ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page

Chronic Back Pain

Back Clinic Chronic Back Pain Team. Chronic back pain has a far-reaching effect on many physiological processes. Dr. Jimenez reveals topics and issues affecting his patients. Understanding the pain is critical to its treatment. So here we begin the process for our patients in the journey of recovery.

Just about everyone feels pain from time to time. When you cut your finger or pull a muscle, pain is your body’s way of telling you something is wrong. Once the injury heals, you stop hurting.

Chronic pain is different. Your body keeps hurting weeks, months, or even years after the injury. Doctors often define chronic pain as any pain that lasts for 3 to 6 months or more.

Chronic back pain can have real effects on your day-to-day life and your mental health. But you and your doctor can work together to treat it.

Do call upon us to help you. We do understand the problem that should never be taken lightly.


Spine Trauma Imaging Diagnostics Evaluation

Spine Trauma Imaging Diagnostics Evaluation

Imaging diagnostics are an essential element in the evaluation of spine trauma. Over the last few decades, the rapid evolution of imaging technology has tremendously changed the assessment and treatment of spinal injuries. Imaging diagnostics utilizing CT and MRI, among others, are helpful in the acute and the chronic settings. Spinal cord and soft-tissue injuries are best evaluated by magnetic resonance imaging, or MRI, whereas computed tomography scanning, or CT scans, best evaluate spinal trauma or spine fracture. The purpose of the article below is to demonstrate the significance of imaging diagnostics in spine trauma.

 

Cervical Spine Fracture Evaluation

 

Practice Essentials

 

Approximately 5-10% of unconscious patients who present to the ED as the result of a motor vehicle accident or fall have a major injury to the cervical spine. Most cervical spine fractures occur predominantly at two levels: one-third of injuries occur at the level of C2, and one-half of injuries occur at the level of C6 or C7. Most fatal cervical spine injuries occur in upper cervical levels, either at craniocervical junction C1 or C2. [1, 2, 3, 4, 5, 6, 7, 8]

 

Anatomy

 

The normal anatomy of the cervical spine consists of 7 cervical vertebrae separated by intervertebral disks and joined by a complex network of ligaments. These ligaments keep individual bony elements behaving as a single unit. [7]

 

View the cervical spine as three distinct columns: anterior, middle, and posterior. The anterior column is composed of the anterior longitudinal ligament and the anterior two-thirds of the vertebral bodies, the annulus fibrosus and the intervertebral disks. The middle column is composed of the posterior longitudinal ligament and the posterior one-third of the vertebral bodies, the annulus, and intervertebral discs. The posterior column contains all of the bony elements formed by the pedicles, transverse processes, articulating facets, laminae, and spinous processes.

 

The anterior and posterior longitudinal ligaments maintain the structural integrity of the anterior and middle columns. The posterior column is held in alignment by a complex ligamentous system, including the nuchal ligament complex, capsular ligaments, and the ligamenta flava.

 

If one column is disrupted, other columns may provide sufficient stability to prevent spinal cord injury. If two columns are disrupted, the spine may move as two separate units, increasing the likelihood of spinal cord injury.

 

The atlas (C1) and the axis (C2) differ markedly from other cervical vertebrae. The atlas has no vertebral body; however, it is composed of a thick anterior arch with two prominent lateral masses and a thin posterior arch. The axis contains the odontoid process that represents fused remnants of the atlas body. The odontoid process is held in tight approximation to the posterior aspect of the anterior arch of C1 by the transverse ligament, which stabilizes the atlantoaxial joint. [9, 7]

 

Apical, alar and transverse ligaments provide further stabilization by allowing spinal column rotation; this prevents posterior displacement of the dens in relation to the atlas.

 

In pediatric patients, the spine is more flexible, and therefore, neural damage occurs much earlier than musculoskeletal injury in young patients. Because of this high flexibility, fatal consequences can occur with sometimes even minimal structural damage. Compared to adults, children have a different fulcrum because of a relatively large head, the vertebrae are not completely ossified, and the ligaments are firmly attached to articular bone surfaces that are more horizontal, making the pathophysiology of injury in children different from that in adults. [6, 10]

Dr-Jimenez_White-Coat_01.png

The neck consists of seven bones, or the cervical vertebrae, which support the head and connect it the body. A cervical fracture is commonly referred to as a broken neck. Cervical spine fractures often occur due to trauma or injury, such as from automobile accidents or slip-and-fall accidents. Imaging diagnostics have advanced to be able to help healthcare professionals diagnose cervical spine health issues.

Dr. Alex Jimenez D.C., C.C.S.T.

Evaluation of injury

 

When a cervical spine injury is suspected, neck movement should be minimized during transport to the treating facility. Ideally, the patients should be transported on a backboard with a semirigid collar, with the neck stabilized on the sides of the head with sandbags or foam blocks taped from side to side (of the board), across the forehead.

 

If spinal malalignment is identified, place the patient in skeletal traction with tongs as soon as possible (with very few exceptions), even if no evidence of neurologic deficit exists. The specific injury involved and capabilities of the consulting staff guide further management.

 

Place tongs one finger width above the earlobes in alignment with the external auditory canal. The consultant applies the tongs for traction under close neurologic and radiograph surveillance. Care must be taken while managing the airway in patients with potential cervical spine injuries. Video-assisted intubation should be considered to limit cervical spine motion during the process of securing the airway. [11, 12, 13, 1]

 

Cervical spine injuries are best classified according to several mechanisms of injury. These include flexion, flexion-rotation, extension, extension-rotation, vertical compression, lateral flexion, and imprecisely understood mechanisms that may result in odontoid fractures and atlanto-occipital dislocation. [1, 14, 4, 5, 15, 7, 16]

 

Radiographic evaluation is indicated in the following:
[2, 2, 17, 18, 15, 19, 20]

 

  • Patients who exhibit neurologic deficits consistent with a cord lesion
  • Patients with an altered sensorium from head injury or intoxication
  • Patients who complain about neck pain or tenderness
  • Patients who do not complain about neck pain or tenderness but have significant distracting injuries

 

A standard trauma series is composed of 5 views: cross-table lateral, swimmer’s, oblique, odontoid, and anteroposterior. Approximately 85-90% of cervical spine injuries are evident in the lateral view, making it the most useful view from a clinical standpoint.

 

The advent of readily available multidetector computed tomography has supplanted the use of plain radiography at many centers. Recent literature supports CT as more sensitive with lower rates of missed primary and secondary injury. [14]

 

Thoracic Spinal Trauma Imaging

 

Computed Tomography

 

Findings

 

Thin-section axial CT performed by using a bone algorithm is the single most sensitive means by which to diagnose fractures of the thoracic spine. Routine helical CT scans of the thoracic spine are valuable because multisection CT scanners can generate high-resolution spinal images, even during a primary multisystemic trauma evaluation. [21, 22, 28, 29]

 

The CT images below display various thoracic spinal traumatic injuries.

Figure 1: Lateral 3-dimensional maximum intensity projection CT scan of multiple upper thoracic and lower cervical spinous process fractures. The force necessary to fracture the spinous processes of the upper thoracic spine may also involve the lower cervical spine.

Figure 2:�Three-dimensional CT scan of complex mid-face fractures including a Le Fort I injury in a patient who had fractures of the upper thoracic and lower cervical spinous processes. Sudden deceleration of the face and skull resulted in severe stress forces on the spinous processes.

Figure 3:�Axial CT scan of a T12 compression fracture demonstrates a fracture line through the anterior body of the T12 (white arrow), posterior displacement of the T12 vertebral endplate (black arrow) into the spinal canal, and a fracture of the left transverse spinous process.

Figure 4:�Axial and sagittal CT images of an acute lower thoracic spine compression fracture. Note the paraspinal hematoma (white arrows) and the slight narrowing of the spinal canal at the level of the compression fracture (double yellow arrows).

Figure 5:�Three-dimensional CT scan of the thoracic spine demonstrates a compression fracture.

Figure 6:�Sagittal CT scan of the thoracic and lumbar spine demonstrates a complete distraction fracture at the L1-2 interspace (arrow).

Figure 7:�Axial CT image of an unstable fracture of the thoracic spine. Note the association of compression of the vertebral body with laminar and pedicle fractures. Injury to the anterior, middle and posterior columns results in an unstable fracture.

Figure 8:�Coronal multiplanar reformatted CT images of an unstable thoracic spinal fracture. The association of both anterior compression and lateral subluxation (arrows) indicates instability.

Figure 9:�Volume maximum intensity projection CT image of the entire thoracic spine demonstrates spinous process fractures of the C7 through T7 vertebra. Although spinous process fractures of the T1 may occur in a manner similar to a clay shoveler’s fracture of the C6 or C7, middle and lower thoracic spinous process fractures most likely occur due to a combination of forward flexion and axial rotation. Note the lack of findings of compression vertebral body fractures.

Figure 10:�Three-dimensional surface CT image of the cervical spine. Note the spinous process fractures of the C6, C7, and T1. CT examination of both the cervical and the thoracic spine was obtained as a single study using a multisection CT scanner. All images were obtained by using a 3-mm reconstruction with 1.5-mm collimation. Scanning times were 0.5 seconds per rotation. These 3-dimensional images were reconstructed by using an independent imaging workstation. In complex cases, reconstructed images are very useful in consultation with treating physicians.

Figure 11:�Scout view image from a spiral CT scan shows a complete subluxation fracture (curved blue lines) of the lower thoracic spine. Such an injury combines lateral displacement with rotational injury (arrow).

Figure 12: Fracture dislocation of the lower thoracic spine. Axial CT image demonstrates the large distance that the lower thoracic spine has been displaced.

Figure 13:�Axial CT myelogram in a patient with a gunshot wound to the thoracic spine. While a fracture is obvious, the injury also resulted in a dural tear with a freely leaking cerebrospinal fluid space (white arrow). The midline fracture of the vertebral body is noted in the lower image (black arrow).

Figure 14:�Axial CT image demonstrates a complex fracture of the T12 with rotation subluxation. Air was introduced into the epidural space during the injury.

Figure 15:�Sagittal multi-planar CT image of a burst fracture following fixation. The image has been cut in the sagittal plane. Surgical repair of unstable thoracic spine fractures, such as this burst fracture, usually involves placement of an interposition graft (double black arrow) together with a lateral plate held in position by screws placed into the vertebral body above and below the injury. A residual fragment of the burst fracture is seen anteriorly (white arrow). The double white arrow illustrates the restored spinal canal.

Figure 16:�Shaded-surface 3-dimensional CT image of a burst fracture following fixation. The image has been cut in the sagittal plane. Surgical repair of unstable thoracic spine fractures, such as this burst fracture, usually involves placement of an interposition graft (double black arrow) together with a lateral plate held in position by screws placed into the vertebral body above and below the injury. A residual fragment of the burst fracture is seen anteriorly (white arrow).

Figure 17: Shaded-surface 3-dimensional CT image of a gunshot wound to the thoracic spine. Although the bullet passed into the interspace, causing a fracture of the vertebral body, the bullet stopped within the spinal canal. Note the outline drawn around the bullet (arrow).

Figure 18:�Shaded-surface 3-dimensional CT scan of a gunshot wound to the thoracic spine. In other cases, the bullet may enter the spinal canal superior to the final position in the canal. The passage of the bullet within the spinal canal (yellow arrow) destroys the spinal cord and also may result in a fracture of the vertebral body. Note that the bullet has been darkened (blue arrow).

Figure 19:�Axial CT image in a man with known pulmonary tuberculosis and back pain. Note the left-sided paraspinal abscess (arrow).

Figure 20:�Sagittal shaded-surface 3-dimensional reconstruction CT scan of the lower thoracic spine. The spinal image has been cut in the midsagittal plane to demonstrate posterior displacement of the thoracic spinal vertebral body (arrow) and downward displacement of the superior endplate. Note the general wedge shape of the vertebral body.

Because of its superior contrast definition and the absence of superimposed structures, good-quality CT imaging depicts more thoracic spinal injuries than do conventional radiographic studies. However, the percentage of clinically important fractures that are seen on CT scans but not on radiographs is lower with thoracic than with cervical spinal fractures. Most of the fractures missed on radiographs were spinous process fractures, transverse processes fractures, and fractures in large patients. Because axial CT is performed with patients in a neutral position, bony distraction of the fracture fragments and subluxations of the spinal articulations may not be as significant on CT images as on they are on acute trauma-series radiographs. [22, 25, 28, 29, 30, 31, 32]

 

The level of a burst fracture and the percentage of spinal canal stenosis have been correlated with associated neurologic deficits. A significant correlation exists between neurologic deficit and the percentage of spinal canal stenosis. The higher the level of injury, the greater the probability of neurologic deficit. This association may be related to the smaller canal diameter in the upper thoracic spine. The severity of neurologic deficit cannot be predicted.

 

In patients with Chance-type fractures, CT scans often show a burst-type fracture with posterior cortex buckling or retropulsion, and serial transaxial CT images often show a gradual loss of definition of the pedicles. [23]

 

Dr Jimenez White Coat

The thoracic spine, located between the cervical and lumbar vertebrae, consists of 12 vertebrae levels. Thoracic spinal trauma, including spinal cord injuries along the middle of the spine, can generally be severe, however, with early treatment, long-term prognosis is good. Therefore, imaging diagnostics for thoracic spinal trauma are essential. Many healthcare professionals can provide patients with these services.

Dr. Alex Jimenez D.C., C.C.S.T.

Degree of Confidence

 

The confidence level for the diagnosis of a thoracic spinal fracture with 2-mm axial sections (possible with a multisection CT unit) is greater than 98% and reportedly 99%.

 

Because axial CT is performed with the patient in a neutral position, a bony distraction of the fracture fragments and subluxations of the spinal articulations may not be as significant on CT images as on acute trauma-series radiographs.

 

False Positives/Negatives

 

False-positive results may occur in patients with a Schmorl node, which is a chronic internal herniation of the vertebral disk into the thoracic vertebral body endplate and failure of the fusion of the anterior vertebral endplate epiphysis, resulting in a limbus vertebra. False-negative CT studies may occur in chronic stress injuries and severe generalized osteoporotic endplate fractures.

 

It has been reported that among trauma patients who had a chest and/or abdominal CT, fractures of the thoracic spine are frequently underreported. Sagittal reformats of the spine obtained from thin sections, and morphometric analysis using electronic calipers help to identify fractures that might otherwise not be identified. [25]

 

In conclusion, imaging diagnostics of�spinal trauma or spine fracture are essential towards the assessment and treatment of patients. Magnetic resonance imaging, or MRI, is helpful in the evaluation of spinal cord and soft-tissue injuries whereas computed tomography scanning, or CT scans, is helpful in the evaluation of spinal trauma or spine fracture. The understanding of imaging technology has tremendously enhanced advances in treatment.� The scope of our information is limited to chiropractic, spinal injuries, and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

 

Curated by Dr. Alex Jimenez

 

Green Call Now Button H .png

 

Additional Topics: Acute Back Pain

 

Back pain�is one of the most prevalent causes of disability and missed days at work worldwide. Back pain attributes to the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments, and muscles, among other soft tissues. Because of this, injuries and/or aggravated conditions, such as�herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief.

 

blog picture of cartoon paper boy

 

EXTRA EXTRA | IMPORTANT TOPIC: Chiropractic Neck Pain Treatment

Imaging Diagnostics of Abnormalities of the Spine

Imaging Diagnostics of Abnormalities of the Spine

Imaging diagnostics of the spine consist from radiographies to computed tomography scanning, or CT scans, in which CT is utilized in conjunction with myelography and most recently with magnetic resonance imaging, or MRI. These imaging diagnostics are being used to determine the presence of abnormalities of the spine, scoliosis, spondylolysis and spondylolisthesis. The following article describes various imaging modalities and their application in the evaluation of common spinal disorders described.

 

Achondroplasia

 

  • Achondroplasia is the most common cause of rhizomelic (root/proximal) short-limb dwarfism. Patients are of normal intelligence.�
  • It shows multiple distinct radiographic abnormalities affecting long bones, pelvis, skull, and hands.
  • Vertebral column changes may present with significant clinical and neurological abnormalities.�
  • Achondroplasia is an autosomal dominant disorder with about 80% of cases from a random new mutation. Advanced paternal age is often linked. Achondroplasia results from a mutation in the fibroblast growth factor gene (FGFR3) which causes abnormal cartilage formation.
  • All bones formed by endochondral ossification are affected.
  • Bones that form by intra-membranous ossification are not normal.
  • Thus, skull vault, iliac wings develop normally vs. the base of the skull, some facial bones, vertebral column, and most tubular bones are abnormal.

 

image-55.png
  • Dx: is usually made at birth with many features becoming apparent during the first few years of life.
  • Radiography plays an important part of clinical diagnosis.
  • Typical features include: shortening and widening of tubular bones, metaphyseal flaring, Trident hand with short, broad metacarpals and proximal and middle phalanges. Longer Fibular, Tibial bowing, markedly short humeri often with dislocated Radial head and elbow flexion deformity.

 

 

  • Spine: characteristic narrowing of L1-L5 interpedicular distance on AP views. Lateral view shows shortening of pedicles and vertebral bodies, �bullet shaped vertebrae� can be a characteristic feature. Early degenerative changes and canal narrowing occur. The horizontal sacral inclination is an important feature.
  • Skull demonstrates frontal bossing, midface hypoplasia and markedly narrow foramen magnum.
  • Pelvis is broad and short with characteristic �champagne glass� pelvis appearance.
  • Femoral heads are hypoplastic, but hip arthrosis is normally not observed even in older patients likely due to reduced leverage and lightweight (50kg) of patients.

 

Management of Achondroplasia

 

  • Recombinant human growth hormone (GH)�is currently being used to augment the height of patients with achondroplasia.
  • Most complications of Achondroplasia are related to the spine: vertebral canal stenosis, thoracolumbar kyphosis, narrowed foramen magnum and others.
  • Laminectomy extending to pedicles/lateral recess with foraminotomies and discectomies can be performed.
  • Cervical manipulations are contraindicated.

