Back Clinic Chiropractic. This is a form of alternative treatment that focuses on the diagnosis and treatment of various musculoskeletal injuries and conditions, especially those associated with the spine. Dr. Alex Jimenez discusses how spinal adjustments and manual manipulations regularly can greatly help both improve and eliminate many symptoms that could be causing discomfort to the individual. Chiropractors believe among the main reasons for pain and disease are the vertebrae’s misalignment in the spinal column (this is known as a chiropractic subluxation).
Through the usage of manual detection (or palpation), carefully applied pressure, massage, and manual manipulation of the vertebrae and joints (called adjustments), chiropractors can alleviate pressure and irritation on the nerves, restore joint mobility, and help return the body’s homeostasis. From subluxations, or spinal misalignments, to sciatica, a set of symptoms along the sciatic nerve caused by nerve impingement, chiropractic care can gradually restore the individual’s natural state of being. Dr. Jimenez compiles a group of concepts on chiropractic to best educate individuals on the variety of injuries and conditions affecting the human body.
For people who love drinking diet sodas, recent research studies have found that diet drinks can increase the risk of stroke and dementia. Although diet drinks have been previously advertised as a much more healthier, low-calorie alternative than regular carbonated drinks, a closer look at the results of these recent research studies ultimately suggests otherwise. �
One research study, consisting of 2,888 participants, ages 45 and older, in the Framingham Heart Study, asked for diet entries to be filled out up to three times within a seven-year period. According to the research study, participants who said they drank one diet soda a day were roughly twice as likely to have a stroke within the next decade than individuals who didn’t drink diet soda. Drinking regular, sugar-sweetened carbonated drinks did not seem to increase the risk of stroke. �
However, these types of research studies have only been able to prove an association between diet drinks, stroke, and dementia. “Also, only 97 people (about 3 percent) had strokes during the follow-up, which means that only two or even three of those strokes may be associated to drinking diet soda,” stated Dr. Kathryn Rexrode, an associate professor of medicine at Harvard-affiliated Brigham and Women’s Hospital which co-authored a research study on soda intake and stroke risk. �
Risk of Stroke Associated with Diet Drinks
The research study found a slightly increased risk of stroke in people who drank more than one soda per day, whether or not it contained any type of artificial sweetener. Although the research study didn’t particularly show a considerable increase in stroke risk, that doesn’t necessarily suggest that they’re a better option than diet sodas. Research studies have shown that drinking carbonated drinks may lead to weight gain, diabetes, high blood pressure, heart disease, and stroke, ” she stated. �
As a matter of fact, researchers believe that one possible explanation as to why regular, sugar-sweetened carbonated drinks weren’t associated with stroke in the recent research study is a phenomenon known as the survival bias. In this instance, it would mean that individuals who drink a lot of carbonated drinks may have died from health issues such as heart disease. �
Conversely, diet drinks may be associated with an increased risk of stroke due to a variety of health issues known as reverse causation. In an attempt to be healthier, individuals who are overweight or have diabetes may be more inclined to select diet drinks over regular drinks. Their increased risk of stroke may come from their health issues rather than their drink option. “We may ultimately only be measuring the residual effect of weight gain, obesity, and diabetes,” says Dr. Rexrode. �
Artificial Sweeteners and Stroke
� Although researchers need further evidence to determine why artificial sweeteners may increase stroke risk, there are other reasons as to why these should be avoided. Research studies show that artificial sweeteners can make individuals crave sugary, high-calorie meals, therefore, decreasing the artificial sweetener’s purpose of cutting your total calorie consumption. �
Moreover, many researchers believe that people who use these artificial sweeteners, which can be many times sweeter than sugar, can come to find naturally sweet foods, such as fruits, to be less appealing and less-sweet foods, such as vegetables, to be entirely unpalatable. Furthermore, individuals may be missing out on the many nutrients found in fresh, natural foods. �
“I encourage my patients to stop drinking soda and other sugar-sweetened carbonated drinks regularly to prevent empty calories,” she says. “However, if someone says that they can’t do without soda in the morning to wake up, I will encourage them to switch to diet soda.” Water is a much better choice, however. “There are plenty of ways to make it more attractive, both visually and taste-wise.” She adds. Try flavoring sparkling or flat water or add crushed mint, cucumber, or frozen fruit. �
Risk of Dementia Associated with Diet Drinks
In another research study, people who drank diet soda were associated with an increased risk of developing dementia. “The research study can’t prove a connection between drinking habits and health issues, however, it does strongly suggest an association,” Stated Dr. Matthew Pase, neurology fellow at Boston University School of Medicine and contributing author. �
The initial research study evaluated food questionnaires, MRI scans, and cognitive tests of approximately 4,000 people ages 30 and up. Researchers found that individuals who consumed over three diet sodas per week were more likely to have memory problems, a reduced brain volume, and a smaller hippocampus, an area of the brain used in memory and learning. In the research study, drinking a minimum of one diet soda per day was also associated with a reduced brain volume. �
During a second research study, the researchers tracked two different groups of adults for ten years. According to the research study, out of almost 3,000 adults over age 45, approximately 97 adults suffered a stroke during that time and from almost 1,500 adults over age 60, approximately 81 adults developed Alzheimer’s disease or another type of dementia. �
Past research studies have connected diet drinks to an increased risk of weight gain and stroke. Researchers believe that artificial sweeteners may ultimately affect the human body in many different ways, such as by transforming gut bacteria and tricking the brain into craving more calories. This is the first-time diet sodas have been associated with dementia. Because people with diabetes drink more diet soda, researchers believe that the health issue may partly explain the rise in dementia, although not completely. When people with diabetes were excluded from the research study, the association stayed. �
As stated by the United States Department of Agriculture, Americans consumed 11 million metric tons of sugar in 2016, much of it in the form of sugary, sweetened carbonated drinks. Because it would have been difficult to measure total sugar consumption from all type of different food sources, the research study focused on sugary, sweetened carbonated drinks. �
A growing number of research studies suggest that diet drinks may not be a safe alternative to sugary, sweetened drinks. Even small causal effects can have much bigger consequences on health, given the popularity of both diet and regular sodas. The research study concluded that both glucose and artificially sweetened soft drinks “may be hard on the brain.” �
Diet soda is basically a mixture of carbonated water, natural or artificial sweetener, colors, flavors, and other food additives. Although diet drinks generally have very few to no calories, these essentially have no significant nutritional value. Many research studies have demonstrated that drinking diet soda is associated with an increased risk of stroke and dementia. Researchers have also found that diet drinks can cause a variety of other health issues. It’s essential for to avoid drinking too much diet soda. – Dr. Alex Jimenez D.C., C.C.S.T. Insight
Recent research studies have found that diet drinks are associated with an increased risk of stroke and dementia. Although diet drinks are advertised as a much more healthier, low-calorie alternative than regular carbonated drinks, a closer look at the results of these recent research studies ultimately suggests otherwise. The scope of our information is limited to chiropractic, musculoskeletal and nervous health issues as well as functional medicine articles, topics, and discussions. To further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900 . �
Curated by Dr. Alex Jimenez �
References �
Corliss, Julie. �Does Drinking Diet Soda Raise the Risk of a Stroke?� Harvard Health Blog, 31 July 2017, www.health.harvard.edu/blog/drinking-diet-soda-raise-risk-stroke-2017073112109.
MacMillan, Amanda. �A Daily Diet Soda Habit May Be Linked to Dementia.� Health.com, 21 Apr. 2017, www.health.com/alzheimers/diet-soda-linked-to-dementia-stroke.
Additional Topic Discussion: Chronic Pain
Sudden pain is a natural response of the nervous system which helps to demonstrate possible injury. By way of instance, pain signals travel from an injured region through the nerves and spinal cord to the brain. Pain is generally less severe as the injury heals, however, chronic pain is different than the average type of pain. With chronic pain, the human body will continue sending pain signals to the brain, regardless if the injury has healed. Chronic pain can last for several weeks to even several years. Chronic pain can tremendously affect a patient’s mobility and it can reduce flexibility, strength, and endurance.
