Table 1: Subject inclusion/exclusion criteria. Potential subjects, na�ve to upper cervical chiropractic care, demonstrated between ten and twenty-six headache days per month self-reported over the previous four months. Requisite was at least eight headache days per month, where intensity reached at least four, on a zero to ten Visual Analog Scale (VAS) pain scale.

 

Study inclusion required volunteers, between the ages of 21 and 65 years, that satisfy specific diagnostic criteria for migraine headache. A neurologist with several decades of migraine experience screened applicants utilizing the International Classification of Headache Disorders (ICHD-2) for study inclusion [20]. Potential subjects, na�ve to upper cervical chiropractic care, must have demonstrated through self-report between ten and twenty-six headache days per month over the previous four months. At least eight headache days per month had to reach an intensity of at least four on a zero to ten VAS pain scale, unless treated successfully with a migraine-specific medication. At least four separate headache episodes per month separated by at least a 24-hour pain-free interval were required.

 

Significant head or neck trauma occurring within one year prior to study entry excluded candidates. Further exclusion criteria included acute medication overuse, a history of claustrophobia, cardiovascular or cerebrovascular disease, or any CNS disorder other than migraine. Table 1 describes the complete inclusion and exclusion criteria considered. Using an experienced board certified neurologist to screen potential subjects while adhering to the ICHD-2 and guided by the inclusion/exclusion criteria, the exclusion of subjects with other sources of headache such as muscular tension and medication overuse rebound headache would increase the likelihood of successful subject recruitment.

 

Those meeting initial criteria signed informed consent and then completed a baseline Migraine Disability Assessment Scale (MIDAS). The MIDAS requires twelve weeks to demonstrate clinically significant change [21]. This allowed adequate time to pass to discern any possible changes. Over the next 28 days, candidates recorded a headache diary providing baseline data while confirming the number of headache days and intensity required for inclusion. After the four weeks, the diary check diagnostic substantiation permitted administration of remaining baseline HRQoL measures:

 

  1. Migraine-Specific Quality of Life Measure (MSQL) [22],
  2. Headache Impact Test-6 (HIT-6) [23],
  3. Subject current global assessment of headache pain (VAS).

 

Referral to the NUCCA practitioner, to determine presence of atlas misalignment, confirmed need for intervention finalizing a subject’s study inclusion?exclusion. Absence of atlas misalignment indicators excluded candidates. After scheduling appointments for NUCCA intervention and care, qualified subjects obtained baseline PC-MRI measures. Figure 1 summarizes subject disposition throughout the study.

 

The initial NUCCA intervention required three consecutive visits: (1) Day One, atlas misalignment assessment, before-correction radiographs; (2) Day Two, NUCCA correction with after-correction assessment with radiographs; and (3) Day Three, after-correction reassessment. Follow-up care occurred weekly for four weeks, then every two weeks for the remainder of the study period. At each NUCCA visit, subjects completed a current assessment of headache pain (please rate your headache pain on average over the past week) using a straight edge and pencil in marking a 100?mm line (VAS). One week after the initial intervention, subjects completed a �Possible Reaction to Care� questionnaire. This assessment has past been used for successfully monitoring adverse events related to various upper cervical correction procedures [24].

 

At week four, PC-MRI data were obtained and subjects completed an MSQL and HIT-6. End of study PC-MRI data were collected at week eight followed by a neurologist exit interview. Here, subjects completed final MSQOL, HIT-6, MIDAS, and VAS outcomes and headache diaries were collected.

 

At the week-8 neurologist visit, two willing subjects were offered a long-term follow-up opportunity for a total study period of 24 weeks. This involved further NUCCA reassessment monthly for 16 weeks after completion of the initial 8-week study. The purpose of this follow-up was to help determine if headache improvement continued contingent upon maintenance of atlas alignment while observing for any long-term effect of NUCCA care on ICCI. Subjects desiring to participate signed a second informed consent for this phase of study and continued monthly NUCCA care. At the end of 24 weeks from the original atlas intervention, the fourth PC-MRI imaging study occurred. At the neurologist exit interview, final MSQOL, HIT-6, MIDAS, and VAS outcomes and headache diaries were collected.

 

The same NUCCA procedure as previously reported was followed using the established protocol and standards of care developed through NUCCA Certification for assessment and atlas realignment or correction of the ASC (see Figures ?Figures22�5) [2, 13, 25]. Assessment for the ASC includes screening for functional leg-length inequality with the Supine Leg Check (SLC) and examination of postural symmetry using the Gravity Stress Analyzer (Upper Cervical Store, Inc., 1641 17 Avenue, Campbell River, BC, Canada V9W 4L5) (see Figures ?Figures22 and 3(a)�3(c)) [26�28]. If SLC and postural imbalances are detected, a three-view radiographic exam is indicated to determine the multidimensional orientation and degree of craniocervical misalignment [29, 30]. A thorough radiographic analysis provides information to determine a subject specific, optimal atlas correction strategy. The clinician locates anatomic landmarks from the three-view series, measuring structural and functional angles that have deviated from established orthogonal standards. The degree of misalignment and atlas orientation are then revealed in three dimensions (see Figures 4(a)�4(c)) [2, 29, 30]. Radiographic equipment alignment, reduction of collimator port size, high-speed film-screen combinations, special filters, specialized grids, and lead shielding minimize subject radiation exposure. For this study, average total measured Entrance Skin Exposure to subjects from the before-after-correction radiographic series was 352 millirads (3.52 millisieverts).

 

Figure 2 Supine Leg Check Screening Test SLC

Figure 2: Supine Leg Check Screening Test (SLC). Observation of an apparent �short leg� indicates possible atlas misalignment. These appear even.

 

Figure 3 Gravity Stress Analyzer GSA

Figure 3: Gravity Stress Analyzer (GSA). (a) Device determines postural asymmetry as a further indicator of atlas misalignment. Positive findings in the SLC and GSA indicate need for NUCCA radiographic series. (b) Balanced patient with no postural asymmetry. (c) Hip calipers used to measure pelvis asymmetry.

 

Figure 4 NUCCA Radiograph Series

Figure 4: NUCCA radiograph series. These films are used to determine atlas misalignment and developing a correction strategy. After-correction radiographs or postfilms ensure the best correction has been made for that subject.

 

Figure 5 Making a NUCCA Correction

Figure 5: Making a NUCCA correction. The NUCCA practitioner delivers a triceps pull adjustment. The practitioner’s body and hands are aligned to deliver an atlas correction along an optimal force vector using information obtained from radiographs.

 

The NUCCA intervention involves a manual correction of the radiographically measured misalignment in the anatomical structure between the skull, atlas vertebra, and cervical spine. Utilizing biomechanical principles based on a lever system, the doctor develops a strategy for proper

 

  1. subject positioning,
  2. practitioner stance,
  3. force vector to correct the atlas misalignment.

 

Subjects are placed on a side-posture table with the head specifically braced using a mastoid support system. Application of the predetermined controlled force vector for the correction realigns the skull to the atlas and neck to the vertical axis or center of gravity of the spine. These corrective forces are controlled in depth, direction, velocity, and amplitude, producing an accurate and precise reduction of the ASC.

 

Using the pisiform bone of the contact hand, the NUCCA practitioner contacts the atlas transverse process. The other hand encircles the wrist of the contact hand, to control the vector while maintaining the depth of force generated in application of the �triceps pull� procedure (see Figure 5) [3]. By understanding spinal biomechanics, the practitioner’s body and hands are aligned to produce an atlas correction along the optimal force vector. The controlled, nonthrusting force is applied along the predetermined reduction pathway. It is specific in its direction and depth to optimize the ASC reduction assuring no activation in the reactive forces of the neck muscles in response to the biomechanical change. It is understood that an optimal reduction of the misalignment promotes long-term maintenance and stability of spinal alignment.

 

Following a short rest period, an after-assessment procedure, identical to the initial evaluation, is performed. A postcorrection radiograph examination uses two views to verify return of the head and cervical spine into optimum orthogonal balance. Subjects are educated in ways to preserve their correction, thus preventing another misalignment.

 

Subsequent NUCCA visits were comprised of headache diary checks and a current assessment of headache pain (VAS). Leg length inequality and excessive postural asymmetry were used in determining the need for another atlas intervention. The objective for optimal improvement is for the subject to maintain the realignment for as long as possible, with the fewest number of atlas interventions.

 

In a PC-MRI sequence, contrast media are not used. PC-MRI methods collected two data sets with different amounts of flow sensitivity acquired by relating gradient pairs, which sequentially dephase and rephase spins during the sequence. The raw data from the two sets are subtracted to calculate a flow rate.

 

An on-site visit by the MRI Physicist provided training for the MRI Technologist and a data transfer procedure was established. Several practice scans and data transfers were performed to ensure data collection succeeded without challenges. A 1.5-tesla GE 360 Optima MR scanner (Milwaukee, WI) at the study imaging center (EFW Radiology, Calgary, Alberta, Canada) was used in imaging and data collection. A 12-element phased array head coil, 3D magnetization-prepared rapid-acquisition gradient echo (MP-RAGE) sequence was used in anatomy scans. Flow sensitive data were acquired using a parallel acquisition technique (iPAT), acceleration factor 2.

 

To measure blood flow to and from the skull base, two retrospectively gated, velocity-encoded cine-phase-contrast scans were performed as determined by individual heart rate, collecting thirty-two images over a cardiac cycle. A high-velocity encoding (70?cm/s) quantified high-velocity blood flow perpendicular to the vessels at the C-2 vertebra level includes the internal carotid arteries (ICA), vertebral arteries (VA), and internal jugular veins (IJV). Secondary venous flow data of vertebral veins (VV), epidural veins (EV), and deep cervical veins (DCV) were acquired at the same height using a low-velocity encoding (7�9?cm/s) sequence.

 

Subject data were identified by Subject Study ID and imaging study date. The study neuroradiologist reviewed MR-RAGE sequences to rule out exclusionary pathologic conditions. Subject identifiers were then removed and assigned a coded ID permitting transfer via a secured tunnel IP protocol to the physicist for analysis. Using proprietary software volumetric blood, Cerebrospinal Fluid (CSF) flow rate waveforms and derived parameters were determined (MRICP version 1.4.35 Alperin Noninvasive Diagnostics, Miami, FL).

 

Using the pulsatility-based segmentation of lumens, time-dependent volumetric flow rates were calculated by integrating the flow velocities inside the luminal cross-sectional areas over all thirty-two images. Mean flow rates were obtained for the cervical arteries, primary venous drainage, and secondary venous drainage pathways. Total cerebral blood flow was obtained by summation of these mean flow rates.

 

A simple definition of compliance is a ratio of volume and pressure changes. Intracranial compliance is calculated from the ratio of the maximal (systolic) intracranial volume change (ICVC) and pressure fluctuations during the cardiac cycle (PTP-PG). Change in ICVC is obtained from momentary differences between volumes of blood and CSF entering and exiting the cranium [5, 31]. Pressure change during the cardiac cycle is derived from the change in the CSF pressure gradient, which is calculated from the velocity-encoded MR images of the CSF flow, using the Navier-Stokes relationship between derivatives of velocities and the pressure gradient [5, 32]. An intracranial compliance index (ICCI) is calculated from the ratio of ICVC and pressure changes [5, 31�33].

 

Statistical analysis considered several elements. ICCI data analysis involved a one-sample Kolmogorov-Smirnov test revealing a lack of normal distribution in the ICCI data, which were therefore described using the median and interquartile range (IQR). Differences between baseline and follow-up were to be examined using a paired t-test.

 

NUCCA assessments data were described using mean, median, and interquartile range (IQR). Differences between baseline and follow-up were examined using a paired t-test.

 

Depending on the outcome measure, baseline, week four, week eight, and week twelve (MIDAS only) follow-up values were described using the mean and standard deviation. MIDAS data collected at initial neurologist screening had one follow-up score at the end of twelve weeks.

 

Differences from baseline to each follow-up visit were tested using a paired t-test. This resulted in numerous p values from two follow-up visits for each outcome except the MIDAS. Since one purpose of this pilot is to provide estimates for future research, it was important to describe where differences occurred, rather than to use a one-way ANOVA to arrive at a single p value for each measure. The concern with such multiple comparisons is the increase in Type I error rate.

 

To analyze the VAS data, each subject scores were examined individually and then with a linear regression line that adequately fits the data. Use of a multilevel regression model with both random intercepts and random slope provided an individual regression line fitted for each patient. This was tested against a random intercept-only model, which fits a linear regression line with a common slope for all subjects, while intercept terms are allowed to vary. The random coefficient model was adopted, as there was no evidence that random slopes significantly improved the fit to the data (using a likelihood ratio statistic). To illustrate the variation in the intercepts but not in the slope, the individual regression lines were graphed for each patient with an imposed average regression line on top.

 

Results

 

From initial neurologist screening, eighteen volunteers were eligible for inclusion. After completion of baseline headache diaries, five candidates did not meet inclusion criteria. Three lacked the required headache days on baseline diaries to be included, one had unusual neurological symptoms with persistent unilateral numbness, and another was taking a calcium channel blocker. The NUCCA practitioner found two candidates ineligible: one lacking an atlas misalignment and the second with a Wolff-Parkinson-White condition and severe postural distortion (39�) with recent involvement in a severe high impact motor vehicle accident with whiplash (see Figure 1).

 

Eleven subjects, eight females and three males, average age forty-one years (range 21�61 years), qualified for inclusion. Six subjects presented chronic migraine, reporting fifteen or more headache days a month, with a total eleven-subject mean of 14.5 headache days a month. Migraine symptom duration ranged from two to thirty-five years (mean twenty-three years). All medications were maintained unchanged for the study duration to include their migraine prophylaxis regimens as prescribed.

 

Per exclusion criteria, no subjects included received a diagnosis of headache attributed to traumatic injury to the head and neck, concussion, or persistent headache attributed to whiplash. Nine subjects reported a very remote past history, greater than five years or more (average of nine years) prior to neurologist screen. This included sports-related head injuries, concussion, and/or whiplash. Two subjects indicated no prior head or neck injury (see Table 2).

 

Table 2 Subject Intracranial Compliance Index ICCI Data

Table 2: Subject intracranial compliance index (ICCI) data (n = 11). PC-MRI6 acquired ICCI1 data reported at baseline, week four, and week eight following NUCCA5 intervention. Bolded rows signify subject with secondary venous drainage route. MVA or mTBI occurred at least 5 years prior to study inclusion, average 10 years.

 

Individually, five subjects demonstrated an increase in ICCI, three subject’s values remained essentially the same, and three showed a decrease from baseline to end of study measurements. Overall changes in intracranial compliance are seen in Table 2 and Figure 8. The median (IQR) values of ICCI were 5.6 (4.8, 5.9) at baseline, 5.6 (4.9, 8.2) at week four, and 5.6 (4.6, 10.0) at week eight. Differences were not statistically different. The mean difference between baseline and week four was ?0.14 (95% CI ?1.56, 1.28), p = 0.834, and between baseline and week eight was 0.93 (95% CI ?0.99, 2.84), p = 0.307. These two subject’s 24-week ICCI study results are seen in Table 6. Subject 01 displayed an increasing trend in ICCI from 5.02 at baseline to 6.69 at week 24, whereas at week 8, results were interpreted as consistent or remaining the same. Subject 02 demonstrated a decreasing trend in ICCI from baseline of 15.17 to 9.47 at week 24.

 

Figure 8 Study ICCI Data Compared to Previously Reported Data in the Literature

Figure 8: Study ICCI data compared to previously reported data in the literature. The MRI time values are fixed at baseline, week 4, and week 8 after intervention. This study’s baseline values fall similar to the data reported by Pomschar on subjects presenting only with mTBI.

 

Table 6 24 Week Intracranial Compliance Index ICCI Data

Table 6: 24-week ICCI findings showing an increasing trend in subject 01 whereas at end of study (week 8), results were interpreted as consistent or remaining the same. Subject 02 continued to show a decreasing trend in ICCI.

 

Table 3 reports changes in NUCCA assessments. The mean difference from before to after the intervention is as follows: (1) SLC: 0.73 inches, 95% CI (0.61, 0.84) (p < 0.001); (2) GSA: 28.36 scale points, 95% CI (26.01, 30.72) (p < 0.001); (3) Atlas Laterality: 2.36 degrees, 95% CI (1.68, 3.05) (p < 0.001); and (4) Atlas Rotation: 2.00 degrees, 95% CI (1.12, 2.88) (p < 0.001). This would indicate that a probable change occurred following the atlas intervention as based on subject assessment.

 

Table 3 Descriptive Statistics of NUCCA Assessments

Table 3: Descriptive statistics [mean, standard deviation, median, and interquartile range (IQR2)] of NUCCA1 assessments before-after initial intervention (n = 11).

 

Headache diary results are reported in Table 4 and Figure 6. At baseline subjects had mean 14.5 (SD = 5.7) headache days per 28-day month. During the first month following NUCCA correction, mean headache days per month decreased by 3.1 days from baseline, 95% CI (0.19, 6.0), p = 0.039, to 11.4. During the second month headache days decreased by 5.7 days from baseline, 95% CI (2.0, 9.4), p = 0.006, to 8.7 days. At week eight, six of the eleven subjects had a reduction of >30% in headache days per month. Over 24 weeks, subject 01 reported essentially no change in headache days while subject 02 had a reduction of one headache day a month from study baseline of seven to end of study reports of six days.

 

Figure 6 Headache Days and Headache Pain Intensity from Diary

Figure 6: Headache days and headache pain intensity from diary (n = 11). (a) Number of headache days per month. (b) Average headache intensity (on headache days). Circle indicates the mean and the bar indicates the 95% CI. Circles are individual subject scores. A significant decrease in headache days per month was noticed at four weeks, almost doubling at eight weeks. Four subjects (#4, 5, 7, and 8) exhibited a greater than 20% decrease in headache intensity. Concurrent medication use may explain the small decrease in headache intensity.

 

At baseline, mean headache intensity on days with headache, on a scale of zero to ten, was 2.8 (SD = 0.96). Mean headache intensity showed no statistically significant change at four (p = 0.604) and eight (p = 0.158) weeks. Four subjects (#4, 5, 7, and 8) exhibited a greater than 20% decrease in headache intensity.

 

Quality of life and headache disability measures are seen in Table 4. The mean HIT-6 score at baseline was 64.2 (SD = 3.8). At week four after NUCCA correction, mean decrease in scores was 8.9, 95% CI (4.7, 13.1), p = 0.001. Week-eight scores, compared to baseline, revealed mean decrease by 10.4, 95% CI (6.8, 13.9), p = 0.001. In the 24-week group, subject 01 showed a decrease of 10 points from 58 at week 8 to 48 at week 24 while subject 02 decreased 7 points from 55 at week 8 to 48 at week 24 (see Figure 9).

 

Figure 9 24 Week HIT 6 Scores in Long Term Follow Up Subjects

Figure 9: 24-week HIT-6 scores in long-term follow-up subjects. Monthly scores continued to decrease after week 8, end of first study. Based on Smelt et al. criteria, it can be interpreted that a within-person minimally important change occurred between week 8 and week 24. HIT-6: Headache Impact Test-6.

 

MSQL mean baseline score was 38.4 (SD = 17.4). At week four after correction, mean scores for all eleven subjects increased (improved) by 30.7, 95% CI (22.1, 39.2), p < 0.001. By week eight, end of study, mean MSQL scores had increased from baseline by 35.1, 95% CI (23.1, 50.0), p < 0.001, to 73.5. The follow-up subjects continued to show some improvement with increasing scores; however, many scores plateaued remaining the same since week 8 (see Figures 10(a)�10(c)).

 

Figure 10 24 Week MSQL Scores in Long Term Follow p Subjects

Figure 10: ((a)�(c)) 24-week MSQL scores in long-term follow-up subjects. (a) Subject 01 has essentially plateaued after week 8 throughout to end of the second study. Subject 02 shows scores increasing over time demonstrating minimally important differences based on Cole et al. criteria by week 24. (b) Subject scores seem to peak by week 8 with both subjects showing similar scores reported at week 24. (c) Subject 2 scores remain consistent throughout the study while subject 01 shows steady improvement from baseline to the end of week 24. MSQL: Migraine-Specific Quality of Life Measure.

 

Mean MIDAS score at baseline was 46.7 (SD = 27.7). At two months after NUCCA correction (three months following baseline), the mean decrease in subject’s MIDAS scores was 32.1, 95% CI (13.2, 51.0), p = 0.004. The follow-up subjects continued to show improvement with decreasing scores with intensity showing minimal improvement (see Figures 11(a)�11(c)).

 

Figure 11 24 Week MIDAS Scores in Long Term Follow Up Subjects

Figure 11: 24-week MIDAS scores in long-term follow-up subjects. (a) Total MIDAS scores continued a decreasing trend over the 24-week study period. (b) Intensity scores continued improvement. (c) While 24-week frequency was higher than at week 8, improvement is observed when compared to baseline. MIDAS: Migraine Disability Assessment Scale.

 

Assessment of current headache pain from VAS scale data is seen in Figure 7. The multilevel linear regression model showed evidence of a random effect for the intercept (p < 0.001) but not for the slope (p = 0.916). Thus, the adopted random intercept model estimated a different intercept for each patient but a common slope. The estimated slope of this line was ?0.044, 95% CI (?0.055, ?0.0326), p < 0.001, indicating that there was a significant decrease in the VAS score of 0.44 per 10 days after baseline (p < 0.001). The mean baseline score was 5.34, 95% CI (4.47, 6.22). The random effects analysis showed substantial variation in the baseline score (SD = 1.09). As the random intercepts are normally distributed, this indicates that 95% of such intercepts lie between 3.16 and 7.52 providing evidence of substantial variation in the baseline values across patients. VAS scores continued showing improvement in the 24-week two-subject follow-up group (see Figure 12).

 

Figure 7 Subject Global Assessment of Headache VAS

Figure 7: Subject global assessment of headache (VAS) (n = 11). There was substantial variation in baseline scores across these patients. The lines show individual linear fit for each of eleven patients. The thick dotted black line represents the average linear fit across all eleven patients. VAS: Visual Analog Scale.

 

Figure 12 24 Week Follow Up Group Global Assessment of Headache VAS

Figure 12: 24-week follow-up group global assessment of headache (VAS). When subjects were queried, �please rate your headache pain on average over the past week� VAS scores continued showing improvement in the 24-week two-subject follow-up group.

 

The most obvious reaction to the NUCCA intervention and care reported by ten subjects was mild neck discomfort, rated an average of three out of ten on pain assessment. In six subjects, pain began more than twenty-four hours after the atlas correction, lasting more than twenty-four hours. No subject reported any significant effect on their daily activities. All subjects reported satisfaction with NUCCA care after one week, median score, ten, on a zero to ten rating scale.

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

“I’ve been experiencing migraine headaches for several years now. Is there a reason for my head pain? What can I do to decrease or get rid of my symptoms?”�Migraine headaches are believed to be a complex form of head pain, however, the reason for them is much the same as any other type of headache. A traumatic injury to the cervical spine, such as that of whiplash from an automobile accident or a sports injury, can cause a misalignment in the neck and upper back, which may lead to migraine. An improper posture can also cause neck issues which could lead to head and neck pain. A healthcare professional who specializes in spinal health issues can diagnose the source of your migraine headaches. Furthermore, a qualified and experienced specialist can perform spinal adjustments as well as manual manipulations to help correct any misalignments of the spine which could be causing the symptoms. The following article summarizes a case study based on the improvement of symptoms after atlas vertebrae realignment in participants with migraine.

 

Discussion

 

In this limited cohort of eleven migraine subjects, there was no statistically significant change in ICCI (primary outcome) after the NUCCA intervention. However, a significant change in HRQoL secondary outcomes did occur as summarized in Table 5. The consistency in the magnitude and direction of improvement across these HRQoL measures indicates confidence in enhancement of headache health over the two-month study following the 28-day baseline period.

 

Table 5 Summary Comparison of Measured Outcomes

Table 5: Summary Comparison of Measured Outcomes

 

Based on the case study results, this investigation hypothesized a significant increase in ICCI after the atlas intervention which was not observed. Use of PC-MRI allows quantification of the dynamic relationship between arterial inflow, venous outflow, and CSF flow between the cranium and the spinal canal [33]. Intracranial compliance index (ICCI) measures the brain’s ability to respond to incoming arterial blood during systole. Interpretation of this dynamic flow is represented by a monoexponential relationship existing between CSF volume and CSF pressure. With increased or higher intracranial compliance, also defined as good compensatory reserve, the incoming arterial blood can be accommodated by the intracranial contents with a smaller change in intracranial pressure. While a change in intracranial volume or pressure could occur, based on the exponential nature of the volume-pressure relationship, a change in after-intervention ICCI may not be realized. An advanced analysis of the MRI data and further study are required for pinpointing practical quantifiable parameters to use as an objective outcome sensitive for documenting a physiologic change following atlas correction.

 

Koerte et al. reports of chronic migraine patients demonstrate a significantly higher relative secondary venous drainage (paraspinal plexus) in the supine position when compared to age- and gender-matched controls [34]. Four study subjects exhibited a secondary venous drainage with three of those subjects demonstrating notable increase in compliance after intervention. The significance is unknown without further study. Similarly, Pomschar et al. reported that subjects with mild traumatic brain injury (mTBI) demonstrate an increased drainage through the secondary venous paraspinal route [35]. The mean intracranial compliance index appears significantly lower in the mTBI cohort when compared to controls.