 

Dr Jimenez White Coat

Imaging diagnostics play a fundamental role in the diagnosis the of scoliosis, an abnormality of the spine which is believed to occur due to an underlying health issue, although most cases of scoliosis are idiopathic. More over, radiographies, CT scans, and MRI, among others, can help monitor the changes of the deformity of the spine associated with this spinal manifestation. Chiropractors can provide imaging diagnostics to patients with scoliosis before proceeding with treatment.�

Dr. Alex Jimenez D.C., C.C.S.T.

Scoliosis

 

  • Scoliosis is defined as the abnormal lateral curvature of the spine >10-degree when examined by Cobb�s method of mensuration.
  • Scoliosis can be described as postural and structural.
  • Postural scoliosis is not fixed and can be improved by lateral flexion to the side of the convexity.
  • Structural scoliosis has multiple causes ranging from:
    ? Idiopathic (>80%)
    ? Congenital (wedge or hemivertebra, blocked vertebra, Marfan syndrome, skeletal dysplasias)
    ? Neuropathic (neurofibromatosis, neurological conditions like tethered cord, spinal dysraphism, etc.)
    ? Scoliosis d/t Spinal neoplasms
    ? Post-traumatic etc.
  • Idiopathic scoliosis is the most common type (>80%).
  • Idiopathic scoliosis can be of 3-types ( infantile, juvenile, adolescent).
  • Idiopathic adolescent scoliosis if patients >10y.o.
  • Infantile scoliosis if <3 y.o. M>F.
  • Juvenile scoliosis if >3 but <10-y.o.
  • Idiopathic Adolescent scoliosis is the most common with F:M 7:1 (adolescent girls are at particular risk).
  • Etiology: unknown thought to be the result of some disturbance of proprioceptive control of the spine and spinal musculature, other hypotheses exist.
  • Most seen in the thoracic region and most commonly convex to the right.
  • Dx: full spine radiography with gonadal and breast shielding (preferably PA views to protect breast tissue).

 

Rx: 3-Os: Observation, Orthosis, Operative intervention

 

� Curves that are 50-degrees or greater and rapidly progressing will require operative intervention to prevent severe deformity of the thorax & ribs leading to cardiopulmonary abnormalities.
� �? If curvature is < 20-degree, no treatment is required (observation).
� �? For curves that are >20-40-degrees bracing may be used (orthosis).

 

 

  • Milwaukee (metal) brace (left).
  • Boston brace polypropylene lined with polyethylene (right) often preferred because it can be worn under clothing.
  • Bracing wearing is required for 24-hours for the duration of the treatment.

 

 

  • Note Cobb�s method of mensuration to record spinal curvature. It has some limitations: 2D imaging, not able to estimate rotation, etc.
  • Cobb�s method is still a standard evaluation performed in Scoliosis studies.
  • Nash-Moe method: determines pedicle rotation in scoliosis.

 

 

  • Risser index is used to estimate spinal skeletal maturity.
  • Iliac growth apophysis appears at ASIS (F- 14, M-16) and progresses medially and expected to be closed in 2-3-years (Risser 5).
  • Scoliosis progression ends at Risser 4 in females & Risser 5 in males.
  • During radiographic evaluation of scoliosis, it is crucial to report if Risser growth apophysis remains open or closed.

 

Dr Jimenez White Coat

Spondylolysis and spondylolisthesis are health issues which can result in back pain. Spondylolysis is believed to be caused by repeated microtrauma leading to stress fractures in the pars interarticularis. Patients with bilateral pars defects can develop spondylolisthesis, where the degree of slippage of the adjacent vertebrae can progress gradually over time. Patients with suspected spondylolysis and spondylolisthesis may initially be evaluated with pain radiography. Chiropractic care can also help provide imaging diagnostics for these health issues.

Dr. Alex Jimenez D.C., C.C.S.T.

Spondylolysis & Spondylolisthesis

 

  • Spondylolysis defect in pars interarticularis or osseous bridge between superior and inferior articular processes.
  • Pathology stress fracture of the pars, believed to be after repeated microtrauma on extensions Men > Women, affects 5% of the general population especially in athletic adolescents.
  • Clinically postulated that adolescent back pain cases may be related to this process.
  • Typically spondylolysis remains asymptomatic.
  • Spondylolysis can be present with or w/o spondylolisthesis.
  • Spondylolysis is found in 90% at L5 with the remaining 10% in L4.
  • Can be uni or bilateral.
  • In 65%�of�cases, spondylolysis is associated with spondylolisthesis.
  • Radiographic Features: break in the Scotty dog collar around the neck on oblique lumbar views.
  • Radiography has low sensitivity compared to SPECT. SPECT is associated with ionizing radiation, and MRI is currently a preferred method of imaging diagnosis.
  • MRI can help to show reactive marrow edema next to pars defect or w/o defect so-called pending or potential to develop spondylolysis.

 

Types of Spondylolisthesis

 

  • Type 1 – Dysplastic, rare and found in congenital dysplastic malformation of the sacrum allowing anterior displacement of L5 on S1. Often no pars defect.
  • Type 2 – Isthmic, most common, often the result of a stress fracture.
  • Type 3 – Degenerative from the remodeling of articular processes.
  • Type 4 – Traumatic in an acute posterior arch fracture.
  • Type 5 – Pathologic due to bone disease locally or generalized.

 

 

Grading of spondylolisthesis is based on the Myereding Classification.
This classification refers to the overhanging part of the superior body in relation to anterior-posterior part of the inferior body.

 

  • Grade 1 – 0-25% anterior slip
  • Grade 2 – 26-50%
  • Grade 3 – 51%-75%
  • Grade 4 – 76-100%
  • Grade 5 – >100% spondyloptosis

 

 

  • Note degenerative spondylolisthesis at L4 and retrolisthesis at L2, L3.
  • This abnormality develops due to degeneration of facets and disc with decreased local stability.
  • Rarely progresses beyond Grade 2.
  • Must be recognized in the imaging report.
  • Contributes to vertebral canal stenosis.
  • Canal stenosis is better delineated by cross-sectional imaging.

 

 

  • The inverted Napoleon hat sign -�seen on the frontal lumbar/pelvic radiographs at L5-S1.
  • Represents bilateral spondylolysis with marked anterolisthesis of L5 on S1 often with spondyloptosis and marked exaggeration of the normal lordosis.
  • Spondylolysis resulting in this degree of spondylolisthesis is more often congenital and/or traumatic in origin and less often degenerative.
  • The “brim” of the hat is formed by the downward rotation of the transverse processes, and the “dome” of the hat is formed by the body of L5.

 

In conclusion,�imaging diagnostics for the spine are recommended for patients with specific abnormalities of the spine, however, their increased use can help determine�their best treatment option. Understanding the abnormalities of the spine described above can help healthcare professionals and patients create a treatment program to improve their symptoms. The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

 

Curated by Dr. Alex Jimenez

 

Green Call Now Button H .png

 

Additional Topics: Acute Back Pain

 

Back pain�is one of the most prevalent causes of disability and missed days at work worldwide. Back pain attributes to the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments, and muscles, among other soft tissues. Because of this, injuries and/or aggravated conditions, such as�herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief.

 

blog picture of cartoon paper boy

EXTRA EXTRA | IMPORTANT TOPIC: Chiropractic Neck Pain Treatment

Imaging the Spine in Arthritis: a Pictorial Review

Imaging the Spine in Arthritis: a Pictorial Review

Many types of arthritis can affect the structure and function of the muscles, bones and/or joints, causing symptoms such as, pain, stiffness and swelling. While arthritis can commonly affect the hands, wrists, elbows, hips, knees and feet, it can also affect the facet joints found along the length of the spine. One of the most well-known types of arthritis, known as rheumatoid arthritis or RA, is a chronic inflammatory disease of the joints which occurs when the human body’s own immune system attacks the synovium, the thin membrane that lines the joints. According to the article below, imaging the spine in arthritis is fundamental towards its proper treatment.

 

Abstract

 

Spinal involvement is frequent in rheumatoid arthritis (RA) and seronegative spondyloarthritides (SpA), and its diagnosis is important. Thus, MRI and CT are increasingly used, although radiography is the recommended initial examination. The purpose of this review is to present the typical radiographic features of spinal changes in RA and SpA in addition to the advantages of MRI and CT, respectively. RA changes are usually located in the cervical spine and can result in serious joint instability. Subluxation is diagnosed by radiography, but supplementary MRI and/or CT is always indicated to visualize the spinal cord and canal in patients with vertical subluxation, neck pain and/or neurological symptoms. SpA may involve all parts of the spine. Ankylosing spondylitis is the most frequent form of SpA and has rather characteristic radiographic features. In early stages, it is characterized by vertebral squaring and condensation of vertebral corners, in later stages by slim ossifications between vertebral bodies, vertebral fusion, arthritis/ankylosis of apophyseal joints and ligamentous ossification causing spinal stiffness. The imaging features of the other forms of SpA can vary, but voluminous paravertebral ossifications often occur in psoriatic SpA. MRI can detect signs of active inflammation as well as chronic structural changes; CT is valuable for detecting a�fracture.

 

Keywords:�Spine,�Arthritis, Rheumatoid Arthritis, Spondyloarthropathies

 

Introduction

 

The spine can be involved in most inflammatory disorders encompassing rheumatoid arthritis (RA), seronegative spondyloarthritides (SpA), juvenile arthritides and less frequent disorders such as, arthro-osteitis and SAPHO (synovitis, acne, pustulosis, hyperostosis, osteitis) syndrome.

 

During the last decade, the diagnostic use of magnetic resonance imaging (MRI) and computed tomography (CT) has increased considerably, although radiography is still the recommended initial examination. It is therefore important to know the characteristic radiographic findings in arthritides in addition to the advantages of supplementary MRI and CT. This review will focus on the different imaging features and be concentrated on the most frequent inflammatory spinal changes seen in RA and SpA, respectively. These two entities display somewhat different imaging features, which are important to recognize.

 

Dr-Jimenez_White-Coat_01.png

Rheumatoid arthritis is an autoimmune disease which causes the human body’s own immune system to attack and often destroy the lining of the joints. Although it commonly affects the small joints of the hands and feet, rheumatoid arthritis, or RA, can affect any joint in the human body. The neck, or cervical spine, can be affected more often than the lower back if rheumatoid arthritis affects the joints in the spine.�

Dr. Alex Jimenez D.C., C.C.S.T.

Rheumatoid Arthritis

 

Involvement in RA is usually located in the cervical spine where erosive changes are predominantly seen in the atlanto-axial region. Inflamed and thickened synovium (pannus) can occur around the odontoid process (dens) and cause bone erosion and destruction of surrounding ligaments, most seriously if the posterior transverse ligament is involved. Laxity or rupture of the transverse ligament causes instability with a potential risk of spinal cord injury. Cervical RA involvement is a progressive, serious condition with reduced lifetime expectancy [1], and its diagnosis is therefore important [2, 3].

 

Fig. 1 Standard radiography of the cervical spine in rheumatoid arthritis (RA). (a) Lateral radiographs in neutral position and (b) during flexion in addition to (c) lateral and (d) anterior-posterior (AP) open-mouth view of the atlanto-axial region (45-year-old woman). The flexion view (b) shows abnormal distance (>3 mm) between the posterior aspect of the anterior arc of the atlas and the anterior aspect of the dens (black line). Note that the spino-laminar line of the atlas�(arrow) does not align with that of the other vertebrae, confirming the presence of anterior subluxation, but there is no stenosis of the atlanto- axial canal; the posterior atlanto-dental interval (white line) is >14 mm. The open-mouth view (d) shows erosion at the base of the dens (arrow). (a) and (b) show concomitant disc degenerative changes at the C4�C6 level.

Fig. 2 Lateral and rotatory atlanto-axial subluxation. AP open- mouth view in a 53-year-old man with RA. There is narrowing of the atlanto-axial joints with superficial erosions (black arrow) and lateral displacement of the axis with respect to the lateral masses of the atlas (white arrow); in addition signs indicating rotatory displacement with asymmetry of the distance between the dens and the lateral masses of the atlas.

 

Radiography of the cervical spine is mandatory in RA patients with neck pain [3]. It should always include a�lateral view in a flexed position compared with a neutral position in addition to special views of the dens area to detect any lesions and/or instability (Fig. 1). A supplementary lateral view during extension can be useful to assess reducibility of atlanto-axial subluxation possibly limited by pannus tissue between the anterior arc of the atlas and dens.

 

Anterior atlanto-axial subluxation is the most frequent form of RA instability in the occipito-atlanto-axial region, but lateral, rotatory and vertical subluxation can also occur. The definition of the different forms of instability by radiography is as follows [3].

 

Anterior atlanto-axial subluxation. Distance between the posterior aspect of the anterior arc of the atlas and the anterior aspect of the dens exceeding 3 mm in a neutral position and/or during flexion (Fig. 1). It may cause stenosis of the atlanto-axial canal presenting as a posterior atlanto-dental interval<14 mm (Fig. 1).

 

Lateral and rotatory atlanto-axial subluxation.�Displacement of the lateral masses of the atlas more than 2 mm in relation to that of the axis and asymmetry of the lateral masses relative to the dens, respectively (Fig. 2). Rotatory�and lateral subluxation is diagnosed on open-mouth anterior-posterior (AP) radiographs. Anterior subluxation often coexists because of the close anatomical relation between the atlas and the axis.

 

Posterior atlanto-axial subluxation. The anterior arc of the atlas moves over the odontoid process. This is rarely seen, but may coexist with fracture of the dens.

 

Vertical atlanto-axial subluxation is also referred to as atlanto-axial impaction, basilar invagination or cranial�setting, and is defined as migration of the odontoid tip proximal to McRae�s line corresponding to the occipital foramen. This line can be difficult to define on radiographs, and vertical subluxation has therefore also been defined by several other methods. Migration of the tip of the odontoid process >4.5 mm above McGregor�s line (between the postero-superior aspect of the hard palate and the most caudal point of the occipital curve) indicates vertical subluxation (Fig. 3).

 

Fig. 3 Vertical atlanto-axial subluxation, measurement methods. (a) Lateral normal radiograph in neutral position showing the location of McGregor�s line (black) between the postero-superior aspect of the hard palate and the most caudal point of the occipital curve. Migration of the tip of the dens >4.5 mm above McGregor�s line indicates vertical subluxation. The distance indicated by the white line between McGregor�s line and the midpoint of the inferior margin of the body of axis is used to evaluate vertical subluxation according to Redlund-Johnell and Pettersson�s method. A distance less than 34 mm in men and 29 mm in women indicates vertical subluxation. (b) Sagittal CT�reconstruction of a normal cervical spine showing the location of McRae�s line corresponding to the occipital foramen and the division of the axis into three equal portions used by Clark�s method for diagnosing vertical subluxation. If the anterior arc of the atlas is in level with the middle or caudal third of the axis there is slight and pronounced vertical subluxation, respectively. (c) Ranawat�s method includes determination of the distance between the centre of the second cervical pedicle and the transverse axis of the atlas. A distance less than 15 mm in males and 13 mm in females indicates vertical subluxation [4].

Fig. 4 Vertical subluxation. (a) Lateral radiograph with McGregor�s line (black line; 61-year-old man with RA). The tip of the dens is difficult to define, but measurement according to Redlund-Johnell�s method (white line) results in a distance of 27 mm, which is below the normal limit. In accordance with this, the anterior arc of the atlas is level with the middle third of the axis. (b) Ranawat�s method, the distance between the centre of the second cervical pedicle and the transverse axis of the atlas is below the normal limit (9 mm). Thus, all measurements indicate vertical subluxation. Supplementary MRI, (c) sagittal STIR and (d) T1-weighted images show erosion of the dens and protrusion of the tip into the occipital foramen causing narrowing of the spinal canal to 9 mm, but persistence of cerebrospinal fluid around the cord. There is a 9-mm-thick mass of pannus tissue between the dens and anterior arc (black line) exhibiting small areas with high signal intensity on the STIR image (arrow) compatible with slight activity, but signal void fibrous pannus tissue predominates.

The occurrence of dens erosion can, however, make this measurement difficult to obtain. The Redlund-Johnell method is therefore based on the minimum distance between McGregor�s line and the midpoint of the inferior margin of the body of the axis on a lateral radiograph in a neutral position (Fig. 3) [4]. Visualisation of the palate may not always be obtained. Methods without dens and/or the palate as landmarks have therefore been introduced [4]. The method described by Clark et al. (described in [4]) includes assessment of the location of the atlas by dividing the axis into three equal portions on a lateral radiograph. Location of the anterior arc of the atlas in level with the middle or caudal third of the axis indicates vertical subluxation (Fig. 3). Ranawat et al. have proposed using the distance between the centre of the second cervical pedicle and the�transverse axis of the atlas at the odontoid process (Fig. 3) [4]. To obtain the diagnosis of vertical subluxation a combination of the Redlund-Johnell, Clark and Ranawat methods has been recommended (described in [4]). If any of these methods suggests vertical subluxation MRI should be performed to visualize the spinal cord (Fig. 4). Using this combination of methods vertical subluxation will be missed in only 6% of patients [4]. It is mandatory to diagnose vertical subluxation; this can be fatal because of the proximity of the dens to the medulla oblongata and the proximal portion of the spinal cord. Risk of cord compression/injury occurs, especially in patients with flexion instability accompanied by erosive changes in the atlanto- axial and/or atlanto-occipital joints, causing the vertical subluxation with protrusion of the dens into the occipital foramen (Figs. 4, 5).

 

Subaxial RA changes also occur in the form of arthritis of the apophyseal and/or uncovertebral joints, appearing as narrowing and superficial erosions by radiography. It can cause instability in the C2-Th1 region, which is mainly seen in patients with severe chronic peripheral arthritis. Anterior subluxation is far more frequent than posterior subluxation. It is defined as at least 3 mm forward slippage of a vertebra�relative to the underlying vertebra by radiography including a flexion view (Fig. 6). Changes are particularly characteristic at the C3�4 and C4�5 level, but multiple levels may be involved, producing a typical �stepladder� appearance on lateral radiographs. The condition is serious if the subaxial sagittal spinal canal diameter is <14 mm, implying a possibility of spinal cord compression [2]. The instability may progress over time, especially if the C1�C2 region is stabilized surgically (Fig. 6) [5].