Neural Zoomer Plus for Neurological Disease
Dr. Alex Jimenez utilizes a series of tests to help evaluate neurological diseases. The Neural ZoomerTM Plus is an array of neurological autoantibodies which offers specific antibody-to-antigen recognition. The Vibrant Neural ZoomerTM Plus is designed to assess an individual�s reactivity to 48 neurological antigens with connections to a variety of neurologically related diseases. The Vibrant Neural ZoomerTM Plus aims to reduce neurological conditions by empowering patients and physicians with a vital resource for early risk detection and an enhanced focus on personalized primary prevention. �
Formulas for Methylation Support
XYMOGEN�s Exclusive Professional Formulas are available through select licensed health care professionals. The internet sale and discounting of XYMOGEN formulas are strictly prohibited.
Proudly,�Dr. Alexander Jimenez makes XYMOGEN formulas available only to patients under our care.
Please call our office in order for us to assign a doctor consultation for immediate access.
If you are a patient of Injury Medical & Chiropractic�Clinic, you may inquire about XYMOGEN by calling 915-850-0900.
�
For your convenience and review of the XYMOGEN products please review the following link.*XYMOGEN-Catalog-Download�
* All of the above XYMOGEN policies remain strictly in force.
Cervical radiculopathy happens when a pinched nerve in the neck (cervical spine) causes pain.
Radicular pain can extend beyond the neck and radiate down:
The shoulders
Arms
Fingers
This type of nerve compression also causes:
Weakness
Numbness
Tingling
Reflex problems
The neck consists of 8 pairs of nerves that control several motor (strength) and sensory (feel) functions.
The cervical nerve roots at the top send movement and feeling signals to the head and neck, and the nerves at the bottom enable motor and sensory function to the arms and hands.
If one or more of the spinal nerves in the neck gets pinched, it can disturb its ability to function correctly.
This results in radiating pain in the neck and other areas of the body.
This condition can affect anyone but usually affects middle-aged adults.
Men also tend to develop cervical radiculopathy more than women.
Causes
The natural aging process on the spine is what usually causes cervical radiculopathy.
The spine goes through the aging process just like the rest of the body and even more as it is the basis of our structure.
This process can lead to several degenerative spinal disorders, that include:
Cervical spondylosis (osteoarthritis)
Spinal stenosis
Herniated discs
When nerve passageways begin to narrow, intervertebral discs begin to protrude,� and bone spurs, caused by these disorders can put pressure on the nerves in the neck.
The condition can also be caused by a traumatic injury to the neck like whiplash or sports injury.
Rarely is it caused by an infection or spinal tumor.
Symptoms
The primary symptom is pain radiating from the neck down to the:
Shoulders
Arms
Hands
Fingers
The above is an example of sensory function, which is related to feeling.
In addition to sensory symptoms, radiculopathy can also cause motor dysfunction.
Motor dysfunction relates to muscles and movement.
Reflex changes in the neck and upper body and weakness are examples of motor dysfunction.
Diagnosis
A spine specialist/chiropractor has several tools to diagnose cervical radiculopathy.
First and foremost your medical history will be reviewed and then will be:
Asked to describe symptoms
A physical exam will be conducted�to recreate the pain in a controlled manner in the:
Neck
Shoulder
Arms
Example: Spurling�s maneuver, which gently rotates the head, while applying gentle pressure.
Once the information from the medical history and physical exam are done,��imaging tests such as an MRI�may be ordered so they can pinpoint the location of the nerve compression.
MRI scans show the soft tissues in the spine, including the nerves.
The doctor may request a pair of diagnostic tests called electromyogram (EMG) and nerve conduction exam if there are significant upper nerve arm and neck pain.
These tests help understand if there is nerve damage, the cause of the damage and if the symptoms are related to the nerve damage.
EMG and nerve conduction tests are usually performed together to help in the diagnosis.
Emergency Symptoms
Once the spine specialist confirms the diagnosis, they will develop a treatment plan to relieve the nerve compression or prevent it from getting worse.
Most cases are taken care of with non-surgical treatment, however, if the following occurs you should contact your doctor:
Neck pain does not improve with treatment in the time your doctor expects.
Pain worsens regardless of treatment
Or you develop new:
Numbness
Weakness in the
Neck
Arms
Upper body
Develop fever
If you experience symptoms in the lower body like:
Weakness in the leg
Difficulty walking
Lack of bowel/bladder function, then seek medical attention immediately.
These symptoms may indicate cervical myelopathy, a more severe condition.
Cervical myelopathy is the compression of the spinal cord.
When the spinal cord gets compressed, it can generate widespread spine issues and usually requires surgery.
Treatment Cervical Radiculopathy
Like most types of spine pain, a doctor will recommend trying one or more conservative treatments first.
Conservative treatments are nonsurgical means.
It�s important to understand that just because a treatment is considered conservative does not mean it is ineffective.
In fact, it�s quite the opposite. Most people with nerve compression in their neck respond well to conservative therapies.
Though research on the efficacy of conservative treatments for cervical radiculopathy has produced mixed results, findings show that these therapies help eliminate pain and other nerve-related symptoms (like numbness and muscle weakness) in 40-80% of people.
The following are the most common conservative treatments:
Over-the-counter medications, like acetaminophen (Tylenol) or nonsteroidal anti-inflammatory medications(ibuprofen, Motrin)
Prescription medications, like steroids (prednisone), neuropathic agents (gabapentin, pregabalin), and muscle relaxants (baclofen, cyclobenzaprine)
Cervical spinal traction, that can be performed during physical therapy
Avoiding strenuous activity, but don’t avoid all activity, as too much rest can exacerbate the injury and extend the recovery time
These conservative treatments can go on for 6 to 8 weeks. If there is no improvement or it gets worse, then a doctor may want to step you up to the next level.
This may include steroid injections.
Spinal Injections
Cervical epidural steroid injections are considered a second-line treatment for radiculopathy that is not responding to conservative therapy. These injections send a dose of anti-inflammatory medicine into a specific nerve root�s that can relieve pain.
The number of injections differs from patient to patient. A doctor will make recommendations based on the condition and response to the first injection.
If the first injection reduces the pain and symptoms, a second or third injection might not be necessary unless symptoms recur.
If more than one is needed, they are given 3 weeks between each injection.
Injections can help manage pain and inflammation, but cannot strengthen or improve the flexibility of the cervical muscles.
Because of this, a doctor may prescribe physical therapy, chiropractic or an exercise program to condition the neck muscles.
Surgery Considered
When surgery is needed it is considered a last resort option. This is not a guaranteed solution and there are risks and complications.
Different types of surgical approaches are available. These procedures can be performed minimally invasively in a hospital setting or an outpatient surgery center.
Discussing options with a doctor and whether you are a candidate for minimally invasive surgery or not, along with other types of surgery e.g. artificial disc, is a discussion that is different for everybody, as some patients have existing medical conditions that can increase risks and complications.
Anterior cervical discectomy and fusion (ACDF)
This approach is the most widely used surgical approach.
The surgeon makes an incision through the front of the neck and removes the damaged intervertebral disc, fills the empty space with spacers to restore the height and attaches spinal instrumentation (plate, screws) for stabilization.
A bone graft is then packed into and around the body spacers for bone ingrowth and healing.
Posterior cervical foraminotomy
Here, the surgeon accesses one or more levels of the cervical spine with an incision in the back of the neck.
Foraminotomy decompresses the nerve root by removing whatever is compressing the nerve like a bone or soft tissue.
The procedure opens/widens the neural foramen or the nerve passageway where the nerve exits the spinal canal.
Cervical artificial disc replacement (C-ADR)
Here an artificial disc device is implanted in the empty disc space.
C-ADR is like a shock absorber and enables healthy movement the way that an actual disc does.
Conclusion
A compressed nerve in your neck can lead to radiating pain. This pain can make it almost unbearable to do simple tasks, even moving the neck from side to side or just opening a jar. Conservative treatment like chiropractic and exercise can ease the pain of this condition and restore function. Fortunately, surgery is rarely necessary.