 

Some perspective may be gained in comparison of this study’s ICCI data to previously reported normal subjects and those with mTBI seen in Figure 8 [5, 35]. Limited by the small number of subjects studied, the significance these study’s findings may have in relation to Pomschar et al. remains unknown, offering only speculation of possibilities for future exploration. This is further complicated by the inconsistent ICCI change observed in the two subjects followed for 24 weeks. Subject two with a secondary drainage pattern exhibited a decrease in ICCI following intervention. A larger placebo controlled trial with a statistically significant subject sample size could possibly demonstrate a definitive objectively measured physiologic change after application of the NUCCA correction procedure.

 

HRQoL measures are used clinically to assess the effectiveness of a treatment strategy to decrease pain and disability related to migraine headache. It is expected that an effective treatment improves patient perceived pain and disability measured by these instruments. All HRQoL measures in this study demonstrated significant and substantial improvement by week four following the NUCCA intervention. From week four to week eight only small improvements were noted. Again, only small improvements were noted in the two subjects followed for 24 weeks. While this study was not intended to demonstrate causation from the NUCCA intervention, the HRQoL results create compelling interest for further study.

 

From the headache diary, a significant decrease in headache days per month was noticed at four weeks, almost doubling at eight weeks. However, significant differences in headache intensity over time were not discernable from this diary data (see Figure 5). While the number of headaches decreased, subjects still used medication to maintain headache intensity at tolerable levels; hence, it is supposed that a statistically significant difference in headache intensity could not be determined. Consistency in the headache day numbers occurring in week 8 in the follow-up subjects could guide future study focus in determining when maximum improvement occurs to help in establishing a NUCCA standard of migraine care.

 

Clinically relevant change in the HIT-6 is important for completely understanding observed outcomes. A clinically meaningful change for an individual patient has been defined by the HIT-6 user guide as ?5 [36]. Coeytaux et al., using four different analysis methods, suggest that a between-group difference in HIT-6 scores of 2.3 units over time may be considered clinically significant [37]. Smelt et al. studied primary care migraine patient populations in developing suggested recommendations using HIT-6 score changes for clinical care and research [38]. Dependent on consequences resulting from false positives or negatives, within-person minimally important change (MIC) using a �mean change approach� was estimated to be 2.5 points. When using the �receiver operating characteristic (ROC) curve analysis� a 6-point change is needed. Recommended between-group minimally important difference (MID) is 1.5 [38].

 

Using the �mean change approach,� all subjects but one reported a change (decrease) greater than ?2.5. The �ROC analyses� also demonstrated improvement by all subjects but one. This �one subject� was a different person in each comparison analysis. Based on Smelt et al. criteria, the follow-up subjects continued to demonstrate within-person minimally important improvement as seen in Figure 10.

 

All subjects but two showed improvement on the MIDAS score between baseline and three-month results. The magnitude of the change was proportional to the baseline MIDAS score, with all subjects but three reporting an overall fifty percent or greater change. The follow-up subjects continued to show improvement as seen in continued decrease in scores by week 24; see Figures 11(a)�11(c).

 

Use of the HIT-6 and MIDAS together as a clinical outcome may provide a more complete assessment of headache-related disability factors [39]. The differences between the two scales can predict disability from headache pain intensity and headache frequency, by providing more information on factors related to the reported changes than either outcome used alone. While the MIDAS appears to change more by headache frequency, headache intensity seems to affect HIT-6 score more than the MIDAS [39].

 

How migraine headache affects and limits patient perceived daily functioning is reported by the MSQL v. 2.1, across three 3 domains: role restrictive (MSQL-R), role preventive (MSQL-P), and emotional functioning (MSQL-E). An increase in scores indicates improvement in these areas with values ranging from 0 (poor) to 100 (best).

 

MSQL scales reliability evaluation by Bagley et al. report results to be moderately to highly correlated with HIT-6 (r = ?0.60 to ?0.71) [40]. Study by Cole et al. reports minimally important differences (MID) clinical change for each domain: MSQL-R = 3.2, MSQL-P = 4.6, and MSQL-E = 7.5 [41]. Results from the topiramate study report individual minimally important clinical (MIC) change: MSQL-R = 10.9, MSQL-P = 8.3, and MSQL-E = 12.2 [42].

 

All subjects except one experienced an individual minimally important clinical change for MSQL-R of greater than 10.9 by the week-eight follow-up in MSQL-R. All but two subjects reported changes of more than 12.2 points in MSQL-E. Improvement in MSQL-P scores increased by ten points or more in all subjects.

 

Regression analysis of VAS ratings over time showed a significant linear improvement over the 3-month period. There was substantial variation in baseline scores across these patients. Little to no variation was observed in the rate of improvement. This trend appears to be the same in the subjects studied for 24 weeks as seen in Figure 12.

 

Dr Jimenez works on wrestler's neck

 

Many studies using pharmaceutical intervention have shown a substantial placebo effect in patients from migrainous populations [43]. Determining possible migraine improvement over six months, using another intervention as well as no intervention, is important for any comparison of results. The investigation into placebo effects generally accepts that placebo interventions do provide symptomatic relief but do not modify pathophysiologic processes underlying the condition [44]. Objective MRI measures may help in revealing such a placebo effect by demonstrating a change in physiologic measurements of flow parameters occurring after a placebo intervention.

 

Use of a three-tesla magnet for MRI data collection would increase the reliability of the measurements by increasing the amount of data used to make the flow and ICCI calculations. This is one of the first investigations using change in ICCI as an outcome in evaluating an intervention. This creates challenges in interpretation of MRI acquired data to base conclusions or further hypothesis development. Variability in relationships between blood flow to and from the brain, CSF flow, and heart rate of these subject-specific parameters has been reported [45]. Variations observed in a small three-subject repeated measures study have led to conclusions that information gathered from individual cases be interpreted with caution [46].

 

The literature further reports in larger studies significant reliability in collecting these MRI acquired volumetric flow data. Wentland et al. reported that measurements of CSF velocities in human volunteers and of sinusoidally fluctuating phantom velocities did not differ significantly between two MRI techniques used [47]. Koerte et al. studied two cohorts of subjects imaged in two separate facilities with different equipment. They reported that intraclass correlation coefficients (ICC) demonstrated a high intra- and interrater reliability of PC-MRI volumetric flow rate measurements remaining independent of equipment used and skill-level of the operator [48]. While anatomic variation exists between subjects, it has not prevented studies of larger patient populations in describing possible �normal� outflow parameters [49, 50].

 

Being based solely on patient subjective perceptions, there are limitations in using patient reported outcomes [51]. Any aspect affecting a subject’s perception in their quality of life is likely to influence the outcome of any assessment used. Lack of outcome specificity in reporting symptoms, emotions, and disability also limits interpretation of results [51].

 

Imaging and MRI data analysis costs precluded use of a control group, limiting any generalizability of these results. A larger sample size would allow for conclusions based on statistical power and reduced Type I error. Interpretation of any significance in these results, while revealing possible trends, remains speculation at best. The big unknown persists in the likelihood that these changes are related to the intervention or to some other effect unknown to the investigators. These results do add to the body of knowledge of previously unreported possible hemodynamic and hydrodynamic changes after a NUCCA intervention, as well as changes in migraine HRQoL patient reported outcomes as observed in this cohort.

 

The values of collected data and analyses are providing information required for estimation of statistically significant subject sample sizes in further study. Resolved procedural challenges from conducting the pilot allow for a highly refined protocol to successfully accomplish this task.

 

In this study, the lack of robust increase in compliance may be understood by the logarithmic and dynamic nature of intracranial hemodynamic and hydrodynamic flow, allowing individual components comprising compliance to change while overall it did not. An effective intervention should improve subject perceived pain and disability related to migraine headache as measured by these HRQoL instruments used. These study results suggest that the atlas realignment intervention may be associated with reduction in migraine frequency, marked improvement in quality of life yielding significant reduction in headache-related disability as observed in this cohort. The improvement in HRQoL outcomes creates compelling interest for further study, to confirm these findings, especially with a larger subject pool and a placebo group.

 

Acknowledgments

 

The authors acknowledge Dr. Noam Alperin, Alperin Diagnostics, Inc., Miami, FL; Kathy Waters, Study Coordinator, and Dr. Jordan Ausmus, Radiography Coordinator, Britannia Clinic, Calgary, AB; Sue Curtis, MRI Technologist, Elliot Fong Wallace Radiology, Calgary, AB; and Brenda Kelly-Besler, RN, Research Coordinator, Calgary Headache Assessment and Management Program (CHAMP), Calgary, AB. Financial support is provided by (1) Hecht Foundation, Vancouver, BC; (2) Tao Foundation, Calgary, AB; (3) Ralph R. Gregory Memorial Foundation (Canada), Calgary, AB; and (4) Upper Cervical Research Foundation (UCRF), Minneapolis, MN.

 

Abbreviations

 

  • ASC: Atlas subluxation complex
  • CHAMP: Calgary Headache Assessment and Management Program
  • CSF: Cerebrospinal Fluid
  • GSA: Gravity Stress Analyzer
  • HIT-6: Headache Impact Test-6
  • HRQoL: Health Related Quality of Life
  • ICCI: Intracranial compliance index
  • ICVC: Intracranial volume change
  • IQR: Interquartile range
  • MIDAS: Migraine Disability Assessment Scale
  • MSQL: Migraine-Specific Quality of Life Measure
  • MSQL-E: Migraine-Specific Quality of Life Measure-Emotional
  • MSQL-P: Migraine-Specific Quality of Life Measure-Physical
  • MSQL-R: Migraine-Specific Quality of Life Measure-Restrictive
  • NUCCA: National Upper Cervical Chiropractic Association
  • PC-MRI: Phase Contrast Magnetic Resonance Imaging
  • SLC: Supine Leg Check
  • VAS: Visual Analog Scale.

 

Conflict of Interests

 

The authors declare that there are no financial or any other competing interests regarding the publication of this paper.

 

Authors’ Contribution

 

H. Charles Woodfield III conceived the study, was instrumental in its design, helped in coordination, and helped to draft the paper: introduction, study methods, results, discussion, and conclusion. D. Gordon Hasick screened subjects for study inclusion/exclusion, provided NUCCA interventions, and monitored all subjects on follow-up. He participated in study design and subject coordination, helping to draft the Introduction, NUCCA Methods, and Discussion of the paper. Werner J. Becker screened subjects for study inclusion/exclusion, participated in study design and coordination, and helped to draft the paper: study methods, results and discussion, and conclusion. Marianne S. Rose performed statistical analysis on study data and helped to draft the paper: statistical methods, results, and discussion. James N. Scott participated in study design, served as the imaging consultant reviewing scans for pathology, and helped to draft the paper: PC-MRI methods, results, and discussion. All authors read and approved the final paper.

 

In conclusion, the case study regarding the improvement of migraine headache symptoms following atlas vertebrae realignment demonstrated an increase in the primary outcome, however, the average results of the research study also demonstrated no statistical significance. Altogether, the case study concluded that patients who received atlas vertebrae realignment treatment experienced considerable improvement in symptoms with decreased headache days. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Neck Pain

 

Neck pain is a common complaint which can result due to a variety of injuries and/or conditions. According to statistics, automobile accident injuries and whiplash injuries are some of the most prevalent causes for neck pain among the general population. During an auto accident, the sudden impact from the incident can cause the head and neck to jolt abruptly back-and-forth in any direction, damaging the complex structures surrounding the cervical spine. Trauma to the tendons and ligaments, as well as that of other tissues in the neck, can cause neck pain and radiating symptoms throughout the human body.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: A Healthier You!

 

OTHER IMPORTANT TOPICS: EXTRA: Sports Injuries? | Vincent Garcia | Patient | El Paso, TX Chiropractor

 

Blank
References
1. Magoun H. W. Caudal and cephalic influences of the brain stem reticular formation. Physiological Reviews. 1950;30(4):459�474. [PubMed]
2. Gregory R. Manual of Upper Cervical Analysis. Monroe, Mich, USA: National Upper Cervical Chiropractic Association; 1971.
3. Thomas M., editor. NUCCA Protocols and Perspectives. 1st. Monroe, Mich, USA: National Upper Cervical Chiropractic Association; 2002.
4. Grostic J. D. Dentate ligament-cord distortion hypothesis. Chiropractic Research Journal. 1988;1(1):47�55.
5. Alperin N., Sivaramakrishnan A., Lichtor T. Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. Journal of Neurosurgery. 2005;103(1):46�52. doi: 10.3171/jns.2005.103.1.0046. [PubMed] [Cross Ref]
6. Czosnyka M., Pickard J. D. Monitoring and interpretation of intracranial pressure. Journal of Neurology, Neurosurgery and Psychiatry. 2004;75(6):813�821. doi: 10.1136/jnnp.2003.033126. [PMC free article] [PubMed] [Cross Ref]
7. Tobinick E., Vega C. P. The cerebrospinal venous system: anatomy, physiology, and clinical implications. MedGenMed: Medscape General Medicine. 2006;8(1, article 153) [PubMed]
8. Eckenhoff J. E. The physiologic significance of the vertebral venous plexus. Surgery Gynecology and Obstetrics. 1970;131(1):72�78. [PubMed]
9. Beggs C. B. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Medicine. 2013;11, article 142 doi: 10.1186/1741-7015-11-142. [PMC free article] [PubMed] [Cross Ref]
10. Beggs C. B. Cerebral venous outflow and cerebrospinal fluid dynamics. Veins and Lymphatics. 2014;3(3):81�88. doi: 10.4081/vl.2014.1867. [Cross Ref]
11. Cassar-Pullicino V. N., Colhoun E., McLelland M., McCall I. W., El Masry W. Hemodynamic alterations in the paravertebral venous plexus after spinal injury. Radiology. 1995;197(3):659�663. doi: 10.1148/radiology.197.3.7480735. [PubMed] [Cross Ref]
12. Damadian R. V., Chu D. The possible role of cranio-cervical trauma and abnormal CSF hydrodynamics in the genesis of multiple sclerosis. Physiological Chemistry and Physics and Medical NMR. 2011;41(1):1�17. [PubMed]
13. Bakris G., Dickholtz M., Meyer P. M., et al. Atlas vertebra realignment and achievement of arterial pressure goal in hypertensive patients: a pilot study. Journal of Human Hypertension. 2007;21(5):347�352. doi: 10.1038/sj.jhh.1002133. [PubMed] [Cross Ref]
14. Kumada M., Dampney R. A. L., Reis D. J. The trigeminal depressor response: a cardiovascular reflex originating from the trigeminal system. Brain Research. 1975;92(3):485�489. doi: 10.1016/0006-8993(75)90335-2. [PubMed] [Cross Ref]
15. Kumada M., Dampney R. A. L., Whitnall M. H., Reis D. J. Hemodynamic similarities between the trigeminal and aortic vasodepressor responses. The American Journal of Physiology�Heart and Circulatory Physiology. 1978;234(1):H67�H73. [PubMed]
16. Goadsby P. J., Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Annals of Neurology. 1993;33(1):48�56. doi: 10.1002/ana.410330109. [PubMed] [Cross Ref]
17. Goadsby P. J., Fields H. L. On the functional anatomy of migraine. Annals of Neurology. 1998;43(2, article 272) doi: 10.1002/ana.410430221. [PubMed] [Cross Ref]
18. May A., Goadsby P. J. The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. Journal of Cerebral Blood Flow and Metabolism. 1999;19(2):115�127. [PubMed]
19. Goadsby P. J., Hargreaves R. Refractory migraine and chronic migraine: pathophysiological mechanisms. Headache. 2008;48(6):799�804. doi: 10.1111/j.1526-4610.2008.01157.x. [PubMed] [Cross Ref]
20. Olesen J., Bousser M.-G., Diener H.-C., et al. The international classification of headache disorders, 2nd edition (ICHD-II)�revision of criteria for 8.2 medication-overuse headache. Cephalalgia. 2005;25(6):460�465. doi: 10.1111/j.1468-2982.2005.00878.x. [PubMed] [Cross Ref]
21. Stewart W. F., Lipton R. B., Whyte J., et al. An international study to assess reliability of the Migraine Disability Assessment (MIDAS) score. Neurology. 1999;53(5):988�994. doi: 10.1212/wnl.53.5.988. [PubMed] [Cross Ref]
22. Wagner T. H., Patrick D. L., Galer B. S., Berzon R. A. A new instrument to assess the long-term quality of life effects from migraine: development and psychometric testing of the MSQOL. Headache. 1996;36(8):484�492. doi: 10.1046/j.1526-4610.1996.3608484.x. [PubMed] [Cross Ref]
23. Kosinski M., Bayliss M. S., Bjorner J. B., et al. A six-item short-form survey for measuring headache impact: the HIT-6. Quality of Life Research. 2003;12(8):963�974. doi: 10.1023/a:1026119331193. [PubMed] [Cross Ref]
24. Eriksen K., Rochester R. P., Hurwitz E. L. Symptomatic reactions, clinical outcomes and patient satisfaction associated with upper cervical chiropractic care: a prospective, multicenter, cohort study. BMC Musculoskeletal Disorders. 2011;12, article 219 doi: 10.1186/1471-2474-12-219. [PMC free article] [PubMed] [Cross Ref]
25. National Upper Cervical Chiropractic Association. NUCCA Standards of Practice and Patient Care. 1st. Monroe, Mich, USA: National Upper Cervical Chiropractic Association; 1994.
26. Gregory R. A model for the supine leg check. Upper Cervical Monograph. 1979;2(6):1�5.
27. Woodfield H. C., Gerstman B. B., Olaisen R. H., Johnson D. F. Interexaminer reliability of supine leg checks for discriminating leg-length inequality. Journal of Manipulative and Physiological Therapeutics. 2011;34(4):239�246. doi: 10.1016/j.jmpt.2011.04.009. [PubMed] [Cross Ref]
28. Andersen R. T., Winkler M. The gravity stress analyzer for measuring spinal posture. Journal of the Canadian Chiropractic Association. 1983;2(27):55�58.
29. Eriksen K. Subluxation X-ray analysis. In: Eriksen K., editor. Upper Cervical Subluxation Complex�A Review of the Chiropractic and Medical Literature. 1st. Philadelphia, Pa, USA: Lippincott Williams & Wilkins; 2004. pp. 163�203.
30. Zabelin M. X-ray analysis. In: Thomas M., editor. NUCCA: Protocols and Perspectives. 1st. Monroe: National Upper Cervical Chiropractic Association; 2002. p. p. 10-1-48.
31. Miyati T., Mase M., Kasai H., et al. Noninvasive MRI assessment of intracranial compliance in idiopathic normal pressure hydrocephalus. Journal of Magnetic Resonance Imaging. 2007;26(2):274�278. doi: 10.1002/jmri.20999. [PubMed] [Cross Ref]
32. Alperin N., Lee S. H., Loth F., Raksin P. B., Lichtor T. MR-intracranial pressure (ICP). A method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology. 2000;217(3):877�885. doi: 10.1148/radiology.217.3.r00dc42877. [PubMed] [Cross Ref]
33. Raksin P. B., Alperin N., Sivaramakrishnan A., Surapaneni S., Lichtor T. Noninvasive intracranial compliance and pressure based on dynamic magnetic resonance imaging of blood flow and cerebrospinal fluid flow: review of principles, implementation, and other noninvasive approaches. Neurosurgical Focus. 2003;14(4, article E4) [PubMed]
34. Koerte I. K., Schankin C. J., Immler S., et al. Altered cerebrovenous drainage in patients with migraine as assessed by phase-contrast magnetic resonance imaging. Investigative Radiology. 2011;46(7):434�440. doi: 10.1097/rli.0b013e318210ecf5. [PubMed] [Cross Ref]
35. Pomschar A., Koerte I., Lee S., et al. MRI evidence for altered venous drainage and intracranial compliance in mild traumatic brain injury. PLoS ONE. 2013;8(2) doi: 10.1371/journal.pone.0055447.e55447 [PMC free article] [PubMed] [Cross Ref]
36. Bayliss M. S., Batenhorst A. S. The HIT-6 A User’s guide. Lincoln, RI, USA: QualityMetric Incorporated; 2002.
37. Coeytaux R. R., Kaufman J. S., Chao R., Mann J. D., DeVellis R. F. Four methods of estimating the minimal important difference scores were compared to establish a clinically significant change in Headache Impact Test. Journal of Clinical Epidemiology. 2006;59(4):374�380. doi: 10.1016/j.jclinepi.2005.05.010. [PubMed] [Cross Ref]
38. Smelt A. F. H., Assendelft W. J. J., Terwee C. B., Ferrari M. D., Blom J. W. What is a clinically relevant change on the HIT-6 questionnaire? An estimation in a primary-care population of migraine patients. Cephalalgia. 2014;34(1):29�36. doi: 10.1177/0333102413497599. [PubMed] [Cross Ref]
39. Sauro K. M., Rose M. S., Becker W. J., et al. HIT-6 and MIDAS as measures of headache disability in a headache referral population. Headache. 2010;50(3):383�395. doi: 10.1111/j.1526-4610.2009.01544.x. [PubMed] [Cross Ref]
40. Bagley C. L., Rendas-Baum R., Maglinte G. A., et al. Validating migraine-specific quality of life questionnaire v2.1 in episodic and chronic migraine. Headache. 2012;52(3):409�421. doi: 10.1111/j.1526-4610.2011.01997.x. [PubMed] [Cross Ref]
41. Cole J. C., Lin P., Rupnow M. F. T. Minimal important differences in the Migraine-Specific Quality of Life Questionnaire (MSQ) version 2.1. Cephalalgia. 2009;29(11):1180�1187. doi: 10.1111/j.1468-2982.2009.01852.x. [PubMed] [Cross Ref]
42. Dodick D. W., Silberstein S., Saper J., et al. The impact of topiramate on health-related quality of life indicators in chronic migraine. Headache. 2007;47(10):1398�1408. doi: 10.1111/j.1526-4610.2007.00950.x. [PubMed] [Cross Ref]
43. Hr�bjartsson A., G�tzsche P. C. Placebo interventions for all clinical conditions. Cochrane Database of Systematic Reviews. 2010;(1)CD003974 [PubMed]
44. Meissner K. The placebo effect and the autonomic nervous system: evidence for an intimate relationship. Philosophical Transactions of the Royal Society B: Biological Sciences. 2011;366(1572):1808�1817. doi: 10.1098/rstb.2010.0403. [PMC free article] [PubMed] [Cross Ref]
45. Marshall I., MacCormick I., Sellar R., Whittle I. Assessment of factors affecting MRI measurement of intracranial volume changes and elastance index. British Journal of Neurosurgery. 2008;22(3):389�397. doi: 10.1080/02688690801911598. [PubMed] [Cross Ref]
46. Raboel P. H., Bartek J., Andresen M., Bellander B. M., Romner B. Intracranial pressure monitoring: invasive versus non-invasive methods-A review. Critical Care Research and Practice. 2012;2012:14. doi: 10.1155/2012/950393.950393 [PMC free article] [PubMed] [Cross Ref]
47. Wentland A. L., Wieben O., Korosec F. R., Haughton V. M. Accuracy and reproducibility of phase-contrast MR imaging measurements for CSF flow. American Journal of Neuroradiology. 2010;31(7):1331�1336. doi: 10.3174/ajnr.A2039. [PMC free article] [PubMed] [Cross Ref]
48. Koerte I., Haberl C., Schmidt M., et al. Inter- and intra-rater reliability of blood and cerebrospinal fluid flow quantification by phase-contrast MRI. Journal of Magnetic Resonance Imaging. 2013;38(3):655�662. doi: 10.1002/jmri.24013. [PMC free article] [PubMed] [Cross Ref]
49. Stoquart-Elsankari S., Lehmann P., Villette A., et al. A phase-contrast MRI study of physiologic cerebral venous flow. Journal of Cerebral Blood Flow and Metabolism. 2009;29(6):1208�1215. doi: 10.1038/jcbfm.2009.29. [PubMed] [Cross Ref]
50. Atsumi H., Matsumae M., Hirayama A., Kuroda K. Measurements of intracranial pressure and compliance index using 1.5-T clinical MRI machine. Tokai Journal of Experimental and Clinical Medicine. 2014;39(1):34�43. [PubMed]
51. Becker W. J. Assessing health-related quality of life in patients with migraine. Canadian Journal of Neurological Sciences. 2002;29(supplement 2):S16�S22. doi: 10.1017/s031716710000189x. [PubMed] [Cross Ref]
Close Accordion
Chiropractic Spinal Manipulative Therapy for Migraine

Chiropractic Spinal Manipulative Therapy for Migraine

Headaches can be a real aggravating issue, especially if these begin to occur more frequently. Even more so, headaches can become a bigger problem when the common type of head pain becomes a migraine. Head pain is often a symptom resulting from an underlying injury and/or condition along the cervical spine, or upper back and neck. Fortunately, a variety of treatment methods are available to help treat headaches. Chiropractic care is a well-known alternative treatment option which is commonly recommended for neck pain, headaches and migraines. The purpose of the following research study is to determine the effectiveness of chiropractic spinal manipulative therapy for migraine.

Chiropractic Spinal Manipulative Therapy for Migraine: a Study Protocol of a Single-Blinded Placebo-Controlled Randomised Clinical Trial

 

Abstract

 

Introduction

 

Migraine affects 15% of the population, and has substantial health and socioeconomic costs. Pharmacological management is first-line treatment. However, acute and/or prophylactic medicine might not be tolerated due to side effects or contraindications. Thus, we aim to assess the efficacy of chiropractic spinal manipulative therapy (CSMT) for migraineurs in a single-blinded placebo-controlled randomised clinical trial (RCT).