 

Fig. 5 Vertical subluxation with spinal cord compression. MRI of the cervical spine in a 69- year-old woman with advanced peripheral RA, neck pain and clinical signs of myelopathy. (a) Sagittal STIR, (b) sagittal T1 and (c) axial T2 fat-saturated (FS) images show erosion of the dens and protrusion of the tip into the occipital foramen causing compression of the spinal cord, which exhibits irregular signal intensity (white arrows). The osseous spinal canal has a width of approximately 7 mm (black line). There is heterogeneous signal intensity pannus surrounding the dens compatible with a mixture of fibrotic and oedematous pannus tissue (black arrows) in the widened space between the dens and the anterior arc of the atlas.

 

Discitis-like changes and spinous process erosion may also be detected by radiography in RA, but are relatively rare, whereas concomitant degenerative changes occur occasionally (Fig. 1).

 

Cross-sectional imaging in the form of CT and MRI eliminates overprojecting structures and can improve the detection of RA changes. Osseous changes (erosions, etc.) can be clearly delineated by CT [6]. Additionally, MRI visualizes soft tissue structures (pannus; spinal cord, etc.), signs of disease activity and sequelae of inflammation in the form of fibrous pannus. These advantages of CT and MRI in patients with atlanto-axial involvement are illustrated in Figs. 7 and 8, including the possibility of detecting signs of arthritis by MRI before the occurrence of erosive changes (Fig. 8) [3].

 

Fig. 6 Subaxial instability. (a) Flexion view in a 64-year-old woman with advanced peripheral RA showing anterior atlanto-axial instability as well as subaxial instability at multiple levels. (b) Flexion view 2 years later after surgical stabilization of the atlanto-axial region demonstrates progression of the subaxial instability, especially between C3 and C4 (white arrow). There is a characteristic �stepladder� appearance, which also occurred on the initial radio- graphs (a), but is less pronounced.

Fig. 7 Advantages of CT and MRI. (a) Supplementary CT and (b-f) MRI of the patient shown in Fig. 1. CT demonstrates erosion not only at the base of the dens, but also at the tip and at the atlanto-axial and atlanto-occipital joints, which are difficult to visualize by radiography. MRI, (b) sagittal STIR and (c) sagittal T1 of the entire cervical spine and post-contrast T1FS images of the atlanto-axial region, (d) sagittal, (e) coronal and (f) axial. Oedematous voluminous pannus surrounding the dens is seen on the STIR and T1 images (black arrows) in addition to C4/5 and C5/6 disc degeneration with posterior protrusion of the disc at C4/5. The post-contrast T1FS images confirm the presence of vascularized enhancing pannus around the dens (white arrows) and demonstrate improved anatomical delineation compared with the STIR image. There is no sign of spinal cord compression.

Fig. 8 Non-radiographic MR findings. MRI in a 41-year-old woman with peripheral erosive RA and neck pain, but normal cervical radiography. (a) Post-contrast axial and (b) coronal TIFS images show signs of active arthritis with synovial contrast enhancement at the left atlanto-axial joint in addition to enhancing pannus tissue at the left side of the dens (white arrows). There is also a subchondral enhancing area in the axis (black arrow) compatible with a pre-erosive lesion.

 

A diagnostic strategy according to Younes et al. [3] is recommended (Fig. 9). This includes an indication for radiography in all RA patients with disease duration >2 years as cervical involvement may occur in over 70% of patients and has been reported to be asymptomatic in 17% of RA patients. It is recommended to monitor patients with manifest peripheral erosions accompanied by RF (rheumatoid factor) and antiCCP (antibodies to cyclic citrullinated peptide) positivity every second year and�patients with few peripheral erosions and RF negativity at 5-year intervals. MRI is indicated in patients with neurological deficit, radiographic instability, vertical subluxation and subaxial stenosis [2, 3]. Visualisation of the spinal cord is especially important to detect cord injury or risk of injury. MRI should therefore always be performed in RA patients with neck pain and/or neurological symptoms [3, 7].

Seronegative Spondyloarthritides

 

According to European classification criteria [8, 9], SpA is divided into: (1) ankylosing spondylitis (AS), (2) psoriatic arthritis, (3) reactive arthritis, (4) arthritis associated with inflammatory bowel disorders (enteropathic arthritis) and (5) undifferentiated SpA. Inflammatory changes at the sacroiliac joints always occur in AS and are part of most other forms of SpA. Spinal changes are also a feature of SpA, especially in the late stages of AS.

Ankylosing Spondylitis

 

Ankylosing spondylitis is the most frequent and usually the most disabling form of SpA. It has a genetic predisposition in the form of a frequent association with the human leukocyte antigen (HLA) B27 [10]. AS often starts in early adulthood and has a chronic progressive course. It is therefore important to diagnose this disorder. According to the modified New York Criteria [11], the diagnosis of definite AS requires the following: manifest sacroiliitis by radiography (grade ?2 bilateral or unilateral grade 3�4 sacroiliitis; Fig. 10) and at least one of the following clinical criteria: (1) low back pain and stiffness for more than 3 months improving with activity, (2) limited movement of the lumbar spine and (3) reduced chest expansion. These criteria are still used in the diagnosis of AS despite the increasing use of MRI to detect the disease early. It is therefore important to know both the characteristic radiographic features and the MR features of AS.

 

Early radiographic spinal changes encompass erosion of vertebral corners (Romanus lesions) causing vertebral squaring and eliciting reactive sclerosis appearing as condensation of vertebral corners (shiny corners; Fig. 10). These changes are caused by inflammation at the insertion of the annulus fibrosus (enthesitis) at vertebral corners provoking reactive bone formation [12]. Later on slim ossifications appear in the annulus fibrosus (syndesmo- phytes) (Fig. 11) [13]. With disease progression the spine gradually fuses because of syndesmophytes crossing the intervertebral spaces in addition to fusion of apophyseal joints, resulting in complete spinal fusion (bamboo spine;�Fig. 12). In advanced disease the supra- and interspinous ligaments may ossify and be visible on frontal radiographs as a slim ossified streak (Fig. 12). The occurrence of a single central radiodense streak has, the �dagger sign�. When the ligamentous ossification occurs together with ossification of apophyseal joint capsules, there are three vertical radiodense lines on frontal radiography (trolley-track sign).

 

Fig. 9 Diagnostic strategy. According to Younes et al. [3] radiography of the cervical spine is indicated in all RA patients with disease duration >2 years. It should at least include open-mouth and lateral views in neutral and flexed positions. Because of the occurrence of asymptomatic cervical involvement in 17% of RA patients, it is recommended to monitor patients with intervals of 2�5 years depending on positivity for the rheumatoid factor. MRI is indicated in patients with neurological deficit, radiographic instability, atlanto-axial impaction and subaxial stenosis. CT may add information in rotatory and lateral subluxation because of the possibility of secondary reconstruction in arbitrary planes and a clear visualisation of the atlanto-occipital joints [6].

Erosive changes within intervertebral spaces (Andersson lesions) have been detected by radiography in approximately 5% of patients with AS [14], but more frequently by MRI (Fig. 11) [15].

 

Persistent movement at single intervertebral spaces may occur in an otherwise ankylosed spine, sometimes caused by non-diagnosed fractures. This can result in pseudo- arthrosis-like changes with the formation of surrounding reactive osteophytes due to excessive mechanical load at single movable intervertebral spaces [14]. The diagnosis of such changes may require a CT examination to obtain adequate visualization (Fig. 13).

 

One of the life-threatening complications of AS is spinal fracture. Non-fatal fractures have been reported to occur in up to 6% of AS patients, especially in patients with long disease duration [16]. Fractures may occur after minor trauma because of the spinal stiffness and frequently accompanying osteoporosis. Fractures often occur at intervertebral spaces, but usually involve the ankylosed posterior structures and are thereby unstable (Fig. 14). Obvious fractures can visualize by radiography, but fractures may be obscured. It is therefore mandatory to supplement a negative radiography with CT if fracture is suspected (in the case of trauma history or a change in spinal symptoms). The occurrence of cervico-thoracic fractures may cause spinal cord injury and be lethal even following minor trauma [17].

 

Cross-sectional CT or MR imaging can be advantageous in the diagnosis of AS changes. CT providing a clear delineation of osseous structures is the preferred technique for visualizing pseudo-arthrosis and detecting fractures (Figs. 13, 14). CT is superior to MRI in detecting minor osseous lesions such as erosion and ankylosis of the apophyseal, costo-vertebral and costo-transversal joints (Fig. 15). MRI can visualize signs of active inflammation in the form of bone marrow and soft tissue oedema and/or contrast enhancement. It has therefore gained a central role in the evaluation of disease activity [15]. MRI can, however, also detect sequelae of inflammation consisting of fatty deposition in the bone marrow and chronic structural changes such as erosion and fusion of vertebral bodies [15].

 

Characteristic MR findings early in the disease are activity changes mainly consisting of oedema at vertebral corners and/or costo-vertebral joints (Fig. 16) [13]. The inflammatory changes at vertebral corners are characteristic of AS. Based on the occurrence of severe or multiple (?3) lesions in young patients, AS changes can be distinguished from degenerative changes with a high reliability [18].

 

Fig. 10 Relatively early changes in ankylosing spondylitis (AS). (a) AP radiograph of the sacroiliac joints in a 28-year-old man presenting with typical definite bilateral AS sacroiliitis (grade 3) in the form of bilateral joint erosion accompanied by subchondral sclerosis. (b) Initial spinal changes consisting of erosion of vertebral corners (Romanus lesion) with vertebral squaring corresponding to Th11, Th12, L4 and L5 accompanied by condensation of the vertebral corners�shiny corners (arrows).

During the disease course signs of activity can also occur at syndesmophytes, apophyseal joints and interspinous ligaments (Fig. 16). Detection of inflammation at apophyseal joints by MRI, however, demands pronounced involvement�histopathologically [19]. The inflammation at vertebral corners is the most valid feature and has been observed related to the development of syndesmophytes by radiography [12], establishing a link between signs of disease activity and chronic structural changes.

 

Chronic AS changes detectable by MRI mainly consist of fatty marrow deposition at vertebral corners (Fig. 17), erosion (Fig. 11) and vertebral fusion in advanced disease (Fig. 12). Fatty marrow deposition seems to be an a sign of chronicity being significantly correlated with radiographic changes, in particular, vertebral squaring [15]. Erosions are more frequently detected by MRI than by radiography (Fig. 11) [15] and can present with signs of active inflammation and/or surrounding fatty marrow deposition compatible with sequels of osseous inflammation. Syndesmophytes, however, may not always be visible by MRI because they may be difficult to distinguish from fibrous tissue unless there is concomitant active inflammation or fatty deposition (Figs. 11, 16) [15, 20].

 

The possibility of visualizing disease activity by MRI has increased its use to monitor AS, especially during anti-TNF (anti-tumour necrosis factor) therapy [21, 22]. Several studies have shown that MR changes are frequent in the thoracic spine (Fig. 16) [15, 23]. It is therefore important to examine the entire spine using sagittal STIR or T2 fat-saturated (FS) and T1-weighted sequences. Supplementary axial slices can be necessary for visualising involvement of apophyseal, costo-vertebral and costo-transversal joints (Fig. 16) [24, 25]. Post-contrast T1FS sequences can sometimes be advantageous as they provide better anatomical delineation [26]. Additionally, dynamic contrast-enhanced MRI may be superior to static MRI in monitoring disease activity during anti-TNF therapy [27]. Whole-body MRI gives the possibility of detecting involvement in other areas without losing important information about spinal and sacroiliac joint involvement [28, 29].

 

Other Forms of SpA

 

Radiographic changes in reactive and psoriatic arthritis are often characterized by voluminous non-marginal syndesmophytes (parasyndesmophytes) or coalescing ossification of the paravertebral ligaments in addition to asymmetrical sacroiliitis (Fig. 18) [30].

 

Reactive arthritis is self-limiting in most patients. However, in patients with chronic reactive arthritis and HLA B27 the axial changes may progress to changes somewhat similar to those seen in AS and can then be regarded as AS elicited by infection [10].

 

Fig. 11 Syndesmophytes and erosions in AS. (a) Lateral radiograph in a 29-year-old man with the characteristic slim ossification (syndesmophytes) at the periphery of the annulus fibrosus (black arrows) in addition to erosion of the endplates at the intervertebral (iv) space between L3 and L4 (white arrow). Supplementary MRI, (b) sagittal STIR and (c) T1-weighted images show small oedematous areas in the�erosion at iv L3/4 on the STIR image and surrounding fatty marrow deposition on T1 as a sign of previous osseous inflammation. There are additional erosive changes (black arrows, c) not clearly delineated by radiography and slight oedema at the vertebral corners (white arrows, b). Note that the syndesmophytes demonstrated by radiogra- phy are not visible on MRI.

Fig. 12 Advanced AS. (a) AP and (b) lateral radiograph in a 55-year-old man showing vertebral fusion due to syndesmophytes crossing the intervertebral spaces in addition to fusion of the apophyseal joints (bamboo spine). The interspinous ligaments are ossified, presenting as a slim ossified streak on the frontal radiograph (dagger sign; arrows). MRI, sagittal T1- weighted images of (c) the cervico-thoracic and (d) lumbar region, respectively, shows a general narrowing of the intervertebral discs with partial osseous fusion of the vertebral bodies, especially in the lumbar region (arrows). In addition a characteristic AS deformity with reduced lumbar lordosis and thoracic kyphosis.

Fig. 13 Pseudo-arthrosis-like changes in AS. (a) AP and (b) lateral radiograph showing vertebral fusion except at iv Th10/11. There is surrounding osteophyte formation at this iv space (arrows). Supplementary CT, (c) sagittal and (d) coronal 2D reconstruction, demonstrates lack of fusion of the vertebral bodies and apophyseal joints at this level (arrows). (e) 3D reconstruction clearly demonstrates the exuberant surrounding reactive osteophytes.

Fig. 14�Spinal fracture in AS. (a) AP and (b) lateral radiograph of the thoracic spine in a 64-year-old man with advanced AS and increasing back pain over 4 weeks. The lateral view demonstrates a slight malalignment at the anterior aspects of the vertebral bodies of Th9 and Th10, and the iv is irregularly narrowed on the AP view, all�suggesting fracture (arrows). CT, (c) sagittal and (d) coronal reconstruction, shows fracture through the iv space and the posterior structures (arrows). There is widening of the intervertebral space anteriorly in the supine position used for CT compared with the upright position used during radiography.

Axial psoriatic arthritis (PsA) occurs in approximately 50% of patients with peripheral PsA [31]. It differs radiographically from AS by the voluminous paravertebral ossifications and the occurrence of spinal changes without concomitant sacroiliitis in 10% of patients [32]. Axial PsA may be clinically silent [33], and involvement of the cervical spine is frequent (atlanto-axial or apophyseal joint changes). The cervical recognize may include atlanto-axial instability as seen in RA (Fig. 19), but the pathogenesis and thereby imaging findings are different. In PsA radiography and CT usually visualize new bone formation in the region of the dens. This is elicited by osseous inflammation (osteitis) and/or inflammation at ligament/ tendon attachments (enthesitis) detectable by MRI (Fig. 19). Osteitis is often a feature of spinal PsA and can occur together with paravertebral ossification/para- syndesmophytes and erosion of vertebral plates (Fig. 20). , and illustrated MR findings in PsA are based on personal observations and seem to reflect the radiographic changes encompassing a mixture of osteitis, enthesitis and erosion. Unfortunately, there is a lack of�systematic description of spinal changes in PsA by MRI. Some of the patients described under the term SAPHO (synovitis, acne, pustulosis, hyperostosis, osteitis) syndrome may have PsA. SAPHO is a collective term often used for inflammatory disorders primarily presenting with osseous hyperostosis and sclerosis, and they are frequently associated with skin disorders. The most commonly affected site in SAPHO is the anterior chest followed by the spine [34]. The PsA changes shown in Fig. 20 are characterized by hyperostosis and sclerosis, both main features of SAPHO. However, this patient did not have anterior chest involvement.

 

Fig. 15 CT detection of costo-vertebral changes in AS. Axial CT slices showing erosive changes (a) and ankylosis of costo-vertebral joints (b), respectively (arrows).

Fig. 16 Activity changes in AS by MRI. Sagittal STIR of (a) the cervico-thoracic and (b) the lumbar spine of the patients shown in Fig. 10 obtained 3 years before the radiography. There are multiple high signal intensity areas corresponding to vertebral corners (white arrows). Additionally, osseous oedema of the costo-vertebral joints (a, black arrows) seen on the lateral sagittal slice of the thoracic spine. (c) Axial post-contrast T1FS of an inflamed costo-vertebral joint confirmed the presence of joint inflammation in the form of osseous enhancement in both the vertebra and the rib (arrows) in addition to joint erosion. (d) Midline sagittal post-contrast T1FS shows an�enhancing syndesmophyte. (e) Inflammatory changes at the apophy- seal joint in a 27-year-old man; sagittal STIR image of the lumbar region showing subchondral osseous oedema in the lower thoracic region (white arrows), and both osseous and soft tissue oedema corresponding to the lumbar apophyseal joints (black arrows). Note that the osseous oedema in the pedicle of Th12 extends to the region of the costo-vertebral joint. (f) Coronal post-contrast T1FS of the lumbar spine shows additional enhancement corresponding to the interspinous ligament between L2 and L3 (arrows).

Fig. 17 Chronic changes in AS by MRI. Sagittal T1 (a) the cervico-thoracic and (b) the lumbar spine of the patients shown in Fig. 10. There are multiple fatty marrow depositions at vertebral corners and also posteriorly in thoracic vertebral bodies (b, arrows). This was observed to have developed since the MRI performed 3 years previously (shown in Fig. 16 a-d) and corresponds to areas of previous inflammation.

In patients with enteropathic arthritis associated with Crohn�s disease or ulcerative colitis, the spine is often osteoporotic with various accompanying SpA features by radiography, mostly AS-like changes. However, by MRI there may be more pronounced inflammation in the posterior ligaments than seen in the other forms of SpA (Fig. 21).

 

Fig. 18 Psoriatic arthritis (PsA), paravertebral ossifications. (a) AP and (b) lateral radiograph of the lumbar spine in a 48-year-old man with PsA showing voluminous paravertebral new bone forma- tion (arrows) in addition to fusion of the second and third vertebral bodies. There was no concomitant sacroiliitis. (c) AP radiograph of the thoraco- lumbar junction in a female patient with axial PsA demon- strating coalescing paravertebral ossifications (arrows).