El Paso, TX Neck Pain Chiropractic Treatment
Alfonso J. Ramirez now retired, found follow-up treatment with Dr. Alex Jimenez for his neck pain. Mr. Ramirez experienced chronic pain and headaches, but after receiving chiropractic care, he found relief from his symptoms. Ever since that time, Alfonso Ramirez has continued to maintain the alignment of his backbone with Dr. Jimenez. Mr. Ramirez is grateful for the chiropractic care he’s received for his neck pain and for his knee and shoulder pain. Alfonso J. Ramirez recommends Dr. Alex Jimenez as the non-invasive pick for neck pain.
NCBI Resources
Approximately two-thirds of the population being affected by neck pain at any time throughout their lives. Pain that originates in the cervical spine, or upper spine, can be caused by numerous other spinal health issues. Joint disruption in the neck can generate a variety of other common symptoms, which include headaches, head pain, and migraines. Neck pain affects about 5 percent of the global population, according to statistics.
Excitotoxicity is a pathological mechanism seen in a variety of health issues where an excessive synaptic excitation causes neuronal death and is also believed to be caused by the extracellular accumulation of the excitatory neurotransmitter glutamate, which triggers and connects ionotropic N-methyl-D-aspartate glutamatergic receptors (NMDARs) in the brain. Generally, NMDARs regulate and maintain calcium in cells to help manage physiological mechanisms like synaptic plasticity and memory, however, excessive stimulation can ultimately increase intracellular calcium which triggers cell death signaling to activate apoptosis. This pathological mechanism has been suggested in a variety of health issues, such as traumatic brain injury (TBI) and Alzheimer’s disease (AD), where it is extensively examined to understand health issues and treatment approaches. In a stroke, excitotoxicity has been shown to be the main pathological mechanism where neuronal damage happens and it is considered to be a well-known goal for many recent attempts at developing stroke therapeutics. �
Stroke is an acute brain health issue which causes neuronal damage which has currently no safe and effective neuroprotective treatment approaches. Immediately following a stroke, the brain tissue loses blood perfusion and the center of the infarct deteriorates quickly. This then causes milder ischemia and many brain cells or neurons will result in delayed death which can take up to several hours or even days. Research studies show that the mechanism of cell death is mainly NMDA receptor-dependent excitotoxicity. In ischemic areas, extracellular glutamate levels increase while preventing glutamate release, synaptic activity, or NMDAR activation which was capable of limiting cell death in a variety of stroke models. Thus, preventing excitotoxicity is an important treatment approach for reducing brain damage and improving patient outcome measures following a stroke, and this has definitely encouraged extensive efforts towards developing NMDA receptor-based stroke treatment approaches over the last two decades. Unfortunately, these have largely met with rather disappointing results. Several research studies have failed to find the expected efficiency of NMDAR for decreasing brain injuries. The reasons behind the basic research study results and clinical trials are still unknown, however, several reasons have been suggested. These include, but are not limited to, the inability to utilize the correct doses necessary for neuroprotection due to their side-effects, the inability to use the drugs within their neuroprotective windows, poor experimental designs, and heterogeneity in the patient population. However, as we will briefly summarize in the following article, improvement in our understanding of the physiological and pathological mechanisms of NMDAR activation as well as the different pathways connected to different NMDAR subtypes, has allowed researchers to develop new treatment approaches which improve therapeutic windows and increase specificity for death signaling pathways, achieving neuroprotection without interrupting other essential signaling pathways downstream of the NMDAR receptor. �
Neuroprotectants Targeting NMDAR Subtypes
NMDAR subtypes have different purposes in excitotoxicity and physiology. The NMDAR is a receptor which generally has two GluN1, also known as NR1, subunits as well as two subunits from the GluN2 subfamily (GluN2A-2D, also known as NR2A-2D). In the cortex, the major subpopulations of NMDARs are GluN2A- or GluN2A and 2B-containing receptors. GluN2A-containing receptors are found in synapses whereas GluN2B-containing receptors are found on extrasynaptic membranes. GluN2A- and GluN2B-containing receptors are different from each other because they regulate and manage plasticity, favoring either long-term potentiation (GluN2A) or depression (GluN2B) through a variety of electrophysiological and pharmacological properties as well as signaling proteins. In addition, these receptors play a fundamental role in promoting cell survival (GluN2A) or death (GluN2B) after excitotoxic stimulation. Because GluN2A-containing receptors are mainly focused on synapses while GluN2B-containing receptors are focused to both synaptic and extrasynaptic membranes, when excitotoxic conditions cause glutamate to extend beyond synapses, GluN2B-mediated death signaling becomes stronger in comparison to survival signaling which ultimately results in death. Through a stroke, by way of instance, NMDARs are less likely to favor cell survival and can instead cause detrimental effects by preventing considerable normal physiological purposes. Selfotel, a non-specific NMDAR blocker, was neuroprotective against stroke in vitro and in vivo, however, it ultimately failed to be neuroprotective against stroke in clinical trials by causing a variety of intolerable side-effects. �
Treatment strategies to reduce undesirable side-effects, including glycine site antagonists and NMDAR subtype-specific improvements, was to target the allosteric glycine binding regions on the GluN1 subunits with licostinel and gavestinel instead of directly blocking the receptor. These drug candidates performed well in preclinical examinations, however, they also failed as a result of low efficiency despite minimal side-effect profiles. The negative side-effects were perhaps due to a missed window of time following a stroke that shows which receptor blockers are safe and effective in preventing death. �
Better treatment methods and techniques for reducing unwanted side-effects of NMDAR are to utilize the differences between their variations. By way of instance, the GluN2B-specific inhibitor traxoprodil is neuroprotective in stroke research studies and minimal side-effects, however, it has also failed in clinical trials. Similar to the glycine region antagonists, it possibly needs to be properly regulated and managed to function efficiently. GluN2A agonists should promote cell survival signaling which could allow recovery following a stroke as well as cell survival to prevent passing signaling. As a matter of fact, activation of GluN2A-containing receptors utilizing increased doses of glycine was neuroprotective in an animal model of stroke but further research studies must examine GluN2A activation as a treatment approach in human participants. �
While NMDAR antagonists and modulators are safe and effective at attenuating excitotoxicity in experimental versions, their shortcoming is the challenge in implementing treatment approaches early to coincide with the summit of excitotoxic glutamate release. Stroke patients frequently have no chance of receiving these treatment approaches in time. However, the health issue can be avoided if receptor blockers can be utilized in at-risk populations. One research study has shown that low doses of prophylactic memantine, an NMDAR non-competitive antagonist with few side-effects, can considerably decrease brain injury and functional deficits following a stroke. Whether any medications are tolerable, safe, and effective when taken this way remains to be demonstrated but innovative solutions may nevertheless address how to deliver those drugs. �
One factor apart from those of the failed clinical trials is the interplay of NMDARs in cell survival which may be completely misunderstood. In the last few decades, there has been accumulating evidence that synaptic NMDARs may also cause cell death and GluN2A, as well as GluN2B, do not necessarily have dichotomous functions in excitotoxicity. Further research studies may be required to demonstrate more nuanced receptor inhibitor strategies and to solve this controversy. �
Neuroprotectants Targeting Cell Death Signaling
A treatment approach for NMDAR inhibitors is to focus on the most downstream events for cell death which happen over a much longer time period following receptor activation. A variety of cell death pathways following activation have been determined and several groups have provided proof-of-principle evidence that these pathways can be regulated and managed with the utilization of peptides to ultimately protect brain cells or neurons without any side-effects. �
The oldest reported and most explored peptide strategy in stroke goals is nitrous oxide synthase (nNOS)-mediated cell death. NNOS connects to postsynaptic protein 95 (PSD95) which then connects to the C-terminal tail of the GluN2B subunit. NOS is a calcium-activated enzyme which activates the development of nitric oxide (NO) and its own status in the receptor complex which associates it in proximity to the focused stream of calcium entering activated GluN2B. In a stroke, the excessive calcium influx activates GluN2B-coupled nNOS. An interference peptide is utilized to disconnect the complex to prevent NO development. The peptide, Tat-NR2B9c, is made up of an HIV-1 Tat-derived cell penetration sequence which allows passage through the blood-brain barrier and cell membranes, connected to a copy of the region on the GluN2B for PSD95. The peptide and GluN2B disconnect PSD95, therefore, decoupling nNOS in the local considerable levels of calcium without interrupting the function of the receptor from different pathways. Utilization results in considerable protection against tissue and functional damage with no side-effects in vitro and in vivo after a single dose given before or after ischemia in vivo. The peptide has lately succeeded in Phase II clinical trial where it decreased iatrogenic infarcts during intracranial aneurysm treatment. This is the first time a research study has demonstrated efficiency in humans which also shows authenticity that targeting downstream cell death can be helpful against excitotoxic/ischemic neuronal injuries. �
While the utilization of peptides in a clinical setting is safe and effective, a similar efficiency has been achieved with small molecule drugs which act on the exact same goal and function like the peptides in a laboratory setting. To mimic Tat-NR2B9c, two small molecules, IC87201 and ZL006 have been individually demonstrated to compete at the identical GluN2B-specific connecting region without affecting the connection of PSD95 to other proteins. Additionally, ZL006 imitates the peptide’s neuroprotection without causing any considerable adverse side-effects. By identifying the goals and the specific regions, research studies can simulate small molecule drugs and accelerate their discovery towards excitotoxicity and stroke. �
Other GluN2B-specific pathways have been demonstrated in a similar manner and are showing promise in the stages of development. One such pathway which is triggered following GluN2B activation is the potentiation and recruiting of GluN2B in the cell membrane by death-associated protein kinase 1 (DAPK1). DAPK1 is a protein which connects to calmodulin to activate apoptosis but it is phosphorylated in an inactive form which is incapable of associating cell death and calmodulin. Following excitotoxicity, calcineurin activation dephosphorylates and triggers DAPK1, contributing to cell death. Furthermore, active DAPK1 can connect to and phosphorylate the C-terminal tail of receptors, excitotoxicity, and their function, aggravating calcium influx. A Tat-linked interference peptide which has the C-tail phosphorylation region which is GluN2B managed to block the interaction of active DAPK1 with GluN2B and promote excitotoxicity. Once the peptide was utilized in mice, dubbed Tat-NR2B-CT, it improved the outcome following ischemia. However, Tat-NR2B-CT was only efficient at preventing activity and runaway insertion instead of the downstream apoptotic of DAPK1 signaling. Researchers were also able to connect and guide DAPK1 towards lysosomes by including a sequence in the close of the hindrance peptide to create a degradation peptide. The result has been a serious and temporary fall in busy DAPK1 levels with a corresponding decrease in infarction when administering the peptide hours after ischemia, according to several research studies. �
The c-Jun N-terminal kinase 3 (JNK) acts upon many pathways and is a mediator for cell death in excitotoxicity. JNK interacting protein (JIP) connects and prevents JNK activity through a JNK binding domain (JBD) which spans over 20 residues. When these residues are connected to Tat as from the Tat-JBD20 interrupted peptide, they are capable of limiting JNK activity and preventing cell death in stroke models when administered before or after ischemia. The Tat-JBD20 peptide has also been shown utilizing D-amino acids instead of L-amino acids to withstand degradation by endogenous proteases. Doing so tremendously increases the peptide’s half-life and doesn’t negatively affect its binding affinity and selectivity, demonstrating that this alteration may be utilized for several interference peptides to boost efficiency and bioavailability. �
New targets are always being discovered. While currently, no new stroke treatment approaches are being utilized, a great deal of progress has been made by targeting the processes which occur during stroke towards creating treatment approaches. With the debut of the achievement of degradation and interruption peptides targeting GluN2B-specific passing signaling events, there’s hope that new treatments are on the horizon for health issues which have excitotoxicity. �
Excitotoxicity is the pathological mechanism by which brain cells or neurons are ultimately damaged or eliminated by excessive stimulation from neurotransmitters, including glutamate and other similar substances. This ultimately occurs when the NMDA receptor and the AMPA receptor are overactivated by excitatory neurotransmitter glutamate receptors. This can cause a variety of processes which can damage cell structures, including components of the cytoskeleton, membrane, and DNA. Regulating and managing excitotoxicity can help maintain overall well-being. – Dr. Alex Jimenez D.C., C.C.S.T. Insight
Excitotoxicity is a pathological mechanism where an excessive synaptic excitation causes neuronal death and is also believed to be caused by the extracellular accumulation of the excitatory neurotransmitter glutamate, which triggers and connects ionotropic N-methyl-D-aspartate glutamatergic receptors (NMDARs) in the brain. This pathological mechanism has been suggested in a variety of health issues, such as traumatic brain injury (TBI) and Alzheimer’s disease (AD), where it is extensively examined to understand health issues and treatment approaches. The scope of our information is limited to chiropractic, musculoskeletal and nervous health issues as well as functional medicine articles, topics, and discussions. To further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900 . �
Curated by Dr. Alex Jimenez �
References �
Li, Victor, and Yu Tian Wang. �Molecular Mechanisms of NMDA Receptor-Mediated Excitotoxicity: Implications for Neuroprotective Therapeutics for Stroke.� Neural Regeneration Research, Medknow Publications & Media Pvt Ltd, Nov. 2016, www.ncbi.nlm.nih.gov/pmc/articles/PMC5204222/.
Additional Topic Discussion: Chronic Pain
Sudden pain is a natural response of the nervous system which helps to demonstrate possible injury. By way of instance, pain signals travel from an injured region through the nerves and spinal cord to the brain. Pain is generally less severe as the injury heals, however, chronic pain is different than the average type of pain. With chronic pain, the human body will continue sending pain signals to the brain, regardless if the injury has healed. Chronic pain can last for several weeks to even several years. Chronic pain can tremendously affect a patient’s mobility and it can reduce flexibility, strength, and endurance.
Neural Zoomer Plus for Neurological Disease
�
Dr. Alex Jimenez utilizes a series of tests to help evaluate neurological diseases. The Neural ZoomerTM Plus is an array of neurological autoantibodies which offers specific antibody-to-antigen recognition. The Vibrant Neural ZoomerTM Plus is designed to assess an individual�s reactivity to 48 neurological antigens with connections to a variety of neurologically related diseases. The Vibrant Neural ZoomerTM Plus aims to reduce neurological conditions by empowering patients and physicians with a vital resource for early risk detection and an enhanced focus on personalized primary prevention. �
Formulas for Methylation Support
XYMOGEN�s Exclusive Professional Formulas are available through select licensed health care professionals. The internet sale and discounting of XYMOGEN formulas are strictly prohibited.
Proudly,�Dr. Alexander Jimenez makes XYMOGEN formulas available only to patients under our care.
Please call our office in order for us to assign a doctor consultation for immediate access.
If you are a patient of Injury Medical & Chiropractic�Clinic, you may inquire about XYMOGEN by calling 915-850-0900.
�
For your convenience and review of the XYMOGEN products please review the following link.*XYMOGEN-Catalog-Download �
* All of the above XYMOGEN policies remain strictly in force.
Sometimes low back pain comes out of nowhere, but that sudden twinge in the lower back does have a cause. With some cases, there�s a trigger, like picking up a heavy object/furniture from an awkward position.� But sometimes it can be a mystery and a challenge to diagnose.
It is important to know the cause of lower back pain to figure out the proper treatment plan. Otherwise, one could receive treatment for the wrong diagnosis and possibly exacerbate the existing injury.
Why do I need to know what triggers my back pain
Knowing what triggers back pain is the first step toward prevention and how to treat it.
Muscle spasms can stop you cold, and so I’m sure you don�t want another one.
Acute Back Pain
Acute low back pain typically comes on suddenly and lasts for a short time.
It often resolves on its own with self-care and a little time.
Back pain that lasts longer than three months, is considered chronic.
Chronic back pain can be more complex and require doctor/spine specialist-directed treatment, like physical therapy.
Lower Back Pain Is Common
Over 90 percent of adults will have some type of low back pain during their life.
It happens to be the number one cause of job disability globally and the leading contributor to missed work.
Lower back pain happens more often, compared to mid or upper back pain because of the location and all of the movement.
The lower back supports the upper body’s weight.
The low back known as the (lumbar spine) absorbs and distributes all of the forces and stress when we move:
Walking
Standing
Rest
Sitting
Sleeping
Spinal and abdominal muscles that are weakened heighten injury risk.