 

Method and Analysis

 

According to the power calculations, 90 participants are needed in the RCT. Participants will be randomised into one of three groups: CSMT, placebo (sham manipulation) and control (usual non-manual management). The RCT consists of three stages: 1?month run-in, 3?months intervention and follow-up analyses at the end of the intervention and 3, 6 and 12?months. The primary end point is migraine frequency, while migraine duration, migraine intensity, headache index (frequency x duration x intensity) and medicine consumption are secondary end points. Primary analysis will assess a change in migraine frequency from baseline to the end of the intervention and follow-up, where the groups CSMT and placebo and CSMT and control will be compared. Owing to two group comparisons, p values below 0.025 will be considered statistically significant. For all secondary end points and analyses, a p value below 0.05 will be used. The results will be presented with the corresponding p values and 95% CIs.

 

Ethics and Dissemination

 

The RCT will follow the clinical trial guidelines from the International Headache Society. The Norwegian Regional Committee for Medical Research Ethics and the Norwegian Social Science Data Services have approved the project. Procedure will be conducted according to the declaration of Helsinki. The results will be published at scientific meetings and in peer-reviewed journals.

 

Trial Registration Number

 

NCT01741714.

Keywords: Statistics & Research Methods

 

Strengths and Limitations of this Study

 

  • The study will be the first three-armed manual therapy randomised clinical trial (RCT) assessing the efficacy of chiropractic spinal manipulative therapy versus placebo (sham manipulation) and control (continue usual pharmacological management without receiving manual intervention) for migraineurs.
  • Strong internal validity, since a single chiropractor will conduct all interventions.
  • The RCT has the potential to provide a non-pharmacological treatment option for migraineurs.
  • Risk for dropouts is increased due to strict exclusion criteria and 17?months duration of the RCT.
  • A generally accepted placebo has not been established for manual therapy; thus, there is a risk for unsuccessful blinding, while the investigator who provides the interventions cannot be blinded for obvious reasons.

 

Background

 

Migraine is a common health problem with substantial health and socioeconomic costs. On the recent Global Burden of Disease study, migraine was ranked as the third most common condition.[1]

 

Image of a woman with a migraine demonstrated by lightning coming out of her head.

 

About 15% of the general population have migraine.[2, 3] Migraine is usually unilateral with pulsating and moderate/severe headache which is aggravated by routine physical activity, and is accompanied by photophobia and phonophobia, nausea and sometimes vomiting.[4] Migraine exists in two major forms, migraine without aura and migraine with aura (below). Aura is reversible neurological disturbances of the vision, sensory and/or speech function, occurring prior to the headache. However, intraindividual variations from attack to attack are common.[5, 6] The origin of migraine is debated. The painful impulses may originate from the trigeminal nerve, central and/or peripheral mechanisms.[7, 8] Extracranial pain sensitive structures include the skin, muscles, arteries, periosteum and joints. The skin is sensitive to all usual forms of pain stimuli, while temporal and neck muscles may especially be sources for pain and tenderness in migraine.[9�11] Similarly, the frontal supraorbital, superficial temporal, posterior and occipital arteries are sensitive to pain.[9, 12]

 

Notes

 

The International Classification of Headache Disorders-II Diagnostic Criteria for Migraine

 

Migraine without Aura

  • A. At least five attacks fulfilling criteria B�D
  • B. Headache attacks lasting 4�72?h (untreated or unsuccessfully treated)
  • C. Headache has at least two of the following characteristics:
  • 1. Unilateral location
  • 2. Pulsating quality
  • 3. Moderate or severe pain intensity
  • 4. Aggravated by or causing avoidance of routine physical activity
  • D. During headache at least one of the following:
  • 1. Nausea and/or vomiting
  • 2. Photophobia and phonophobia
  • E. Not attributed to another disorder
  • Migraine with aura
  • A. At least two attacks fulfilling criteria B�D
  • B. Aura consisting of at least one of the following, but no motor weakness:
  • 1. Fully reversible visual symptoms including positive features (ie, flickering lights, spots or lines) and/or negative features (ie, loss of vision). Moderate or severe pain intensity
  • 2. Fully reversible sensory symptoms including positive features (ie, pins and needles) and/or negative features (ie, numbness)
  • 3. Fully reversible dysphasic speech disturbance
  • C. At least two of the following:
  • 1. Homonymous visual symptoms and/or unilateral sensory symptoms
  • 2. At least one aura symptom develops gradually over ?5?min and/or different aura symptoms occur in succession over ?5?min
  • 3. Each symptom lasts ?5 and ?60?min
  • D. Headache fulfilling criteria B-D for 1.1 Migraine without aura begins during the aura or follows the aura within 60?min
  • E. Not attributed to another disorder

 

Pharmacological management is the first treatment option for migraineurs. However, some patients do not tolerate acute and/or prophylactic medicine due to side effects or contraindications due to comorbidity of other diseases or due to a wish to avoid medication for other reasons. The risk of medication overuse due to frequent migraine attacks represents a major health hazard with direct and indirect cost concerns. The prevalence of medication overuse headache (MOH) is 1�2% in the general population,[13�15] that is, about half the population suffering chronic headache (15 headache days or more per month) have MOH.[16] Migraine causes loss of 270 workdays per year per 1000 persons from the general population.[17] This corresponds to about 3700 work years lost per year in Norway due to migraine. The economic cost per migraineur was estimated to be $655 in USA and �579 in Europe per year.[18, 19] Owing to the high prevalence of migraine, the total cost per year was estimated to be $14.4 billion in the USA and �27 billion in the EU countries, Iceland, Norway and Switzerland at that time. Migraine costs more than neurological disorders such as dementia, multiple sclerosis, Parkinson’s disease and stroke.[20] Thus, non-pharmacological treatment options are warranted.

 

The Diversified technique and the Gonstead method are the two most commonly used chiropractic manipulative treatment modalities in the profession, used by 91% and 59%, respectively,[21, 22] along with other manual and non-manual interventions, that is, soft tissue techniques, spinal and peripheral mobilisation, rehabilitation, postural corrections and exercises as well as general nutrition and dietetic advice.

 

A few spinal manipulative therapy (SMT) randomised controlled trials (RCTs) using the Diversified technique have been conducted for migraine, suggesting an effect on migraine frequency, migraine duration, migraine intensity and medicine consumption.[23�26] However, common for previous RCTs are the methodological shortcomings such as inaccurate headache diagnosis, that is, questionnaire diagnoses used are imprecise,[27] inadequate or no randomisation procedure, lack of placebo group, and primary and secondary end points not prespecified.[28�31] In addition, previous RCTs did not consequently adhere to the recommended clinical guidelines from the International Headache Society (IHS).[32, 33] At present, no RCTs have applied the Gonstead chiropractic SMT (CSMT) method. Thus, considering the methodological shortcomings in previous RCTs, a clinical placebo-controlled RCT with improved methodological quality remains to be conducted for migraine.

 

The SMT mechanism of action on migraine is unknown. It is argued that migraine might originate from a complexity of nociceptive afferent responses involving the upper cervical spine (C1, C2 and C3), leading to a hypersensitivity state of the trigeminal pathway conveying sensory information for the face and much of the head.[34, 35] Research has thus suggested that SMT may stimulate neural inhibitory systems at different spinal cord levels, and might activate various central descending inhibitory pathways.[36�40] However, although the proposed physiological mechanisms are not fully understood, there are most likely additional unexplored mechanisms which could explain the effect SMT has on mechanical pain sensitisation.

 

Double image of a woman with a migraine and a diagram showcasing the human brain during a migraine.

 

The objective of this study is to assess the efficacy of CSMT versus placebo (sham manipulation) and controls (continue usual pharmacological management without receiving manual intervention) for migraineurs in an RCT.

 

Method and Design

 

This is a single-blinded placebo-controlled RCT with three parallel groups (CSMT, placebo and control). Our primary hypothesis is that CSMT gives at least 25% reduction in the average number of migraine days per month (30?days/month) as compared to placebo and control from baseline to the end of intervention, and we expect the same reduction to be maintained at 3, 6 and 12?months follow-up. If the CSMT treatment is effective, it will be offered to participants who received placebo or control after study completion, that is, after 12?months follow-up. The study will adhere to the recommended clinical trial guidelines from the IHS,32 33 and the methodological CONSORT and SPIRIT guidelines.[41, 42]

 

Patient Population

 

Participants will be recruited in the period January to September 2013 through the Akershus University Hospital, through general practitioners and media advertisement, that is, posters with general information will be put up at general practitioners� offices along with oral information in the Akershus and Oslo counties, Norway. Participants will receive posted information about the project followed by a short telephone interview. Those recruited from the general practitioners� offices will have to contact the clinical investigator whose contact details have been provided on the posters in order to obtain extensive information about the study.

 

Eligible participants are between 18 and 70?years of age and have at least one migraine attack per month. Participants are diagnosed according to the diagnostic criteria of the International Classification of Headache Disorders (ICHD-II) by a neurologist at the Akershus University Hospital.[43] They are only allowed to have co-occurrence of tension-type headache and not other primary headaches.

 

Exclusion criteria are contraindication to SMT, spinal radiculopathy, pregnancy, depression and CSMT within the previous 12?months. Participants whom during the RCT receive any manual interventions by physiotherapists, chiropractors, osteopaths or other health professionals to treat musculoskeletal pain and disability, including massage therapy, joint mobilisation and manipulation,[44] changed their prophylactic headache medicine or pregnancy will be withdrawn from the study at that time and be regarded as dropouts. They are allowed to continue and change their usual acute migraine medication throughout the trial.

 

In response to initial contact, participants fulfilling the inclusion criteria will be invited to further assessment by the chiropractic investigator. The assessment includes an interview and a physical examination with special emphasis on the whole spinal column. Oral and written information about the project will be provided in advance and oral and written consent will be obtained from all accepted participants during the interview and by the clinical investigator. In accordance with good clinical practice, all patients will be informed about the harms and benefits as well as possible adverse reactions of the intervention primarily including local tenderness and tiredness on the treatment day. No serious adverse events have been reported for the chiropractic Gonstead method.[45, 46] Participants randomised into active or placebo interventions will undergo a full spine radiographic examination and be scheduled for 12 intervention sessions. The control group will not be exposed to this assessment.

 

Clinical RCT

 

The clinical RCT consists of a 1?month run-in and 3?months intervention. Time profile will be assessed from baseline to the end of follow-up for all end points (Figure 1).

 

Figure 1 Study Flow Chart

Figure 1: Study flow chart. CSMT, chiropractic spinal manipulative therapy; Placebo, sham manipulation; Control, continue usual pharmacological management without receiving manual intervention.

 

Run-In

 

The participants will fill in a validated diagnostic paper headache diary 1?month prior to intervention which will be used as baseline data for all participants.[47, 48] The validated diary includes questions directly related to the primary and secondary end points. X-rays will be taken in standing position in the anterioposterior and lateral planes of the entire spine. The X-rays will be assessed by the chiropractic investigator.

 

Randomisation

 

Prepared sealed lots with the three interventions, that is, active treatment, placebo and the control group, will be subdivided into four subgroups by age and gender, that is, 18�39 and 40�70?years of age and men and women, respectively. Participants will be equally allocated to the three groups by allowing the participant to draw one lot only. The block randomisation will be administrated by an external trained party with no involvement from the clinical investigator.

 

Intervention

 

Active treatment consists of CSMT using the Gonstead method,[21] that is, a specific contact, high-velocity, low-amplitude, short-lever spinal with no postadjustment recoil directed to spinal biomechanical dysfunction (full spine approach) as diagnosed by standard chiropractic tests.

 

The placebo intervention consists of sham manipulation, that is, a broad non-specific contact, low-velocity, low-amplitude sham push manoeuvre in a non-intentional and non-therapeutic directional line. All the non-therapeutic contacts will be performed outside the spinal column with adequate joint slack and without soft tissue pretension so that no joint cavitations occur. In some sessions, the participant lay either prone on a Zenith 2010 HYLO bench with the investigator standing at the participant’s right side with his left palm placed on the participant’s right lateral scapular edge with the other hand reinforcing. In other sessions, the investigator will stand at the participant’s left side and place his right palm over the participant’s left scapular edge with the left hand reinforcing, delivering a non-intentional lateral push manoeuvre. Alternatively, the participant lay in the same side posture position as the active treatment group with the bottom leg straight and the top leg flexed with the top leg’s ankle resting on the bottom leg’s knee fold, in preparation for a side posture push move, which will be delivered as a non-intentional push in the gluteal region. The sham manipulation alternatives will be equally interchanged among the placebo participants according to protocol during the 12-week treatment period to strengthen the study validity. The active and the placebo groups will receive the same structural and motion assessment prior to and after each intervention. No additional cointerventions or advice will be given to participants during the trial period. The treatment period will include 12 consultations, that is, twice per week in the first 3?weeks followed by once a week in the next 2?weeks and once every second week until 12?weeks are reached. Fifteen minutes will be allocated per consultation for each participant. All interventions will be conducted at the Akershus University Hospital and administered by an experienced chiropractor (AC).

 

Image of an older man receiving chiropractic care for migraine relief.

 

Dr Jimenez works on wrestler's neck_preview

 

The control group will continue usual care, that is, pharmacological management without receiving manual intervention by the clinical investigator. The same exclusion criteria apply for the control group during the whole study period.

 

Blinding

 

After each treatment session, the participants who receive active or placebo intervention will complete a de-blinding questionnaire administrated by an external trained independent party with no involvement from the clinical investigator, that is, providing a dichotomous �yes� or �no� answer as to whether active treatment was received. This response was followed by a second question regarding how certain they were that active treatment was received on a 0�10 numeric rating scale (NRS), where 0 represents absolutely uncertain and 10 represents absolutely certainty. The control group and the clinical investigator can for obvious reasons not be blinded.[49, 50]

 

Follow-Up

 

Follow-up analysis will be conducted on the end points measured after the end of intervention and at 3, 6 and 12?months follow-up. During this period, all participants will continue to fill in a diagnostic paper headache diary and return it on a monthly basis. In the case of unreturned diary or missing values in the diary, the participants will be contacted immediately on detection to minimise recall bias. Participants will be contacted by phone to secure compliance.

 

Primary and Secondary End Points

 

The primary and secondary end points are listed below. The end points adhere to the recommended IHS clinical trial guidelines.[32, 33] We define number of migraine days as the primary end point and expect at least a 25% reduction in average number of days from baseline to the end of intervention, with the same level of reduction being maintained at follow-up. On the basis of previous reviews on migraine, a 25% reduction is considered to be a conservative estimate.[30] A 25% reduction is also expected in secondary end points from baseline to the end of intervention, retaining at follow-up for migraine duration, migraine intensity and headache index, where the index is calculated as number of migraine days (30?days)�average migraine duration (hours per day)�average intensity (0�10 NRS). A 50% reduction in medication consumption from baseline to the end of intervention and to follow-up is expected.

 

Notes

 

Primary and Secondary End Points

 

Primary End Points

  • 1. Number of migraine days in active treatment versus placebo group.
  • 2. Number of migraine days in active treatment versus control group.

Secondary End Points

  • 3. Migraine duration in hours in active treatment versus placebo group.
  • 4. Migraine duration in hours in active treatment versus control group.
  • 5. Self-reported VAS in active treatment versus placebo group.
  • 6. Self-reported VAS in active treatment versus control group.
  • 7. Headache index (frequency x duration x intensity) in active treatment versus placebo group.
  • 8. Headache index in active treatment versus control group.
  • 9. Headache medication dosage in active treatment versus placebo group.
  • 10. Headache medication dosage in active treatment versus control group.

 

*The data analysis is based on the run-in period versus end of intervention. Point 11�40 will be duplicate of point 1�10 above at 3, 6 and 12?months follow-up, respectively.

 

Data Processing

 

A flow chart of the participants is shown in Figure 2. Baseline demographic and clinical characteristics will be tabulated as means and SDs for continuous variables and proportions and percentages for categorical variables. Each of three groups will be described separately. Primary and secondary end points will be presented by suitable descriptive statistics in each group and for each time point. Normality of end points will be assessed graphically and transformation will be considered if necessary.

 

Figure 2 Expected Participant's Flow Diagram

Figure 2: Expected participant’s flow diagram. CSMT, chiropractic spinal manipulative therapy; Placebo, sham manipulation; Control, continue usual pharmacological management without receiving manual intervention.

 

Change in primary and secondary end points from baseline to the end of intervention and to follow-up will be compared between the active and placebo groups and the active and control groups. The null hypothesis states that there is no significant difference between the groups in average change, while the alternative hypothesis states that a difference of at least 25% exists.

 

Owing to the follow-up period, repeated recordings of primary and secondary end points will be available, and analyses of trend in primary and secondary end points will be of main interest. Intra-individual correlations (cluster effect) are likely to be present in data with repeated measurements. Cluster effect will thus be assessed by calculating intraclass correlation coefficient quantifying the proportion of total variation attributable to the intraindividual variations. The trend in end points will be assessed by a linear regression model for longitudinal data (linear mixed model) to correctly account for the possible cluster effect. The linear mixed model handles unbalanced data, enabling all available information from randomised patients to be included, as well as from dropouts. Regression models with fixed effects for time component and group allocation as well as the interaction between the two will be estimated. The interaction will quantify possible differences between groups regarding time trend in the end points and serve as an omnibus test. Random effects for patients will be included to adjust the estimates for intraindividual correlations. Random slopes will be considered. The linear mixed models will be estimated by the SAS PROC MIXED procedure. The two pairwise comparisons will be performed by deriving individual time point contrasts within each group with the corresponding p values and 95% CIs.

 

Both per-protocol and intention-to-treat analyses will be conducted if relevant. All analyses will be performed by a statistician, blinded for group allocation and participants. All adverse effects will also be registered and presented. Participants who experience any sort of adverse effects during the trial period will be entitled to call the clinical investigator on the project cell phone. The data will be analysed with SPSS V.22 and SAS V.9.3. Owing to two group comparisons in the primary end point, p values below 0.025 will be considered statistically significant. For all secondary end points and analyses, a significance level of 0.05 will be used. Missing values might appear in incomplete interview questionnaires, incomplete headache diaries, missed intervention sessions and/or due to dropouts. The pattern of missingness will be assessed and missing values handled adequately.

 

Power Calculation

 

Sample size calculations are based on the results in a recently published group comparison study on topiramate.[51] We hypothesise that the average difference in reduction of number of days with migraine per month between the active and the placebo groups is 2.5?days. The same difference is assumed between the active and control groups. SD for reduction in each group is assumed to be equal to 2.5. Under the assumption of, on average, 10 migraine days per month at baseline in each group and no change in the placebo or control group during the study, 2.5?days reduction corresponds to a reduction by 25%. Since primary analysis includes two group comparisons, we set a significance level at 0.025. A sample size of 20 patients is required in each group to detect a statistically significant average difference in reduction of 25% with 80% power. To allow for dropouts, the investigators plan to recruit 120 participants.

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

“I’ve been recommended to seek chiropractic care for my migraine-type headaches. Is chiropractic spinal manipulative therapy effective for migraine?”�Many different types of treatment options can be utilized to effectively treat migraine, however, chiropractic care is one of the most popular treatment approaches for naturally treating migraine. Chiropractic spinal manipulative therapy�is the traditional high-velocity low-amplitude (HVLA) thrust. Also known as spinal manipulation, a chiropractor performs this chiropractic technique by applying a controlled sudden force to a joint while the body is positioned in a specific way. According to the following article, chiropractic spinal manipulative therapy can effectively help treat migraine.

 

Discussion

 

Methodological Considerations

 

Current SMT RCTs on migraine suggest treatment efficacy regarding migraine frequency, duration and intensity. However, a firm conclusion requires clinical single-blinded placebo-controlled RCTs with few methodological shortcomings.[30] Such studies should adhere to the recommended IHS clinical trial guidelines with migraine frequency as the primary end point and migraine duration, migraine intensity, headache index and medication consumption as secondary end points.[32, 33] The headache index, as well as a combination of frequency, duration and intensity, gives an indication of the total level of suffering. Despite the lack of consensus, the headache index has been recommended as an accepted standard secondary end point.[33, 52, 53] The primary and secondary end points will be collected prospectively in a validated diagnostic headache diary for all participants in order to minimise recall bias.[47, 48] To the best of our knowledge, this is the first prospective manual therapy in a three-armed single-blinded placebo-controlled RCT to be conducted for migraine. The study design adheres to the recommendations for pharmacological RCTs as far as possible. RCTs that include a placebo group and a control group are advantageous to pragmatic RCTs that compare two active treatment arms. RCTs also provide the best approach for producing safety as well as efficacy data.

 

Image of a woman with a migraine holding her head.

 

Unsuccessful blinding is a possible risk to the RCT. Blinding is often difficult as there is no single validated standardised chiropractic sham intervention which can be used as a control group for this date. It is, however, necessary to include a placebo group in order to produce a true net effect of the active intervention. Consensus about an appropriate placebo for a clinical trial of SMT among experts representing clinicians and academics has, however, not been reached.[54] No previous studies have, to the best of our knowledge, validated a successful blinding of a CSMT clinical trial with multiple treatment sessions. We intend to minimise this risk by following the proposed protocol for the placebo group.

 

The placebo response is furthermore high in pharmacological and assumed similarly high for non-pharmacological clinical studies; however, it might even be higher in manual therapy RCTs were attention and physical contact is involved.[55] Similarly, a natural concern with regard to attention bias will be involved for the control group as it is not being seen by anyone or not seen as much by the clinical investigator as the other two groups.

 

There are always risks for dropouts due to various reasons. Since the trial duration is 17?months with a 12?month follow-up period, the risk for loss to follow-up is thus enhanced. Co-occurrence of other manual intervention during the trial period is another possible risk, as those who receive manipulation or other manual physical treatments elsewhere during the trial period will be withdrawn from the study and regarded as dropouts at the time of violation.

 

The external validity of the RCT might be a weakness as there is only one investigator. However, we found that advantageous to multiple investigators, in order to provide similar information to participants in all three groups and manual intervention in the CSMT and the placebo groups. Thus, we intend to eliminate inter-investigator variability which might be present if there are two or more investigators. Although the Gonstead method is the second most commonly used technique among chiropractors, we do not see an issue of concern when it comes to generalisability and external validity. Furthermore, the block randomisation procedure will provide a homogeneous sample across the three groups.

 

The internal validity is, however, strong by having one treating clinician. It reduces the risk of potential selection, information and experimental biases. Furthermore, the diagnosis of all participants is performed by experienced neurologists and not by questionnaires. A direct interview has higher sensitivity and specificity as compared to a questionnaire.[27] Individual motivational factors which can influence a participant’s perception and personal preferences when treating are both reduced by having one investigator. In addition, the internal validity is further strengthened by a concealed validated randomisation procedure. Since age and genders may play a role in migraine, block randomisation was found necessary to balance arms by age and gender in order to reduce possible age-related and/or gender-related bias.

 

Image of X-rays demonstrating loss of cervical lordosis as a possible cause for migraine.

X-rays demonstrating loss of cervical lordosis as a possible cause for migraine.

 

Conducting X-rays prior to the active and placebo interventions was found to be applicable in order to visualise posture, joint and disc integrity.[56, 57] Since the total X-ray radiation dose varies from 0.2�0.8?mSv, the radiation exposure was considered low.[58, 59] X-ray assessments were also found to be necessary in order to determine if full spine X-rays are useful in future studies or not.

 

Since we are unaware of the mechanisms of possible efficacy, and both spinal cord and central descending inhibitory pathways have been postulated, we see no reasons to exclude a full spine treatment approach for the intervention group. It has furthermore been postulated that pain in different spinal regions should not be regarded as separate disorders but rather as a single entity.[60] Similarly, including a full spine approach limits the differentiations between the CSMT and the placebo groups. Thus, it might strengthen the likelihood of successful blinding in the placebo group being achieved. In addition, all the placebo contacts will be performed outside the spinal column, thus minimising a possible spinal cord afferent input.

 

Innovative and Scientific Value

 

This RCT will highlight and validate the Gonstead CSMT for migraineurs, which has not previously been studied. If CSMT proves to be effective, it will provide a non-pharmacological treatment option. This is especially important as some migraineurs do not have efficacy of prescript acute and/or prophylactic medications, while others have non-tolerable side effects or comorbidity of other diseases that contradict medication while others wish to avoid medication for various reasons. Thus, if CSMT works, it can really have an impact on migraine treatment. The study also bridges cooperation between chiropractors and physicians, which is important in order to make healthcare more efficient. Finally, our method might be applied in future chiropractic and other manual therapy RCTs on headache.

 

Ethics and Dissemination

 

Ethics

 

The study has been approved by the Norwegian Regional Committee for Medical Research Ethics (REK) (2010/1639/REK) and the Norwegian Social Science Data Services (11�77). The declaration of Helsinki is otherwise followed. All data will be anonymised while participants must give oral and written informed consent. Insurance is provided through �The Norwegian System of Compensation to Patients� (NPE), which is an independent national body set up to process compensation claims from patients who have suffered an injury as a result of treatment under the Norwegian health service. A stopping rule was defined for withdrawing participants from this study in accordance with recommendations in the CONSORT extension for Better Reporting of Harms.[61] If a participant reports to their chiropractor or research staff a severe adverse event, he or she will be withdrawn from the study and referred to their general practitioner or hospital emergency department depending on the nature of the event. The final data set will be available to the clinical investigator (AC), the independent and blinded statistician (JSB) and Study Director (MBR). Data will be stored in a locked cabinet at the Research Centre, Akershus University Hospital, Norway, for 5?years.