Fig. 19 Cervical PsA. (a) Lateral radiographs in the neutral position and (b) during flexion in a 61-year-old woman show atlanto-axial instability with a 4-mm distance between the anterior arc and the dens (white line). Additionally, ankylosis of the apophyseal joints (black arrows) and new bone formation anterior to the C4-7 vertebral bodies (white arrows). CT, (c) axial slice and coronal reconstruction of the dens area, demonstrates new bone formation in the atlanto-axial region (arrows); (d) coronal reconstruction of the lower cervical region shows voluminous new bone formation on the right side of the vertebral bodies (arrows). MRI, (e) sagittal STIR and (f) T1-weighted images, shows homogeneous osseous inflammation corresponding to the dens (arrows) with surrounding irregular oedema compatible with a mixture of osteitis and enthesitis. Note that the anterior new bone formation visualised by radiography is difficult to detect on MRI.

Fig. 20 Lumbar PsA. (a) AP and (b) lateral radiograph in a 50-year- old man show voluminous paravertebral ossifications anteriorly and at the right side of the third lumbar vertebra and adjacent iv spaces. MRI, (c) sagittal STIR, (d) T1 and (e) post-contrast T1-weighted images, demonstrates manifest osseous inflammation (osteitis) in the form of oedema and enhancement of the vertebral body, slight enhancement in the paravertebral new bone formation and erosion of the upper vertebral plate compatible with a mixture of osteitis, enthesitis and erosive changes.

Fig. 21 Enteropathic SpA. Sagittal STIR image of the lumbar spine in a 27-year-old man with ulcerative colitis demonstrates oedema corresponding to the interspinous ligaments (arrows) and spinous processes as signs of inflammation. There are only minimal activity changes corresponding to the vertebral bodies, located to the anterior vertebral corners.
Dr Jimenez White Coat

Rheumatoid arthritis of the spine can cause neck pain, back pain, and/or radiating pain in the upper and lower extremities. In severe cases, RA can also lead to the degeneration of the spine, resulting in the compression or impingement of the spinal cord and/or the spinal nerve roots. As a chiropractor, we offer diagnostic imaging to help determine a patient’s health issue, in order to develop the best treatment program.

Dr. Alex Jimenez D.C., C.C.S.T.

Conclusion

 

Radiography is still valuable in the diagnosis of spinal inflammatory disorders. It is necessary for visualizing instability and is superior to MRI for detecting syndesmophytes. However, MRI and CT can detect signs of spinal involvement before they can be visualized by radiography. MRI adds information about potential involvement of the spinal cord and nervous roots in addition to signs of disease activity and chronic changes such as fibrous pannus in RA and fatty marrow deposition, erosion and vertebral fusion in SpA. MRI is�therefore widely used to monitor inflammatory spinal diseases, especially during anti-TNF therapy.

 

Computed tomography is particularly valuable in the detection of fracture and minor osseous lesions as well as in the evaluation of pseudo-arthrosis. In conclusion, rheumatoid arthritis most commonly affects the structure and function of your hands, wrists, elbows, hips, knees, ankles and feet, however, people with this chronic inflammatory disease can experience back pain. Imaging the spine�in arthritis is fundamental to determine treatment. The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

 

Curated by Dr. Alex Jimenez

 

Green Call Now Button H .png

 

Additional Topics: Acute Back Pain

 

Back pain�is one of the most prevalent causes of disability and missed days at work worldwide. Back pain attributes to the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments, and muscles, among other soft tissues. Because of this, injuries and/or aggravated conditions, such as�herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief.

 

blog picture of cartoon paper boy

 

EXTRA IMPORTANT TOPIC: Sciatica Pain Chiropractic Therapy

Blank
References

1. Paus AC, Steen H, Roislien J, Mowinckel P, Teigland J (2008) High mortality rate in rheumatoid arthritis with subluxation of the cervical spine: a cohort study of operated and nonoperated patients. Spine 33(21):2278�2283
2. Kim DH, Hilibrand AS (2005) Rheumatoid arthritis in the cervical spine. J Am Acad Orthop Surg 13(7):463�474
3. Younes M, Belghali S, Kriaa S, Zrour S, Bejia I, Touzi M et al (2009) Compared imaging of the rheumatoid cervical spine: prevalence study and associated factors. Joint Bone Spine 76 (4):361�368
4. Riew KD, Hilibrand AS, Palumbo MA, Sethi N, Bohlman HH (2001) Diagnosing basilar invagination in the rheumatoid patient. The reliability of radiographic criteria. J Bone Joint Surg Am 83 (2):194�200
5. Ishii K, Matsumoto M, Takahashi Y, Okada E, Watanabe K, Tsuji T et al (2010) Risk factors for development of subaxial subluxations following atlantoaxial arthrodesis for atlantoaxial subluxations in rheumatoid arthritis. Spine 35(16):1551�1555
6. Iizuka H, Sorimachi Y, Ara T, Nishinome M, Nakajima T, Iizuka Y et al (2008) Relationship between the morphology of the atlanto-occipital joint and the radiographic results in patients with atlanto-axial subluxation due to rheumatoid arthritis. Eur Spine J 17(6):826�830
7. Narvaez JA, Narvaez J, Serrallonga M, De Lama E, de AM, Mast R et al (2008) Cervical spine involvement in rheumatoid arthritis:
correlation between neurological manifestations and magnetic resonance imaging findings. Rheumatology (Oxford) 47 (12):1814�1819
8. Dougados M, van der Linden S, Juhlin R, Huitfeldt B, Amor B, Calin A et al (1991) The European Spondylarthropathy Study Group preliminary criteria for the classification of spondylarthr- opathy. Arthritis Rheum 34:1218�1227
9. Rudwaleit M, van der Heijde D, Landewe R, Listing J, Akkoc N, Brandt J et al (2009) The Development of Assessment of SpondyloArthritis international Society (ASAS) classification criteria for axial spondyloarthritis (Part II): validation and final selection. Ann Rheum Dis 68(6):777�783
10. Sieper J, Rudwaleit M, Khan MA, Braun J (2006) Concepts and epidemiology of spondyloarthritis. Best Pract Res Clin Rheumatol 20(3):401�417
11. van der Linden S, Valkenburg HA, Cats A (1984) Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 27:361� 268
12. Maksymowych WP, Chiowchanwisawakit P, Clare T, Pedersen SJ, Ostergaard M, Lambert RG (2009) Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis: evidence of a relationship between inflammation and new bone formation. Arthritis Rheum 60(1):93�102
13. Sieper J, Rudwaleit M, Baraliakos X, Brandt J, Braun J, Burgos- Vargas R et al (2009) The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis 68(Suppl 2:ii):1�44
14. Park WM, Spencer DG, McCall IW, Ward J, Buchanan WW, Stephens WH (1981) The detection of spinal pseudarthrosis in ankylosing spondylitis. Br J Radiol 54(642):467�472
15. Madsen KB, Jurik AG (2009) MRI grading method for active and chronic spinal changes in spondyloarthritis. Clin Radiol 65:6�14
16. Feldtkeller E, Vosse D, Geusens P, van der Linden S (2006) Prevalence and annual incidence of vertebral fractures in patients with ankylosing spondylitis. Rheumatol Int 26(3):234�239
17. Thomsen AH, Uhreholt L, Jurik AG, Vesterby A (2010) Traumatic death in ankylosing spondylitis�a case report. J Forensic Sci 55(4):1126�1129
18. Bennett AN, Rehman A, Hensor EM, Marzo-Ortega H, Emery P, McGonagle D (2009) Evaluation of the diagnostic utility of spinal magnetic resonance imaging in axial spondylarthritis. Arthritis Rheum 60(5):1331�1341
19. Appel H, Loddenkemper C, Grozdanovic Z, Ebhardt H, Dreimann M, Hempfing A et al (2006) Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis. Arthritis Res Ther 8(5):R143
20. Braun J, Baraliakos X, Golder W, Hermann KG, Listing J, Brandt J et al (2004) Analysing chronic spinal changes in ankylosing spondylitis: a systematic comparison of conventional x rays with magnetic resonance imaging using established and new scoring systems. Ann Rheum Dis 63(9):1046�1055
21. Baraliakos X, Listing J, Brandt J, Haibel H, Rudwaleit M, Sieper J et al (2007) Radiographic progression in patients with ankylosing spondylitis after 4 years of treatment with the anti- TNF-alpha antibody infliximab. Rheumatology (Oxford) 46 (9):1450�1453
22. Lambert RG, Salonen D, Rahman P, Inman RD, Wong RL, Einstein SG et al (2007) Adalimumab significantly reduces both spinal and sacroiliac joint inflammation in patients with ankylos- ing spondylitis: a multicenter, randomized, double-blind, placebo- controlled study. Arthritis Rheum 56(12):4005�4014
23. Baraliakos X, Landewe R, Hermann KG, Listing J, Golder W, Brandt J et al (2005) Inflammation in ankylosing spondylitis: a systematic description of the extent and frequency of acute spinal�changes using magnetic resonance imaging. Ann Rheum Dis 64
(5):730�734
24. Khanna M, Keightley A (2005) MRI of the axial skeleton
manifestations of ankylosing spondylitis. Clin Radiol 60(1):135�136
25. Levine DS, Forbat SM, Saifuddin A (2004) MRI of the axial skeletal manifestations of ankylosing spondylitis. Clin Radiol 59
(5):400�413
26. Baraliakos X, Hermann KG, Landewe R, Listing J, Golder W,
Brandt J et al (2005) Assessment of acute spinal inflammation in patients with ankylosing spondylitis by magnetic resonance imaging: a comparison between contrast enhanced T1 and short tau inversion recovery (STIR) sequences. Ann Rheum Dis 64 (8):1141�1144
27. Gaspersic N, Sersa I, Jevtic V, Tomsic M, Praprotnik S (2008) Monitoring ankylosing spondylitis therapy by dynamic contrast- enhanced and diffusion-weighted magnetic resonance imaging. Skeletal Radiol 37(2):123�131
28. Weber U, Maksymowych WP, Jurik AG, Pfirrmann CW, Rufibach K, Kissling RO et al (2009) Validation of whole-body against conventional magnetic resonance imaging for scoring acute inflammatory lesions in the sacroiliac joints of patients with spondylarthritis. Arthritis Rheum 61(7):893�899
29. Weber U, Hodler J, Jurik AG, Pfirrmann CW, Rufibach K, Kissling RO et al (2010) Assessment of active spinal inflamma- tory changes in patients with axial spondyloarthritis: validation of whole body MRI against conventional MRI. Ann Rheum Dis 69 (4):648�653
30. Helliwell PS, Hickling P, Wright V (1998) Do the radiological changes of classic ankylosing spondylitis differ from the changes found in the spondylitis associated with inflammatory bowel disease, psoriasis, and reactive arthritis? Ann Rheum Dis 57(3):135�140
31. Chandran V, Barrett J, Schentag CT, Farewell VT, Gladman DD (2009) Axial psoriatic arthritis: update on a longterm prospective study. J Rheumatol 36(12):2744�2750
32. Lubrano E, Marchesoni A, Olivieri I, D’Angelo S, Spadaro A, Parsons WJ et al (2009) Psoriatic arthritis spondylitis radiology index: a modified index for radiologic assessment of axial involvement in psoriatic arthritis. J Rheumatol 36(5):1006�1011
33. Hanly JG, Russell ML, Gladman DD (1988) Psoriatic spondy- loarthropathy: a long term prospective study. Ann Rheum Dis 47 (5):386�393
34. Takigawa T, Tanaka M, Nakanishi K, Misawa H, Sugimoto Y, Takahata T et al (2008) SAPHO syndrome associated spondylitis. Eur Spine J 17(10):1391�1397

Close Accordion
The Role of Emergency Radiology in Spinal Trauma

The Role of Emergency Radiology in Spinal Trauma

Spinal trauma consists of spine fractures, or spinal fractures, and spinal cord injuries. Approximately 12,000 spinal trauma cases are reported in the United States every year. While the most prevalent causes of spinal cord injuries and spine fractures are automobile accidents and falls, spinal trauma can also be attributed to assault, sports injuries, and work-related accidents. Diagnosis of spinal trauma includes imaging and assessment of nerve function, such as reflex, motor, and sensation. The following article discusses the role of emergency radiology in spinal trauma. Chiropractic care can help provide diagnostic evaluations for spinal trauma.

Abstract

Spinal trauma is very frequent injury with different severity and prognosis varying from asymptomatic condition to temporary neurological dysfunction, focal deficit or fatal event. The major causes of spinal trauma are high- and low- energy fall, traffic accident, sport and blunt impact. The radiologist has a role of great responsibility to establish the presence or absence of lesions, to define the characteristics, to assess the prognostic influence and therefore treatment. Imaging has an important role in the management of spinal trauma. The aim of this paper was to describe: incidence and type of vertebral fracture; imaging indication and guidelines for cervical trauma; imaging indication and guidelines for thoracolumbar trauma; multidetector CT indication for trauma spine; MRI indication and protocol for trauma spine.

Introduction

The trauma of the spine weighs heavily on the budget of social and economic development of our society. In the USA, 15�40 cases per million populations with 12,000 cases of paraplegia every year, 4000 deaths before admission and 1000 deaths during hospitalization are estimated. The young adult population is the most frequently involved in road accidents, followed by those at home and at work, with a prevalence of falls from high and sports injuries.1

Imaging has an important role in the management of spinal trauma. Quick and proper management of the patients with trauma, from diagnosis to therapy, can mean reduction of the neurological damage of vital importance for the future of the patient. Radiologists have a role of great responsibility to establish the presence or absence of lesions, defining the characteristics, assessing the prognostic influence and therefore treatment.

The aim of this paper was to describe:

  • incidence and type of vertebral fracture
  • imaging indication and guidelines for cervical trauma
  • imaging indication and guidelines for thoracolumbar trauma
  • multidetector CT (MDCT) pattern for trauma spine
  • MRI pattern for trauma spine.
Dr-Jimenez_White-Coat_01.png

Spinal trauma, including spine fractures and spinal cord injuries, represent about 3 percent to 6 percent of all skeletal injuries. Diagnostic assessments are fundamental towards the complex diagnosis of spinal trauma. While plain radiography is the initial diagnostic modality used for spine fractures and/or spinal cord injuries, CT scans and MRI can also help with diagnosis. As a chiropractic care office, we can offer diagnostic assessments, such as X-rays, to help determine the best treatment.

Dr. Alex Jimenez D.C., C.C.S.T.

Vertebral Fracture Management and Imaging Indication and Evaluation

The rationale of imaging in spinal trauma is:

  • To diagnose the traumatic abnormality and characterize the type of injury.
  • To estimate the severity, potential spinal instability or damaged stability with or without neurological lesion associated, in order to avoid neurological worsening with medical legal issue.
  • To evaluate the state of the spinal cord and surrounding structures (MR is the gold standard technique).

Clinical evaluation involving different specialities�emergency medicine, trauma surgery, orthopaedics, neurosurgery and radiology or neuroradiology�and trauma information is the most important key point in order to decide when and which type of imaging technique is indicated.2

A common question in patients with spine trauma is: is there still a role for plain-film X-ray compared with CT?

In order to clarify when and what is more appropriate for spinal trauma, different guidelines were published distinguishing cervical and thoracolumbar level.

Cervical Spinal Trauma: Standard X-Ray and Multidetector CT Indication

For cervical level, controversy persists regarding the most efficient and effective method between cervical standard X-ray with three film projections (anteroposterior and lateral view plus open-mouth odontoid view) and MDCT.

X-ray is generally reserved for evaluating patients suspected of cervical spine injury and those with injuries of the thoracic and lumbar areas where suspicion of injury is low. Despite the absence of a randomized controlled trial and thanks to the high quality and performance of�MDCT and its post-processing (multiplanar reconstruction and three-dimensional volume rendering), the superiority of cervical CT (CCT) compared with cervical standard X-ray for the detection of clinically significant cervical spine injury is well demonstrated.

Figure 1. (a�l). A 20-year-old male involved in a motorbike accident. The multidetector CT with multiplanar reformatted and three- dimensional volume-rendering reconstructions (a�d) showed traumatic fracture of C6 with traumatic posterior spondylolisthesis grade III with spinal cord compression. The MRI (e�h) confirmed the traumatic fracture of C6 with traumatic posterior spondylolisthesis grade III with severe spinal cord compression. The post-surgical treatment MRI control (i�l) showed the sagittal alignment of cervical level and severe hyperintensity signal alteration of the spinal cord from C3 to T1.

In order to reduce the patient radiation exposure, it is important to determine and to select patients who need imaging and those who do not, through the clinical evaluation and probability of cervical spine injury, using only MDCT for the appropriate patient as is more cost-effective screening.3

First of all, it is necessary to distinguish the type of trauma:

  • minor trauma (stable patient, mentally alert, not under the influence of alcohol or other drugs and who has no history or physical findings suggesting a neck injury)
  • major and severe trauma (multitrauma, unstable patient with a simple temporary neurological dysfunction, with focal neurological deficit or with a history or mechanism of injury sufficient to have exceeded the physiologic range of motion).

Second, it is important to establish if trauma risk factors are presents, such as:

  • violence of trauma: high-energy fall (high risk) or low-energy fall (low risk)
  • age of the patient: <5years old, >65 years old�
  • associated lesions: head, chest, abdomen (multitrauma) etc.
  • clinical signs: Glasgow Coma Scale (GCS), neurological deficit, vertebral deformation.

Combining these elements, patients can be divided into �low
risk� and �high risk� for cervical injury.

The first group consists of patients who are awake (GCS 15), alert, cooperative and non-intoxicated without any distract- ing injury.