These factors combined make the lower back vulnerable to painful spinal conditions.
Common Triggers
When the lumbar spine:
Muscles
Tendons
Ligaments
And other connective tissues get:
Pulled
Strained
Sprained
Is when lower back pain happens.
Small tears in the disc can also contribute to back pain.
Basically, any number of activity and non-activity can cause damage to the spinal discs depending on the movement.
A study published in Arthritis Care & Research saw 999 people from 300 clinics in Australia, to examine their pain triggers.
The most common triggers include:
Manual tasks performed in an awkward posture
This includes:
Lifting boxes with the back and not bending the knees
Lifting something too heavy
Moderate physical activity
Vigorous physical activity
High intense strength training, long bike rides without proper conditioning, handling people or animals, and picking up children can be triggers and cause injury.
Other triggers include:
Overstretching
Twisting
And Trauma
From:
Falls
Vehicle accidents
Sports
Triggers You Might Not Know About
Although we don’t think about it being Distracted can increase the odds of low back pain.
When we’re not paying attention,� we are more likely to lift and carry something too far from our body or distribute the weight unevenly.
Feeling tired and Fatigued is associated with lower back pain.
Getting the proper amount of sleep is vital to restore our bodies to optimal performance.
When we don’t sleep the right amount of hours we make our bodies more susceptible to injury.
Treatment
Thankfully most cases are not serious and typically resolve within a few days to, four weeks healing on its own.
But if not, then there are these conservative treatments that can help you feel better and speed up healing.
Continue to Move Around
Depending on how much pain your body will allow, keep doing regular activities and exercise, as best as you can.
Activity increases blood flow, that moves oxygen and minerals/nutrients through the body.
Activity and movement help reduce muscle tension and inflammation.
Heat/Ice
This will not cure a strain or sprain, but they do help in pain reduction.
Heat helps loosen tight muscles.
This can be done by making warm compresses by soaking a towel in hot water.
Fold it to the size you need and wrap it around your lower back up to 20 minutes.� Then rest, massage and re-apply.
Massage can bring temporary relief from short-term back pain.
If the pain is intense and interferes with daily activities, a chiropractor/physical therapist can offer exercises and stretches to:
Improve posture
Increase mobility
Correct muscle imbalances
Acute lower back pain can stop you cold with its intensity.
Understanding triggers can take steps to maintain a healthy spine and avoid unpleasant surprises.
Medication
Both acetaminophen (Tylenol) and non-steroidal anti-inflammatory drugs (NSAIDs) can relieve pain.
These need to be taken, specifically as directed by your doctor. We’ve seen the opioid crisis going on and now this type of treatment is now a last resort. Various medical associations are now pushing towards natural and alternative therapies before turning to medication.
Prolonged use of NSAIDs (Aleve, Advil) can be associated with an upset stomach, kidney damage and gastrointestinal conditions and bleeding, among other conditions.
Back Pain Specialist | El Paso, Tx
Back pain is one of the most common health issues frequently diagnosed by healthcare professionals. Approximately 80 percent of the population will experience some type of back pain throughout their lifetimes. Because back pain can occur due to a wide array of health issues, diagnosis is essential to follow-up with the proper treatment approach. Dr. Alex Jimenez, chiropractor or doctor of chiropractic in El Paso, TX, utilizes chiropractic care to help treat back pain. Patients describe how their back pain affected their quality of life, and how Dr. Jimenez helped them improve their overall health and wellness with chiropractic. Patients highly recommend Dr. Jimenez and his staff as the non-surgical choice for back pain, among other common health issues.
NCBI Resources
Throbbing, dull and achy, sharp and excruciating. All of these words can be used to describe lower back pain. Unfortunately, lower back pain is a common occurrence in adults. According to the�American Chiropractic Association, low back pain is the single leading cause of disability worldwide, with millions of reported cases every year. Patients who experience lower back pain never want to deal with it again, but�it can flare up periodically. According to the�National Institute of Neurological Disorders and Stroke,�roughly 20% of those who suffer from low back pain will eventually deal with it chronically. This can cause frustration, primarily when it affects mobility.
Many healthcare professionals believe that peripheral neuropathy, which affects the peripheral nerves or the nerves which connect from the brain and spinal cord to the upper and lower extremities, can be permanent or irreversible. However, healthcare professionals like Dr. John Coppola and Dr. Valerie Monteiro have demonstrated that peripheral neuropathy can be treated through the utilization of a variety of treatment methods and techniques.
Dr. Coppola and Dr. Monteiro describe that because peripheral neuropathy can manifest due to a variety of health issues, such as diabetes, treating the underlying cause of a patient’s peripheral neuropathy can help treat their symptoms. The 5 critical keys for defeating peripheral neuropathy are ultimately described to help promote overall health and wellness. Dr. Alex Jimenez, a chiropractor in El Paso, Tx, can help ease symptoms associated with peripheral neuropathy. Dr. Alex Jimenez is the non-surgical choice for peripheral neuropathy.
Peripheral Neuropathy Relief & Treatment | El Paso, TX (2019)
Neuropathy is a medical term used to describe a collection of general diseases or malfunctions which affect the nerves. The causes of neuropathy, or nerve damage, can vary greatly among each individual and these may be caused by a number of different diseases, injuries, infections, and even vitamin deficiency states. However, neuropathy can most commonly affect the nerves that control the motor and sensory nerves. Because the human body is composed of many different kinds of nerves which perform different functions, nerve damage is classified into several types.
Neuropathy can also be classified according to the location of the nerves being affected and according to the disease-causing it. For instance, neuropathy caused by diabetes is called diabetic neuropathy. Furthermore, depending on which nerves are affected will depend on the symptoms that will manifest as a result. Below we will discuss several specific types of neuropathies clinically treated by chiropractors, physical therapists and physical medicine doctors alike, as well as briefly describing their causes and their symptoms.
Peripheral neuropathy, which is often simply referred to as �neuropathy,� is a state that happens when your nerves become damaged or injured, oftentimes simply disrupted. It�s estimated that neuropathy affects roughly 2.4 percent of the general populace and approximately 8 percent of people older than age 55. However, this quote doesn�t include people affected by neuropathy caused by physical trauma to the nerves.
Types
Neuropathy can affect any of the three types of peripheral nerves:
Sensory nerves, which transmit messages from the sensory organs, eyes, nose to the brain
Motor nerves, which track the conscious movement of the muscles
Autonomic nerves, which regulate the involuntary functions of the body
Sometimes, neuropathy will only impact one nerve. This is medically referred to as mononeuropathy and instances of it include:
Ulnar neuropathy, which affects the elbow
Radial neuropathy, which affects the arms
Peroneal neuropathy, which affects the knees
Femoral neuropathy, which affects the thighs
Cervical neuropathy, which affects the neck
Sometimes, two or more isolated nerves in separate regions of the body can become damaged, injured or disrupted, resulting in mono neuritis multiplex neuropathy. Most often, however, multiple peripheral nerves malfunction at the same time, a condition called polyneuropathy. According to the National Institute for Neurological Disorders and Stroke, or the NINDS, there are over 100 kinds of peripheral neuropathies.
Causes
Neuropathies are often inherited from birth or they develop later in life. The most frequent inherited neuropathy is the neurological disease Charcot-Marie-Tooth disease, which affects 1 in 2,500 people in the USA. Although healthcare professionals are sometimes not able to pinpoint the exact reason for an acquired neuropathy, medically referred to as idiopathic neuropathy, there are many known causes for them, including systemic diseases, physical trauma, infectious diseases, and autoimmune disorders.
A systemic disease is one which affects the whole body. The most frequent systemic cause behind peripheral neuropathy is diabetes, which can lead to chronically high blood glucose levels that harm nerves.