 

Dissemination

 

This project is due for completion 3?years after the start. Results will be published in peer-reviewed international scientific journals in accordance with the CONSORT 2010 Statement. Positive, negative, as well as inconclusive results will be published. In addition, a written lay summary of the results will be available to study participants on request. All authors should qualify for authorship according to the International Committee of Medical Journal Editors, 1997. Each author should have participated sufficiently in the work to take public responsibility for the content. The final decision on the order of authorship will be decided when the project has been finalised. The results from the study may, moreover, be presented as posters or oral presentations at national and/or international conferences.

 

Acknowledgments

 

Akershus University Hospital kindly provided research facilities. Chiropractor Clinic1, Oslo, Norway, performed X-ray assessments.

 

Footnotes

 

Contributors: AC and PJT had the original idea for the study. AC and MBR obtained funding. MBR planned the overall design. AC prepared the initial draft and PJT commented on the final version of the research protocol. JSB performed all the statistical analyses. AC, JSB, PJT and MBR were involved in the interpretation and assisted in the revision and preparation of the manuscript. All authors have read and approved the final manuscript.

 

Funding: The study has received funding from Extrastiftelsen (grant number: 2829002), the Norwegian Chiropractic Association (grant number: 2829001), Akershus University Hospital (grant number: N/A) and University of Oslo in Norway (grant number: N/A).

 

Competing interests: None declared.

 

Patient consent: Obtained.

 

Ethics approval: The Norwegian Regional Committee for Medical Research Ethics approved the project (ID of the approval: 2010/1639/REK).

 

Provenance and peer review: Not commissioned; externally peer reviewed.

 

A Randomized Controlled Trial of Chiropractic Spinal Manipulative Therapy for Migraine

 

Abstract

 

Objective: To assess the efficacy of chiropractic spinal manipulative therapy (SMT) in the treatment of migraine.

 

Design: A randomized controlled trial of 6 months’ duration. The trial consisted of 3 stages: 2 months of data collection (before treatment), 2 months of treatment, and a further 2 months of data collection (after treatment). Comparison of outcomes to the initial baseline factors was made at the end of the 6 months for both an SMT group and a control group.

 

Setting: Chiropractic Research Center of Macquarie University.

 

Participants: One hundred twenty-seven volunteers between the ages of 10 and 70 years were recruited through media advertising. The diagnosis of migraine was made on the basis of the International Headache Society standard, with a minimum of at least one migraine per month.

 

Interventions: Two months of chiropractic SMT (diversified technique) at vertebral fixations determined by the practitioner (maximum of 16 treatments).

 

Main Outcome Measures: Participants completed standard headache diaries during the entire trial noting the frequency, intensity (visual analogue score), duration, disability, associated symptoms, and use of medication for each migraine episode.

 

Results: The average response of the treatment group (n = 83) showed statistically significant improvement in migraine frequency (P < .005), duration (P < .01), disability (P < .05), and medication use (P< .001) when compared with the control group (n = 40). Four persons failed to complete the trial because of a variety of causes, including change in residence, a motor vehicle accident, and increased migraine frequency. Expressed in other terms, 22% of participants reported more than a 90% reduction of migraines as a consequence of the 2 months of SMT. Approximately 50% more participants reported significant improvement in the morbidity of each episode.

 

Conclusion: The results of this study support previous results showing that some people report significant improvement in migraines after chiropractic SMT. A high percentage (>80%) of participants reported stress as a major factor for their migraines. It appears probable that chiropractic care has an effect on the physical conditions related to stress and that in these people the effects of the migraine are reduced.

 

In conclusion, chiropractic spinal manipulative therapy can be used effectively to help treat migraine, according to the research study. Furthermore, chiropractic care improved the individual’s overall health and wellness. The well-being of the human body as a whole is believed to be one of the biggest factors as to why chiropractic care is effective for migraine. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Neck Pain

 

Neck pain is a common complaint which can result due to a variety of injuries and/or conditions. According to statistics, automobile accident injuries and whiplash injuries are some of the most prevalent causes for neck pain among the general population. During an auto accident, the sudden impact from the incident can cause the head and neck to jolt abruptly back-and-forth in any direction, damaging the complex structures surrounding the cervical spine. Trauma to the tendons and ligaments, as well as that of other tissues in the neck, can cause neck pain and radiating symptoms throughout the human body.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: A Healthier You!

 

Blank
References
1. Vos T, Flaxman AD, Naghavi M et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990�2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2163�96. doi:10.1016/S0140-6736(12)61729-2 [PubMed]
2. Russell MB, Kristiansen HA, Saltyte-Benth J et al. A cross-sectional population-based survey of migraine and headache in 21,177 Norwegians: the Akershus sleep apnea project. J Headache Pain 2008;9:339�47. doi:10.1007/s10194-008-0077-z [PMC free article] [PubMed]
3. Steiner TJ, Stovner LJ, Katsarava Z et al. The impact of headache in Europe: principal results of the Eurolight project. J Headache Pain 2014;15:31 doi:10.1186/1129-2377-15-31 [PMC free article] [PubMed]
4. Headache Classification Subcommittee of the International Headache Society. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 2013;33:629�808. doi:10.1177/0333102413485658 [PubMed]
5. Russell MB, Iversen HK, Olesen J. Improved description of the migraine aura by a diagnostic aura diary. Cephalalgia 1994;14:107�17. doi:10.1046/j.1468-2982.1994.1402107.x [PubMed]
6. Russell MB, Olesen J. A nosographic analysis of the migraine aura in a general population. Brain 1996;119(Pt 2):355�61. doi:10.1093/brain/119.2.355 [PubMed]
7. Olesen J, Burstein R, Ashina M et al. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 2009;8:679�90. doi:10.1016/S1474-4422(09)70090-0 [PubMed]
8. Amin FM, Asghar MS, Hougaard A et al. Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol 2013;12:454�61. doi:10.1016/S1474-4422(13)70067-X [PubMed]
9. Wolff HGF. Headache and other head pain. 2nd edn Oxford: Oxford University Press, 1963.
10. Jensen K. Extracranial blood flow, pain and tenderness in migraine. Clinical and experimental studies. Acta Neurol Scand Suppl 1993;147:1�8. doi:10.1111/j.1748-1716.1993.tb09466.x [PubMed]
11. Svensson P, Ashina M. Human studies of experimental pain from muscles. In: Olesen J, Tfelt-Hansen P, Welch KMA et al., eds Headache. 3rd edn Lippincott Williams & Wilkins, 2006:627�35.
12. Ray BS, Wolff HG. Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch Surg 1940;41:813�56. doi:10.1001/archsurg.1940.01210040002001
13. Grande RB, Aaseth K, Gulbrandsen P et al. Prevalence of primary chronic headache in a population-based sample of 30- to 44-year-old persons. The Akershus study of chronic headache. Neuroepidemiology 2008;30:76�83. doi:10.1159/000116244 [PubMed]
14. Aaseth K, Grande RB, Kvaerner KJ et al. Prevalence of secondary chronic headaches in a population-based sample of 30�44-year-old persons. The Akershus study of chronic headache. Cephalalgia 2008;28:705�13. doi:10.1111/j.1468-2982.2008.01577.x [PubMed]
15. Jensen R, Stovner LJ. Epidemiology and comorbidity of headache. Lancet Neurol 2008;7:354�61. doi:10.1016/S1474-4422(08)70062-0 [PubMed]
16. Lundqvist C, Grande RB, Aaseth K et al. Dependence scores predict prognosis of medication overuse headache: a prospective cohort from the Akershus study of chronic headache. Pain 2012;153:682�6. doi:10.1016/j.pain.2011.12.008 [PubMed]
17. Rasmussen BK, Jensen R, Olesen J. Impact of headache on sickness absence and utilisation of medical services: a Danish population study. J Epidemiol Community Health 1992;46:443�6. doi:10.1136/jech.46.4.443 [PMC free article] [PubMed]
18. Hu XH, Markson LE, Lipton RB et al. Burden of migraine in the United States: disability and economic costs. Arch Intern Med 1999;159:813�18. doi:10.1001/archinte.159.8.813 [PubMed]
19. Berg J, Stovner LJ. Cost of migraine and other headaches in Europe. Eur J Neurol 2005;12(Suppl 1):59�62. doi:10.1111/j.1468-1331.2005.01192.x [PubMed]
20. Andlin-Sobocki P, Jonsson B, Wittchen HU et al. Cost of disorders of the brain in Europe. Eur J Neurol 2005;12(Suppl 1):1�27. doi:10.1111/j.1468-1331.2005.01202.x [PubMed]
21. Cooperstein R. Gonstead Chiropractic Technique (GCT). J Chiropr Med 2003;2:16�24. doi:10.1016/S0899-3467(07)60069-X [PMC free article] [PubMed]
22. Cooperstein R, Gleberson BJ. Technique systems in chiropractic. 1st edn New York: Churchill Livingston, 2004.
23. Parker GB, Tupling H, Pryor DS. A controlled trial of cervical manipulation of migraine. Aust NZ J Med 1978;8:589�93. doi:10.1111/j.1445-5994.1978.tb04845.x [PubMed]
24. Parker GB, Pryor DS, Tupling H. Why does migraine improve during a clinical trial? Further results from a trial of cervical manipulation for migraine. Aust NZ J Med 1980;10:192�8. doi:10.1111/j.1445-5994.1980.tb03712.x [PubMed]
25. Nelson CF, Bronfort G, Evans R et al. The efficacy of spinal manipulation, amitriptyline and the combination of both therapies for the prophylaxis of migraine headache. J Manipulative Physiol Ther 1998;21:511�19. [PubMed]
26. Tuchin PJ, Pollard H, Bonello R. A randomized controlled trial of chiropractic spinal manipulative therapy for migraine. J Manipulative Physiol Ther 2000;23:91�5. doi:10.1016/S0161-4754(00)90073-3 [PubMed]
27. Rasmussen BK, Jensen R, Olesen J. Questionnaire versus clinical interview in the diagnosis of headache. Headache 1991;31:290�5. doi:10.1111/j.1526-4610.1991.hed3105290.x [PubMed]
28. Vernon HT. The effectiveness of chiropractic manipulation in the treatment of headache: an exploration in the literature. J Manipulative Physiol Ther 1995;18:611�17. [PubMed]
29. Fernandez-de-las-Penas C, Alonso-Blanco C, San-Roman J et al. Methodological quality of randomized controlled trials of spinal manipulation and mobilization in tension-type headache, migraine, and cervicogenic headache. J Orthop Sports Phys Ther 2006;36:160�9. doi:10.2519/jospt.2006.36.3.160 [PubMed]
30. Chaibi A, Tuchin PJ, Russell MB. Manual therapies for migraine: a systematic review. J Headache Pain 2011;12:127�33. doi:10.1007/s10194-011-0296-6 [PMC free article] [PubMed]
31. Chaibi A, Russell MB. Manual therapies for primary chronic headaches: a systematic review of randomized controlled trials. J Headache Pain 2014;15:67 doi:10.1186/1129-2377-15-67 [PMC free article] [PubMed]
32. Tfelt-Hansen P, Block G, Dahlof C et al. International Headache Society Clinical Trial Subcommittee. Guidelines for controlled trials of drugs in migraine: second edition. Cephalalgia 2000;20:765�86. doi:10.1046/j.1468-2982.2000.00117.x [PubMed]
33. Silberstein S, Tfelt-Hansen P, Dodick DW et al. , Task Force of the International Headache Society Clinical Trial Subcommittee . Guidelines for controlled trials of prophylactic treatment of chronic migraine in adults. Cephalalgia 2008;28:484�95. doi:10.1111/j.1468-2982.2008.01555.x [PubMed]
34. Kerr FW. Central relationships of trigeminal and cervical primary afferents in the spinal cord and medulla. Brain Res 1972;43:561�72. doi:10.1016/0006-8993(72)90408-8 [PubMed]
35. Bogduk N. The neck and headaches. Neurol Clin 2004;22:151�71, vii doi:10.1016/S0733-8619(03)00100-2 [PubMed]
36. McLain RF, Pickar JG. Mechanoreceptor endings in human thoracic and lumbar facet joints. Spine (Phila Pa 1976) 1998;23:168�73. doi:10.1097/00007632-199801150-00004 [PubMed]
37. Vernon H. Qualitative review of studies of manipulation-induced hypoalgesia. J Manipulative Physiol Ther 2000;23:134�8. doi:10.1016/S0161-4754(00)90084-8 [PubMed]
38. Vicenzino B, Paungmali A, Buratowski S et al. Specific manipulative therapy treatment for chronic lateral epicondylalgia produces uniquely characteristic hypoalgesia. Man Ther 2001;6:205�12. doi:10.1054/math.2001.0411 [PubMed]
39. Boal RW, Gillette RG. Central neuronal plasticity, low back pain and spinal manipulative therapy. J Manipulative Physiol Ther 2004;27:314�26. doi:10.1016/j.jmpt.2004.04.005 [PubMed]
40. De Camargo VM, Alburquerque-Sendin F, Berzin F et al. Immediate effects on electromyographic activity and pressure pain thresholds after a cervical manipulation in mechanical neck pain: a randomized controlled trial. J Manipulative Physiol Ther 2011;34:211�20. doi:10.1016/j.jmpt.2011.02.002 [PubMed]
41. Moher D, Hopewell S, Schulz KF et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 2010;340:c869 doi:10.1136/bmj.c869 [PMC free article] [PubMed]
42. Hoffmann TC, Glasziou PP, Boutron I et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014;348:g1687 doi:10.1136/bmj.g1687 [PubMed]
43. Headache Classification Subcommittee of the International Headache Society. The International Classification of Headache Disorders: 2nd edition. Cephalalgia 2004;24(Suppl 1):9�10. doi:10.1111/j.1468-2982.2003.00824.x [PubMed]
44. French HP, Brennan A, White B et al. Manual therapy for osteoarthritis of the hip or knee – a systematic review. Man Ther 2011;16:109�17. doi:10.1016/j.math.2010.10.011 [PubMed]
45. Cassidy JD, Boyle E, Cote P et al. Risk of vertebrobasilar stroke and chiropractic care: results of a population-based case-control and case-crossover study. Spine (Phila Pa 1976) 2008;33(4Suppl):S176�S83. doi:10.1097/BRS.0b013e3181644600 [PubMed]
46. Tuchin P. A replication of the study �Adverse effects of spinal manipulation: a systematic review�. Chiropr Man Therap 2012;20:30 doi:10.1186/2045-709X-20-30 [PMC free article] [PubMed]
47. Russell MB, Rasmussen BK, Brennum J et al. Presentation of a new instrument: the diagnostic headache diary. Cephalalgia 1992;12:369�74. doi:10.1111/j.1468-2982.1992.00369.x [PubMed]
48. Lundqvist C, Benth JS, Grande RB et al. A vertical VAS is a valid instrument for monitoring headache pain intensity. Cephalalgia 2009;29:1034�41. doi:10.1111/j.1468-2982.2008.01833.x [PubMed]
49. Bang H, Ni L, Davis CE. Assessment of blinding in clinical trials. Control Clin Trials 2004;25:143�56. doi:10.1016/j.cct.2003.10.016 [PubMed]
50. Johnson C. Measuring Pain. Visual Analog Scale Versus Numeric Pain Scale: What is the Difference? J Chiropr Med 2005;4:43�4. doi:10.1016/S0899-3467(07)60112-8 [PMC free article] [PubMed]
51. Silberstein SD, Neto W, Schmitt J et al. Topiramate in migraine prevention: results of a large controlled trial. Arch Neurol 2004;61:490�5. doi:10.1001/archneur.61.4.490 [PubMed]
52. Bendtsen L, Jensen R, Olesen J. A non-selective (amitriptyline), but not a selective (citalopram), serotonin reuptake inhibitor is effective in the prophylactic treatment of chronic tension-type headache. J Neurol Neurosurg Psychiatry 1996;61:285�90. doi:10.1136/jnnp.61.3.285 [PMC free article] [PubMed]
53. Hagen K, Albretsen C, Vilming ST et al. Management of medication overuse headache: 1-year randomized multicentre open-label trial. Cephalalgia 2009;29:221�32. doi:10.1111/j.1468-2982.2008.01711.x [PubMed]
54. Hancock MJ, Maher CG, Latimer J et al. Selecting an appropriate placebo for a trial of spinal manipulative therapy. Aust J Physiother 2006;52:135�8. doi:10.1016/S0004-9514(06)70049-6 [PubMed]
55. Meissner K, Fassler M, Rucker G et al. Differential Effectiveness of Placebo Treatments: A Systematic Review of Migraine Prophylaxis. JAMA Inter Med 2013;173:1941�51. doi:10.1001/jamainternmed.2013.10391 [PubMed]
56. Taylor JA. Full-spine radiography: a review. J Manipulative Physiol Ther 1993;16:460�74. [PubMed]
57. International Chiropractic Assocoation Practicing Chiropractors� Committee on Radiology Protocols (PCCRP) for biomechanical assessment of spinal subluxation in chiropractic clinical practice. Secondary International Chiropractic Assocoation Practicing Chiropractors� Committee on Radiology Protocols (PCCRP) for biomechanical assessment of spinal subluxation in chiropractic clinical practice 2009. www.pccrp.org/
58. Cracknell DM, Bull PW. Organ dosimetry in spinal radiography: a comparison of 3-region sectional and full-spine techniques. Chiropr J Austr 2006;36:33�9.
59. Borretzen I, Lysdahl KB, Olerud HM. Diagnostic radiology in Norway trends in examination frequency and collective effective dose. Radiat Prot Dosimetry 2007;124:339�47. doi:10.1093/rpd/ncm204 [PubMed]
60. Leboeuf-Yde C, Fejer R, Nielsen J et al. Pain in the three spinal regions: the same disorder? Data from a population-based sample of 34,902 Danish adults. Chiropr Man Ther 2012;20:11 doi:10.1186/2045-709X-20-11 [PMC free article] [PubMed]
61. Ioannidis JP, Evans SJ, Gotzsche PC et al. Better reporting of harms in randomized trials: an extension of the CONSORT statement. Ann Intern Med 2004;141:781�8. doi:10.7326/0003-4819-141-10-200411160-00009 [PubMed]
Close Accordion
Non-Invasive Treatment Modalities for Back Pain

Non-Invasive Treatment Modalities for Back Pain

Attributed from a personal perspective, as a practicing chiropractor with experience on a variety of spinal injuries and conditions, back pain is one of the most common health issues reported among the general population, affecting about 8 out of 10 individuals at some point throughout their lives. While many different types of treatments are currently available to help improve the symptoms of back pain, health care based on clinical and experimental evidence has caused an impact on the type of treatment individuals will receive for their back pain. Many patients in health care are turning to non-invasive treatment modalities for their back pain as a result of growing evidence associated with its safety and effectiveness.

 

On a further note, non-invasive treatment modalities are defined as conservative procedures which do not require incision into the body, where no break in the skin is created and there is no contact with the mucosa or internal body cavity beyond a natural or artificial body orifice, or the removal of tissue. The clinical and experimental methods and results of a variety of non-invasive treatment modalities on back pain have been described and discussed in detail below.

 

Abstract

 

At present, there is an increasing international trend towards evidence-based health care. The field of low back pain (LBP) research in primary care is an excellent example of evidence-based health care because there is a huge body of evidence from randomized trials. These trials have been summarized in a large number of systematic reviews. This paper summarizes the best available evidence from systematic reviews conducted within the framework of the Cochrane Back Review Group on non-invasive treatments for non-specific LBP. Data were gathered from the latest Cochrane Database of Systematic Reviews 2005, Issue 2. The Cochrane reviews were updated with additional trials, if available. Traditional NSAIDs, muscle relaxants, and advice to stay active are effective for short-term pain relief in acute LBP. Advice to stay active is also effective for long-term improvement of function in acute LBP. In chronic LBP, various interventions are effective for short-term pain relief, i.e. antidepressants, COX2 inhibitors, back schools, progressive relaxation, cognitive�respondent treatment, exercise therapy, and intensive multidisciplinary treatment. Several treatments are also effective for short-term improvement of function in chronic LBP, namely COX2 inhibitors, back schools, progressive relaxation, exercise therapy, and multidisciplinary treatment. There is no evidence that any of these interventions provides long-term effects on pain and function. Also, many trials showed methodological weaknesses, effects are compared to placebo, no treatment or waiting list controls, and effect sizes are small. Future trials should meet current quality standards and have adequate sample size.

 

Keywords: Non-specific low back pain, Non-invasive treatment, Primary care, Effectiveness, Evidence review

 

Introduction

 

Low back pain is most commonly treated in primary health care settings. Clinical management of acute as well as chronic low back pain (LBP) varies substantially among health care providers. Also, many different primary health care professionals are involved in the management of LBP, such as general practitioners, physical therapists, chiropractors, osteopaths, manual therapists, and others. There is a need to increase consistency in the management of LBP across professions.

 

At present, there is an increasing international trend towards evidence-based health care. Within the framework of evidence-based health care, clinicians should conscientiously, explicitly, and judiciously use the best current evidence in making decisions about the care of individual patients. The field of LBP research in primary care is an excellent example of evidence-based health care because there is a huge body of evidence. At present, more than 500 randomized controlled trials (RCTs) have been published, evaluating all types of conservative and alternative treatments for LBP that are commonly used in primary care. These trials have been summarized in a large number of systematic reviews. The Cochrane Back Review Group (CBRG) offers a framework for conducting and publishing systematic reviews in the fields of back and neck pain. However, method guidelines have also been developed and published by the CBRG to improve the quality of reviews in this field and to facilitate comparison across reviews and enhance consistency among reviewers. This paper summarizes the best available evidence from systematic reviews conducted within the framework of the CBRG on non-invasive treatments for non-specific LBP.

 

Objectives

 

To determine the effectiveness of non-invasive (pharmaceutical and non-pharmaceutical) interventions compared to placebo (or sham treatment, no intervention and waiting list control) or other interventions for acute, subacute, and chronic non-specific LBP. Trials comparing various types of the same interventions (e.g. various types of NSAIDs or various types of exercises) were excluded. The evidence on complementary and alternative medicine interventions (acupuncture, botanical medicines, massage, and neuroreflexotherapy) has been published elsewhere. Evidence on surgical and other invasive interventions for LBP will be presented in another paper in the same issue of the European Spine Journal.

 

Methods

 

The results of systematic reviews conducted within the framework of the CBRG were used. Most of these reviews were published, but preliminary results from one Cochrane review on patient education (A. Engers et al., submitted for publication) that has been submitted for publication were also used. Because no Cochrane review was available, we used two recently published systematic reviews for the evidence summary on antidepressants. The Cochrane review on work conditioning, work hardening, and functional restoration was not taken into account because all trials included in this review were also included in the reviews on exercise therapy and multidisciplinary treatment. The Cochrane reviews were updated with additional trials, if available, using Clinical Evidence as source (www.clinicalevidence.com). This manuscript consists of two parts: one on evidence of pharmaceutical interventions and the other on evidence of non-pharmaceutical interventions for non-specific LBP.

 

Search Strategy and Study Selection

 

The following search strategy was used in the Cochrane reviews:

 

  1. A computer aided search of the Medline and Embase databases since their beginning.
  2. A search of the Cochrane Central Register of Controlled Trials (Central).
  3. Screening references given in relevant systematic reviews and identified trials.
  4. Personal communication with content experts in the field.

 

Two reviewers independently applied the inclusion criteria to select the potentially relevant trials from the titles, abstracts, and keywords of the references retrieved by the literature search. Articles for which disagreement existed, and articles for which title, abstract, and keywords provided insufficient information for a decision on selection were obtained to assess whether they met the inclusion criteria. A consensus method was used to resolve disagreements between the two reviewers regarding the inclusion of studies. A third reviewer was consulted if disagreements were not resolved in the consensus meeting.

 

Inclusion Criteria

 

Study design. RCTs were included in all reviews.

 

Participants. Participants of trials that were included in the systematic reviews usually had acute (less than 6 weeks), subacute (6�12 weeks), and/or chronic (12 weeks or more) LBP. All reviews included patients with non-specific LBP.

 

Interventions. All reviews included one specific intervention. Typically any comparison group was allowed, but comparisons with no treatment/placebo/waiting list controls and other interventions were separately presented.

 

Outcomes. The outcome measures included in the systematic reviews were outcomes of symptoms (e.g. pain), overall improvement or satisfaction with treatment, function (e.g. back-specific functional status), well-being (e.g. quality of life), disability (e.g. activities of daily living, work absenteeism), and side effects. Results were separately presented for short-term and long-term follow-up.

 

Methodological Quality Assessment

 

In most reviews, the methodological quality of trials included in the reviews was assessed using the criteria recommended by the CBRG. The studies were not blinded for authors, institutions, or the journals in which the studies were published. The criteria were: (1) adequate allocation concealment, (2) adequate method of randomization, (3) similarity of baseline characteristics, (4) blinding of patients, (5) blinding of care provider, (6) equal co-interventions, (7) adequate compliance, (8) identical timing of outcome assessment, (9) blinded outcome assessment, (10) withdrawals and drop outs adequate, and (11) intention-to-treat analysis. All items were scored as positive, negative, or unclear. High quality was typically defined as fulfilling 6 or more of the 11 quality criteria. We refer readers to the original Cochrane reviews for details of the quality of trials.

 

Data Extraction

 

The data that were extracted and presented in tables included characteristics of participants, interventions, outcomes, and results. We refer readers to the original Cochrane reviews for summaries of trial data.