The second group consists of unconscious, sedated, intoxicated or non-cooperative patients or those with a distracting injury or an altered mental state (GCS ,15) with a 5% chance of cervical spine injuries.3,4

CCT has a wider indication than X-ray for patients at very high risk of cervical spine injury (major trauma or multitrauma). No evidence suggests CCT instead of X-ray for a patient who is at low risk for cervical spine injury.5

Figure 2. (a�g). A 30-year-old male involved in a motorbike accident. The multidetector CT with multiplanar reformatted and three-dimensional volume-rendering reconstructions (a�d) showed traumatic burst fracture of L1 (A2-type Magerl class) with posterior bone fragment dislocation into spinal canal. The MRI (e�g) confirmed the burst fracture of L1 with moderate spinal cord compression.
Figure 3. (a�d) A 50-year-old male involved in a motorbike accident with acute spinal cord compression symptoms on anticoagulation treatment. The MRI showed an acute haemorrhagic lesion at the C2�C4 posterior epidural space, hypointense on sagittal T1 weighted (a) and hyperintense on T2 weighted (b) with spinal cord compression and dislocation on axial T2* (c) and T2 weighted (d).

In 2000, the National Emergency X-Radiography Utilization (NEXUS) study, analysing 34,069 patients, established low-risk criteria to identify patients with a low probability of cervical spine injury, who consequently needed no cervical spine�imaging. To meet the NEXUS criteria, a patient must have the following conditions:

  1. no tenderness at the posterior midline of the cervical spine
  2. no focal neurologic deficit
  3. normal level of alertness
  4. no evidence of intoxication
  5. no clinically apparent painful injury that might distract the patient from the pain of a cervical spine injury.6

If all of these roles are present, the patient does not need to undergo X-ray because he has a low possibility of having a cervical spine injury with a sensitivity of 99% and a specificity of 12.9%.7

In 2001, the Canadian C-spine rule (CCSR) study developed a second decision rule using the risk factor of the trauma: three high-risk criteria (age $ 65 years, dangerous mechanism and paraesthesias in extremities), five low-risk criteria (simple rear-end motor vehicle collision, sitting position in emergency department, ambulatory at any time, delayed onset of neck pain and absence of midline cervical spine tenderness) and the ability of the patient to actively rotate his or her neck to determine the need for cervical spine radiography. In practice, if one of these risk factors is present, the patient needs to undergo imaging evaluation. On the other hand, if the risk factors are not present, the use of the NEXUS criteria plus a functional evaluation of the cervical spine is needed (left and right cervical spine rotation .45�); if this functional evaluation is possible, imaging is unnecessary. If an incomplete cervical movement is present, then the patient needs to be checked with imaging. The results showed the criteria to have a sensitivity of up to 100% and a specificity of up to 42.5%.8

Applying these criteria, before cervical spine imaging, the authors report a decrease of about 23.9% in the number of negative CCT, and applying a more liberal NEXUS criteria including the presence or absence of pain, limited range of motion or posterolateral cervical spine tenderness, they report a decrease of up to 20.2% in the number of negative studies.2

If these clinical criteria cannot be applied, CCT must be performed.

Major and severe traumas request a direct CCT screening, especially because there could be associated lesions, according to the high-risk criteria developed by Blackmore and Hanson to identify patients with trauma at high risk of c-spine injury who would benefit from CT scanning as the primary radiological investigation9 Figure 1.

Thoracolumbar Spinal Trauma: Standard X-Ray and Multidetector CT Indication

For thoracolumbar level, MDCT is a better examination for depicting spine fractures than conventional radiography. It has wider indication in the diagnosis of patients with thoracolumbar trauma for bone evaluation. It is faster than X-ray, more sensitive, thanks to multiplanar reformatted or volume-rendering reconstruction detecting small cortical fracture, and the sagittal alignment can be evaluated with a wide segment evaluation.10

It can replace conventional radiography and can be performed alone in patients who have sustained severe trauma.10

In fact, thoracolumbar spinal injuries can be detected during visceral organ-targeted CT protocol for blunt traumatic injury.

Figure 4. A 55-year-old female involved in a car accident with acute left cervical brachialgia. The sagittal T2 weighted (a) and axial T2 weighted (b) MRI showed a post-traumatic posterolateral herniated disc with spinal cord compression and soft hyper signal alteration on the C3�C4 spinal cord.

Thanks to multidetector technology, images reconstructed using a soft algorithm and wide-display field of view that covers the entire abdomen using a visceral organ-targeted protocol with 1.5-mm collimation are sufficient for the evaluation of spine fractures in patients with trauma, given that multiplanar reformatted images are provided without performing new CT study and without increasing radiation dose11 Figure 2.

With MDCT there is no information about spinal cord status or ligament lesion or acute epidural haematoma; it can only evaluate bone status. Spinal cord injury is suspected only by clinical data.

CCT is strictly recommended in patients affected by blunt cerebrovascular injuries. Both lesions can be strictly correlated and generally; contrast medium administration to exclude hemorrhagic brain lesion and cervical fracture is not needed.10

Dr Jimenez White Coat

Magnetic resonance imaging, or MRI, is a medical diagnostic assessment technique utilized in radiology to create pictures of the anatomy and the physiological processes of the human body. Alongside radiography and CT scans, MRI can be helpful in the diagnosis of spinal trauma, including spine fractures and spinal cord injuries. Magnetic resonance imaging may not be necessary for all cases of spinal trauma. However, it could provide detailed information on the other soft tissues of the spine.�

Dr. Alex Jimenez D.C., C.C.S.T.

Spinal Trauma and MRI

Even if MDCT is the first imaging modality in a patient with trauma, MRI is essential for the soft assessment of the ligament, muscle or spinal cord injury, spinal cord, disc, ligaments and neural elements, especially using T2 weighted sequences with fat suppression or T2 short tau inversion recovery (STIR) sequence.12 MRI is also used to classify burst fracture, obtaining information about the status of the posterior ligamentous complex, a critical determinant of surgical indication even if the diagnosis of ligament injuries remains complex, and its grade is also underestimated using high-field MRI.13

Figure 5. A 65-year-old female involved in domestic trauma with spinal cord symptoms. The sagittal T1 weighted (a) and T2 weighted (b) MRI showed a traumatic T12�L1 spinal cord contusion hypointense on T1 weighted and hyperintense on T2 weighted.

In the management of patients with polytrauma, MDCT total-body scan is necessary in an emergency condition, and�MRI whole-spine indication is secondary to the clinical status of the patient: spinal cord compression syndrome Figure 3�5�MRI protocols recommended for patients affected by spinal injury and trauma are the following:13,14

  • Sagittal T1 weighted, T2 weighted and STIR sequence for the�bone marrow and spinal cord injury or spinal cord compression evaluation owing to epidural haematoma or traumatic herniated disc
  • Sagittal gradient echo T2* sequence for haemorrhage evaluation of the spinal cord or into the epidural�subdural space
  • Sagittal diffusion-weighted imaging helpful when evaluating spinal cord injury, differentiating cytotoxic from vasogenic�oedema, assisting in detecting intramedullary haemorrhage. It can help to evaluate the degree of compressed spinal cord.
  • Axial T1 weighted and T2 weighted sequence for the right localization of the injury. Recently, for patients affected by acute blunt trauma and cervical spinal cord injury, the axial T2 weighted sequence has been shown to be important for trauma-predicting outcomes. On axial T2 weighted imaging, five patterns of intramedullary spinal cord signal alteration can be distinguished at the injury�s epicentre. Ordinal values ranging from 0 to 4 can be assigned to these patterns as Brain�and Spinal Injury Center scores, which encompassed the spectrum of spinal cord injury severity correlating with neurological symptoms and MRI axial T2 weighted imaging. This score improves on current MRI-based prognostic descriptions for spinal cord injury by reflecting functionally and anatomically significant patterns of intramedullary T2 signal abnormality in the axial plane.15
Figure 6. A 20-year-old female involved in domestic trauma with back pain resistance to medical therapy. The standard antero- posterior�laterolateral X-ray (a) showed no vertebral fractures. The MRI showed a bone marrow alteration at lumbar vertebral body hyperintense on T2 weighted (T2W) (a), hypointense on T1 weighted (T1W) (b) and short tau inversion recovery (STIR) (c).

MRI has also an important role in case of discordance between clinical status and CT imaging. In the absence of vertebral fracture, patients can suffer from back pain resistant to medical therapy owing to bone marrow traumatic oedema that can be detected only using STIR sequence on MRI Figure 6.

In spinal cord injury without radiologic abnormalities (SCI- WORA), MRI is the only imaging modality that can detect intramedullary or extramedullary pathologies or show the absence of neuroimaging abnormalities.16 SCIWORA refers to spinal injuries, typically located in the cervical region, in the absence of identifiable bony or ligamentous injury on complete, technically adequate, plain radiographs or CT. SCIWORA should be suspected in patients subjected to blunt trauma who report early or transient symptoms of neurologic deficit or who have existing findings upon initial assessment.17

Vertebral Fracture Type and Classification

The rationale of imaging is to distinguish the vertebral fracture type into two groups:

� vertebral compression fracture as vertebral body fracture
compressing the anterior cortex, sparing the middle posterior
columns associated or not with kyphosis
� burst fracture as comminuted fracture of the vertebral body
extending through both superior and inferior endplates with kyphosis or posterior displacement of the bone into the canal. and to distinguish which type of treatment the patient needs; by imaging, it is possible to classify fractures into stable or�unstable fracture, giving indication to conservative or surgical therapy.

Figure 7. (a�f) A 77-year-old female involved in domestic trauma with back pain resistance to medical therapy. The multidetector CT (a) showed no vertebral fractures. The MRI showed a Magerl A1 fracture with bone marrow oedema at T12�L1 vertebral body hypointense on T1 weighted (b), hyperintense on T2 weighted (c) and short tau inversion recovery (d) treated by vertebroplasty (e�f).
Figure 8. (a�d) A 47-year-old male involved in a motorbike accident with back pain resistance to medical therapy. The MRI showed a Magerl A1 fracture with bone marrow oedema at T12 vertebral body hypointense on T1 weighted (a) hyperintense on T2 weighted (b) and short tau inversion recovery (c) treated by assisted-technique vertebroplasty�vertebral body stenting technique (d).

Using MDCT and MRI, thanks to morphology and injury distribution, various classification systems have been used for identifying those injuries that require surgical intervention, distinguishing among stable and unstable fractures and surgical and non-surgical fractures.1

Denis proposed the �three-column concept�, dividing the spinal segment into three parts: anterior, middle and posterior columns. The anterior column comprises the anterior longitudinal ligament and anterior half of the vertebral body; the middle column comprises the posterior half of the vertebral body and posterior longitudinal ligament; and the posterior column comprises the pedicles, facet joints and supraspinous ligaments. Each column has different contributions to stability, and their damages may affect stability differently. Generally, if two or more of these columns are damaged, the spine becomes unstable.18

Magerl divided the vertebral compression fracture (VCF) into three main categories according to trauma force: (a) compression injury, (b) distraction injury and (c) rotation injury. Type A has conservative or non-surgical mini-invasive treatment indication.19

The thoracolumbar injury classification and severity score (TLICS) system assigns numerical values to each injury based on the categories of morphology of injury, integrity of the posterior ligament and neurological involvement. Stable injury patterns (TLICS,4) may be treated non-operatively with�brace immobilization. Unstable injury patterns (TLICS.4) may be treated operatively with the principles of deformity correction, neurological decompression if necessary and spinal stabilization.20

The Aebi classification is based on three major groups: A = isolated anterior column injuries by axial compression, B = disruption of the posterior ligament complex by distraction posteriorly and C = corresponding to group B but with rotation. There is an increasing severity from A to C, and within each group, the severity usually increases within the subgroups from 1 to 3. All these pathomorphologies are supported by the mechanism of injury, which is responsible for the extent of the injury. The type of injury with its groups and subgroups is able to suggest the treatment modality.21

Thoracolumbar Fracture and Mini-Invasive Vertebral Augmentation Procedure: Imaging Target

Recently, different mini-invasive procedures called assisted- technique vertebroplasty (balloon kyphoplasty KP or kyphoplasty-like techniques) have been developed in order to obtain pain relief and kyphosis correction as alternative treatment for non-surgical but symptomatic vertebral fracture.

The rationale of these techniques is to combine the analgesic and vertebral consolidation effect of vertebroplasty with the restoration of the physiological height of the collapsed vertebral body, reducing the kyphotic deformity of the vertebral body, delivering cement into the fractured vertebral body with a vertebral stabilization effect compared with conservative therapy (bed rest and medical therapy).22

From interventional point of view, imaging has an important role for treatment indication together with clinical evaluation. Both MDCT and MRI are recommended Figure 7 and 8.

In fact, MDCT has the advantage of diagnosing VCF with kyphosis deformity easily, while MRI with STIR sequence is useful to evaluate bone marrow oedema, an important sign of back pain.

Patients affected by vertebral fracture without bone marrow oedema on STIR sequence are not indicated for interventional procedure.

According to imaging, Magerl A1 classification fractures are the main indication of treatment.

However, the treatment must be performed within 2�3 weeks from trauma in order to avoid sclerotic bone response: the younger the fractures, the better the results and easier the treatment and vertebral augmentation effect. To exclude sclerotic bone reaction, CT is recommended.

Conclusion

The management of spinal trauma remains complex. MDCT has a wide indication for bone evaluation in patients affected by severe trauma or patients with high risk of spine injury. MRI has a major indication in the case of spinal cord injury and the absence of bone lesion. Diagnostic assessment of spinal trauma, including radiography, CT scans, and MRI are fundamental towards the diagnosis of spine fractures and spinal cord injury for treatment. The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

Curated by Dr. Alex Jimenez

Green Call Now Button H .png

Additional Topics: Acute Back Pain

Back pain�is one of the most prevalent causes of disability and missed days at work worldwide. Back pain attributes to the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments, and muscles, among other soft tissues. Because of this, injuries and/or aggravated conditions, such as�herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief.

 

blog picture of cartoon paper boy

EXTRA IMPORTANT TOPIC: Sciatica Pain Chiropractic Therapy

Blank
References
  1. Pneumaticos SG, Triantafyllopoulos GK, Gian- noudis PV. Advances made in the treatment of thoracolumbar fractures: current trends and future directions. Injury 2013; 44: 703�12. doi: 10.1016/j.injury.2012.12.005

  2. Griffith B, Bolton C, Goyal N, Brown ML, Jain R. Screening cervical spine CT in a level I trauma center: overutilization? AJR Am J Roentgenol 2011; 197: 463�7.doi: 10.2214/ AJR.10.5731

  3. Hanson JA, Blackmore CC, Mann FA, Wilson AJ. Cervical spine injury: a clinical decision rule to identify high-risk patients for helical CTscreening. AJR Am J Roentgenol 2000; 174: 713�17.

  4. Saltzherr TP, Fung Kon Jin PH, Beenen LF, Vandertop WP, Goslings JC. Diagnostic imaging of cervical spine injuries following blunt trauma: a review of the literature and practical guideline. Injury 2009; 40: 795�800. doi: 10.1016/j.injury.2009.01.015

  5. Holmes JF, Akkinepalli R. Computed to- mography versus plain radiography to screen for cervical spine injury: a meta-analysis. J Trauma 2005; 58: 902�5. doi: 10.1097/01. TA.0000162138.36519.2A

  6. Hoffman JR, Wolfson AB, Todd K, Mower WR. Selective cervical spine radiography in blunt trauma: methodology of the National Emergency X-Radiography Utilization Study (NEXUS). Ann Emerg Med 1998; 32: 461�9. doi: 10.1016/S0196-0644(98)70176-3

  7. Dickinson G, Stiell IG, Schull M, Brison R, Clement CM, Vandemheen KL, et al. Retro- spective application of the NEXUS low-risk criteria for cervical spine radiography in Canadian emergency departments. Ann Emerg Med 2004; 43: 507�14. doi: 10.1016/j. annemergmed.2003.10.036

  8. Stiell IG, Wells GA, Vandemheen KL, Clem- ent CM, Lesiuk H, De Maio VJ, et al. The Canadian C-spine rule for radiography in

alert and stable trauma patients. JAMA 2001;

286: 1841�8. doi: 10.1001/jama.286.15.1841 9. Berne JD, Velmahos GC, El-Tawil Q, Deme- triades D, Asensio JA, Murray JA, et al. Value

of complete cervical helical computed to- mographic scanning in identifying cervical spine injury in the unevaluable blunt trauma patient with multiple injuries: a prospective study. J Trauma 1999; 47: 896�902. doi: 10.1097/00005373-199911000-00014

10. Wintermark M, Mouhsine E, Theumann N, Mordasini P, van Melle G, Leyvraz PF, et al. Thoracolumbar spine fractures in patients who have sustained severe trauma: depiction with multi-detector row CT. Radiology 2003; 227: 681�9. doi: 10.1148/radiol.2273020592

11. Kim S, Yoon CS, Ryu JA, Lee S, Park YS, Kim SS, et al. A comparison of the diagnostic performances of visceral organ-targeted ver- sus spine-targeted protocols for the evalua- tion of spinal fractures using sixteen-channel multidetector row computed tomography: is additional spine-targeted computed tomog- raphy necessary to evaluate thoracolumbar spinal fractures in blunt trauma victims? J Trauma 2010; 69: 437�46. doi: 10.1097/ TA.0b013e3181e491d8

12. Pizones J, Castillo E. Assessment of acute thoracolumbar fractures: challenges in mul- tidetector computed tomography and added value of emergency MRI. Semin Musculoskelet Radiol 2013; 17: 389�95. doi: 10.1055/s- 0033-1356468

13. Emery SE, Pathria MN, Wilber RG, Masaryk T, Bohlman HH. Magnetic resonance imag- ing of posttraumatic spinal ligament injury. J Spinal Disord 1989; 2: 229�33. doi: 10.1097/ 00002517-198912000-00003

14. Zhang JS, Huan Y. Multishot diffusion- weighted MR imaging features in acute trauma of spinal cord. Eur Radiol 2014; 24: 685�92. doi: 10.1007/s00330-013-3051-3

15. Talbott JF, Whetstone WD, Readdy WJ, Ferguson AR, Bresnahan JC, Saigal R, et al. The Brain and Spinal Injury Center score:
a novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings. J Neurosurg Spine 2015; 23: 495�504. doi: 10.3171/2015.1.SPINE141033

16. Boese CK, Oppermann J, Siewe J, Eysel P, Scheyerer MJ, Lechler PJ. Spinal cord injury without radiologic abnormality in children: a systematic review and meta-analysis. Trauma Acute Care Surg 2015; 78: 874�82. doi: 10.1097/TA.0000000000000579

17. Brown RL, Brunn MA, Garcia VF. Cervical spine injuries in children: a review of
103 patients treated consecutively at a level 1 pediatric trauma center. J Pediatr Surg 2001; 36: 1107�14. doi: 10.1053/jpsu.2001.25665

18. Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976) 1983; 8: 817�31. doi: 10.1097/ 00007632-198311000-00003

19. Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 1994; 3: 184�201.