Other systemic issues can cause neuropathy, including:
Kidney disorders, which permit high levels of nerve-damaging toxic chemicals to flow in the blood
Toxins from exposure to heavy metals, including arsenic, lead, mercury, and thallium
Certain drugs and/or medications, including anti-cancer medications, anticonvulsants, antivirals, and antibiotics
Chemical imbalances because of liver ailments
Hormonal diseases, including hyperthyroidism, which disturbs metabolic processes, potentially inducing cells and body parts to exert pressure on the nerves
Deficiencies in vitamins, such as E, B1 (thiamine), B6 (pyridoxine), B12, and niacin, that can be vital for healthy nerves
Alcohol abuse, which induces vitamin deficiencies and might also directly harm nerves
Cancers and tumors that exert damaging pressure on nerve fibers and pathways
Chronic inflammation, which can damage protective tissues around nerves, which makes them more vulnerable to compression or vulnerable to getting inflamed and swollen
Blood diseases and blood vessel damage, which may damage or injure nerve tissue by decreasing the available oxygen supply
Signs and Symptoms
Depending on the reason and unique to each patient, signs, and symptoms of neuropathy can include:
Such signs and symptoms are dependent on whether autonomic, sensory, or motor nerves, as well as a combination of them, are ultimately affected. Autonomic nerve damage can influence physiological functions like blood pressure or create gastrointestinal problems and issues. Damage or dysfunction in the sensory nerves may impact sensations and sense of equilibrium or balance, while harm to motor nerves may affect movement and reflexes. When both sensory and motor nerves are involved, the condition is known as sensorimotor polyneuropathy.
Complications
Peripheral�neuropathy�may result in several complications, as a result of disease or its symptoms. Numbness from the ailment can allow you to be less vulnerable to temperatures and pain, making you more likely to suffer from burns and serious wounds. The lack of sensations in the feet, for instance, can make you more prone to developing infections from minor traumatic accidents, particularly for diabetics, who heal more slowly than other people, including foot ulcers and gangrene.
Furthermore, muscle atrophy may cause you to develop particular physical disfigurements, such as pes cavus, a condition marked by an abnormally high foot arch, and claw-like deformities in the feet and palms.
Neuropathy Treatment
The first step in neuropathy treatment should be finding the root cause that’s causing the neuropathy.
Treatment of diseases such as:
Diabetes
Guillain-Barre syndrome
Rheumatoid arthritis
Sarcoidosis
Other underlying diseases
Prevents continued nerve damage and in some cases heals the damaged nerves.
If you are unaware of any underlying disease that is causing the peripheral neuropathy, make sure to let your doctor know of abnormal symptoms you may be experiencing.
Medication
Peripheral neuropathy can be treated with various medications.
The first type used to treat mild symptoms are:
Over-the-counter pain medications
In more severe cases:
Opiates
Narcotic medications
Anti-seizure medications
A doctor may prescribe a lidocaine patch or anti-depressants, as well to relieve symptoms.
Patients should thoroughly discuss medication for neuropathy treatment with a doctor before proceeding.
Physical Therapy
Physical therapy can benefit symptoms in neuropathy treatment.
A therapist will teach the patient exercises and stretches to help improve symptoms and increase muscle strength/control.
A therapist may also recommend braces or splints to improve mobility.
Patient’s should attend all physical therapy sessions to gain the maximum benefits.
Acids
Supplements like:
Essential acids called ALA (alpha-Lipoic acid)
GLA (gamma-linolenic acid) and omega-3 fatty acids
These can have a beneficial effect on diabetic peripheral neuropathy.
L-Carnitine
L-carnitine is a substance that the body makes and stores in the:
Liver
Brain
There have been reports that certain diabetics with neuropathy symptoms could regain regular sensation in the limbs when they increased their consumption of carnitine called acetyl-L-carnitine.
Red meat
Peanut butter
Dairy products
Are good dietary sources of this nutrient.
Supplements are also available at health food stores and pharmacies and health/wellness clinics.
Vitamins/Minerals
Vitamin deficiencies can result in peripheral neuropathy in some people.
Therefore there needs to be a replenishing of vitamins:
B
B12
E
Can help to decrease symptoms.
Recommended dosages are 300mg daily of vitamin E.
Doses of the different B vitamins differ, but one option for patients is to take a daily B-complex supplement.
Herbal Supplements
Herbal remedies are an alternative to explore.
St. John’s Wort, is a herbal supplement that can be taken orally and can reduce the pain.
Topical creams that have capsaicin, which is an anti-inflammatory found in chili peppers, can reduce the burning sensation.
Traditional Chinese Medicine TCM
Acupuncture can be an effective way to manage peripheral neuropathy.
Acupuncture uses pressure points throughout the body to realign the body’s energy, called the qi or chi.
Also, movement therapy is a way to manage the condition.
Tai chi and yoga can also help:
Align the body
Mind
Encourage relaxation
Distract from the pain
Even if the neuropathy treatment is only temporary, it can still help.
We are blessed to present to you�El Paso�s Premier Wellness & Injury Care Clinic.
Neuropathy can be caused by a variety of injuries and/or aggravated conditions, often manifesting into a plethora of associated signs and symptoms. While every type of neuropathy, such as diabetic neuropathy or autoimmune disease-associated neuropathy, develops its own unique group of signs and symptoms, many patients will often report common complaints. Individuals with neuropathy generally describe their pain as stabbing, burning or tingling in character.
If you experience unusual or abnormal tingling or burning sensations, weakness and/or pain in your hands and feet, it�s essential to seek immediate medical attention in order to receive a proper diagnosis of the cause of your specific signs and symptoms. Early diagnosis may help prevent further nerve injury. Visit www.neuropathycure.org�for more details.
The most common causes of TBI which result in ER visits include slip-and-fall accidents, blows to the head, and automobile accidents. Abrupt forces which jolt the brain violently within the skull, such as shock waves from explosions, which can also cause TBI. Traumatic brain injury can also result from bullet wounds or other injuries which penetrate the skull and brain. �
Doctors characterize traumatic brain injury as mild, moderate, or severe depending on whether the injury causes unconsciousness, how long it lasts, and other symptoms. Although most traumatic brain injuries are characterized as mild because they’re not considered life-threatening, even a mild TBI can have serious and long-lasting effects if left untreated. � Resulting from an impact to the head which interrupts brain function, TBI is a threat to cognitive health in two ways: �
The effects of traumatic brain injury, which may be long-lasting or even permanent, can include unconsciousness, inability to recall the event, confusion, difficulty learning new information, trouble speaking, unsteadiness, lack of coordination, and health issues associated with vision or hearing, among other common symptoms.
TBI may increase the risk of developing Alzheimer’s disease or dementia, years after the injury takes place.
According to the Centers for Disease Control and Prevention (CDC), approximately 2.8 million TBI-associated ER visits, hospitalizations, and deaths occurred in 2013, the latest year for which information is available. The purpose of the following article is to discuss traumatic brain injury (TBI) and its connection with Alzheimer’s disease and other health issues. �
Traumatic Brain Injury Causes
Slip-and-fall accidents are the most common cause of traumatic brain injury, where falls pose a potentially serious risk factor for older adults. According to a CDC special report evaluating data from several federal agencies, approximately 56,000 seniors are hospitalized every year as a result of head injuries sustained in falls. A serious TBI from a slip-and-fall accident may ultimately result in long-term cognitive changes and reduced ability to function as well as overall mood changes. �
About 775,000 older adults have traumatic brain injury-related disability. Measures to reduce the risk of falls include: �
Using a walker or other assistive device to compensate for mobility problems, muscle weakness or poor balance.
Having your vision checked regularly and using glasses or contact lenses that correct for changes.
Working with your doctor to watch for medication side effects or interactions among drugs you�re taking.
Avoiding household hazards, such as clutter, loose rugs or poor lighting.