 

Data Analysis

 

Some reviews conducted a meta-analysis using statistical methods to analyse and summarize the data. If relevant valid data were lacking (data were too sparse or of inadequate quality) or if data were statistically too heterogeneous (and the heterogeneity could not be explained), statistical pooling was avoided. In these cases, reviewers performed a qualitative analysis. In the qualitative analyses, various levels of evidence were used that took into account the participants, interventions, outcomes, and methodological quality of the original studies. If only a subset of available trials provided sufficient data for inclusion in a meta-analysis (e.g. only some trials reported standard deviations), both a quantitative and qualitative analysis was used.

 

Dr. Alex Jimenez’s Insight

The purpose of the following research study was to determine which of the various non-invasive treatment modalities used could be safe and most effective towards the prevention, diagnosis and treatment of acute, subacute and chronic non-specific low back pain, as well as general back pain. All of the systematic reviews included participants with some type of non-specific low back pain, or LBP, where each received health care for one specific intervention. The outcome measures included in the systematic reviews were based on symptoms, overall improvement or satisfaction with treatment, function, well-being, disability and side effects. The data of the results was extracted and presented in Tables 1 and 2. The researchers of the study performed a qualitative analysis of all the presented clinical and experimental data before demonstrating it in this article. As a healthcare professional, or patient with back pain, the information in this research study may help determine which non-invasive treatment modality should be considered to achieve the desired recovery outcome measures.

 

Results

 

Pharmaceutical Interventions

 

Antidepressants

 

There are three reasons for using antidepressants in the treatment of LBP. The first reason is that chronic LBP patients often also cope with depression, and treatment with antidepressants may elevate mood and increase pain tolerance. Second, many antidepressant drugs are sedating, and it has been suggested that part of their value for managing chronic pain syndromes simply could be improving sleep. The third reason for the use of antidepressants in chronic LBP patients is their supposed analgesic action, which occurs at lower doses than the antidepressant effect.

 

Effectiveness of antidepressants for acute LBP No trials were identified.

 

Effectiveness of antidepressants for chronic LBP Antidepressants versus placebo. We found two systematic reviews including a total of nine trials. One review found that antidepressants significantly increased pain relief compared with placebo but found no significant difference in functioning [pain: standardized mean difference (SMD) 0.41, 95% CI 0.22�0.61; function: SMD 0.24, 95% CI -0.21 to +0.69]. The other review did not statistically pool data but had similar results.

 

Adverse effects Adverse effects of antidepressants include dry mouth, drowsiness, constipation, urinary retention, orthostatic hypotension, and mania. One RCT found that the prevalence of dry mouth, insomnia, sedation, and orthostatic symptoms was 60�80% with tricyclic antidepressants. However, rates were only slightly lower in the placebo group and none of the differences were significant. In many trials, the reporting of side effects was insufficient.

 

Muscle Relaxants

 

The term �muscle relaxants� is very broad and includes a wide range of drugs with different indications and mechanisms of action. Muscle relaxants can be divided into two main categories: antispasmodic and antispasticity medications.

 

Antispasmodics are used to decrease muscle spasm associated with painful conditions such as LBP. Antispasmodics can be subclassified into benzodiazepines and non-benzodiazepines. Benzodiazepines (e.g. diazepam, tetrazepam) are used as anxiolytics, sedatives, hypnotics, anticonvulsants, and/or skeletal muscle relaxants. Non-benzodiazepines include a variety of drugs that can act at the brain stem or spinal cord level. The mechanisms of action with the central nervous system are still not completely understood.

 

Antispasticity medications are used to reduce spasticity that interferes with therapy or function, such as in cerebral palsy, multiple sclerosis, and spinal cord injuries. The mechanism of action of the antispasticity drugs with the peripheral nervous system (e.g. dantrolene sodium) is the blockade of the sarcoplasmic reticulum calcium channel. This reduces calcium concentration and diminishes actin�myosin interaction.

 

Effectiveness of muscle relaxants for acute LBP Benzodiazepines versus placebo. One study showed that there is limited evidence (one trial; 50 people) that an intramuscular injection of diazepam followed by oral diazepam for 5 days is more effective than placebo for patients with acute LBP on short-term pain relief and better overall improvement, but is associated with substantially more central nervous system side effects.

 

Non-benzodiazepines versus placebo. Eight studies were identified. One high quality study on acute LBP showed that there is moderate evidence (one trial; 80 people) that a single intravenous injection of 60 mg orphenadrine is more effective than placebo in immediate relief of pain and muscle spasm for patients with acute LBP.

 

Three high quality and one low quality trial showed that there is strong evidence (four trials; 294 people) that oral non-benzodiazepines are more effective than placebo for patients with acute LBP on short-term pain relief, global efficacy, and improvement of physical outcomes. The pooled RR and 95% CIs for pain intensity was 0.80 (0.71�0.89) after 2�4 days (four trials; 294 people) and 0.58 (0.45�0.76) after 5�7 days follow-up (three trials; 244 people). The pooled RR and 95% CIs for global efficacy was 0.49 (0.25�0.95) after 2�4 days (four trials; 222 people) and 0.68 (0.41�1.13) after 5�7 days follow-up (four trials; 323 people).

 

Antispasticity drugs versus placebo. Two high quality trials showed that there is strong evidence (two trials; 220 people) that antispasticity muscle relaxants are more effective than placebo for patients with acute LBP on short-term pain relief and reduction of muscle spasm after 4 days. One high quality trial also showed moderate evidence on short-term pain relief, reduction of muscle spasm, and overall improvement after 10 days.

 

Effectiveness of muscle relaxants for chronic LBP Benzodiazepines versus placebo. Three studies were identified. Two high quality trials on chronic LBP showed that there is strong evidence (two trials; 222 people) that tetrazepam 50 mg t.i.d. is more effective than placebo for patients with chronic LBP on short-term pain relief and overall improvement. The pooled RRs and 95% CIs for pain intensity were 0.82 (0.72�0.94) after 5�7 days follow-up and 0.71 (0.54�0.93) after 10�14 days. The pooled RR and 95% CI for overall improvement was 0.63 (0.42�0.97) after 10�14 days follow-up. One high quality trial showed that there is moderate evidence (one trial; 50 people) that tetrazepam is more effective than placebo on short-term decrease of muscle spasm.

 

Non-benzodiazepines versus placebo. Three studies were identified. One high quality trial showed that there is moderate evidence (one trial; 107 people) that flupirtin is more effective than placebo for patients with chronic LBP on short-term pain relief and overall improvement after 7 days, but not on reduction of muscle spasm. One high quality trial showed that there is moderate evidence (one trial; 112 people) that tolperisone is more effective than placebo for patients with chronic LBP on short-term overall improvement after 21 days, but not on pain relief and reduction of muscle spasm.

 

Adverse effects Strong evidence from all eight trials on acute LBP (724 people) showed that muscle relaxants are associated with more total adverse effects and central nervous system adverse effects than placebo, but not with more gastrointestinal adverse effects; RRs and 95% CIs were 1.50 (1.14�1.98), 2.04 (1.23�3.37), and 0.95 (0.29�3.19), respectively. The most commonly and consistently reported adverse events involving the central nervous system were drowsiness and dizziness. For the gastrointestinal tract this was nausea. The incidence of other adverse events associated with muscle relaxants was negligible.

 

NSAIDs

 

The rationale for the treatment of LBP with NSAIDs is based both on their analgesic potential and their anti-inflammatory action.

 

Effectiveness of NSAIDs for acute LBP NSAIDs versus placebo. Nine studies were identified. Two studies reported on LBP without radiation, two on sciatica, and the other five on a mixed population. There was conflicting evidence that NSAIDs provide better pain relief than placebo in acute LBP. Six of the nine studies which compared NSAIDs with placebo for acute LBP reported dichotomous data on global improvement. The pooled RR for global improvement after 1 week using the fixed effects model was 1.24 (95% CI 1.10�1.41), indicating a statistically significant effect in favour of NSAIDs compared to placebo. The pooled RR (three trials) for analgesic use using the fixed effects model was 1.29 (95% CI 1.05�1.57), indicating significantly less use of analgesics in the NSAIDs group.

 

NSAIDs versus paracetamol/acetaminophen. There were no differences between NSAIDs and paracetamol reported in two studies, but one study reported better outcomes for two of the four types of NSAIDs. There is conflicting evidence that NSAIDs are more effective than paracetamol for acute LBP.

 

NSAIDs versus other drugs. Six studies reported on acute LBP, of which five did not find any differences between NSAIDs and narcotic analgesics or muscle relaxants. Group sizes in these studies ranged from 19 to 44 and, therefore, these studies simply may have lacked power to detect a statistically significant difference. There is moderate evidence that NSAIDs are not more effective than other drugs for acute LBP.

 

Effectiveness of NSAIDs for chronic LBP NSAIDs versus placebo. One small cross-over study (n=37) found that naproxen sodium 275 mg capsules (two capsules b.i.d.) decreased pain more than placebo at 14 days.

 

COX2 inhibitors versus placebo. Four additional trials were identified. There is strong evidence that COX2 inhibitors (etoricoxib, rofecoxib and valdecoxib) decreased pain and improved function compared with placebo at 4 and 12 weeks, but effects were small.

 

Adverse effects NSAIDs may cause gastrointestinal complications. Seven of the nine studies which compared NSAIDs with placebo for acute LBP reported data on side effects. The pooled RR for side effects using the fixed effects model was 0.83 (95% CI 0.64�1.08), indicating no statistically significant difference. One systematic review of the harms of NSAIDs found that ibuprofen and diclofenac had the lowest gastrointestinal complication rate, mainly because of the low doses used in practice (pooled OR for adverse effects vs. placebo 1.30, 95% CI 0.91�1.80). COX2 inhibitors have been shown to have less gastrointestinal side effects in osteoarthritis and rheumatoid arthritis studies. However, increased cardiovascular risk (myocardial infarction and stroke) has been reported with long-term use.

 

Non-Pharmaceutical Interventions

 

Advice to Stay Active

 

Effectiveness of advice to stay active for acute LBP Stay active versus bed rest. The Cochrane review found four studies that compared advice to stay active as single treatment with bed rest. One high quality study showed that advice to stay active significantly improved functional status and reduced sick leave after 3 weeks compared with advice to rest in bed for 2 days. It also found a significant reduction of pain intensity in favour of the stay active group at intermediate follow-up (more than 3 weeks). The low quality studies showed conflicting results. The additional trial (278 people) found no significant differences in pain intensity and functional disability between advice to stay active and bed rest after 1 month. However, it found that advice to stay active significantly reduced sick leave compared with bed rest up to day 5 (52% with advice to stay active vs. 86% with bed rest; P<0.0001).

 

Stay active versus exercise. One trial found short-term improvement in functional status and reduction in sick leave in favour of advice to stay active. A significant reduction in sick leave in favour of the stay active group was also reported at long-term follow-up.

 

Effectiveness of advice to stay active for chronic LBP No trials identified.

 

Adverse effects No trials reported side effects.

 

Back Schools

 

The original �Swedish back school� was introduced by Zachrisson Forsell in 1969. It was intended to reduce the pain and prevent recurrences. The Swedish back school consisted of information on the anatomy of the back, biomechanics, optimal posture, ergonomics, and back exercises. Four small group sessions were scheduled during a 2-week period, with each session lasting 45 min. The content and length of back schools has changed and appears to vary widely today.

 

Effectiveness of back schools for acute LBP Back schools versus waiting list controls or �placebo� interventions. Only one trial compared back school with placebo (shortwaves at the lowest intensity) and showed better short-term recovery and return to work for the back school group. No other short- or long-term differences were found.

 

Back schools versus other interventions. Four studies (1,418 patients) showed conflicting evidence on the effectiveness of back schools compared to other treatments for acute and subacute LBP on pain, functional status, recovery, recurrences, and return to work (short-, intermediate-, and long-term follow-up).

 

Effectiveness of back schools for chronic LBP Back schools versus waiting list controls or �placebo� interventions. There is conflicting evidence (eight trials; 826 patients) on the effectiveness of back schools compared to waiting list controls or placebo interventions on pain, functional status, and return to work (short-, intermediate-, and long-term follow-up) for patients with chronic LBP.

 

Back schools versus other treatments. Six studies were identified comparing back schools with exercises, spinal or joint manipulation, myofascial therapy, and some kind of instructions or advice. There is moderate evidence (five trials; 1,095 patients) that a back school is more effective than other treatments for patients with chronic LBP for pain and functional status (short- and intermediate-term follow-up). There is moderate evidence (three trials; 822 patients) that there is no difference in long-term pain and functional status.

 

Adverse effects None of the trials reported any adverse effects.

 

Bed Rest

 

One rationale for bed rest is that many patients experience relief of symptoms in a horizontal position.

 

Effectiveness of bed rest for acute LBP Twelve trials were included in the Cochrane review. Some trials were on a mixed population of patients with acute and chronic LBP or on a population of patients with sciatica.

 

Bed rest versus advice to stay active. Three trials (481 patients) were included in this comparison. The results of two high quality trials showed small but consistent and significant differences in favour of staying active, at 3- to 4-week follow-up [pain: SMD 0.22 (95% CI 0.02�0.41); function: SMD 0.31 (95% CI 0.06�0.55)], and at 12-week follow-up [pain: SMD 0.25 (95% CI 0.05�0.45); function: SMD 0.25 (95% CI 0.02�0.48)]. Both studies also reported significant differences in sick leave in favour of staying active. There is strong evidence that advice to rest in bed is less effective than advice to stay active for reducing pain and improving functional status and speeding-up return to work.

 

Bed rest versus other interventions. Three trials were included. Two trials compared advice to rest in bed with exercises and found strong evidence that there was no difference in pain, functional status, or sick leave at short- and long-term follow-up. One study found no difference in improvement on a combined pain, disability, and physical examination score between bed rest and manipulation, drug therapy, physiotherapy, back school, or placebo.

 

Short bed rest versus longer bed rest. One trial in patients with sciatica reported no significant difference in pain intensity between 3 and 7 days of bed rest, measured 2 days after the end of treatment.

 

Effectiveness of bed rest for chronic LBP There were no trials identified.

 

Adverse effects No trials reported adverse effects.

 

Behavioural Treatment

 

The treatment of chronic LBP not only focuses on removing the underlying organic pathology, but also tries to reduce disability through the modification of environmental contingencies and cognitive processes. In general, three behavioural treatment approaches can be distinguished: operant, cognitive, and respondent. Each of these approaches focus on the modification of one of the three response systems that characterize emotional experiences: behaviour, cognition, and physiological reactivity.

 

Operant treatments include positive reinforcement of healthy behaviours and consequent withdrawal of attention towards pain behaviours, time-contingent instead of pain-contingent pain management, and spousal involvement. The operant treatment principles can be applied by all health care disciplines involved with the patient.

 

Cognitive treatment aims to identify and modify patients� cognitions regarding their pain and disability. Cognition (the meaning of pain, expectations regarding control over pain) can be modified directly by cognitive restructuring techniques (such as imagery and attention diversion), or indirectly by the modification of maladaptive thoughts, feelings, and beliefs.

 

Respondent treatment aims to modify the physiological response system directly, e.g. by reduction of muscular tension. Respondent treatment includes providing the patient with a model of the relationship between tension and pain, and teaching the patient to replace muscular tension by a tension-incompatible reaction, such as the relaxation response. Electromyographic (EMG) biofeedback, progressive relaxation, and applied relaxation are frequently used.

 

Behavioural techniques are often applied together as part of a comprehensive treatment approach. This so-called cognitive�behavioural treatment is based on a multidimensional model of pain that includes physical, affective, cognitive, and behavioural components. A large variety of behavioural treatment modalities are used for chronic LBP because there is no general consensus about the definition of operant and cognitive methods. Furthermore, behavioural treatment often consists of a combination of these modalities or is applied in combination with other therapies (such as medication or exercises).

 

Effectiveness of behavioural therapy for acute LBP One RCT (107 people) identified by the review found that cognitive�behavioural therapy reduced pain and perceived disability after 9�12 months compared with traditional care (analgesics plus back exercises until pain had subsided).

 

Effectiveness of behavioural therapy for chronic LBP Behavioural treatment versus waiting list controls. There is moderate evidence from two small trials (total of 39 people) that progressive relaxation has a large positive effect on pain (1.16; 95% CI 0.47�1.85) and behavioural outcomes (1.31; 95% CI 0.61�2.01) in the short-term. There is limited evidence that progressive relaxation has a positive effect on short-term back-specific and generic functional status.

 

There is moderate evidence from three small trials (total of 88 people) that there is no significant difference between EMG biofeedback and waiting list control on behavioural outcomes in the short-term. There is conflicting evidence (two trials; 60 people) on the effectiveness of EMG versus waiting list control on general functional status.

 

There is conflicting evidence from three small trials (total of 153 people) regarding the effect of operant therapy on short-term pain intensity, and moderate evidence that there is no difference [0.35 (95% CI -0.25 to 0.94)] between operant therapy and waiting list control for short-term behavioural outcomes. Five studies compared combined respondent and cognitive therapy with waiting list controls. There is strong evidence from four small trials (total of 134 people) that combined respondent and cognitive therapy has a medium sized, short-term positive effect on pain intensity. There is strong evidence that there are no differences [0.44 (95% CI -0.13 to 1.01)] on short-term behavioural outcomes.

 

Behavioural treatment versus other interventions. There is limited evidence (one trial; 39 people) that there are no significant differences between behavioural treatment and exercise on pain intensity, generic functional status and behavioural outcomes, either post-treatment, or at 6- or 12-month follow-up.

 

Adverse effects None reported in the trials.

 

Exercise Therapy

 

Exercise therapy is a management strategy that is widely used in LBP; it encompasses a heterogeneous group of interventions ranging from general physical fitness or aerobic exercise, to muscle strengthening, to various types of flexibility and stretching exercises.

 

Effectiveness of exercise therapy for acute LBP Exercise versus no treatment. The pooled analysis failed to show a difference in short-term pain relief between exercise therapy and no treatment, with an effect of -0.59 points/100 (95% CI -12.69 to 11.51).

 

Exercise versus other interventions. Of 11 trials involving 1,192 adults with acute LBP, 10 had non-exercise comparisons. These trials provide conflicting evidence. The pooled analysis showed that there was no difference at the earliest follow-up in pain relief when compared to other conservative treatments: 0.31 points (95% CI -0.10 to 0.72). Similarly, there was no significant positive effect of exercise on functional outcomes. Outcomes show similar trends at short-, intermediate-, and long-term follow-up.

 

Effectiveness of exercise therapy for subacute LBP Exercise versus other interventions. Six studies involving 881 subjects had non-exercise comparisons. Two trials found moderate evidence of reduced work absenteeism with a graded activity intervention compared to usual care. The evidence is conflicting regarding the effectiveness of other exercise therapy types in subacute LBP compared to other treatments.

 

Effectiveness of exercise therapy for chronic LBP Exercise versus other interventions. Thirty-three exercise groups in 25 trials on chronic LBP had non-exercise comparisons. These trials provide strong evidence that exercise therapy is at least as effective as other conservative interventions for chronic LBP. Two exercise groups in high quality studies and nine groups in low quality studies found exercise more effective than comparison treatments. These studies, mostly conducted in health care settings, commonly used exercise programs that were individually designed and delivered (as opposed to independent home exercises). The exercise programs commonly included strengthening or trunk stabilizing exercises. Conservative care in addition to exercise therapy was often included in these effective interventions, including behavioural and manual therapy, advice to stay active, and education. One low quality trial found a group-delivered aerobics and strengthening exercise program resulted in less improvement in pain and function outcomes than behavioural therapy. Of the remaining trials, 14 (2 high quality and 12 low quality) found no statistically significant or clinically important differences between exercise therapy and other conservative treatments; 4 of these trials were inadequately powered to detect clinically important differences on at least one outcome. Trials were rated low quality most commonly because of inadequate assessor blinding.

 

Meta-analysis of pain outcomes at the earliest follow-up included 23 exercise groups with an independent comparison and adequate data. Synthesis resulted in a pooled weighted mean improvement of 10.2 points (95% CI 1.31�19.09) for exercise therapy compared to no treatment, and 5.93 points (95% CI 2.21�9.65) compared to other conservative treatment [vs. all comparisons 7.29 points (95% CI 3.67�0.91)]. Smaller improvements were seen in functional outcomes with an observed mean positive effect of 3.15 points (95% CI -0.29 to 6.60) compared to no treatment, and 2.37 points (95% CI 0.74�4.0) versus other conservative treatment at the earliest follow-up [vs. all comparisons 2.53 points (95% CI 1.08�3.97)].

 

Adverse effects Most trials did not report any side effects. Two studies reported cardiovascular events that were considered not to be caused by the exercise therapy.

 

Lumbar Supports

 

Lumbar supports are provided as treatment to people suffering from LBP with the aim of making the impairment and disability vanish or decrease. Different desired functions have been suggested for lumbar supports: (1) to correct deformity, (2) to limit spinal motion, (3) to stabilize part of the spine, (4) to reduce mechanical uploading, and (5) miscellaneous effects: massage, heat, placebo. However, at the present time the putative mechanisms of action of a lumbar support remain a matter of debate.

 

Effectiveness of lumbar supports for acute LBP No trials were identified.

 

Effectiveness of lumbar supports for chronic LBP No RCT compared lumbar supports with placebo, no treatment, or other treatments for chronic LBP.

 

Effectiveness of lumbar supports for a mixed population of acute, subacute, and chronic LBP Four studies included a mix of patients with acute, subacute, and chronic LBP. One study did not give any information about the duration of the LBP complaints of the patients. There is moderate evidence that a lumbar support is not more effective in reducing pain than other types of treatment. Evidence on overall improvement and return to work was conflicting.

 

Adverse effects Potential adverse effects associated with prolonged lumbar support use include decreased strength of the trunk musculature, a false sense of security, heat, skin irritation, skin lesions, gastrointestinal disorders and muscle wasting, higher blood pressure and higher heart rates, and general discomfort.

 

Multidisciplinary Treatment Programmes

 

Multidisciplinary treatments for back pain evolved from pain clinics. Initially, multidisciplinary treatments focused on a traditional biomedical model and in the reduction of pain. Current multidisciplinary approaches to chronic pain are based on a multifactorial biopsychosicial model of interrelating physical, psychological, and social/occupational factors. The content of multidisciplinary programs varies widely and, at present, it is unclear what the optimal content is and who should be involved.

 

Effectiveness of multidisciplinary treatment for subacute LBP No trials identified.

 

Effectiveness of multidisciplinary treatment for subacute LBP Multidisciplinary treatment versus usual care. Two RCTs on subacute LBP were included. The study population in both studies consisted of workers on sick leave. In one study the patients in the intervention group returned to work sooner (10 weeks) compared with the control group (15 weeks) (P=0.03). The intervention group also had fewer sick leave during follow-up than the control group (mean difference=-7.5 days, 95% CI -15.06 to 0.06). There was no statistically significant difference in pain intensity between the intervention and control group, but subjective disability had decreased significantly more in the intervention group than in the control group (mean difference=-1.2, 95% CI -1.984 to -0.416). In the other study, the median duration of absence from regular work was 60 days for the group with a combination of occupational and clinical intervention, 67 days with the occupational intervention group, 131 days with the clinical intervention group, and 120.5 days with the usual care group (P=0.04). Return to work was 2.4 times faster in the group with both an occupational and clinical intervention (95% CI 1.19�4.89) than the usual care group, and 1.91 times faster in the two groups with occupational intervention than the two groups without occupational interventions (95% CI 1.18�3.1). There is moderate evidence that multidisciplinary treatment with a workplace visit and comprehensive occupational health care intervention is effective with regard to return to work, sick leave, and subjective disability for patients with subacute LBP.

 

Effectiveness of multidisciplinary treatment for chronic LBP Multidisciplinary treatment versus other interventions. Ten RCTs with a total of 1,964 subjects were included in the Cochrane review. Three additional papers reported on long-term outcomes of two of these trials. All ten trials excluded patients with significant radiculopathy or other indication for surgery. There is strong evidence that intensive multidisciplinary treatment with a functional restoration approach improves function when compared with inpatient or outpatient non-multidisciplinary treatments. There is moderate evidence that intensive multidisciplinary treatment with a functional restoration approach reduces pain when compared with outpatient non-multidisciplinary rehabilitation or usual care. There is contradictory evidence regarding vocational outcomes. Five trials evaluating less intensive multidisciplinary treatment programmes could not demonstrate beneficial effects on pain, function, or vocational outcomes when compared with non-multidisciplinary outpatient treatment or usual care. One additional RCT was found that showed no difference between multidisciplinary treatment and usual care on function and health related quality of life after 2 and 6 months.

 

The reviewed studies provide evidence that intensive (>100 h of therapy) MBPSR with a functional restoration approach produces greater improvements in pain and function for patients with disabling chronic LBP than non-multidisciplinary rehabilitation or usual care. Less intensive treatments did not seem effective.

 

Adverse effects No adverse effects were reported.

 

Spinal Manipulation

 

Spinal manipulation is defined as a form of manual therapy which involves movement of a joint past its usual end range of motion, but not past its anatomic range of motion. Spinal manipulation is usually considered as that of long lever, low velocity, non-specific type manipulation as opposed to short lever, high velocity, specific adjustment. Potential hypotheses for the working mechanism of spinal manipulation are: (1) release for the entrapped synovial folds, (2) relaxation of hypertonic muscle, (3) disruption of articular or periarticular adhesion, (4) unbuckling of motion segments that have undergone disproportionate displacement, (5) reduction of disc bulge, (6) repositioning of miniscule structures within the articular surface, (7) mechanical stimulation of nociceptive joint fibres, (8) change in neurophysiological function, and (9) reduction of muscle spasm.