20. Patel AA, Dailey A, Brodke DS, Daubs M, Harrop J, Whang PG, et al; Spine Trauma Study Group. Thoracolumbar spine trauma classification: the Thoracolumbar Injury Classification and Severity Score system and case examples. J Neurosurg Spine 2009; 10: 201�6. doi: 10.3171/2008.12.SPINE08388

21. Aebi M. Classification of thoracolumbar fractures and dislocations. Eur Spine J 2010; 19(Suppl. 1): S2�7. doi: 10.1007/s00586-009-1114-6

22. Muto M, Marcia S, Guarnieri G, Pereira V. Assisted techniques for vertebral cementoplasty: why should we do it? Eur J Radiol 2015; 84: 783�8. doi: 10.1016/j.ejrad.2014.04.002

Close Accordion
Sciatica Relief with Chiropractic Care

Sciatica Relief with Chiropractic Care

My treatment with Dr. Alex Jimenez has tremendously helped me. It gives me just, a sense of relief knowing that I can come and see him and all of his employees and great masseuses and everyone, can just release all the tension. It just brings me back to life.�

April Hermosillo

 

Have you ever experienced back pain which triggers or radiates shooting pain into the buttocks or legs? Millions of people in the United States suffer from this common health issue known as sciatica. Sciatica is a general diagnostic term used to describe radiating pain, tingling sensations, numbness or weakness which runs across the length of the sciatic nerve.

 

Sciatica originates along the lower back and then travels from the buttocks into one or both legs. Instead of a dull achy pain, this type of pain is characterized as a sharp, shooting pain that worsens through prolonged periods of sitting. The sciatic nerve is the largest nerve in the human body comprised of many nerve roots which come together once they exit the spine. When the sciatic nerve becomes compressed, due to a variety of possible causes, symptoms will manifest and radiate down the leg.

 

What is Sciatica?

 

Sciatica is a collection of symptoms, including pain, tingling and burning sensations at the lower back and/or legs, weakness, and numbness, caused by a combination of: pressure on the sciatic nerve, inflammation to the sciatic nerve or the region directly surrounding the nerve, an irritation to the sciatic nerve, and/or a pinching of the sciatic nerves. As the largest nerve in the human body, the sciatic nerve can be easily affected.

 

Sciatic nerve pain is a common health issue that affects many people on a regular basis. Its consequences can range from a mild nuisance to a debilitating pain which interferes with an individual’s physical activities.� Sciatica symptoms manifest in many different ways, including:

 

  • Lower back pain
  • Leg Pain
  • Buttock pain
  • A sensation of tingling or �pins & needles� running down the�leg, and even into the toes
  • Numbness in the legs or feet
  • Muscle weakness in the legs
  • Aching or burning feeling in the legs
  • Pain or numbness in the�big toe, or any of the toes
  • Any combination of the list above

 

As you may see, though some individuals could experience pain from the lower back all the way down to their feet, it can be isolated to a segment of this area. Fortunately, a variety of treatment approaches are available to help treat sciatica. Below, we will discuss some of the most common causes of sciatica as well as demonstrate the best treatment approach.�Chiropractic care is one of the most common alternative treatment options utilized to provide sciatic nerve pain relief without prescriptions or surgery.

 

Causes of Sciatica

 

Sciatic nerve pain may not always be felt immediately following an injury or condition due�to an accident. Some people experience sciatica that seems to come and go, while for others, it might take years before their symptoms manifest at all. This is partly because pain is processed by only 10 percent of the�nervous system. A patient may also feel relief from their pain, but because the underlying cause of their sciatica hasn’t been fixed, the pain will come back. Below is a list of some of the causes of sciatica.

 

  • Subluxation or misalignment of the vertebrae
  • Disc degeneration, herniation, bulge, protrusion or other damage
  • A tumor pressing on the sciatic nerve
  • Injury to muscles
  • Pregnancy
  • Slipping, falling, or other impacts
  • Internal bleeding
  • Bad posture, either from sitting, standing or sleeping
  • Osteoarthritis
  • Spinal stenosis, a narrowing of the spinal canal the sciatic nerves pass through,
  • Playing sports
  • Poor lifting techniques
  • Other normal daily activities

 

While there are many possible causes for sciatica, the most frequent is a subluxation, or misalignment of the vertebrae in the lumbar spine,�or low back. A subluxation that is left untreated will result in the wear-and-tear of the spine, which in turn may lead�to disc protrusions, disc degeneration, disc herniations, and at some stages, even osteoarthritis. Chiropractic care will gently fix subluxations in the spine, allowing the nervous system to perform at an optimal level so that true recovery can occur.

 

Another common cause�of sciatica is a disc herniation. Spinal stenosis, which is a consequence of severe degeneration or alignment problems can also cause sciatic nerve pain. A condition called piriformis syndrome occurs when a tight piriformis muscle compresses the sciatic nerve. Determining the reason for sciatica is essential in understanding how to care for the health issue. Untreated sciatica can lead to problems such as:

 

  • Constipation
  • Difficulty getting pregnant
  • Digestion Problems
  • Edema or leg swelling
  • Erectile dysfunction (ED)
  • Incontinence
  • Irritable bowel syndrome (IBS)
  • Menstrual problems
  • Urinary problems
  • And more

 

Leaving sciatica untreated for any length of time can be damaging to your health, and the problem may worsen over time. The use of drugs and/or medications to help cope with your sciatic pain may only offer temporary relief from the symptoms as the real underlying source of your sciatica may not have been treated accordingly.�Diagnosis typically includes a comprehensive examination using a range of motion testing, neurological testing, imaging with MRI or X-Rays, and occasionally, further testing using nerve conduction velocity and electromyography evaluations.

 

Treatment for sciatica may vary depending on the cause of the symptoms. A chiropractor may use a series of spinal adjustments and manual manipulations�to help take pressure from the sciatic nerve. Other chiropractic care techniques and methods include the flexion distraction diversified technique, traction, and lumbar decompression. Passive and active exercises can also help treat sciatica. Exercises can also be recommended to restore strength, mobility, and flexibility. In severe cases of sciatica, the healthcare professional may recommend surgery.�

 

Dr-Jimenez_White-Coat_01.png

Sciatica occurs when an injury or condition results in the compression or impingement of the sciatic nerve, the largest nerve in the human body. When this happens, a collection of symptoms, including pain, tingling and burning sensations, as well as numbness, can develop. Chiropractic care is a well-known, alternative treatment option which can help carefully release the tension in the spine, reducing sciatic nerve pain.

Dr. Alex Jimenez D.C., C.C.S.T.

Chiropractic Care and Sciatica

 

The European Spine Journal printed the findings from a clinical trial demonstrating that chiropractic care led to a 72 percent success rate in treating sciatica and its associated symptoms compared to only a 20 percent success rate from physical therapy, and a 50 percent success rate from corticosteroid injections when treating sciatic nerve pain.

 

Sciatica is a widespread problem that many patients experience. Chiropractic care can find the source of the health issue in order to begin treatment and deliver pain relief accurately.�Sciatica can be painful and hinder you from living life to the fullest. Contact a chiropractor now to determine whether this is the ideal solution for you.

 

If you or somebody you know is suffering from sciatica and any of its associated symptoms, please recommend this article to them.�The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

 

Curated by Dr. Alex Jimenez

 

Green Call Now Button H .png

 

Additional Topics: Acute Back Pain

Back pain�is one of the most prevalent causes of disability and missed days at work worldwide. Back pain attributes to the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments, and muscles, among other soft tissues. Because of this, injuries and/or aggravated conditions, such as�herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief.

 

blog picture of cartoon paper boy

EXTRA IMPORTANT TOPIC: Sciatica Pain Chiropractic Therapy

Lumbar Disc Nomenclature: Version 2.0

Lumbar Disc Nomenclature: Version 2.0

What is a Herniated Disc?

The spine is made up of 24 bones, called vertebrae, which are stacked on top of one another. These spinal bones are ultimately connected, creating a canal to protect the spinal cord. In between each vertebra are fluid-filled intervertebral discs which act as shock absorbers for the spine. Over time, however, these flexible, jelly donut-like discs can begin to herniate, where the nucleus of the intervertebral disc pushes against its outer ring, causing low back pain. Below, we will demonstrate the various types of herniated discs and discuss their causes, symptoms and treatment options.

Abstract

Background Context

The paper ��Nomenclature and classification of lumbar disc pathology, recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology,�� was published in 2001 in Spine (� Lippincott, Williams & Wilkins). It was authored by David Fardon, MD, and Pierre Milette, MD, and formally endorsed by the American Society of Spine Radiology (ASSR), American Society of Neuroradiology (ASNR), and North American Spine Society (NASS). Its purpose was to promote greater clarity and consistency of usage of spinal terminology, and it has served this purpose well for over a decade. Since 2001, there has been sufficient evolution in our understanding of the lumbar disc to suggest the need for revision and updating of the original document. The revised document is presented here, and it represents the consensus recommendations of contemporary combined task forces of the ASSR, ASNR, and NASS. This article reflects changes consistent with current concepts in radiologic and clinical care.

Purpose

To provide a resource that promotes a clear understanding of lumbar disc terminology amongst clinicians, radiologists, and researchers. All the concerned need standard terms for the normal and pathologic conditions of lumbar discs that can be used accurately and consistently and thus best serve patients with disc disorders.

Study Design

This article comprises a review of the literature.

Methods

A PubMed search was performed for literature pertaining to the lumbar disc. The task force members individually and collectively reviewed the literature and revised the 2001 document. The revised document was then submitted for review to the governing boards of the ASSR, ASNR, and NASS. After further revision based on the feedback from the governing boards, the article was approved for publication by the governing boards of the three societies, as representative of the consensus recommendations of the societies.

Results

The article provides a discussion of the recommended diagnostic categories pertaining to the lumbar disc: normal; congenital/developmental variation; degeneration; trauma; infection/inflammation; neoplasia; and/or morphologic variant of uncertain significance. The article provides a glossary of terms pertaining to the lumbar disc, a detailed discussion of these terms, and their recommended usage. Terms are described as preferred, nonpreferred, nonstandard, and colloquial. Updated illustrations pictorially portray certain key terms. Literature references that provided the basis for the task force recommendations are included.

Conclusions

We have revised and updated a document that, since 2001, has provided a widely acceptable nomenclature that helps maintain consistency and accuracy in the description of the anatomic and physiologic properties of the normal and abnormal lumbar disc and that serves as a system for classification and reporting built upon that nomenclature.

Keywords

Annular fissure, Annular tear, Disc bulge (bulging disc), Disc degeneration, Disc extrusion, Disc herniation, Disc nomenclature, Disc protrusion, High-intensity zone, Lumbar intervertebral disc

Preface

The nomenclature and classification of lumbar disc pathology consensus, published in 2001, by the collaborative efforts of the North American Spine Society (NASS), the American Society of Spine Radiology (ASSR) and the American Society of Neuroradiology (ASNR), has guided radiologists, clinicians, and interested public for over a decade [1]. This document has passed the test of time. Responding to an initiative from the ASSR, a task force of spine physicians from the ASSR, ASNR, and NASS has reviewed and modified the document. This revised document preserves the format and most of the language of the original, with changes consistent with current concepts in radiologic and clinical care. The modifications deal primarily with the following: updating and expansion of Text, Glossary, and References to meet contemporary needs; revision of Figures to provide greater clarity; emphasis of the term ��annular fissure�� in place of ��annular tear��; refinement of the definitions of ��acute�� and ��chronic�� disc herniations; revision of the distinction between disc herniation and asymmetrically bulging disc; elimination of the Tables in favor of greater clarity from the revised Text and Figures; and deletion of the section of Reporting and Coding because of frequent changes in those practices, which are best addressed by other publications. Several other minor amendments have been made. This revision will update a workable standard nomenclature, accepted and used universally by imaging and clinical physicians.

Introduction and History

Physicians need standard terms for normal and pathologic conditions of lumbar discs [2, 3, 4, 5]. Terms that can be interpreted accurately, consistently, and with reasonable precision are particularly important for communicating impressions gained from imaging for clinical diagnostic and therapeutic decision-making. Although clear understanding of the disc terminology between radiologists and clinicians is the focus of this work, such understanding can be critical, also to patients, families, employers, insurers, jurists, social planners, and researchers.

In 1995, a multidisciplinary task force from the NASS addressed the deficiencies in commonly used terms defining the conditions of the lumbar disc. It cited several documentations of the problem [6, 7, 8, 9, 10, 11] and made detailed recommendations for standardization. Its work was published in a copublication of the NASS and the American Academy of Orthopaedic Surgeons [9]. The work had not been otherwise endorsed by major organizations and had not been recognized as authoritative by radiology organizations. Many previous [3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and some subsequent [20, 21, 22, 23, 24, 25] efforts addressed the issues, but were of more limited scope and none had gained a widespread acceptance.

Although the NASS 1995 effort was the most comprehensive at the time, it remained deficient in clarifying some controversial topics, lacking in its treatment of some issues, and did not provide recommendations for standardization of classification and reporting. To address the remaining needs, and in hopes of securing endorsement sufficient to result in universal standardizations, joint task forces (Co-Chairs David Fardon, MD, and Pierre Milette, MD) were formed by the NASS, ASNR, and ASSR, resulting in the first version of the document ��Nomenclature and classification of lumbar disc pathology�� [1]. Since then, time and experience suggested the need for revisions and updating of the original document. The revised document is presented here.

The general principles that guided the original document remain unchanged in this revision. The definitions are based on the anatomy and pathology, primarily as visualized on imaging studies. Recognizing that some criteria, under some circumstances, may be unknowable to the observer, the definitions of the terms are not dependent on or imply the value of specific tests. The definitions of diagnoses are not intended to imply external etiologic events such as trauma, they do not imply relationship to symptoms, and they do not define or imply the need for specific treatment.

The task forces, both current and former, worked from a model that could be expanded from a primary purpose of providing understanding of reports of imaging studies. The result provides a simple classification of diagnostic terms, which can be expanded, without contradiction, into more precise subclassifications. When reporting pathology, degrees of uncertainty would be labeled as such rather than compromising the definitions of the terms.

All terms used in the classifications and subclassifications are defined and those definitions are adhered to throughout the model. For a practical purpose, some existing English terms are given meanings different from those found in some contemporary dictionaries. The task forces provide a list and classification of the recommended terms, but, recognizing the nature of language practices, discuss and include in the Glossary, commonly used and misused nonrecommended terms and nonstandard definitions.

Although the principles and most of the definitions of this document can be easily extrapolated to the cervical and dorsal spine, the focus is on the lumbar spine. Although clarification of terms related to posterior elements, dimensions of the spinal canal, and status of neural tissues is needed, this work is limited to the discussion of the disc. While it is not always possible to discuss fully the definition of anatomical and pathologic terms without some reference to symptoms and etiology, the definitions themselves stand the test of independence from etiology, symptoms, or treatment. Because of the focus on anatomy and pathology, this work does not define certain clinical syndromes that may be related to lumbar disc pathology [26].

Guided by those principles, we have revised and updated a document that, since 2001, has provided a widely acceptable nomenclature that is workable for all forms of observation, that addresses contour, content, integrity, organization, and spatial relationships of the lumbar disc; and that serves a system of classification and reporting built upon that nomenclature.

Diagnostic Category & Subcategory Recommendations

These recommendations present diagnostic categories and subcategories intended for classification and reporting of imaging studies. The terminology used throughout these recommended categories and subcategories remains consistent with detailed explanations given in the Discussion and with the preferred definitions presented in the Glossary.

The diagnostic categories are based on pathology. Each lumbar disc can be classified in terms of one, and occasionally more than one, of the following diagnostic categories: normal; congenital/developmental variation; degeneration; trauma; infection/inflammation; neoplasia; and/or morphologic variant of uncertain significance. Each diagnostic category can be subcategorized to various degrees of specificity according to the information available and purpose to be served. The data available for categorization may lead the reporter to characterize the interpretation as ��possible,�� ��probable,�� or ��definite.��

Note that some terms and definitions discussed below are not recommended as preferred terminology, but are included to facilitate the interpretation of vernacular and, in some cases, improper use. Terms may be defined as preferred, nonpreferred, or nonstandard. Nonstandard terms by consensus of the organizational task forces should not be used in the manner described.

Normal

Normal defines discs that are morphologically normal, without the consideration of the clinical context and not inclusive of degenerative, developmental, or adaptive changes that could, in some contexts (eg, normal aging, scoliosis, spondylolisthesis), be considered clinically normal (Fig. 1).

Figure 1: Normal lumbar disc. (Top Left) Axial, (Top Right) sagittal, and (Bottom) coronal images demonstrate that the normal disc, composed of central NP and peripheral AF, is wholly within the boundaries of the disc space, as defined, craniad and caudad by the vertebral body end plates and peripherally by the planes of the outer edges of the vertebral apophyses, exclusive of osteophytes. NP, nucleus pulposus; AF, annulus fibrosus.

Congenital/Developmental Variation

The congenital/developmental variation category includes discs that are congenitally abnormal or that have undergone changes in their morphology as an adaptation of abnormal growth of the spine, such as from scoliosis or spondylolisthesis.

Degeneration

Degenerative changes in the discs are included in a broad category that includes the subcategories annular fissure, degeneration, and herniation.

Annular fissures are separations between the annular fibers or separations of annular fibers from their attachments to the vertebral bone. Fissures are sometimes classified by their orientation. A ��concentric fissure�� is a separation or delamination of annular fibers parallel to the peripheral contour of the disc (Fig. 2). A ��radial fissure�� is a vertically, horizontally, or obliquely oriented separation of (or rent in) annular fibers that extends from the nucleus peripherally to or through the annulus. A ��transverse fissure�� is a horizontally oriented radial fissure, but the term is sometimes used in a narrower sense to refer to a horizontally oriented fissure limited to the peripheral annulus that may include separation of annular fibers from the apophyseal bone. Relatively wide annular fissures, with stretch of the residual annular margin, at times including avulsion of an annular fragment, have sometimes been called ��annular gaps,�� a term that is relatively new and not accepted as standard [27]. The term ��fissures�� describes the spectrum of these lesions and does not imply that the lesion is a consequence of injury.