Automobile accidents are another common cause of traumatic brain injury (TBI). People can reduce the risk of being involved in an auto accident by keeping their vehicle in good condition, following the rules of the road, and buckling their seat belt. Wearing a helmet and when biking, inline skating, or playing contact sports can also help protect the head from TBI. �
TBI Symptoms
The severity of symptoms for traumatic brain injuries largely depends on whether the injury is mild, moderate, or severe. Mild traumatic brain injury (TBI), also known as a concussion, can either not cause unconsciousness or can cause unconsciousness which lasts for 30 minutes or less. Mild traumatic brain injury (TBI) symptoms may include: �
Inability to remember the traumatic event immediately before or up to 24 hours after
Confusion and disorientation
Difficulty learning new information
Headache
Dizziness
Blurry vision
Nausea and vomiting
Ringing in the ears
Trouble speaking coherently
Mood changes or changes in sleeping patterns
These symptoms will commonly manifest at the time of the TBI or soon after, however, these may sometimes not develop till several days or even weeks following the traumatic event. Mild TBI symptoms are generally temporary and these will clear up within hours, days, or weeks following the traumatic even, however, they can occasionally last several months or longer. �
Moderate traumatic brain injury can cause unconsciousness which lasts more than 30 minutes but less than 24 hours and severe traumatic brain injury can cause unconsciousness for more than 24 hours. Symptoms of moderate and severe traumatic brain injury are similar to those of mild traumatic brain injury but these are more serious and longer-lasting. �
In all types of TBI, cognitive changes are the most common symptoms. The ability to learn and remember new information is also frequently affected. Other commonly affected cognitive skills include the ability to pay attention, organize thoughts, plan effective strategies for completing tasks and activities, and/or make sound judgments. More severe changes in cognitive skills may develop years after the traumatic event where the person may appear to have recovered from the previous TBI. �
TBI Diagnosis
Evaluations performed by healthcare professionals to help diagnose traumatic brain injury (TBI) generally include: �
Questions about the traumatic event
Analysis of the person’s level of consciousness and confusion
Neurological tests to analyze memory and thinking, vision, hearing, touch, balance, and reflexes
Let your doctor know if you are taking any drugs and/or medications, especially blood thinners, because they can increase the chance of complications. Also, inform your healthcare professional if you drink alcohol or take illicit drugs. �
Depending on the cause of the TBI and the severity of symptoms, brain imaging with computed tomography (CT) may be necessary to determine if there�s swelling or bleeding in the brain. If you experience a traumatic brain injury, it should be noted in your permanent medical record and mentioned whenever familiarizing a new doctor with your medical history. �
Traumatic Brain Injury Treatment
The most serious traumatic brain injuries commonly require specialized hospital care and can also need several months of rehabilitation. Most traumatic brain injuries are mild and can be treated with either a short hospital stay for observation or at-home monitoring followed by outpatient rehabilitation, if necessary. Treatment of dementia in a person with a history of traumatic brain injuries varies depending on the type of dementia diagnosed. Treatment strategies for Alzheimer’s disease or another type of dementia are ultimately the same for people with and without a history of traumatic brain injury. �
Alzheimer’s disease and other types of dementia which may occur as a long-term result of traumatic brain injury (TBI) are progressive health issues which worsen over time. As with all types of dementia, they can affect a person’s quality of life, shorten lifespan, and complicate the effort to manage other health issues effectively. However, because other types of dementia, such as CTE, are considerably new for researchers and healthcare professionals, clinical guidelines for diagnosis and treatment do not exist. Several research studies are underway to gain further insight into the patterns of TBI and Alzheimer’s disease which may be implicated in CTE and to develop strategies for prevention, diagnosis, and treatment. �
As previously mentioned in the article above, Alzheimer�s disease and other types of dementia which may occur as a long-term result of traumatic brain injury (TBI) are progressive health issues which may ultimately worsen over time. As with all types of dementia, these can affect quality of life, shorten life span, and complicate the effort to manage other health issues effectively. It’s essential for patients and healthcare professionals to diagnose and treat a traumatic brain injury to prevent further health issues in the future, including Alzheimer’s disease and dementia. – Dr. Alex Jimenez D.C., C.C.S.T. Insight
According to research studies, TBI is ultimately associated with Alzheimer�s disease and other types of dementia. Doctors commonly characterize traumatic brain injury as mild, moderate, or severe depending on whether the previous traumatic event causes unconsciousness, how long it lasts, and other well-known symptoms. The scope of our information is limited to chiropractic, musculoskeletal and nervous health issues as well as functional medicine articles, topics, and discussions. To further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900 . �
Curated by Dr. Alex Jimenez �
Additional Topic Discussion: Chronic Pain
Sudden pain is a natural response of the nervous system which helps to demonstrate possible injury. By way of instance, pain signals travel from an injured region through the nerves and spinal cord to the brain. Pain is generally less severe as the injury heals, however, chronic pain is different than the average type of pain. With chronic pain, the human body will continue sending pain signals to the brain, regardless if the injury has healed. Chronic pain can last for several weeks to even several years. Chronic pain can tremendously affect a patient’s mobility and it can reduce flexibility, strength, and endurance.
Neural Zoomer Plus for Neurological Disease
Dr. Alex Jimenez utilizes a series of tests to help evaluate neurological diseases. The Neural ZoomerTM Plus is an array of neurological autoantibodies which offers specific antibody-to-antigen recognition. The Vibrant Neural ZoomerTM Plus is designed to assess an individual�s reactivity to 48 neurological antigens with connections to a variety of neurologically related diseases. The Vibrant Neural ZoomerTM Plus aims to reduce neurological conditions by empowering patients and physicians with a vital resource for early risk detection and an enhanced focus on personalized primary prevention. �
Formulas for Methylation Support
XYMOGEN�s Exclusive Professional Formulas are available through select licensed health care professionals. The internet sale and discounting of XYMOGEN formulas are strictly prohibited.
Proudly,�Dr. Alexander Jimenez makes XYMOGEN formulas available only to patients under our care.
Please call our office in order for us to assign a doctor consultation for immediate access.
If you are a patient of Injury Medical & Chiropractic�Clinic, you may inquire about XYMOGEN by calling 915-850-0900.
�
For your convenience and review of the XYMOGEN products please review the following link.*XYMOGEN-Catalog-Download �
* All of the above XYMOGEN policies remain strictly in force.
Traumatic brain injury (TBI) is one of the most common causes of disability and death among the general population, especially in young adults. Additionally, TBI is associated with a variety of neurodegenerative diseases, such as Alzheimer�s disease (AD) and Parkinson�s disease (PD). It is essential for patients and healthcare professionals to understand the pathophysiological mechanisms of traumatic brain injury and neurodegenerative diseases to diagnose factors which may ultimately cause neurodegeneration associated with TBI as well as determine possible treatment approaches. �
Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been associated with TBI and neurodegenerative diseases. As a matter of fact, oxidative stress is believed to be an essential pathological mechanism which connects TBI to neurodegenerative diseases. Research studies have demonstrated that reactive oxygen species and their subsequent byproducts may play a role as novel fluid markers for the identification and monitoring of cellular damage. These reactive oxygen species can also serve as a suitable treatment approach to ultimately help reduce the risk of neurodegenerative diseases and promote quality of life for people suffering from TBI and other health issues. �
Pathogenesis of TBI and Neurodegenerative Diseases
Several research studies have demonstrated the development of neurodegenerative diseases following TBI. Previous research studies have also shown a three times higher prevalence of PD following TBI. Likewise, the prevalence of AD has also been shown to be higher following TBI. Moreover, traumatic brain injury has been demonstrated to be a risk factor for ALS with several research studies demonstrating an increased risk of neurological diseases in professional Italian soccer players. A case-control research study of ALS patients in the United States also found an increased risk of ALS with repeated TBI. However, it currently appears unlikely that a single occurrence of TBI could considerably affect the risk of ALS. Additionally, chronic traumatic encephalitis (CTE), a tau pathology, has been demonstrated in NFL players and professional athletes which suffer from repeated TBI. Because of the prevalence of neurodegenerative diseases and other health issues appears to increase after TBI, it is relevant to discuss the pathogenesis of TBI and neurodegenerative diseases. �
In several research studies, TBI patients and TBI animal models have been shown to demonstrate characteristic pathological mechanisms in key proteins, indicating the disruption of axonal transport due to axonal injury. The accumulated proteins which result in protein neuropathy include A?, ?-synuclein, and tau protein. These abnormal proteins are specifically interesting because it is well-known that A? protein aggregation is an essential pathological factor of AD, ?-synuclein protein aggregation is an important characteristic of PD, and tau protein aggregation is fundamental in the pathogenesis of CTE and AD. Surprisingly, these protein neuropathological changes occur in all three proteins through oxidative stress-associated free radicals and reactive aldehydes which are commonly increased following TBI. Additionally, the reactive aldehyde byproducts of lipid peroxidation have been demonstrated to result in further lipid peroxidation. Provided that these pathological proteins can also cause the development of free radicals through excitotoxicity or changes in mitochondrial ion balance. Because reactive aldehydes can cause further lipid peroxidation and protein carbonylation, it is possible that oxidative stress also plays a key role in a self-propagating cycle of lipid peroxidation, protein carbonylation, and neurodegenerative protein aggregation. Further research studies are still necessary to determine these outcome measures. �
TBI patients and TBI animal models have also demonstrated behavioral signs and symptoms, such as post-TBI dementia which resembles AD, post-TBI motor deficits which offer evidence of post-TBI brain tissue damage in the region of the hippocampus thus, resembling brain tissue damage in AD, and damage in the basal ganglia thus, resembling the brain tissue damage which occurs in PD. Functional magnetic resonance imaging (fMRI) research studies have also shown transient and persistent neuropathological functional changes in the brain of TBI patients which may contribute to the development of chronic neurodegenerative diseases. These changes observed in post-injury patients suggest that TBI could cause the initial tissue damage which resembles or results in processes in the pathophysiology of neurodegenerative diseases. �
Based on the essential role which oxidative stress plays in post-TBI secondary injury and in the pathophysiology of neurodegenerative diseases, it is possible that oxidative stress is a key process in connecting TBI to the increased prevalence of neurodegenerative diseases. Furthermore, oxidative stress may serve as a therapeutic, diagnostic, or prognostic marker in evaluating the risks of long term neurological diseases following TBI which can help determine a proper treatment approach. �
Treatment of TBI and Neurological Diseases
Considering the considerable risks caused by TBI, it is clear that there is a need for effective methods and techniques for early diagnosis and treatment of TBI patients to ultimately reduce the prevalence of post-TBI neurological sequelae. Currently, the diagnosis of TBI is primarily based on the patient’s provided history and clinical observations. Several clinical systems have been developed for the evaluation of mTBI, which is the most common type of clinical TBI, including the Sports Concussion Assessment Tool and Military Acute Concussion Evaluation. However, these assessments are made to be utilized immediately after injury and, as such, quickly decreasing in sensitivity with delayed evaluation. Moreover, the Glasgow Coma Scale has been utilized for decades and allows for both quick and constant communication of the patient’s condition nevertheless, the currently accepted threshold score of 13 may not be adequate to exclude visible abnormalities on computed tomography imaging which require neurosurgical intervention. Due to these outcome measures in current diagnostic methods and techniques, civilian and military work-groups have recommended the development of fluid or imaging-based biomarkers for the diagnosis of mTBI to ultimately determine the most appropriate treatment approach. �
Several substances and proteins have been suggested to play an essential role as fluid biomarkers, including glial fibrillary acidic protein (GFAP), calcium-binding protein S100B, and tau protein. In most cases, the presence of these biomarkers demonstrates a blood-brain barrier disruption within the central nervous system. These proteins have been demonstrated to be acutely increased following TBI in human participants, however, these currently face challenges of low specificity, poor correlation with the development of post-concussive symptoms, and poor correlation with imaging abnormalities. �
Provided the key role of oxidative stress and neuroinflammation in secondary neuronal injury and neurodegeneration, it is possible that the results of these processes may also serve as suitable biomarkers. As previously mentioned, plasma levels of several oxidative stress and inflammation-associated markers have been demonstrated to be increased in serum up to 42 days following multiple blast injuries and as early as one day following a single injury. Furthermore, lipid peroxidation products, such as acrolein and 4-hydroxynonenal, have also been demonstrated to be associated not only in TBI secondary injury but also in other types of neuronal health issues, such as spinal cord injury and ischemia-reperfusion injury. Provided that these peroxidation products are not only a cause of damage but also able to cause the modification of biomacromolecules where it is possible that measured increases may be able to demonstrate not only present damage but also continued secondary injury. Treatment of oxidative stress could help as a possible prophylactic treatment to decrease the risk of post-TBI neurodegeneration. Direct supplementation with endogenous antioxidants, such as glutathione and superoxide dismutase, has not demonstrated considerable benefits because these do not easily cross the blood-brain barrier. However, the glutathione precursor N-acetylcysteine has demonstrated several acute benefits in both animal and human research studies. Additionally, focusing on substances of the oxidative cascade, such as reactive aldehydes, has been demonstrated as a possible treatment due to the more lengthened half-lives of these substances when compared to ROS. However, despite the lengthened increase of inflammatory and oxidative byproducts, trials of antioxidant therapies have generally favored acute treatment, often within hours of the TBI, suggesting that acute treatment is appropriate. �
Considering the essential role of post-TBI oxidative stress in the development and progression of chronic neurodegenerative diseases, diagnosis and treatment of this process seem to be promising for the management and regulation of neurodegenerative diseases following TBI. Provided their connection to oxidative stress, inflammatory markers, and lipid peroxidation byproducts could serve as surrogate biofluid markers. Finally, antioxidant treatment strategies can help neutralize perpetuation of cellular and molecular damage and decrease risks of long-term neurological sequelae. �
As previously mentioned in the article above, oxidative stress seems to be the key pathological mechanism connecting neuroinflammation and glutamatergic excitotoxicity in both TBI and neurodegenerative diseases. Due to the increased prevalence of TBI and neurodegenerative diseases, the development of new safe and effective, early diagnosis and treatment approaches is fundamental for overall health and wellness. Many healthcare professionals can improve symptoms and health issues associated with TBI and neurodegenerative diseases. – Dr. Alex Jimenez D.C., C.C.S.T. Insight
TBI is associated with a variety of neurodegenerative diseases, such as Alzheimer�s disease (AD) and Parkinson�s disease (PD). It is essential for patients and healthcare professionals to understand the pathophysiological mechanisms of traumatic brain injury and neurodegenerative diseases to diagnose factors which may ultimately cause neurodegeneration associated with TBI as well as determine possible treatment approaches. The scope of our information is limited to chiropractic, musculoskeletal and nervous health issues as well as functional medicine articles, topics, and discussions. To further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900 . �
Curated by Dr. Alex Jimenez �
Additional Topic Discussion: Chronic Pain
Sudden pain is a natural response of the nervous system which helps to demonstrate possible injury. By way of instance, pain signals travel from an injured region through the nerves and spinal cord to the brain. Pain is generally less severe as the injury heals, however, chronic pain is different than the average type of pain. With chronic pain, the human body will continue sending pain signals to the brain, regardless if the injury has healed. Chronic pain can last for several weeks to even several years. Chronic pain can tremendously affect a patient’s mobility and it can reduce flexibility, strength, and endurance.
Neural Zoomer Plus for Neurological Disease
�
Dr. Alex Jimenez utilizes a series of tests to help evaluate neurological diseases. The Neural ZoomerTM Plus is an array of neurological autoantibodies which offers specific antibody-to-antigen recognition. The Vibrant Neural ZoomerTM Plus is designed to assess an individual�s reactivity to 48 neurological antigens with connections to a variety of neurologically related diseases. The Vibrant Neural ZoomerTM Plus aims to reduce neurological conditions by empowering patients and physicians with a vital resource for early risk detection and an enhanced focus on personalized primary prevention. �
Formulas for Methylation Support
XYMOGEN�s Exclusive Professional Formulas are available through select licensed health care professionals. The internet sale and discounting of XYMOGEN formulas are strictly prohibited.
Proudly,�Dr. Alexander Jimenez makes XYMOGEN formulas available only to patients under our care.
Please call our office in order for us to assign a doctor consultation for immediate access.
If you are a patient of Injury Medical & Chiropractic�Clinic, you may inquire about XYMOGEN by calling 915-850-0900.
�
For your convenience and review of the XYMOGEN products please review the following link.*XYMOGEN-Catalog-Download
* All of the above XYMOGEN policies remain strictly in force.
IFM's Find A Practitioner tool is the largest referral network in Functional Medicine, created to help patients locate Functional Medicine practitioners anywhere in the world. IFM Certified Practitioners are listed first in the search results, given their extensive education in Functional Medicine