 

Effectiveness of spinal manipulation for acute LBP Spinal manipulation versus sham. Two trials were identified. Patients receiving treatment that included spinal manipulation had statistically significant and clinically important short-term improvements in pain (10-mm difference; 95% CI 2�17 mm) compared with sham therapy. However, the improvement in function was considered clinically relevant but not statistically significant (2.8-mm difference on the Roland Morris scale; 95% CI -0.1 to 5.6).

 

Spinal manipulation versus other therapies. Twelve trials were identified. Spinal manipulation resulted in statistically significant more short-term pain relief compared with other therapies judged to be ineffective or possibly even harmful (4-mm difference; 95% CI 1�8 mm). However, the clinical significance of this finding is questionable. The point estimate of improvement in short-term function for treatment with spinal manipulation compared with the ineffective therapies was considered clinically significant but was not statistically significant (2.1-point difference on the Roland Morris scale; 95% CI -0.2 to 4.4). There were no differences in effectiveness between patients treated with spinal manipulation and those treated with any of the conventionally advocated therapies.

 

Effectiveness of spinal manipulation for chronic LBP Spinal manipulation versus sham. Three trials were identified. Spinal manipulation was statistically significantly more effective compared with sham manipulation on short-term pain relief (10 mm; 95% CI 3�17 mm) and long-term pain relief (19 mm; 95% CI 3�35 mm). Spinal manipulation was also statistically significantly more effective on short-term improvement of function (3.3 points on the Roland and Morris Disability Questionnaire (RMDQ); 95% CI 0.6�6.0).

 

Spinal manipulation versus other therapies. Eight trials were identified. Spinal manipulation was statistically significantly more effective compared with the group of therapies judged to be ineffective or perhaps harmful on short-term pain relief (4 mm; 95% CI 0�8), and short-term improvement in function (2.6 points on the RMDQ; 95% CI 0.5�4.8). There were no differences in short- and long-term effectiveness compared with other conventionally advocated therapies such as general practice care, physical or exercise therapy, and back school.

 

Adverse effects In the RCTs identified by the review that used a trained therapist to select people and perform spinal manipulation, the risk of serious complications was low. An estimate of the risk of spinal manipulation causing a clinically worsened disk herniation or cauda equina syndrome in a patient presenting with lumbar disk herniation is calculated from published data to be less than 1 in 3.7 million.

 

Traction

 

Lumbar traction uses a harness (with velcro strapping) that is put around the lower rib cage and around the iliacal crest. Duration and level of force exerted through this harness can be varied in a continuous or intermittent mode. Only in motorized and bed rest traction can the force be standardized. With other techniques total body weight and the strength of the patient or therapist determine the forces exerted. In the application of traction force, consideration must be given to counterforces such as lumbar muscle tension, lumbar skin stretch and abdominal pressure, which depend on the patient�s physical constitution. If the patient is lying on the traction table, the friction of the body on the table provides the main counterforce during traction. The exact mechanism through which traction might be effective is unclear. It has been suggested that spinal elongation, through decreasing lordosis and increasing intervertebral space, inhibits nociceptive impulses, improves mobility, decreases mechanical stress, reduces muscle spasm or spinal nerve root compression (due to osteophytes), releases luxation of a disc or capsule from the zygo-apophysial joint, and releases adhesions around the zygo-apophysial joint and the annulus fibrosus. So far, the proposed mechanisms have not been supported by sufficient empirical information.

 

Thirteen of the studies identified in the Cochrane review included a homogeneous population of LBP patients with radiating symptoms. The remaining studies included a mix of patients with and without radiation. There were no studies exclusively involving patients who had no radiating symptoms.

 

Five studies included solely or primarily patients with chronic LBP of more than 12 weeks; in one study patients were all in the subacute range (4�12 weeks). In 11 studies the duration of LBP was a mixture of acute, subacute, and chronic. In four studies duration was not specified.

 

Effectiveness of traction for acute LBP No RCTs included primarily people with acute LBP. One study was identified that included patients with subacute LBP, but this population consisted of a mix of patients with and without radiation.

 

Effectiveness of traction for chronic LBP One trial found that continuous traction is not more effective on pain, function, overall improvement, or work absenteeism than placebo. One RCT (42 people) found no difference in effectiveness between standard physical therapy including continuous traction and the same program without traction. One RCT (152 people) found no significant difference between lumbar traction plus massage and interferential treatment in pain relief, or improvement of disability 3 weeks and 4 months after the end of treatment. This RCT did not exclude people with sciatica, but no further details of the proportion of people with sciatica were reported. One RCT (44 people) found that autotraction is more effective than mechanical traction on global improvement, but not on pain and function, in chronic LBP patients with or without radiating symptoms. However, this trial had several methodological problems that may be associated with biased results.

 

Adverse effects Little is known about the adverse effects of traction. Only a few case reports are available, which suggest that there is some danger for nerve impingement in heavy traction, i.e. lumbar traction forces exceeding 50% of the total body weight. Other risks described for lumbar traction are respiratory constraints due to the traction harness or increased blood pressure during inverted positional traction. Other potential adverse effects of traction include debilitation, loss of muscle tone, bone demineralization, and thrombophlebitis.

 

Transcutaneous Electrical Nerve Stimulation

 

Transcutaneous electrical nerve stimulation (TENS) is a therapeutic non-invasive modality mainly used for pain relief by electrically stimulating peripheral nerves via skin surface electrodes. Several types of TENS applications, differing in intensity and electrical characteristics, are used in clinical practice: (1) high frequency, (2) low frequency, (3) burst frequency, and (4) hyperstimulation.

 

Effectiveness of TENS for acute LBP: No trials were identified.

 

Effectiveness of TENS for chronic LBP The Cochrane review included two RCTs of TENS for chronic LBP. The results of one small trial (N=30) showed a significant decrease in subjective pain intensity with active TENS treatment compared to placebo over the course of the 60-min treatment session. The pain reduction seen at the end of stimulation was maintained for the entire 60-min post-treatment time interval assessed (data not shown). Longer term follow-up was not conducted in this study. The second trial (N=145) demonstrated no significant difference between active TENS and placebo for any of the outcomes measured, including pain, functional status, range of motion, and use of medical services.

 

Adverse effects In a third of the participants in one trial, minor skin irritation occurred at the site of electrode placement. These adverse effects were observed equally in the active TENS and placebo groups. One participant randomized to placebo TENS developed severe dermatitis 4 days after beginning therapy and was required to withdraw (Tables 1, ?2).

 

Table 1 Effectiveness of Conservative Interventions for Acute Non Specific Low Back Pain

Table 1: Effectiveness of conservative interventions for acute non-specific low back pain.

 

Table 2 Effectiveness of Conservative Interventions for Chronic Non Specific Low Back Pain

Table 2: Effectiveness of conservative interventions for chronic non-specific low back pain.

 

Discussion

 

The best available evidence for conservative treatments for non-specific LBP summarized in this paper shows that some interventions are effective. Traditional NSAIDs, muscle relaxants, and advice to stay active are effective for short-term pain relief in acute LBP. Advice to stay active is also effective for long-term improvement of function in acute LBP. In chronic LBP, various interventions are effective for short-term pain relief, i.e. antidepressants, COX2 inhibitors, back schools, progressive relaxation, cognitive�respondent treatment, exercise therapy, and intensive multidisciplinary treatment. Several treatments are also effective for short-term improvement of function in chronic LBP, namely COX2 inhibitors, back schools, progressive relaxation, exercise therapy, and multidisciplinary treatment. There is no evidence that any of these interventions provides long-term effects on pain and function. Also, many trials showed methodological weaknesses, effects are compared to placebo, no treatment or waiting list controls, and effect sizes are small. Future trials should meet current quality standards and have adequate sample size. However, in summary, there is evidence that some interventions are effective while evidence for many other interventions is lacking or there is evidence that they are not effective.

 

During the last decade, various clinical guidelines on the management of acute LBP in primary care have been published that have used this evidence. At present, guidelines exist in at least 12 different countries: Australia, Denmark, Finland, Germany, Israel, the Netherlands, New Zealand, Norway, Sweden, Switzerland, the United Kingdom, and the United States. Since the available evidence is international, one would expect that each country�s guidelines would give more or less similar recommendations regarding diagnosis and treatment. Comparison of clinical guidelines for the management of LBP in primary care from 11 different countries showed that the content of the guidelines regarding therapeutic interventions is quite similar. However, there were also some discrepancies in recommendations across guidelines. Differences in recommendations between guidelines may be due to incompleteness of the evidence, different levels of evidence, magnitude of effects, side effects and costs, differences in health care systems (organization/financial), or differences in membership of guidelines committees. More recent guidelines may have included more recently published trials and, therefore, may end up with slightly different recommendations. Also, guidelines may have been based on systematic reviews that included trials in different languages; the majority of existing reviews have considered only studies published in a few languages, and several, only those published in English. Recommendations in guidelines are not only based on scientific evidence, but also on consensus. Guideline committees may consider various arguments differently, such as the magnitude of the effects, potential side effects, cost-effectiveness, and current routine practice and available resources in their country. Especially as we know that effects in the field of LBP, if any, are usually small and short-term effects only, interpretation of effects may vary among guideline committees. Also, guideline committees may differently weigh other aspects such as side effects and costs. The constitution of the guideline committees and the professional bodies they represent may introduce bias�either for or against a particular treatment. This does not necessarily mean that one guideline is better than the other or that one is right and the other is wrong. It merely shows that when translating the evidence into clinically relevant recommendations more aspects play a role, and that these aspects may vary locally or nationally.

 

Recently European guidelines for the management of LBP were developed to increase consistency in the management of non-specific LBP across countries in Europe. The European Commission has approved and funded this project called �COST B13�. The main objectives of this COST action were developing European guidelines for the prevention, diagnosis and treatment of non-specific LBP, ensuring an evidence-based approach through the use of systematic reviews and existing clinical guidelines, enabling a multidisciplinary approach, and stimulating collaboration between primary health care providers and promoting consistency across providers and countries in Europe. Representatives from 13 countries participated in this project that was conducted between 1999 and 2004. The experts represented all relevant health professions in the field of LBP: anatomy, anaesthesiology, chiropractic, epidemiology, ergonomy, general practice, occupational care, orthopaedic surgery, pathology, physiology, physiotherapy, psychology, public health care, rehabilitation, and rheumatology. Within this COST B13 project four European guidelines were developed on: (1) acute LBP, (2) chronic LBP, (3) prevention of LBP, and (4) pelvic girdle pain. The guidelines will soon be published as a supplement to the European Spine Journal.

 

Contributor Information

 

Maurits W. van Tulder, Bart Koes, Antti Malmivaara: Ncbi.nlm.nih.gov

 

In conclusion,�the clinical and experimental evidence above for non-invasive treatment modalities on back pain demonstrated that several of the treatments are safe and effective. While the results of a variety of the methods used to improve back pain symptoms were proven to be efficient, many other treatment modalities requires additional evidence and others were reported to not be effective towards improving symptoms of back pain.�The main objective of the research study was to determine the safest and most effective guideline for the prevention, diagnosis and treatment of non-specific back pain.�Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Sciatica

 

Sciatica is referred to as a collection of symptoms rather than a single type of injury or condition. The symptoms are characterized as radiating pain, numbness and tingling sensations from the sciatic nerve in the lower back, down the buttocks and thighs and through one or both legs and into the feet. Sciatica is commonly the result of irritation, inflammation or compression of the largest nerve in the human body, generally due to a herniated disc or bone spur.

 

blog picture of cartoon paperboy big news

 

IMPORTANT TOPIC: EXTRA EXTRA: Treating Sciatica Pain

 

 