Figure 2: Fissures of the annulus fibrosus. Fissures of the annulus fibrosus occur as radial (R), transverse (T), and/or concentric (C) separations of fibers of the annulus. The transverse fissure depicted is a fully developed, horizontally oriented radial fissure; the term ��transverse fissure�� is often applied to a less extensive separation limited to the peripheral annulus and its bony attachments.

Use of the term ��tear�� can be misunderstood because the analogy to other tears has a connotation of injury, which is inappropriate in this context. The term ��fissure�� is the correct term. Use of the term ��tear�� should be discouraged and, when it appears, should be recognized that it is usually meant to be synonymous with ��fissure�� and not reflective of the result of injury. The original version of this document stated preference for the term ��fissure�� but regarded the two terms as almost synonymous. However, in this revision, we regard the term ��tear�� as nonstandard usage.

Degeneration may include any or all of the following: desiccation, fibrosis, narrowing of the disc space, diffuse bulging of the annulus beyond the disc space, fissuring (ie, annular fissures), mucinous degeneration of the annulus, intradiscal gas [28], osteophytes of the vertebral apophyses, defects, inflammatory changes, and sclerosis of the end plates [15, 29, 30, 31, 32, 33, 34].

Herniation is broadly defined as a localized or focal displacement of disc material beyond the limits of the intervertebral disc space. The disc material may be nucleus, cartilage, fragmented apophyseal bone, annular tissue, or any combination thereof. The disc space is defined craniad and caudad by the vertebral body end plates and, peripherally, by the outer edges of the vertebral ring apophyses, exclusive of osteophytes. The term ��localized�� or ��focal�� refers to the extension of the disc material less than 25% (90�) of the periphery of the disc as viewed in the axial plane.

The presence of disc tissue extending beyond the edges of the ring apophyses, throughout the circumference of the disc, is called ��bulging�� and is not considered a form of herniation (Fig. 3, Top Right). Asymmetric bulging of disc tissue greater than 25% of the disc circumference (Fig. 3, Bottom), often seen as an adaptation to adjacent deformity, is, also, not a form of herniation. In evaluating the shape of the disc for a herniation in an axial plane, the shape of the two adjacent vertebrae must be considered [15, 35].

Figure 3: Bulging disc. (Top Left) Normal disc (for comparison); no disc material extends beyond the periphery of the disc space, depicted here by the broken line. (Top Right) Symmetric bulging disc; annular tissue extends, usually by less than 3 mm, beyond the edges of the vertebral apophyses symmetrically throughout the circumference of the disc. (Bottom) Asymmetric bulging disc; annular tissue extends beyond the edges of the vertebral apophysis, asymmetrically greater than 25% of the circumference of the disc.

Herniated discs may be classified as protrusion or extrusion, based on the shape of the displaced material.

Protrusion is present if the greatest distance between the edges of the disc material presenting outside the disc space is less than the distance between the edges of the base of that disc material extending outside the disc space. The base is defined as the width of disc material at the outer margin of the disc space of origin, where disc material displaced beyond the disc space is continuous with the disc material within the disc space (Fig. 4). Extrusion is present when, in at least one plane, any one distance between the edges of the disc material beyond the disc space is greater than the distance between the edges of the base of the disc material beyond the disc space or when no continuity exists between the disc material beyond the disc space and that within the disc space (Fig. 5). The latter form of extrusion is best further specified or subclassified as sequestration if the displaced disc material has lost continuity completely with the parent disc (Fig. 6). The term migration may be used to signify displacement of disc material away from the site of extrusion. Herniated discs in the craniocaudad (vertical) direction through a gap in the vertebral body end plate are referred to as intravertebral herniations (Schmorl nodes) (Fig. 7).

Figure 4: Herniated disc: protrusion. (Left) Axial and (Right) sagittal images demonstrate displaced disc material extending beyond less than 25% of the disc space, with the greatest measure, in any plane, of the displaced disc material being less than the measure of the base of displaced disc material at the disc space of origin, measured in the same plane.
Figure 5: Herniated disc: extrusion. (Left) Axial and (Right) sagittal images demonstrate that the greatest measure of the displaced disc material is greater than the base of the displaced disc material at the disc space of origin, when measured in the same plane.
Figure 6: Herniated disc: sequestration. (Left) Axial and (Right) sagittal images show that a sequestrated disc is an extruded disc in which the displaced disc material has lost all connection with the disc of origin.
Figure 7:�Intravertebral herniation (Schmorl node). Disc material is displaced beyond the disc space through the vertebral end plate into the vertebral body, as shown here in sagittal projection

Disc herniations may be further specifically categorized as contained, if the displaced portion is covered by outer annulus fibers and/or the posterior longitudinal ligament, or uncontained when absent of any such covering. If the margins of the disc protrusion are smooth on axial computed tomography (CT) or magnetic resonance imaging (MRI), then the displaced disc material is likely contained by the posterior longitudinal ligament and perhaps a few superficial posterior annular fibers [21, 35, 36, 37]. If the posterior margin of the disc protrusion is irregular, the herniation is likely uncontained. Displaced disc tissue is typically described by location, volume, and content, as discussed later in this document.

An alternative scheme of distinguishing protrusion from extrusion is discussed in the Discussion section.

Trauma

The category of trauma includes disruption of the disc associated with physical and/or imaging evidence of violent fracture and/or dislocation and does not include repetitive injury, contribution of less than violent trauma to the degenerative process, fragmentation of the ring apophysis in conjunction with disc herniation, or disc abnormalities in association with degenerative subluxations. Whether or not a ��less than violent�� injury has contributed to or been superimposed on a degenerative change is a clinical judgment that cannot be made based on images alone; therefore, from the standpoint of description of images, such discs, in the absence of significant imaging evidence of associated violent injury, should be classified as degeneration rather than trauma.

Inflammation/Infection

The category of inflammation/infection includes infection, infection-like inflammatory discitis, and inflammatory response to spondyloarthropathy. It also includes inflammatory spondylitis of the subchondral end plate and bone marrow manifested by Modic Type I MRI changes [29, 30, 38] and usually associated with degenerative pathologic changes in the disc. To simplify the classification scheme, the category is inclusive of disparate conditions; therefore, when data permit, the diagnosis should be subcategorized for appropriate specificity.

Neoplasia

Primary or metastatic morphologic changes of disc tissues caused by malignancy are categorized as neoplasia, with subcategorization for appropriate specificity.

Miscellaneous Paradiscal Masses of Uncertain Origin

Although most intraspinal cysts are of meningeal or synovial origin, a minority arise from the disc and create a paradiscal mass that does not contain nuclear material. Epidural bleeding and/or edema, unrelated to trauma or other known origin may create a paradiscal mass or may increase the size of herniated disc material. Such cysts and hematomas may be seen acutely and unaccompanied by other pathology or may be a component of chronic disc pathology.

Morphologic�Variant of Unknown Significance

Instances in which data suggest abnormal morphology of the disc, but in which data are not complete enough to support a diagnostic categorization can be categorized as a morphologic variant of unknown significance.

Discussion of Nomenclature in Detail

This document provides a nomenclature that facilitates the description of surgical, endoscopic, or cadaveric findings as well as imaging findings; and also, with the caveat that it addresses only the morphology of the disc, it facilitates communication for patients, families, employers, insurers, and legal and social authorities and permits accumulation of more reliable data for research.

Normal Disc

Categorization of a disc as ��normal�� means the disc is fully and normally developed and free of any changes of disease, trauma, or aging. Only the morphology, and not the clinical context, is considered. Clinically ��normal�� (asymptomatic) people may have a variety of harmless imaging findings, including congenital or developmental variations of discs, minor bulging of the annuli, age-related desiccation, anterior and lateral marginal vertebral body osteophytes, prominence of disc material beyond one end plate as a result of luxation of one vertebral body relative to the adjacent vertebral body (especially common at L5�S1), and so on [39]. By this article�s morphology-based nomenclature and classification, however, such individual discs are not considered ��normal,�� but rather are described by their morphologic characteristics, independent of their clinical import unless otherwise specified.

Disc with Fissures of the Annulus

There is a general agreement about the various forms of loss of integrity of the annulus, such as radial, transverse, and concentric fissures. Yu et al. [40] have shown that annular fissures, including radial, concentric, and transverse types, are present in nearly all degenerated discs [41]. If the disc is dehydrated on an MRI scan, it is likely that there is at least one or more small fissures in the annulus. Relatively wide, radially directed annular fissures, with stretch of the residual annular margin, at times involving avulsion of an annular fragment, have sometimes been called ��annular gaps,�� although the term is relatively new and not accepted as a standard [27].

The terms ��annular fissure�� and ��annular tear�� have been applied to the findings on T2-weighted MRI scans of localized high intensity zones (HIZ) within the annulus [30, 42, 43, 44]. High intensity zones represent fluid and/or granulation tissue and may enhance with gadolinium. Fissures occur in all degenerative discs but are not all visualized as HIZs. Discography reveals some fissures not seen by the MRI, but not all fissures are visualized by discography. Description of the imaging findings is most accurate when limited to the observation of an HIZ or discographically demonstrated fissure, with the understood caveat that there is an incomplete concordance with the HIZs, discogram images, and anatomically observed fissures.

As far back as the 1995 NASS document, authors have recommended that such lesions be termed ��fissures�� rather than ��tears,�� primarily out of concern that the word ��tear�� could be misconstrued as implying a traumatic etiology [9, 30, 45, 46]. Because of potential misunderstanding of the term ��annular tear,�� and consequent presumption that the finding of an annular fissure indicates that there has been an injury, the term ��annular tear�� should be considered nonstandard and ��annular fissure�� be the preferred term. Imaging observation of an annular fissure does not imply an injury or related symptoms, but simply defines the morphologic change in the annulus.

Degenerated Disc

Because there is a confusion in the differentiation of changes of pathologic degenerative processes in the disc from those of normal aging [17, 31, 47, 48, 49], the classification ��degenerated disc�� includes all such changes, thus does not compel the observer to differentiate the pathologic from the normal consequence of aging.

Perceptions of what constitutes the normal aging process of the spine have been greatly influenced by postmortem anatomic studies involving a limited number of specimens, harvested from cadavers from different age groups, with unknown past medical histories and the presumption of absence of lumbar symptoms [23, 50, 51, 52, 53, 54, 55, 56, 57]. With such methods, pathologic change is easily confused with consequences of normal aging. Resnick and Niwayama [31] emphasized the differentiating features of two degenerative processes involving the intervertebral disc that had been previously described by Schmorl and Junghanns [58]; ��spondylosis deformans,�� which affects essentially the annulus fibrosus and adjacent apophyses (Fig. 8, Left) and ��intervertebral osteochondrosis,�� which affects mainly the nucleus pulposus and the vertebral body end plates and may include extensive fissuring of the annulus fibrosus that may be followed by atrophy (Fig. 8, Right). Although Resnick and Niwayama stated that the cause of the two entities was unknown, other studies suggest that spondylosis deformans is the consequence of normal aging, whereas intervertebral osteochondrosis, sometimes also called ��deteriorated disc,�� results from a clearly pathologic, although not necessarily symptomatic, process [29, 31, 42, 59, 60].

Figure 8:�Types of disc degeneration by radiographic criteria. (Left) Spondylosis deformans is manifested by apophyseal osteophytes, with relative preservation of the disc space. (Right) Intervertebral osteochondrosis is typified by disc space narrowing, severe fissuring, and end plate cartilage erosion.

Degrees of disc degeneration have been graded based on gross morphology of midsagittal sections of the lumbar spine (Thompson scheme) [19]; postdiscography CT observations of integrity of the interior of the disc (Dallas classification) (Fig. 9) [42]; MRI observations of vertebral body marrow changes adjacent to the disc (Modic classification) [30], (Fig. 10); and MRI-revealed changes in the nucleus (Pfirrmann classification) [61]. Various modifications of these schemes have been proposed to suit specific clinical and research needs [17, 35, 62, 63].

Figure 9:�Internal disc integrity. The extent of radial fissuring, as visualized on postdiscography CT, graded 0 to 5 by the Modified Dallas Discogram classification, as depicted.
Figure 10:�Reactive vertebral body marrow changes. These bone marrow signal changes adjacent to a degenerated disc on magnetic resonance imaging. T1- and T2-weighted sequences are frequently classified as (Top Left) Modic I, (Top Right) Modic II, or (Bottom) Modic III.

Herniated Disc

The needs of common practices make necessary a diagnostic term that describes disc material beyond the intervertebral disc space. Herniated disc, herniated nucleus pulposus (HNP), ruptured disc, prolapsed disc (used nonspecifically), protruded disc (used nonspecifically), and bulging disc (used nonspecifically) have all been used in the literature in various ways to denote imprecisely defined displacement of disc material beyond the interspace. The absence of clear understanding of the meaning of these terms and the lack of definition of limits that should be placed on an ideal general term have created a great deal of confusion in clinical practice and in attempts to make meaningful comparisons of research studies.

For the general diagnosis of displacement of disc material, the single term that is most commonly used and creates least confusion is ��herniated disc.�� ��Herniated nucleus pulposus�� is inaccurate because materials other than nucleus (cartilage, fragmented apophyseal bone, and fragmented annulus) are common components of displaced disc material [64]. ��Rupture�� casts an image of tearing apart and therefore carries more implication of traumatic etiology than ��herniation,�� which conveys an image of displacement rather than disruption.

Though ��protrusion�� has been used by some authors in a nonspecific general sense to signify any displacement, the term has a more commonly used specific meaning for which it is best reserved. ��Prolapse,�� which has been used as a general term, as synonymous with the specific meaning of protrusion, or to denote inferior migration of extruded disc material, is not frequently used in a way to provide specific meaning and is best regarded as nonstandard, in deference to the more specific terms ��protrusion�� and ��extrusion.��

By exclusion of other terms, and by reasons of simplicity and common usage, ��herniated disc�� is the best general term to denote displacement of disc material. The term is appropriate to denote the general diagnostic category when referring to a specific disc and to be inclusive of various types of displacements when speaking of groups of discs. The term includes discs that may properly be characterized by more specific terms, such as ��protruded disc�� or ��extruded disc.�� The term ��herniated disc,�� as defined in this work, refers to localized displacement of nucleus, cartilage, fragmented apophyseal bone, or fragmented annular tissue beyond the intervertebral disc space. ��Localized�� is defined as less than 25% of the disc circumference. The disc space is defined, craniad and caudad, by the vertebral body end plates and, peripherally, by the edges of the vertebral ring apophyses, exclusive of the osteophyte formation. This definition was deemed more practical, especially for the interpretation of imaging studies, than a pathologic definition requiring identification of disc material forced out of normal position through an annular defect. Displacement of disc material, either through a fracture or defect in the bony end plate or in conjunction with displaced fragments of fractured walls of the vertebral body, may be described as ��herniated�� disc, although such description should accompany description of the fracture so as to avoid confusion with primary herniation of disc material. Displacement of disc materials from one location to another within the interspace, as with intraannular migration of nucleus without displacement beyond the interspace, is not considered herniation.

To be considered ��herniated,�� disc material must be displaced from its normal location and not simply represent an acquired growth beyond the edges of the apophyses, as is the case when connective tissues develop in gaps between osteophytes or when annular tissue is displaced behind one vertebra as an adaptation to subluxation. Herniation, therefore, can only occur in association with disruption of the normal annulus or, as in the case of intravertebral herniation (Schmorl node), a defect in the vertebral body end plate.

Details of the internal architecture of the annulus are most often not visualized by even the best quality MRIs [21]. The distinction of herniation is made by the observation of displacement of disc material beyond the edges of the ring apophysis that is ��focal�� or ��localized,�� meaning less than 25% of the circumference of the disc. The 25% cutoff line is established by way of convention to lend precision to terminology and does not designate etiology, relation to symptoms, or treatment indications.

The terms ��bulge�� or ��bulging�� refer to a generalized extension of disc tissue beyond the edges of the apophyses [65]. Such bulging involves greater than 25% of the circumference of the disc and typically extends a relatively short distance, usually less than 3 mm, beyond the edges of the apophyses (Fig. 3). ��Bulge�� or ��bulging�� describes a morphologic characteristic of various possible causes. Bulging is sometimes a normal variant (usually at L5�S1), can result from an advanced disc degeneration or from a vertebral body remodeling (as consequent to osteoporosis, trauma, or adjacent structure deformity), can occur with ligamentous laxity in response to loading or angular motion, can be an illusion caused by posterior central subligamentous disc protrusion, or can be an illusion from volume averaging (particularly with CT axial images).

Bulging, by definition, is not a herniation. Application of the term ��bulging�� to a disc does not imply any knowledge of etiology, prognosis, or need for treatment or imply the presence of symptoms.

A disc may have, simultaneously, more than one herniation. A disc herniation may be present along with other degenerative changes, fractures, or abnormalities of the disc. The term ��herniated disc�� does not imply any knowledge of etiology, relation to symptoms, prognosis, or need for treatment.

When data are sufficient to make the distinction, a herniated disc may be more specifically characterized as ��protruded�� or ��extruded.�� These distinctions are based on the shape of the displaced material. They do not imply knowledge of the mechanism by which the changes occurred.

Protruded Discs

Disc protrusions are focal or localized abnormalities of the disc margin that involve less than 25% of the disc circumference. A disc is ��protruded�� if the greatest dimension between the edges of the disc material presenting beyond the disc space is less than the distance between the edges of the base of that disc material that extends outside the disc space. The base is defined as the width of the disc material at the outer margin of the disc space of origin, where disc material displaced beyond the disc space is continuous with the disc material within the disc space (Fig. 4). The term ��protrusion�� is only appropriate in describing herniated disc material, as discussed previously.