Blank
References
1.�Alaranta H, Rytokoski U, Rissanen A, Talo S, Ronnemaa T, Puukka P, Karppi SL, Videman T, Kallio V, Slatis P. Intensive physical and psychosocial training program for patients with chronic low back pain.�A controlled trial. Spine.�1994;19:1340�1349.�[PubMed]
2.�Alcoff J, Jones E, Rust P, Newman R. Controlled trial of imipramine for chronic low back pain.�J Fam Pract.�1982;14:841�846.�[PubMed]
3.�Alexandre NM, Moraes MA, Correa Filho HR, Jorge SA. Evaluation of a program to reduce back pain in nursing personnel.�Rev Salud Publica.�2001;35:356�361.�[PubMed]
4.�Amlie E, Weber H, Holme I. Treatment of acute low back pain with piroxicam: results of a double-blind placebo-controlled trial.�Spine.�1987;12:473�476. doi: 10.1097/00007632-198706000-00010.�[PubMed][Cross Ref]
5.�Arbus L, Fajadet B, Aubert D, Morre M, Goldfinger E. Activity of tetrazepam in low back pain.�Clin Trials J.�1990;27:258�267.
6.�Assendelft WJ, Morton SC, Yu EI, Suttorp MJ, Shekelle P. Spinal manipulative therapy for low back pain. A meta-analysis of effectiveness relative to other therapies.�Ann Intern Med.�2003;138:871�881.[PubMed]
7.�Atkinson JH, Slater MA, Williams RA. A placebo-controlled randomized clinical trial of nortriptyline for chronic low back pain.�Pain.�1998;76:287�296. doi: 10.1016/S0304-3959(98)00064-5.�[PubMed][Cross Ref]
8.�Atkinson JH, Slater MA, Wahlgren DR. Effects of noradrenergic and serotonergic antidepressants on chronic low back pain intensity.�Pain.�1999;83:137�145. doi: 10.1016/S0304-3959(99)00082-2.�[PubMed][Cross Ref]
9.�Babej-Dolle R, Freytag S, Eckmeyer J, Zerle G, Schinzel S, Schmeider G, Stankov G. Parenteral dipyrone versus diclofenac and placebo in patients with acute lumbago or sciatic pain: randomized observer-blind multicenter study.�Int J Clin Pharmacol Ther.�1994;32:204�209.�[PubMed]
10.�Baptista R, Brizzi J, Dutra F, Josef H, Keisermann M, de Lucca R (1988) Terapeutica da lombalgia com a tizanidina (DS 103-282), un novo agente mioespasmolitico. Estudo multicentrico, duplo-cego e comparativo. Folha Medica
11.�Barrata R. A double-blind study of cyclobenzaprine and placebo in the treatment of acute muskuloskeletal conditions of the low back.�Curr Ther Res.�1982;32:646�652.
12.�Basler H, Jakle C, Kroner-Herwig B. Incorporation of cognitive�behavioral treatment into the medical care of chronic low back patients: a controlled randomized study in German pain treatment centers.�Patient Educ Couns.�1997;31:113�124. doi: 10.1016/S0738-3991(97)00996-8.�[PubMed][Cross Ref]
13.�Basmajian J. Cyclobenzaprine hydrochloride effect on skeletal muscle spasm in the lumbar region and neck: two double-blind controlled clinical and laboratory studies.�Arch Phys Med Rehabil.�1978;59:58�63.[PubMed]
14.�Basmajian JV. Acute back pain and spasm: a controlled multicenter trial of combined analgesic and antispasm agents.�Spine.�1989;14:438�439. doi: 10.1097/00007632-198904000-00019.�[PubMed][Cross Ref]
15.�Bendix AF, Bendix T, Ostenfeld S, Bush E, Andersen A. Active treatment programs for patients with chronic low back pain: a prospective randomized, observer-blinded study.�Eur Spine J.�1995;4:148�152. doi: 10.1007/BF00298239.�[PubMed][Cross Ref]
16.�Bendix AF, Bendix T, Vaegter KV, Lund C, Frolund L, Holm L. Multidisciplinary intensive treatment for chronic low back pain: a randomized, prospective study.�Cleve Clin J Med.�1996;63:62�69.�[PubMed]
17.�Bendix AE, Bendix T, Lund C, Kirkbak S, Ostenfeld S. Comparison of three intensive programs for chronic low back pain patients: a prospective, randomized, observer-blinded study with one-year follow-up.�Scand J Rehabil Med.�1997;29:81�89.�[PubMed]
18.�Bendix AE, Bendix T, Haestrup C, Busch E. A prospective, randomized 5-year follow-up study of functional restoration in chronic low back pain patients.�Eur Spine J.�1998a;7:111�119. doi: 10.1007/s005860050040.�[PubMed][Cross Ref]
19.�Bendix AE, Bendix T, Labriola M, Boekgaard P. Functional restoration for chronic low back pain. Two-year follow-up of two randomized clinical trials.�Spine.�1998b;23:717�725. doi: 10.1097/00007632-199803150-00013.�[PubMed][Cross Ref]
20.�Bendix T, Bendix A, Labriola M, Haestrup C, Ebbehoj N. Functional restoration versus outpatient physical training in chronic low back pain: a randomized comparative study.�Spine.�2000;25:2494�2500. doi: 10.1097/00007632-200010010-00012.�[PubMed][Cross Ref]
21.�Bergquist-Ullman M, Larsson U. Acute low-back pain in industry.�Acta Orthop Scand.�1977;170(Suppl.):1�117.�[PubMed]
22.�Berry H, Hutchinson D. A multicentre placebo-controlled study in general practice to evaluate the efficacy and safety of tizanidine in acute low-back pain.�J Int Med Res.�1988;16:75�82.�[PubMed]
23.�Berry H, Bloom B, Hamilton EBD, Swinson DR. Naproxen sodium, diflunisal, and placebo in the treatment of chronic back pain.�Ann Rheum Dis.�1982;41:129�132. doi: 10.1136/ard.41.2.129.[PMC free article][PubMed][Cross Ref]
24.�Beurskens AJ, Vet HC, K�ke AJ, Lindeman E, Regtop W, Heijden GJ, Knipschild PG. Efficacy of traction for non-specific low back pain: a randomised clinical trial.�Lancet.�1995;346:1596�1600. doi: 10.1016/S0140-6736(95)91930-9.�[PubMed][Cross Ref]
25.�Beurskens AJ, Vet HC, K�ke AJ, Regtop W, Heijden GJ, Lindeman E, Knipschild PG. Efficacy of traction for nonspecific low back pain. 12-week and 6-month results of a randomized clinical trial.�Spine.�1997;22:2756�2762. doi: 10.1097/00007632-199712010-00011.�[PubMed][Cross Ref]
26.�Bianchi M.�Evaluation of cyclobenzaprine for skeletal muscle spasm of local origin. Clinical evaluation of flexeril (cyclobenzaprine HCL/MSD)�Minneapolis: Postgraduate Medicine Communications; 1978. pp. 25�29.
27.�Bigos S, Bowyer O, Braen G (1994) Acute low back problems in adults. Clinical Practice Guideline No. 14. AHCPR Publication No. 95-0642. Agency for Health Care Policy and Research, Public Health Service, US Department of Health and Human Services, Rockville
28.�Bihaug O. Autotraksjon for ischialgpasienter. En kontrollert sammenlikning mellom effekten av Auto-traksjon-B og isometriske ovelser ad modum Hume endall og Jenkins.�Fysioterapeuten.�1978;45:377�379.
29.�Birbara CA, Puopolo AD, Munoz DR. Treatment of chronic low back pain with etoricoxib, a new cyclo-oxygenase-2 selective inhibitor: improvement in pain and disability: a randomised, placebo-controlled, 3-month trial.�J Pain.�2003;4:307�315. doi: 10.1016/S1526-5900(03)00633-3.�[PubMed][Cross Ref]
30.�Blomberg S, Hallin G, Grann K, Berg E, Sennerby U. Manual therapy with steroid injections�a new approach to treatment of low back pain. A controlled multicenter trial with an evaluation by orthopedic surgeons.�Spine.�1994;19:569�577. doi: 10.1097/00007632-199403000-00013.�[PubMed][Cross Ref]
31.�Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-Vargas R, Davis B, Day R, Ferraz MB, Hawkey CJ, Hochberg MC, Kvien TK, Schnitzer TJ, Study Group VIGOR. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group.�N Engl J Med.�2000;343:1520�1528. doi: 10.1056/NEJM200011233432103.�[PubMed][Cross Ref]
32.�Borman P, Keskin D, Bodur H. The efficacy of lumbar traction in the management of patients with low back pain.�Rheumatol Int.�2003;23:82�86.�[PubMed]
33.�Bouter LM, Pennick V, Bombardier C, Editorial Board of the Back Review Group Cochrane Back Review Group.�Spine.�2003;28:1215�1218. doi: 10.1097/00007632-200306150-00002.�[PubMed][Cross Ref]
34.�Braun H, Huberty R. Therapy of lumbar sciatica. A comparative clinical study of a corticoid-free monosubstance and a corticoid containing combination drug.�Med Welt.�1982;33:490�491.�[PubMed]
35.�Bronfort G, Goldsmith CH, Nelson CF, Boline PD, Anderson AV. Trunk exercise combined with spinal manipulative or NSAID therapy for chronic low back pain: a randomized, observer-blinded clinical trial.�J Manipulative Physiol Ther.�1996;19:570�582.�[PubMed]
36.�Brown FL, Bodison S, Dixon J, Davis W, Nowoslawski J. Comparison of diflunisal and acetaminophen with codeine in the treatment of initial or recurrent acute low back pain.�Clin Ther.�1986;9(Suppl. c):52�58.[PubMed]
37.�Bru E, Mykletun R, Berge W, Svebak S. Effects of different psychological interventions on neck, shoulder and low back pain in female hospital staff.�Psychol Health.�1994;9:371�382. doi: 10.1080/08870449408407495.�[Cross Ref]
38.�Calmels P, Fayolle-Minon I. An update on orthotic devices for the lumbar spine based on a review of the literature.�Rev Rhum.�1996;63:285�291.�[PubMed]
39.�Casale R. Acute low back pain: symptomatic treatment with a muscle relaxant drug.�Clin J Pain.�1988;4:81�88.
40.�Cherkin DC, Deyo RA, Battie M, Street J, Barlow W. A comparison of physical therapy, chiropractic manipulation, and provision of an educational booklet for the treatment of patients with low back pain.�N Engl J Med.�1998;339:1021�1029. doi: 10.1056/NEJM199810083391502.�[PubMed][Cross Ref]
41.�Chok B, Lee R, Latimer J, Seang BT. Endurance training of the trunk extensor muscles in people with subacute low back pain.�Phys Ther.�1999;79:1032�1042.�[PubMed]
42.�Clarke J, van Tulder M, Blomberg S, Bronfort G, van der Heijden G, de Vet HCW (2005) Traction for low back pain: a systematic review within the framework of the Cochrane Collaboration. In: The Cochrane Library, Issue 3. Update Software, Oxford
43.�Coats TL, Borenstein DG, Nangia NK, Brown MT. Effects of valdecoxib in the treatment of chronic low back pain: results of a randomized, placebo-controlled trial.�Clin Ther.�2004;26:1249�1260. doi: 10.1016/S0149-2918(04)80081-X.�[PubMed][Cross Ref]
44.�Coomes NE. A comparison between epidural anaesthesia and bed rest in sciatica.�Br Med J.�1961;Jan:20�24.�[PMC free article][PubMed]
45.�Coxhead CE, Inskip H, Meade TW, North WRS, Troup JDG. Multicentre trial of physiotherapy in the management of sciatic symptoms.�Lancet.�1981;1:1065�1068. doi: 10.1016/S0140-6736(81)92238-8.[PubMed][Cross Ref]
46.�Cramer GD, Humphreys CR, Hondras MA, McGregor M, Triano JJ. The Hmax/Mmax ratio as an outcome measure for acute low back pain.�J Manipulative Physiol Ther.�1993;16:7�13.�[PubMed]
47.�Dalichau S, Scheele K. Effects of elastic lumbar belts on the effect of a muscle training program for patients with chronic back pain [German]�Zt Orthop Grenzgeb.�2000;138:8�16. doi: 10.1055/s-2000-10106.�[PubMed][Cross Ref]
48.�Dalichau S, Scheele K, Perrey RM, Elliehausen H-J, Huebner J. Ultraschallgest�tzte Haltungs- und Bewegungsanalyse der Lendenwirbels�ule zum Nachweis der Wirksamkeit einer R�ckenschule.�Zbl Arbeitsmedizin.�1999;49:148�156.
49.�Dapas F. Baclofen for the treatment of acute low-back syndrome.�Spine.�1985;10:345�349. doi: 10.1097/00007632-198505000-00010.�[PubMed][Cross Ref]
50.�Davies JE, Gibson T, Tester L. The value of exercises in the treatment of low back pain.�Rheumatol Rehabil.�1979;18:243�247.�[PubMed]
51.�Deyo RA, Diehl AK, Rosenthal M. How many days of bed rest for acute low back pain? A randomized clinical trial.�N Engl J Med.�1986;315:1064�1070.�[PubMed]
52.�Deyo RA, Walsh NE, Martin DC, Schoenfeld LS, Ramamurthy S. A controlled trial of transcutaneous electrical nerve stimulation (TENS) and exercise for chronic low back pain.�N Engl J Med.�1990;322:1627�1634.�[PubMed]
53.�Dickens C, Jayson M, Sutton C. The relationship between pain and depression in a trial using paroxetine in sufferers of chronic low back pain.�Psychosomatics.�2000;41:490�499. doi: 10.1176/appi.psy.41.6.490.�[PubMed][Cross Ref]
54.�Donchin M, Woolf O, Kaplan L, Floman Y. Secondary prevention of low-back pain.�A clinical trial. Spine.�1990;15:1317�1320.�[PubMed]
55.�Doran DML, Newell DJ. Manipulation in treatment of low back pain: a multicentre study.�Br Med J.�1975;2:161�164.�[PMC free article][PubMed]
56.�Evans DP, Burke MS, Lloyd KN, Roberts EE, Roberts GM. Lumbar spinal manipulation on trial. Part 1: clinical assessment.�Rheumatol Rehabil.�1978;17:46�53.�[PubMed]
57.�Evans DP, Burke MS, Newcombe RG. Medicines of choice in low back pain.�Curr Med Res Opin.�1980;6:540�547.�[PubMed]
58.�Faas A, Chavannes AW, Eijk JTM, Gubbels JW. A randomized placebo-controlled trial of exercise therapy in patients with acute low back pain.�Spine.�1993;18:1388�1395.�[PubMed]
59.�Faas A, Eijk JTM, Chavannes AW, Gubbels JW. A randomized trial of exercise therapy in patients with acute low back pain.�Spine.�1995;20:941�947. doi: 10.1097/00007632-199504150-00012.�[PubMed][Cross Ref]
60.�Farrell JP, Twomey LT. Acute low back pain: comparison of two conservative treatment approaches.�Med J Aust.�1982;1:160�164.�[PubMed]
61.�Fordyce WE, Brockway JA, Bergman JA, Spengler D. Acute back pain: a control group comparison of behavioural versus traditional management methods.�J Behav Med.�1986;9:127�140. doi: 10.1007/BF00848473.�[PubMed][Cross Ref]
62.�Frost H, Klaber Moffett JA, Moser JS, Fairbank JCT. Randomised controlled trial for evaluation of fitness programme for patients with chronic low back pain.�Br Med J.�1995;310:151�154.[PMC free article][PubMed]
63.�Frost H, Lamb SE, Klaber Moffett JA, Fairbank JCT, Moser JS. A fitness programme for patients with chronic low back pain: 2-year follow-up of a randomised controlled trial.�Pain.�1998;75:273�279. doi: 10.1016/S0304-3959(98)00005-0.�[PubMed][Cross Ref]
64.�Frost H, Lamb SE, Doll HA, Taffe Carver P, Stewart-Brown S. Randomized controlled trial of physiotherapy compared with advice for low back pain.�Br Med J.�2004;329:708�711. doi: 10.1136/bmj.38216.868808.7C.�[PMC free article][PubMed][Cross Ref]
65.�Galantino ML, Bzdewka TM, Eissler-Russo JL, Holbrook ML, Mogck EP, Geigle P. The impact of modified hatha yoga on chronic low back pain: a pilot study.�Altern Ther Health Med.�2004;10:56�59.[PubMed]
66.�Gemignani G, Olivieri I, Ruju G, Pasero G. Transcutaneous electrical nerve stimulation in ankylosing spondylitis: a double-blind study.�Arthritis Rheum.�1991;34:788�789. doi: 10.1002/art.1780340624.[PubMed][Cross Ref]
67.�Gibson T, Grahame R, Harkness J, Woo P, Blagrave P, Hills R (1985) Controlled comparison of short-wave diathermy treatment with osteopathic treatment in non-specific low back pain. Lancet 1258�1261[PubMed]
68.�Gilbert JR, Taylor DW, Hildebrand A, Evans C. Clinical trial of common treatments for low back pain in family practice.�Br Med J Clin Res Ed.�1985;291:791�794.�[PMC free article][PubMed]
69.�Glomsr�d B, L�nn JH, Soukup MG, B� K, Larsen S. Active back school, prophylactic management for low back pain: three-year follow-up of a randomized controlled trial.�J Rehabil Med.�2001;33:26�30. doi: 10.1080/165019701300006506.�[PubMed][Cross Ref]
70.�Glover JR, Morris JG, Khosla T. Back pain: a randomized clinical trial of rotational manipulation of the trunk.�Br J Ind Med.�1974;31:59�64.�[PMC free article][PubMed]
71.�Godfrey CM, Morgan PP, Schatzker J. A randomized trial of manipulation for low-back pain in a medical setting.�Spine.�1984;9:301�304. doi: 10.1097/00007632-198404000-00015.�[PubMed][Cross Ref]
72.�Gold R. Orphenadrine citrate: sedative or muscle relaxant?�Clin Ther.�1978;1:451�453.
73.�Goldie I. A clinical trial with indomethacin (indomee) in low back pain and sciatica.�Acta Orthop Scand.�1968;39:117�128.�[PubMed]
74.�Goodkin K, Gullion CM, Agras WS. A randomised double blind, placebo-controlled trial of trazodone hydrochloride in chronic low back pain syndrome.�J Clin Psychopharmacol.�1990;10:269�278. doi: 10.1097/00004714-199008000-00006.�[PubMed][Cross Ref]
75.�Gur A, Karakoc M, Cevik R, Nas K, Sarac AJ, Karakoc M. Efficacy of low power laser therapy and exercise on pain and functions in chronic low back pain.�Lasers Surg Med.�2003;32:233�238. doi: 10.1002/lsm.10134.�[PubMed][Cross Ref]
76.�Guzman J, Esmail R, Karjalainen K. Multidisciplinary rehabilitation for chronic low back pain: systematic review.�Br Med J.�2001;322:1511�1516. doi: 10.1136/bmj.322.7301.1511.�[PMC free article][PubMed][Cross Ref]
77.�Hadler NM, Curtis P, Gillings DB, Stinnett S. A benefit of spinal manipulation as adjunctive therapy for acute low-back pain: a stratified controlled trial.�Spine.�1987;12:703�705. doi: 10.1097/00007632-198709000-00012.�[PubMed][Cross Ref]
78.�Hagen KB, Hilde G, Jamtvedt G (2003) Bed rest for acute low back pain and sciatica (Cochrane Review). In: The Cochrane Library, Issue 1. Update Software, Oxford
79.�Hameroff SR, Weiss JL, Lerman JC. Doxepin�s effects on chronic pain and depression: a controlled study.�J Clin Psychiatry.�1984;45:47�52.�[PubMed]
80.�Hansen FR, Bendix T, Skov P, Jensen CV, Kristensen JH, Krohn L. Intensive, dynamic back-muscle exercises, conventional physiotherapy, or placebo-control treatment of low back pain: a randomized, observer-blind trial.�Spine.�1993;18:98�107. doi: 10.1097/00007632-199301000-00015.�[PubMed][Cross Ref]
81.�H�rk�p�� K, J�rvikoski A, Mellin G, Hurri H. A controlled study on the outcome of inpatient and outpatient treatment of low-back pain. Part I.�Scand J Rehabil Med.�1989;21:81�89.�[PubMed]
82.�H�rk�p�� K, Mellin G, J�rvikoski A, Hurri H. A controlled study on the outcome of inpatient and outpatient treatment of low-back pain. Part III.�Scand J Rehabil Med.�1990;22:181�188.�[PubMed]
83.�Hayden JA, Tulder MW, Malmivaara AV, Koes BW. Meta-analysis: exercise therapy for nonspecific low back pain.�Ann Intern Med.�2005;142:765�775.�[PubMed]
84.�Hemmila HM, Keinanen-Kiukaanniemi SM, Levoska S. Does folk medicine work? A randomized clinical trial on patients with prolonged back pain.�Arch Phys Med Rehabil.�1997;78:571�577. doi: 10.1016/S0003-9993(97)90420-2.�[PubMed][Cross Ref]
85.�Hemmila H, Keinanen-Kiukaanniemi SM, Levoska S, Puska P. Long-term effectiveness of bone-setting, light exercise therapy, and physiotherapy for prolonged back pain: a randomized controlled trial.�J Manipulative Physiol Ther.�2002;25:99�104. doi: 10.1067/mmt.2002.122329.�[PubMed][Cross Ref]
86.�Henry D, Lim LLY, Rodriguez LAG. Variability in risk of gastrointestinal complications with individual non-steroidal anti-inflammatory drugs: results of a collaborative meta-analysis.�Br Med J.�1996;312:1563�1566.�[PMC free article][PubMed]
87.�Herzog W, Conway PJW, Willcox BJ. Effects of different treatment modalities on gait symmetry and clinical measures for sacroiliac joint patients.�J Manipulative Physiol Ther.�1991;14:104�109.�[PubMed]
88.�Heymans MW, Tulder MW, Esmail R, Bombardier C, Koes BW. Back schools for nonspecific low back pain: a systematic review within the framework of the Cochrane Collaboration Back Review Group.�Spine.�2005;30:2153�2163. doi: 10.1097/01.brs.0000182227.33627.15.�[PubMed][Cross Ref]
89.�Hides JA, Jull GA, Richardson CA. Long-term effects of specific stabilizing exercises for first-episode low back pain.�Spine.�2001;26:E243�E248. doi: 10.1097/00007632-200106010-00004.�[PubMed][Cross Ref]
90.�Hilde G, Hagen KB, Jamtvedt G (2003) Advice to stay active as a single treatment for low back pain and sciatica (Cochrane Review). In: The Cochrane Library, Issue 1. Update Software, Oxford�[PubMed]
91.�Hildebrandt VH, Proper KI, van den BR, Douwes M, Heuvel SG, Buuren S. Cesar therapy is temporarily more effective in patients with chronic low back pain than the standard treatment by family practitioner: randomized, controlled and blinded clinical trial with 1 year follow-up [Dutch]�Ned Tijdschr Geneesk.�2000;144:2258�2264.�[PubMed]
92.�Hindle T. Comparison of carisoprodol, butabarbital, and placebo in treatment of the low back syndrome.�Calif Med.�1972;117:7�11.�[PMC free article][PubMed]
93.�Hofstee DJ, Gutenbeek JMM, Hoogland PH, Houwelingen HC, Kloet A, L�tters F, Tans JTJ. Westeinde sciatica trial: randomized controlled study of bed rest and physiotherapy for acute sciatica.�J Neurosurg.�2002;96:45�49.�[PubMed]
94.�Hsieh CJ, Phillips RB, Adams AH, Pope MH. Functional outcomes of low back pain: comparison of four treatment groups in a randomized controlled trial.�J Manipulative Physiol Ther.�1992;15:4�9.[PubMed]
95.�Hurri H. The Swedish back school in chronic low-back pain. Part I. Benefits.�Scand J Rehabil Med.�1989;21:33�40.�[PubMed]
96.�Indahl A, Velund L, Reikeraas O. Good prognosis for low back pain when left untampered. A randomized clinical trial.�Spine.�1995;20:473�477.�[PubMed]
97.�Indahl A, Haldorsen EH, Holm S, Reikeras O, Ursin H. Five-year follow-up study of a controlled clinical trial using light mobilization and an informative approach to low back pain.�Spine.�1998;23:2625�2630. doi: 10.1097/00007632-199812010-00018.�[PubMed][Cross Ref]
98.�Jacobs JH, Grayson MF. Trial of anti-inflammatory agent (indomethacin) in low back pain with and without redicular involvement.�Br Med J.�1968;3:158�160.�[PMC free article][PubMed]
99.�Jenkins DG, Ebbutt AF, Evans CD. Tofranil in the treatment of low back pain.�J Int Med Res.�1976;4:28�40.�[PubMed]
100.�J�ckel WH, Cziske R, Gerdes N, Jacobi E. �berpr�fung der Wirksamkeit station�rer Rehabilitationsma�nahmen bei Patienten mit chronishen Kreuzschmerzen: eine prospective randomisierte, kontrollierte Studie.�Rehabilitation.�1990;29:129�133.�[PubMed]
101.�Kankaanpaa M, Taimela S, Airaksinen O, Hanninen O. The efficacy of active rehabilitation in chronic low back pain. Effect on pain intensity, self-experienced disability, and lumbar fatigability.�Spine.�1999;24:1034�1042. doi: 10.1097/00007632-199905150-00019.�[PubMed][Cross Ref]
102.�Katz N, Ju WD, Krupa DA. Efficacy and safety of rofecoxib in patients with chronic low back pain: results from two 4-week, randomised, placebo-controlled, parallel-group. Double-blind trials.�Spine.�2003;28:851�859. doi: 10.1097/00007632-200305010-00002.�[PubMed][Cross Ref]
103.�Keijsers JFEM, Groenman NH, Gerards FM, Oudheusden E, Steenbakkers M. A back school in the Netherlands: evaluating the results.�Patient Educ Couns.�1989;14:31�44. doi: 10.1016/0738-3991(89)90005-0.�[PubMed][Cross Ref]
104.�Keijsers JFME, Steenbakkers WHL, Meertens RM, Bouter LM, Kok GJ. The efficacy of the back school: a randomized trial.�Arthritis Care Res.�1990;3:204�209.
105.�Klaber Moffett JA, Chase SM, Portek I, Ennis JR. A controlled prospective study to evaluate the effectiveness of a back school in the relief of chronic low-back pain.�Spine.�1986;11:120�122. doi: 10.1097/00007632-198603000-00003.�[PubMed][Cross Ref]
106.�Klaber Moffett J, Torgerson D, Bell-Syer S, Jackson D, Llewlyn-Phillips H, Farrin A. Randomised controlled trial of exercise for low back pain: clinical outcomes, costs, and preferences.�Br Med J.�1999;319:279�283.�[PMC free article][PubMed]
107.�Klinger N, Wilson R, Kanniainen C., Wagenknecht K, Re O, Gold R. Intravenous orphenadrine for the treatment of lumbar paravertebral muscle strain.�Curr Ther Res.�1988;43:247�254.
108.�Koes BW, Bouter LM, Mameren H, Essers AHM, Verstegen CMJR, Hofhuizen DM, Houben JP, Knipschild PG. Randomised clinical trial of manual therapy and physiotherapy for persistent back and neck complaints: results of one year follow-up.�Br Med J.�1992;304:601�605.�[PMC free article][PubMed]
109.�Koes BW, Tulder MW, Ostelo R, Kim Burton A, Waddell G. Clinical guidelines for the management of low back pain in primary care: an international comparison.�Spine.�2001;26:2504�2513. doi: 10.1097/00007632-200111150-00022.�[PubMed][Cross Ref]
110.�Konrad K, Tatrai T, Hunka A, Vereckei E, Korondi L. Controlled trial of balneotherapy in treatment of low back pain.�Ann Rheum Dis.�1992;51:820�822. doi: 10.1136/ard.51.6.820.�[PMC free article][PubMed][Cross Ref]
111.�Kuukkanen TM, Malkia EA. An experimental controlled study on postural sway and therapeutic exercise in subjects with low back pain.�Clin Rehabil.�2000;14:192�202. doi: 10.1191/026921500667300454.�[PubMed][Cross Ref]
112.�Lacey PH, Dodd GD, Shannon DJ. A double-blind placebo controlled study of piroxicam in the management of acute musculoskeletal disorders.�Eur J Rheumatol Inflamm.�1984;7:95�104.�[PubMed]
113.�Lankhorst GJ, Stadt RJ, Vogelaar TW, Korst JK, Prevo AJH. The effect of the Swedish back school in chronic idiopathic low-back pain.�Scand J Rehabil Med.�1983;15:141�145.�[PubMed]
114.�Larsson U, Ch�ler U, Lindstr�m A. Auto-traction for treatment of lumbago-sciatica. A multicenter controlled investigation.�Acta Orthop Scand.�1980;51:791�798. doi: 10.3109/17453678008990875.[PubMed][Cross Ref]
115.�Leclaire R, Esdaile JM, Suissa S, Rossignol M, Proulx R, Dupuis M. Back school in a first episode of compensated acute low back pain: a clinical trial to assess efficacy and prevent relapse.�Arch Phys Med Rehabil.�1996;77:673�679. doi: 10.1016/S0003-9993(96)90007-6.�[PubMed][Cross Ref]
116.�Lepisto P. A comparative trial of dS 103-282 and placebo in the treatment of acute skeletal muscle spasms due to disorders of the back.�Ther Res.�1979;26:454�459.
117.�Letchuman R, Deusinger RH. Comparison of sacrospinalis myoelectric activity and pain levels in patients undergoing static and intermittent lumbar traction.�Spine.�1993;18:1361�1365. doi: 10.1097/00007632-199308000-00017.�[PubMed][Cross Ref]
118.�Lidstrom A, Zachrisson M. Physical therapy on low back pain and sciatica.�Scand J Rehabil Med.�1970;2:37�42.�[PubMed]
119.�Lindequist SL, Lundberg B, Wikmark R, Bergstad B, Loof G, Ottermark AC. Information and regime at low-back pain.�Scand J Rehabil Med.�1984;16:113�116.�[PubMed]
120.�Lindstrom I, Ohlund C, Eek C, Wallin L, Peterson LE, Fordyce WE. The effect of graded activity on patients with subacute low back pain: a randomized prospective clinical study with an operant-conditioning behavioural approach.�Phys Ther.�1992;72:279�293.�[PubMed]
121.�Linton SJ, Bradley LA, Jensen I, Spangfort E, Sundell L. The secondary prevention of low back pain: a controlled study with follow-up.�Pain.�1989;36:197�207. doi: 10.1016/0304-3959(89)90024-9.�[PubMed][Cross Ref]
122.�Ljunggren E, Weber H, Larssen S. Autotraction versus manual traction in patients with prolapsed lumbar intervertebral discs.�Scand J Rehabil Med.�1984;16:117�124.�[PubMed]
123.�Loisel P, Abenhaim L, Durand P, Esdaile J, Suissa S, Gosselin L, Simard R, Turcotte J, Lemaire J. A population-based, randomized clinical trial on back pain management.�Spine.�1997;22:2911�2918. doi: 10.1097/00007632-199712150-00014.�[PubMed][Cross Ref]
124.�L�nn JH, Glomsr�d B, Soukup MG, B� K, Larsen S. Active back school: prophylactic management for low back pain. A randomized controlled 1-year follow-up study.�Spine.�1999;24:865�871. doi: 10.1097/00007632-199905010-00006.�[PubMed][Cross Ref]
125.�Lukinmaa�Kansanelakelaitoksen julkaisuja.�1989;ML:90.
126.�McGill SM. Abdominal belts in industry: a position paper on their assets, liabilities and use.�Am Ind Hyg Assoc.�1993;54:752�754.�[PubMed]
127.�Malmivaara A, H�kkinen U, Aro T, Heinrichs M-L, Koskenniemi L, Kuosma E, Lappi S, Paloheimo R, Servo C, Vaaranen V, Hernberg S. The treatment of acute low back pain�bed rest, exercises, or ordinary activity.�N Eng J Med.�1995;332:351�355. doi: 10.1056/NEJM199502093320602.�[PubMed][Cross Ref]
128.�Marchand S, Charest J, Li J, Chenard JR, Lavignolle B, Laurencelle L. Is TENS purely a placebo effect? A controlled study on chronic low back pain.�Pain.�1993;54:99�106. doi: 10.1016/0304-3959(93)90104-W.�[PubMed][Cross Ref]
129.�Mathews JA, Hickling J. Lumbar traction: a double-blind controlled study for sciatica.�Rheumatol Rehabil.�1975;14:222�225. doi: 10.1093/rheumatology/14.4.222.�[PubMed][Cross Ref]
130.�Mathews JA, Mills SB, Jenkins VM. Back pain and sciatica: controlled trials of manipulation, traction, sclerosant and epidural injections.�Br J Rheumatol.�1987;26:416�423. doi: 10.1093/rheumatology/26.6.416.�[PubMed][Cross Ref]
131.�Mathews W, Morkel M, Mathews J. Manipulation and traction for lumbago and sciatica: physiotherapeutic techniques used in two controlled trials.�Physiother Pract.�1988;4:201�206.
132.�Mellin G, Hurri H, H�rk�p�� K, J�rvikoski A. A controlled study on the outcome of inpatient and outpatient treatment of low back pain. Part II.�Scand J Rehabil Med.�1989;21:91�95.�[PubMed]
133.�Mellin G, H�rk�p�� K, Hurri H, J�rvikoski A. A controlled study on the outcome of inpatient and outpatient treatment of low back pain. Part IV.�Scand J Rehabil Med.�1990;22:189�194.�[PubMed]
134.�Milgrom C, Finestone A, Lev B, Wiener M, Floman Y. Overexertional lumbar and thoracic back pain among recruits: a prospective study of risk factors and treatment regimens.�J Spinal Disord.�1993;6:187�193. doi: 10.1097/00002517-199306030-00001.�[PubMed][Cross Ref]
135.�Milne S, Welch V, Brosseau L (2004) Transcutaneous electrical nerve stimulation (TENS) for chronic low back pain. In: The Cochrane Library, Issue 4. Update Software, Oxford
136.�Mitchell RI, Carmen GM. The functional restoration approach to the treatment of chronic pain in patients with soft tissue and back injuries.�Spine.�1994;19:633�642. doi: 10.1097/00007632-199403001-00001.�[PubMed][Cross Ref]
137.�Moll W. Zur therapie akuter lumbovertebraler syndrome durch optimale medikamentose muskelrelaxation mittels diazepam.�Med Welt.�1973;24:1747�1751.�[PubMed]
138.�Moseley L. Combined physiotherapy and education is efficacious for chronic low back pain.�Aust J Physiother.�2002;48:297�302.�[PubMed]
139.�Newton-John TR, Spence SH, Schotte D. Cognitive�behavioural therapy versus EMG biofeedback in the treatment of chronic low back pain.�Behav Res Ther.�1995;33:691�697. doi: 10.1016/0005-7967(95)00008-L.�[PubMed][Cross Ref]
140.�Niemist� L, Lahtinen-Suopanki T, Rissanen P, Lindgren K-A, Sarna S, Hurri H. A randomized trial of combined manipulation, stabilizing exercises, and physician consultation compared to physician consultation alone for chronic low back pain.�Spine.�2003;28:2185�2191. doi: 10.1097/01.BRS.0000085096.62603.61.�[PubMed][Cross Ref]
141.�Nicholas MK, Wilson PH, Goyen J. Operant�behavioural and cognitive�behavioural treatment for chronic low back pain.�Behav Res Ther.�1991;29:225�238. doi: 10.1016/0005-7967(91)90112-G.[PubMed][Cross Ref]
142.�Nicholas MK, Wilson PH, Goyen J. Comparison of cognitive�behavioral group treatment and an alternative non-psychological treatment for chronic low back pain.�Pain.�1992;48:339�347. doi: 10.1016/0304-3959(92)90082-M.�[PubMed][Cross Ref]
143.�Nouwen A. EMG biofeedback used to reduce standing levels of paraspinal muscle tension in chronic low back pain.�Pain.�1983;17:353�360. doi: 10.1016/0304-3959(83)90166-5.�[PubMed][Cross Ref]
144.�Oliphant D. Safety of spinal manipulation in the treatment of lumbar disk herniations: a systematic review and risk assessment.�J Manipulative Physiol Ther.�2004;27:197�210. doi: 10.1016/j.jmpt.2003.12.023.�[PubMed][Cross Ref]
145.�Ongley MJ, Klein RG, Dorman TA, Eek BC, Hubert LJ. A new approach to the treatment of chronic low back pain.�Lancet.�1987;2:143�146. doi: 10.1016/S0140-6736(87)92340-3.�[PubMed][Cross Ref]
146.�Ostelo RW, van Tulder MW, Vlaeyen JW, Linton SJ, Morley SJ, Assendelft WJ (2005) Behavioural treatment for chronic low-back pain. In: The Cochrane Library, Issue 1. Update Software, Oxford[PubMed]
147.�Pal P, Mangion P, Hossian MA, Diffey L. A controlled trial of continuous lumbar traction in the treatment of back pain and sciatica.�Br J Rheumatol.�1986;25:181�183. doi: 10.1093/rheumatology/25.2.181.�[PubMed][Cross Ref]
148.�Pallay RM, Seger W, Adler JL, Ettlinger RE, Quaidoo EA, Lipetz R, O�Brien K, Mucciola L, Skalky CS, Petruschke RA, Bohidar NR, Geba GP. Etoricoxib reduced pain and disability and improved quality of life in patients with chronic low back pain: a 3 month, randomized, controlled trial.�Scand J Rheumatol.�2004;33:257�266. doi: 10.1080/03009740410005728.�[PubMed][Cross Ref]
149.�Penrose KW, Chook K, Stump JL. Acute and chronic effects of pneumatic lumbar support on muscular strength, flexibility, and functional impairment index.�Sports Train Med Rehabil.�1991;2:121�129.
150.�Penttinen J, Nevala-Puranen N, Airaksinen O, Jaaskelainen M, Sintonen H, Takala J. Randomized controlled trial of back school with and without peer support.�J Occup Rehabil.�2002;12:21�29. doi: 10.1023/A:1013594103133.�[PubMed][Cross Ref]
151.�Pheasant H, Bursk A, Goldfarb J, Azen SP, Weiss JN, Borelli L. Amitriptyline and chronic low back pain: a randomised double-blind crossover study.�Spine.�1983;8:552�557. doi: 10.1097/00007632-198307000-00012.�[PubMed][Cross Ref]
152.�Postacchini F, Facchini M, Palieri P. Efficacy of various forms of conservative treatment in low-back pain. A comparative study�. Neuro-Orthopedics.�1988;6:28�35.
153.�Pratzel HG, Alken R-G, Ramm S. Efficacy and tolerance of repeated oral doses of tolperisone hydrochloride in the treatment of painful reflex muscle spasm: results of a prospective placebo-controlled double-blind trial.�Pain.�1996;67:417�425. doi: 10.1016/0304-3959(96)03187-9.�[PubMed][Cross Ref]
154.�Preyde M. Effectiveness of massage therapy for subacute low-back pain: a randomized controlled trial.�Can Med Assoc J.�2000;162:1815�1820.�[PMC free article][PubMed]
155.�Rasmussen GG. Manipulation in treatment of low back pain: a randomized clinical trial.�Man Med.�1979;1:8�10.
156.�Rasmussen-Barr E, Nilsson-Wikmar L, Arvidsson I. Stabilizing training compared with manual treatment in sub-acute and chronic low-back pain.�Man Ther.�2003;8:233�241. doi: 10.1016/S1356-689X(03)00053-5.�[PubMed][Cross Ref]
157.�Reust P, Chantraine A, Vischer TL. Traitement par tractions mecaniques des lombosciatalgies avec ou sans d�ficit neurologique.�Schweiz Med Wochenschr.�1988;118:271�274.�[PubMed]
158.�Risch SV, Norvell NK, Pollock Ml, Risch ED, Langer H, Fulton M. Lumbar strengthening in chronic low back pain patients: physiologic and psychological benefits.�Spine.�1993;18:232�238. doi: 10.1097/00007632-199302000-00010.�[PubMed][Cross Ref]
159.�Rozenberg S, Delval C, Rezvani Y. Bed rest or normal activity for patients with acute low back pain: a randomized controlled trial.Spine.�2002;27:1487�1493. doi: 10.1097/00007632-200207150-00002.[PubMed][Cross Ref]
160.�Sackett D (1997) Evidence based medicine. Churchill Livingstone
161.�Salerno SM, Browning R, Jackson JL. The effect of antidepressant treatment in chronic back pain: a meta-analysis.�Arch Intern Med.�2002;162:19�24. doi: 10.1001/archinte.162.1.19.�[PubMed][Cross Ref]
162.�Salzmann E, Pforringer W, Paal G, Gierend M. Treatment of chronic low-back syndrome with tetrazepam in a placebo controlled double-blind trial.�J Drug Dev.�1992;4:219�228.
163.�Schonstein E, Kenny D, Keating J, Koes B, Herbert RD. Physical conditioning programs for workers with back and neck pain: a Cochrane systematic review.�Spine.�2003;28:E391�E395. doi: 10.1097/01.BRS.0000092482.76386.97.�[PubMed][Cross Ref]
164.�Serferlis T, Lindholm L, Nemeth G. Cost-minimization analysis of three conservative treatment programmes in 180 patients sick-listed for acute low-back pain.�Scand J Prim Health Care.�2000;18:53�57. doi: 10.1080/02813430050202578.�[PubMed][Cross Ref]
165.�Silverstein FE, Faich G, Goldstein JL, Simon LS, Pincus T, Whelton A, Makuch R, Eisen G, Agrawal NM, Stenson WF, Burr AM, Zhao WW, Kent JD, Lefkowith JB, Verburg KM, Geis GS. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study. A randomized controlled trial. Celecoxib long-term arthritis safety study.�JAMA.�2000;284:1247�1255. doi: 10.1001/jama.284.10.1247.�[PubMed][Cross Ref]
166.�Skargren EI, Oberg BE, Carlsson PG, Gade M. Cost and effectiveness analysis of chiropractic and physiotherapy treatment for low back and neck pain.�Six-month follow-up. Spine.�1997;22:2167�2177.[PubMed]
167.�Soukup MG, Glomsrod B, Lonn JH, Bo K, Larsen S, Fordyce WE. The effect of a Mensendieck exercise program as secondary prophylaxis for recurrent low back pain: a randomized, controlled trial with 12-month follow-up.�Spine.�1999;24:1585�1592. doi: 10.1097/00007632-199908010-00013.�[PubMed][Cross Ref]
168.�Soukup M, Lonn J, Glomsrod B, Bo K, Larsen S. Exercises and education as secondary prevention for recurrent low back pain.�Physiother Res Int.�2001;6:27�39. doi: 10.1002/pri.211.�[PubMed][Cross Ref]
169.�Staal JB, Hlobil H, Twisk JWR, Smid T, K�ke AJA. Graded activity for low back pain in occupational health care: a randomized controlled trial.�Ann Intern Med.�2004;140:77�84.�[PubMed]
170.�Staiger O, Barak G, Sullivan MD, Deyo RA. Systematic review of antidepressants in the treatment of chronic low back pain.�Spine.�2003;28:2540�2545. doi: 10.1097/01.BRS.0000092372.73527.BA.[PubMed][Cross Ref]
171.�Stankovic R, Johnell O. Conservative treatment of acute low back pain. A prospective randomized trial: McKenzie method of treatment versus patient education in �Mini Back School��Spine.�1990;15:120�123. doi: 10.1097/00007632-199002000-00014.�[PubMed][Cross Ref]
172.�Stankovic R, Johnell O. Conservative treatment of acute low-back pain: a 5-year follow-up study of two methods of treatment.�Spine.�1995;20:469�472. doi: 10.1097/00007632-199502001-00010.�[PubMed][Cross Ref]
173.�Storheim K, Brox JI, Holm I, Koller AK, Bo K. Intensive group training versus cognitive intervention in sub-acute low back pain: short-term results of a single-blind randomized controlled trial.�J Rehabil Med.�2003;35:132�140. doi: 10.1080/16501970310010484.�[PubMed][Cross Ref]
174.�Stuckey SJ, Jacobs A, Goldfarb J. EMG biofeedback training, relaxation training, and placebo for the relief of chronic back pain.�Percept Mot Skills.�1986;63:1023�1036.�[PubMed]
175.�Sweetman BJ, Baig A, Parsons DL. Mefenamic acid, chlormezanone-paracetamol, ethoheptazine-aaspirin-meprobamate: a comparative study in acute low back pain.�Br J Clin Pract.�1987;41:619�624.[PubMed]
176.�Sweetman BJ, Heinrich I, Anderson JAD. A randomized controlled trial of exercises, short wave diathermy, and traction for low back pain, with evidence of diagnosis-related response to treatment.�J Ortho Rheumatol.�1993;6:159�166.
177.�Szpalski M, Hayez JP. How many days of bed rest for acute low back pain? Objective assessment of trunk function.�Eur Spine J.�1992;1:29�31. doi: 10.1007/BF00302139.�[PubMed][Cross Ref]
178.�Szpalski M, Hayez JP. Objective functional assessment of the efficacy of tenoxicam in the treatment of acute low back pain: a double blind placebo-controlled study.�Br J Rheumatol.�1994;33:74�78. doi: 10.1093/rheumatology/33.1.74.�[PubMed][Cross Ref]
179.�Tesio L, Merlo A. Autotraction versus passive traction: an open controlled study in lumbar disc herniation.�Arch Phys Med Rehabil.�1993;74:871�876. doi: 10.1016/0003-9993(93)90015-3.�[PubMed][Cross Ref]
180.�Topol EJ. Failing the public health�rofecoxib, Merck, and the FDA.�N Engl J Med.�2004;351:1707�1709. doi: 10.1056/NEJMp048286.�[PubMed][Cross Ref]
181.�Torstensen TA, Ljunggren AE, Meen HD, Odland E, Mowinckel P, Geijerstam SA. Efficiency and costs of medical exercise therapy, conventional physiotherapy, and self-exercise in patients with chronic low back pain: a pragmatic, randomized, single-blinded, controlled trial with 1-year follow-up.�Spine.�1998;23:2616�2624. doi: 10.1097/00007632-199812010-00017.�[PubMed][Cross Ref]
182.�Triano JJ, McGregor M, Hondras MA, Brennan PC. Manipulative therapy versus education in chronic low back pain.�Spine.�1995;20:948�955. doi: 10.1097/00007632-199504150-00013.�[PubMed][Cross Ref]
183.�Turner JA. Comparison of group progressive-relaxation training and cognitive�behavioral group therapy for chronic low back pain.�J Consult Clin Psychol.�1982;50:757�765. doi: 10.1037/0022-006X.50.5.757.�[PubMed][Cross Ref]
184.�Turner JA, Clancy S. Comparison of operant�behavioral and cognitive�behavioral group treatment for chronic low back pain.�J Consult Clin Psychol.�1988;56:261�266. doi: 10.1037/0022-006X.56.2.261.[PubMed][Cross Ref]
185.�Turner JA, Jensen MP. Efficacy of cognitive therapy for chronic low back pain.�Pain.�1993;52:169�177. doi: 10.1016/0304-3959(93)90128-C.�[PubMed][Cross Ref]
186.�Turner JA, Clancy S, McQuade KJ, Cardenas DD. Effectiveness of behavioral therapy for chronic low back pain: a component analysis.�J Consult Clin Psychol.�1990;58:573�579. doi: 10.1037/0022-006X.58.5.573.�[PubMed][Cross Ref]
187.�Underwood MR, Morgan J. The use of a back class teaching extension exercises in the treatment of acute low back pain in primary care.�Fam Pract.�1998;15:9�15. doi: 10.1093/fampra/15.1.9.�[PubMed][Cross Ref]
188.�Valle-Jones JC, Walsh H, O�Hara J, O�Hara H, Davey NB, Hopkin-Richards H. Controlled trial of a back support in patients with non-specific low back pain.�Curr Med Res Opin.�1992;12:604�613.[PubMed]
189.�Heijden GJMG, Beurskens AJHM, Dirx MJM, Bouter LM, Lindeman E. Efficacy of lumbar traction: a randomised clinical trial.�Physiotherapy.�1995;81:29�35. doi: 10.1016/S0031-9406(05)67032-0.[Cross Ref]
190.�Tulder MW, Scholten RJPM, Koes BW, Deyo RA. Non-steroidal anti-inflammatory drugs for low back pain: a systematic review within the framework of the Cochrane Collaboration.�Spine.�2000;25:2501�2513. doi: 10.1097/00007632-200010010-00013.�[PubMed][Cross Ref]
191.�Tulder M, Furlan A, Bombardier C, Bouter L. Updated method guidelines for systematic reviews in the Cochrane Collaboration Back Review Group.�Spine.�2003a;28:1290�1299. doi: 10.1097/00007632-200306150-00014.�[PubMed][Cross Ref]
192.�Tulder MW, Touray T, Furlan AD, Solway S, Bouter LM. Muscle relaxants for nonspecific low back pain: a systematic review within the framework of the Cochrane Collaboration.�Spine.�2003b;28:1978�1992. doi: 10.1097/01.BRS.0000090503.38830.AD.�[PubMed][Cross Ref]
193.�Tulder M, Furlan A, Gagnier J. Complementary and alternative therapies for low back pain.�Ballieres Best Pract Rheumatol.�2005;19:639�654. doi: 10.1016/j.berh.2005.03.006.�[PubMed][Cross Ref]
194.�Videman T, Heikkila J, Partanen T. Double-blind parallel study of meptazinol versus diflunisal in the treatment of lumbago.�Curr Med Res Opin.�1984;9:246�252.�[PubMed]
195.�Vollenbroek-Hutten MMR, Hermens HJ, Wever D, Gorter M, Rinket J, IJzerman MJ. Differences in outcome of a multidisciplinary treatment between subgroups of chronic low back pain patients defined using two multiaxial assessment instruments: the multidimensional pain inventory and lumbar dynamometry.�Clin Rehabil.�2004;18:566�579. doi: 10.1191/0269215504cr772oa.�[PubMed][Cross Ref]
196.�Vroomen PJAJ, Marc CTFM, Wilmink JT, Kester ADM, Knottnerus JA. Lack of effectiveness of bed rest for sciatica.�N Engl J Med.�1999;340:418�423. doi: 10.1056/NEJM199902113400602.�[PubMed][Cross Ref]
197.�Waagen GN, Haldeman S, Cook G, Lopez D, DeBoer KF. Short term trial of chiropractic adjustments for the relief of chronic low back pain.�Manual Med.�1986;2:63�67.
198.�Waddell G. A new clinical model for the treatment of low-back pain.�Spine.�1987;12:632�644. doi: 10.1097/00007632-198709000-00002.�[PubMed][Cross Ref]
199.�Walker L, Svenkerud T, Weber H. Traksjonsbehandling ved lumbago-ischias. En kontrollert undersolske med Spina-trac.�Fysioterapeuten.�1982;49:161�163.
200.�Ward N, Bokan JA, Phillips M, Benedetti C, Butler S, Spengler D. Antidepressants in concomitant chronic back pain and depression: doxepin and desipramine compared.�J Clin Psychiatry.�1984;45:54�57.[PubMed]
201.�Waterworth RF, Hunter A. An open study of diflunisal, conservative and manipulative therapy in the management of acute mechanical low back pain.�N Z Med J.�1985;95:372�375.�[PubMed]
202.�Weber H. Traction therapy in sciatica due to disc prolapse.�J Oslo City Hosp.�1973;23:167�176.[PubMed]
203.�Weber H, Aasand G. The effect of phenylbutazone on patients with acute lumbago-sciatica: a double blind trial.�J Oslo City Hosp.�1980;30:69�72.�[PubMed]
204.�Weber H, Ljunggren E, Walker L. Traction therapy in patients with herniated lumbar intervertebral discs.�J Oslo City Hosp.�1984;34:61�70.�[PubMed]
205.�Weber H, Holme I, Amlie E. The natural course of acute sciatica with nerve root symptoms in a double-blind placebo-controlled trial evaluating the effect of piroxicam.�Spine.�1993;18:1433�1438. doi: 10.1097/00007632-199312000-00021.�[PubMed][Cross Ref]
206.�Werners R, Pynsent PB, Bulstrode CJK. Randomized trial comparing interferential therapy with motorized lumbar traction and massage in the management of low back pain in a primary care setting.�Spine.�1999;24:1579�1584. doi: 10.1097/00007632-199908010-00012.�[PubMed][Cross Ref]
207.�Wiesel SW, Cuckler JM, Deluca F, Jones F, Zeide MS, Rothman RH. Acute low back pain: an objective analysis of conservative therapy.�Spine.�1980;5:324�330. doi: 10.1097/00007632-198007000-00006.�[PubMed][Cross Ref]
208.�Wilkinson MJ. Does 48 hours� bed rest influence the outcome of acute low back pain?�Br J Gen Pract.�1995;45:481�484.�[PMC free article][PubMed]
209.�W�rz R, Bolten W, Heller J, Krainick U, Pergande G. Flupirtin im vergleich zu chlormezanon und placebo bei chronische muskuloskelettalen ruckenschmerzen.�Fortschritte der Therapie.�1996;114(35�36):500�504.�[PubMed]
210.�Wreje U, Nordgren B, Aberg H. Treatment of pelvic joint dysfunction in primary care�a controlled study.�Scand J Prim Health Care.�1992;10:310�315. doi: 10.3109/02813439209014080.�[PubMed][Cross Ref]
211.�Yelland MJ, Glasziou PP, Bogduk N, Schluter PJ, McKernon M. Prolotherapy injections, saline injections, and exercises for chronic low-back pain: a randomized trial.�Spine.�2004;29:9�16. doi: 10.1097/01.BRS.0000105529.07222.5B.�[PubMed][Cross Ref]
212.�Zachrisson Forsell M. The back school.�Spine.�1981;6:104�106. doi: 10.1097/00007632-198101000-00022.�[PubMed][Cross Ref]
213.�Zylbergold RS, Piper MC. Lumbar disc disease: comparative analysis of physical therapy treatments.�Arch Phys Med Rehabil.�1981;62:176�179.�[PubMed]
Close Accordion
What is Spinal Decompression Therapy? | Eastside Chiropractor

What is Spinal Decompression Therapy? | Eastside Chiropractor

Spinal decompression therapy involves the stretching of the spine, using a traction table or similar device, with the objective of relieving back pain and/or leg pain.

 

What is spinal decompression therapy?

 

This process is known as nonsurgical, spinal decompression therapy (as opposed to surgical spinal decompression like laminectomy and microdiscectomy). This article offers an overview of nonsurgical spinal decompression therapy and its role in treatment of lower back pain and neck pain.

 

Theory of Spinal Decompression Therapy

 

Spinal decompression devices use the exact fundamental principle of spinal traction that’s been provided by chiropractors, osteopaths, and other appropriately trained health professionals for many decades. Both traction and decompression therapies are applied together with the aims of relieving pain and promoting the best healing environment for bulging, degenerating, or herniated discs.

 

Spinal decompression is a type of traction treatment applied to the spine in an attempt to result in several theoretical benefits such as to create a negative intradiscal pressure to promote retraction or repositioning of the herniated or bulging disc material and to produce a reduce pressure in the disc that will cause an influx of recovery nutrients and other substances into the disk.

 

Clinical Evidence

 

While the fundamental concept of spinal decompression is broadly accepted as legitimate, there’s a shortage of evidence supporting decompression therapy as being efficacious. There are a number of dangers.

 

Though some studies that don’t include control groups conclude that decompression treatment is effective, the few that do normally conclude that mechanized spinal decompression is not any greater than sham decompression. Thus, there’s insufficient evidence that spinal decompression therapy is as effective, or even more effective, compared to less expensive manual approaches in treating back pain or injured herniated discs.

 

An overview of medical literature so far suggests that most clinical trials assessing the effectiveness of spinal decompression therapy or traction were lacking in a couple of regions, such as inadequate numbers of topics to create a statistically valid conclusion, lack of blinding (the individual or provider knows the therapy given), no regard to a placebo group (known as a sham controlled study), or absence of comparison to a treatment substitute. At the time of this report, few clinical studies of spinal decompression therapy have been published in peer reviewed journals.

 

How Spinal Decompression Works

 

In nonsurgical spinal decompression therapy, the spine is relaxed and stretched intermittently in a controlled way. The concept is that this process creates a negative intradiscal pressure (pressure inside the disc itself), which is thought to have two possible benefits: pull the herniated or bulging disc material back into the disk; and promote the passage of healing nutrients, into the disc and fosters a better recovery environment.

 

Spinal Decompression Session

 

During spinal decompression treatment for the lower spine (lumbar spine), patients stay clothed and lie on a motorized table, the lower half of that which can move. First, a�harness is placed round the hips and can be connected to the lower table close to the toes. The top region of the table then remains in a fixed position while the lower part, where the individual is harnessed, slides back and forth to offer the traction and relaxation.

 

One difference between different decompression therapies is the patient’s place on the table:

 

  • Some devices place the patient in the prone position on the desk, lying down face (e.g. VAX-D)
  • Some devices have the patient lying supine, face up (e.g. DRX9000)

 

The patient shouldn’t feel pain during or after the decompression therapy although they should feel stretch in the spine.

 

Treatment Collection and Costs

 

While spinal decompression therapy could be advocated as a potential treatment for a number of lower back pain conditions, just like all lower back pain remedies, it’s the patient’s decision whether or not to have the therapy. Although the risk is reduced, the benefit of these treatments isn’t established.

 

Decompression therapy generally consists of a series of 15 to 30 treatments, lasting 30 to 45 minutes per day, within a four to four six-week period. Sessions are conducted at the practitioner’s office. The price of each session generally ranges from $30 to $200, meaning that a recommended series of remedies will generally cost from $450 to $6,000. Although insurers may cover grip, decompression therapy isn’t usually allowed although they are almost the same.

 

Sessions may include additional treatment modalities, such as electric stimulation, ultrasound, and cold and/or heat treatment applied during or after the process. Recommendations may also incorporate drinking up to some half-gallon of water per day, remainder, utilizing nutritional supplements, or performing exercises at home to boost strength and mobility. Research and find chiropractors in your area that could help relieve your back and neck discomfort.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�
 

By Dr. Alex Jimenez

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: About Chiropractic

 

 

Chiropractic Treatment Plan for Chronic Pain | Eastside Chiropractor

Chiropractic Treatment Plan for Chronic Pain | Eastside Chiropractor

Chiropractic is a healthcare profession devoted to the nonsurgical treatment of ailments of the nervous system and/or musculoskeletal system. Chiropractors keep a focus on therapy and manipulation of surrounding structures.

 

What can chiropractic care treat?

 

Many studies have concluded that massage therapies widely used by chiropractors are effective for treating lower back pain, in addition to for therapy of lumbar herniated disk for radiculopathy and neck pain, among other ailments.

 

In fact, when patients using non-specific chronic low back pain have been treated by physicians, the long-term result is enhanced by obtaining maintenance spinal manipulation following the initial intensive manipulative treatment.

 

Core Chiropractic Treatment Plan

 

The center of chiropractic usually involves treatment of common lower back pain conditions through manual therapy:

 

  • Spinal manipulation and manual manipulation. This type of manual manipulation identifies a short lever arm push that is applied to vertebra. It is also commonly called “chiropractic adjustment”.
    There is firm literature support for chiropractic treatment of lower back pain. Many of the guidelines that are published urge manipulation to be contained in the therapy strategy in the maintenance of back pain.
  • Mobilization. Mobilization describes velocity manipulation, motion and stretching of the muscles and joints, with the goal of increasing the assortment of movement.

 

What Does a Chiropractic Treatment Plan Consist Of?

 

Most chiropractors start treatment throughout the patient’s first visit, although some might wait until the next appointment of the practice. Chiropractic therapy goals and recommendations can include some or all of the following:

 

  • Adjustments to key joint dysfunctions
  • Modalities to enhance soft tissue healing and pain management, such as ultrasound, electric stimulation, and grip
  • Strengthening and/or stretching exercises to improve muscle balance, strength, and coordination
  • Patient instruction to improve posture and motor controller, as well as potentially reduce anxiety
  • Other treatments like massage, heat/cold application, and education on ergonomics and nourishment.

 

Goals of Chiropractic Care

 

The chiropractor will establish Certain goals for a patient’s individual plan for therapy:

 

  • Short-term goals typically include reducing pain and restoring normal joint function and muscle balance
  • Long-term targets include assigning functional independence and tolerance to normal activities of daily living.
    To accomplish these goals, a particular number of chiropractic visits will be recommended.

 

For most kinds of lower back pain, a treatment recommendation of 1 to 3 chiropractic visits per week for 2 to 4 weeks will be prescribed, followed closely by a re-examination from the chiropractor.

 

Chiropractic Evaluation of the Treatment

 

In the re-evaluation, the chiropractic physician will Assess the response to treatment and decide whether to:

 

  • Continue chiropractic treatment, if appropriate
  • Release the Individual from chiropractic care, if treatment goals have been met
  • Refer the patient to another health care specialist if treatment goals have not been fulfilled.
  • Chiropractic adjustment (also referred to as spinal manipulation) is a popular and recognized pain relief therapy for many types of lower back pain, sciatica, and neck pain. Knowing what to anticipate from the first visit might help an individual get the maximal benefit from treatment.

 

Since this profession has an unusually large selection of practice philosophies and chiropractic methods, people should feel comfortable asking all of the questions necessary to comprehend the chiropractic examination, diagnosis, and therapy plan.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .�
 

By Dr. Alex Jimenez

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: About Chiropractic

 

 

Interventional Chronic Pain Management Treatments | Central Chiropractor

Interventional Chronic Pain Management Treatments | Central Chiropractor

Chronic pain is known as pain that persists for 12 weeks or even longer, even after pain is no longer acute (short-term, acute pain) or the injury has healed. Of course there are many causes of chronic pain that can influence any level of the spine, cervical (neck), mid back (thoracic), lower spine (lumbar), sacral (sacrum) or some combination of levels.

 

What treatments do interventional pain management specialists perform?

 

Oftentimes, early and aggressive therapy of chronic neck or back pain can earn a difference that is life-changing. But remember that knowledge is power: Be certain that you know your choices. There are various treatment procedures and treatments available for chronic pain, each completed by a treatment specialists. Interventional pain management specialist treatments may be a fantastic solution for some people with chronic pain symptoms.

 

Interventional Pain Management Specialists

 

Interventional pain management (IPM) is a special field of medicine that uses injections and small processes to help patients control their own chronic pain. Interventional pain management specialists are trained to diagnose and cure ailments, and their goal is to improve patients’ quality of life.

 

IPM’s Role in Treating Chronic Back Pain

 

Pain control plays a big role in chronic pain since many forms of pain can’t be cured, so pain victims must find out how to live with and work around the pain. A pain management specialist can help them locate the pain relief that they need to work in the daily. The interventional treatments are part of a multi-disciplinary approach that might include use of medications, psychology, and therapy. Part of IPM is currently finding treatments that works best for your treatment or combination. Some potential interventional pain management therapies are:

 

Injections

 

Your interventional pain management expert will have you try injections, which send anti inflammatory medications and strong pain-relieving straight. A few examples of injections used for chronic pain are:

 

Epidural steroid injection: This is one of the most commonly used injections. An epidural steroid injection (ESI) aims the epidural space, that is the space surrounding the membrane which holds the spinal fluid around the spinal cord and nerve roots. Nerves traveling through the epidural area and then branch out to other parts of your body, like your thighs. When a nerve root is compressed (pinched) from the epidural space, you’ll have pain that travels down your spine and into your legs (commonly called sciatica, even though the technical medical term is radiculopathy). An epidural steroid injection sends steroids right to the nerve root that’s inflamed. You need 2-3 injections; normally, you shouldn’t have that because of the potential side effects of the steroids.

 

Facet joint injection: Also called facet blocks, facet joint injections are helpful in case your facet joints are causing annoyance. Facet joints in your back allow you to move and provide stability. Though, you will have pain, if they get inflamed. The joint wills numb and can lower your pain.

 

Sacroiliac joint injection: The joint is where your pelvis and spine come and also an aching sacroiliac joint can be extremely debilitating. The injection may reduce inflammation and pain.

 

The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss options on the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900
 

By Dr. Alex Jimenez

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

blog picture of cartoon paperboy big news

 

TRENDING TOPIC: EXTRA EXTRA: New PUSH 24/7�? Fitness Center