Extruded Discs

The term ��extruded�� is consistent with the lay language meaning of material forced from one domain to another through an aperture [37, 64]. With reference to a disc, the test of extrusion is the judgment that, in at least one plane, any one distance between the edges of the disc material beyond the disc space is greater than the distance between the edges of the base measured in the same plane or when no continuity exists between the disc material beyond the disc space and that within the disc space (Fig. 5). Extruded disc material that has no continuity with the disc of origin may be characterized as ��sequestrated�� [53, 66] (Fig. 6). A sequestrated disc is a subtype of ��extruded disc�� but, by definition, can never be a ��protruded disc.�� Extruded disc material that is displaced away from the site of extrusion, regardless of continuity with the disc, may be called ��migrated,�� a term that is useful for the interpretation of imaging studies because it is often impossible from images to know if continuity exists.

The aforementioned distinctions between protrusion and extrusion and between contained and uncontained are based on common practice and wide acceptance of the definitions in the original version of this document. Another set of criteria, espoused by some respected practitioners, defines extrusion as uncontained and protrusion as a persistence of containment, regardless of the relative dimensions of the base to displaced portion of disc material. Per these criteria, a disc extrusion can be identified by the presence of a continuous line of low signal intensity surrounding the disc herniation. They state that current advanced imaging permits this basis of distinction and that the presence or absence of containment has more clinical relevance than the morphology of the displaced material [35].

Whether their method will prove superior to the currently recommended method will be determined by future study. The use of the distinction between ��protrusion�� and ��extrusion�� is optional and some observers may prefer to use, in all cases, the more general term ��herniation.�� Further distinctions can often be made regarding containment, continuity, volume, composition, and location of the displaced disc material.

Containment, Continuity, and Migration

Herniated disc material can be ��contained�� or ��uncontained.�� The test of containment is whether the displaced disc tissues are wholly held within intact outer annulus and/or posterior longitudinal ligament fibers. Fluid or any contrast that has been injected into a disc with a ��contained�� herniation would not be expected to leak into the vertebral canal. Although the posterior longitudinal ligament and/or peridural membrane may partially cover the extruded disc tissues, such discs are not considered ��contained�� unless the posterior longitudinal ligament is intact. The technical limitations of currently available noninvasive imaging modalities (CT and MRI) often preclude the distinction of a contained from an uncontained disc herniation. CT-discography does not always allow one to distinguish whether the herniated components of a disc are contained, but only whether there is a communication between the disc space and the vertebral canal.

Displaced disc fragments are sometimes characterized as ��free.�� A ��free fragment�� is synonymous with a ��sequestrated fragment,�� but not synonymous with ��uncontained.�� A disc fragment should be considered ��free�� or ��sequestrated�� only if there is no remaining continuity of the disc material between it and the disc of origin. A disc can be ��uncontained,�� with the loss of integrity of the posterior longitudinal ligament and the outer annulus, but still have continuity between the herniated/displaced disc material and the disc of origin.

The term ��migrated�� disc or fragment refers to the displacement of most of the displaced disc material away from the opening in the annulus through which the material has extruded. Some migrated fragments will be sequestrated, but the term ��migrated�� refers only to position and not to continuity.

The terms ��capsule�� and ��subcapsular�� have been used to refer to containment by an unspecified combination of annulus and ligament. These terms are nonpreferred.

Referring specifically to the posterior longitudinal ligament, some authors have distinguished displaced disc material as ��subligamentous,�� ��extraligamentous,�� ��transligamentous,�� or ��perforated.�� The term ��subligamentous�� is favored as an equivalent to ��contained.��

Volume and Composition of Displaced Material

A scheme to define the degree of canal compromise produced by disc displacement should be practical, objective, reasonably precise, and clinically relevant. A simple scheme that fulfills the criteria uses two-dimensional measurements taken from an axial section at the site of the most severe compromise. Canal compromise of less than one third of the canal at that section is ��mild,�� between one and two-thirds is ��moderate,�� and greater than two-thirds is ��severe.�� The same grading can be applied for foraminal involvement.

Such characterizations of volume describe only the cross-sectional area at one section and do not account for the total volume of displaced material; proximity to, compression, and distortion of neural structures; or other potentially significant features, which the observer may further detail by narrative description.

Composition of the displaced material may be characterized by terms such as nuclear, cartilaginous, bony, calcified, ossified, collagenous, scarred, desiccated, gaseous, or liquefied.

Clinical significance related to the observation of volume and composition depends on the correlation with clinical data and cannot be inferred from morphologic data alone.

Location

Bonneville proposed a useful and simple alphanumeric system to classify, according to location, the position of disc fragments that have migrated in the horizontal or sagittal plane [6, 13]. Using anatomic boundaries familiar to surgeons, Wiltse proposed another system [14, 67]. Anatomic ��zones�� and ��levels�� are defined using the following landmarks: medial edge of the articular facets; medial, lateral, upper, and lower borders of the pedicles; and coronal and sagittal planes at the center of the disc. On the horizontal (axial) plane, these landmarks determine the boundaries of the central zone, the subarticular zone (lateral recess), the foraminal zone, the extraforaminal zone, and the anterior zone, respectively (Fig. 11). On the sagittal (craniocaudal) plane, they determine the boundaries of the disc level, the infrapedicular level, the pedicular level, and the suprapedicular level, respectively (Fig. 12). The method is not as precise as the drawings depict because borderlines such as the medial edges of facets and the walls of the pedicles are curved, but the method is simple, practical, and in common usage.

Figure 11:�Anatomic zones depicted in axial and coronal projections.
Figure 12: Anatomic levels depicted in sagittal and coronal projections.

Moving from the central to right lateral in the axial (horizontal) plane, location may be defined as central, right central, right subarticular, right foraminal, or right extraforaminal. The term ��paracentral�� is less precise than defining ��right central�� or ��left central,�� but is useful in describing groups of discs that include both, or when speaking informally, when the side is not significant. For reporting of image observations of a specific disc, ��right central�� or ��left central�� should supersede the use of the term ��paracentral.�� The term ��far lateral�� is sometimes used synonymously with ��extraforaminal.��

In the sagittal plane, location may be defined as discal, infrapedicular, suprapedicular, or pedicular. In the coronal plane, anterior, in relationship to the disc, means ventral to the midcoronal plane of the centrum.

Glossary

Note:�some terms and definitions included in this Glossary are not recommended as preferred terminology but are included to facilitate the interpretation of vernacular and, in some cases, improper use. Preferred definitions are listed first. Nonstandard definitions are placed in brackets, and by consensus of the organizational task forces, should not be used in the manner described. Some terms are also labeled as colloquial, with further designation as to whether they are considered nonpreferred or nonstandard.

Acute disc herniation:�disc herniation of a relatively recent occurrence. Note: paradiscal inflammatory reaction and relatively bright signal of the disc material on T2-weighted images suggest relative acuteness. Such changes may persist for months, however. Thus, absent clinical correlation and/or serial studies, it is not possible to date precisely by imaging when a herniation occurred. An acutely herniated disc material may have brighter signal on T2-weighted MRI sequences than the disc from which the disc material originates [46,�59,�64,�68]. Note that a relatively acute herniation can be superimposed on a previously existing herniation. An acute disc herniation may regress spontaneously without specific treatment. See: chronic disc herniation.

Aging disc:�disc demonstrating any of the various effects of aging on the disc. Loss of water content from the nucleus occurs before MRI changes, followed by the progression of MRI manifested changes consistent with the progressive loss of water content and increase in collagen and aggregating proteoglycans. See Pfirrmann classification.

Annular fissure:�separations between annular fibers, separations of fibers from their vertebral body insertions, or separations of fibers that extend radially, transversely, or concentrically, involving one or many layers of the annular lamellae. Note that the terms ��fissure�� and ��tear�� have often been used synonymously in the past. The term ��tear�� is inappropriate for use in describing imaging findings and should not be used (tear: nonstandard). Neither term suggests injury or implies any knowledge of etiology, neither term implies any relationship to symptoms or that the disc is a likely pain generator, and neither term implies any need for treatment. See also: annular gap, annular rupture, annular tear, concentric fissure, HIZ, radial fissure, transverse fissure.

Annular gap�(nonstandard): focal attenuation (CT) or signal (MRI) abnormality, often triangular in shape, in the posterior aspect of the disc, likely representing widening of a radially directed annular fissure, bilateral annular fissures with an avulsion of the intermediate annular fragment, or an avulsion of a focal zone of macerated annulus.

Annular rupture:�disruption of fibers of the annulus by sudden violent injury. This is a clinical diagnosis; use of the term is inappropriate for a pure imaging description, which instead should focus on a detailed description of the findings. Ruptured annulus is�not�synonymous with ��annular fissure,�� or ��ruptured disc.��

Annular tear,�torn annulus�(nonstandard): see fissure of the annulus and rupture of annulus.

Anterior displacement:�displacement of disc tissues beyond the disc space into the anterior zone.

Anterior zone:�peridiscal zone that is anterior to the midcoronal plane of the vertebral body.

Anulus, annulus (abbreviated form of annulus fibrosus):�multilaminated fibrous tissue forming the periphery of each disc space, attaching, craniad and caudad, to end plate cartilage and a ring apophyseal bone and blending centrally with the nucleus pulposus. Note: either anulus or annulus is correct spelling. Nomina Anatomica uses both forms, whereas Terminologia Anatomica states �� anulus fibrosus�� [22]. Fibrosus has no correct alternative spelling; fibrosis has a different meaning and is incorrect in this context.

Asymmetric bulge:�presence of more than 25% of the outer annulus beyond the perimeter of the adjacent vertebrae, more evident in one section of the periphery of the disc than another, but not sufficiently focal to be characterized as a protrusion. Note: asymmetric disc bulging is a morphologic observation that may have various causes and does not imply etiology or association with symptoms. See bulge.

Balloon disc (colloquial, nonstandard):�diffuse apparent enlargement of the disc in superior-inferior extent because of bowing of the vertebral end plates due to weakening of the bone as in severe osteoporosis.

Base (of displaced disc):�the cross-sectional area of the disc material at the outer margin of the disc space of origin, where disc material beyond the disc space is continuous with disc material within the disc space. In the craniocaudal direction, the length of the base cannot exceed, by definition, the height of the intervertebral space. On axial imaging, base refers to the width at the outer margin of the disc space, of the origin of any disc material extending beyond the disc space.

Black disc�(colloquial, nonstandard): see dark disc.

Bulging disc, bulge (noun [n]), bulge (verb [v])

  1. A disc in which the contour of the outer annulus extends, or appears to extend, in the horizontal (axial) plane beyond the edges of the disc space, usually greater than 25% (90�) of the circumference of the disc and usually less than 3 mm beyond the edges of the vertebral body apophysis.
  2. (Nonstandard) A disc in which the outer margin extends over a broad base beyond the edges of the disc space.
  3. (Nonstandard) Mild, diffuse, smooth displacement of disc.
  4. (Nonstandard) Any disc displacement at the discal level.

Note:�bulging is an observation of the contour of the outer disc and is not a specific diagnosis. Bulging has been variously ascribed to redundancy of the annulus, secondary to the loss of disc space height, ligamentous laxity, response to loading or angular motion, remodeling in response to adjacent pathology, unrecognized and atypical herniation, and illusion from volume averaging on CT axial images. Mild symmetric posterior disc bulging may be a normal finding at L5�S1. Bulging may or may not represent pathologic change, physiologic variant, or normalcy. Bulging is not a form of herniation; discs known to be herniated should be diagnosed as herniation or, when appropriate, as specific types of herniation. See: herniated disc, protruded disc, extruded disc.

Calcified disc:�calcification within the disc space, not inclusive of osteophytes at the periphery of the disc space.

Cavitation:�spaces, cysts, clefts, or cavities formed within the nucleus and inner annulus from disc degeneration.

See vacuum disc.

Central zone:�zone within the vertebral canal between sagittal planes through the medial edges of each facet. Note: the center of the central zone is a sagittal plane through the center of the vertebral body. The zones to either side of the center plane are�right central�and�left central, which are preferred terms when the side is known, as when reporting imaging results of a specific disc. When the side is unspecified, or grouped with both right and left represented, the term�paracentral�is appropriate.

Chronic disc herniation:�a clinical distinction that a disc herniation is of long duration. There are no universally accepted definitions of the intervals that distinguish between acute, subacute, and chronic disc herniations. Serial MRIs revealing disc herniations that are unchanged in appearance over time may be characterized as chronic. Disc herniations associated with calcification or gas on CT may be suggested as being chronic. Even so, the presence of calcification or gas does not rule out an acutely herniated disc. Note that an acute disc herniation may be superimposed on a chronic disc herniation. Magnetic resonance imaging signal characteristics may, on rare occasion, allow differentiation of acute and chronic disc herniations [16,�59,�64]. In such cases, acutely herniated disc material may appear brighter than the disc of origin on T2-weighted sequences [46,�59,�61]. Also, see disc-osteophyte complex.

Claw osteophyte:�bony outgrowth arising very close to the disc margin, from the vertebral body apophysis, directed, with a sweeping configuration, toward the corresponding part of the vertebral body opposite the disc.

Collagenized disc or nucleus:�a disc in which the mucopolysaccharide of the nucleus has been replaced by fibrous tissue.

Communicating disc, communication (n), communicate (v)�(nonstandard): communication refers to interruption in the periphery of the disc annulus, permitting free passage of fluid injected within the disc to the exterior of the disc, as may be observed during discography. Not synonymous with ��uncontained.�� See ��contained disc�� and ��uncontained disc.��

Concentric fissure:�fissure of the annulus characterized by separation of annular fibers in a plane roughly parallel to the curve of the periphery of the disc, creating fluid-filled spaces between adjacent annular lamellae. See: radial fissures, transverse fissures, HIZ.

Contained herniation, containment (n), contain (v)

  1. Displaced disc tissue existing wholly within an outer perimeter of uninterrupted outer annulus or posterior longitudinal ligament.
  2. (Nonstandard) A disc with its contents mostly, but not wholly, within annulus or capsule.
  3. (Nonstandard) A disc with displaced elements contained within any investiture of the vertebral canal.

A disc that is less than wholly contained by annulus, but under a distinct posterior longitudinal ligament, is contained. Designation as ��contained�� or ��uncontained�� defines the integrity of the ligamentous structures surrounding the disc, a distinction that is often but not always possible by advanced imaging. On CT and MRI scans, contained herniations typically have a smooth margin, whereas uncontained herniations most often have irregular margins because the outer annulus and the posterior longitudinal ligament have been penetrated by the disc material [35,�37]. CT-discography also does not always allow one to distinguish whether the herniated components of a disc are contained, but only whether there is communication between the disc space and the vertebral canal.

Continuity:�connection of displaced disc tissue by a bridge of disc tissue, however thin, to tissue within the disc of origin.

Dallas classification�(of postdiscography imaging): commonly used grading system for the degree of annular fissuring seen on CT imaging of discs after discography. Dallas Grade 0 is normal; Grade 1: leakage of contrast into the inner one-third of the annulus; Grade 2: leakage of contrast into the inner two-thirds of the annulus; Grade 3: leakage through the entire thickness of the annulus; Grade 4: contrast extends circumferentially; Grade 5: contrast extravasates into the epidural space (See discogram, discography).

Dark disc�(colloquial, nonstandard): disc with nucleus showing decreased signal intensity on T2-weighted images (dark), usually because of desiccation of the nucleus secondary to degeneration. Also: black disc (colloquial, nonstandard). See: disc degeneration, Pfirrmann classification.

Degenerated disc, degeneration (n), degenerate (v)

  1. Changes in a disc characterized to varying degrees by one or more of the following: desiccation, cleft formation, fibrosis, and gaseous degradation of the nucleus; mucinous degradation, fissuring, and loss of integrity of the annulus; defects in and/or sclerosis of the end plates; and osteophytes at the vertebral apophyses.
  2. Imaging manifestation of such changes, including [35]�standard roentgenographic findings, such as disc space narrowing and peridiscal osteophytes, MRI disc findings (see Pfirrmann classification [61]), CT disc findings (see discogram/discography and Dallas classification [42]), and/or MRI findings of vertebral end plate and marrow reactive changes adjacent to a disc (see Modic classification [38]).

Degenerative disc disease�(nonstandard term when used as an imaging description): a condition characterized by manifestations of disc degeneration and symptoms thought to be related to those of degenerative changes. Note: causal connections between degenerative changes and symptoms are often difficult clinical distinctions. The term ��degenerative disc disease�� carries implications of illness that may not be appropriate if the only or primary indicators of illness are from imaging studies, and thus this term should not be used when describing imaging findings. The preferred term for description of imaging manifestations is ��degenerated disc�� or ��disc degeneration,�� rather than ��degenerative disc disease.��

Delamination:�separation of circumferential annular fibers along the planes parallel to the periphery of the disc, characterizing a concentric fissure of the annulus.

Desiccated disc

  1. Disc with reduced water content, usually primarily of nuclear tissues.
  2. Imaging manifestations of reduced water content of the disc, such as decreased (dark) signal intensity on T2-weighted images, or of apparent reduced water content, as from alterations in the concentration of hydrophilic glycosaminoglycans. See also: dark disc (colloquial, nonstandard).

Disc (disk):�complex structure composed of nucleus pulposus, annulus fibrosus, cartilaginous end plates, and vertebral body ring apophyseal attachments of annulus. Note: most English language publications use the spelling ��disc�� more often than ��disk�� [1,�20,�22,�69,�70]. Nomina Anatomica designates the structures as ��disci intervertebrales�� and Terminologia Anatomica as ��discus intervertebralis/intervertebral disc�� [22,�70]. (See ��disc level�� for naming and numbering of a particular disc).

Disc height:�The distance between the planes of the end plates of the vertebral bodies craniad and caudad to the disc. Disc height should be measured at the center of the disc, not at the periphery. If measured at the posterior or anterior margin of the disc on a sagittal image of the spine, this should be clearly specified as such.

Disc level:�Level of the disc and vertebral canal between axial planes through the bony end plates of the vertebrae craniad and caudad to the disc being described.

  1. A particular disc is best named by naming the region of the spine and the vertebra above and below it; for example, the disc between the fourth and fifth lumbar vertebral bodies is named ��lumbar 4�5,�� commonly abbreviated as L4�L5, and the disc between the fifth lumbar vertebral body and the first sacral vertebral body is called ��lumbosacral disc�� or ��L5�S1.�� Common anomalies include patients with six lumbar vertebrae or transitional vertebrae at the lumbosacral junction that require, for clarity, narrative explanation of the naming of the discs.
  2. (Nonstandard) A disc is sometimes labeled by the vertebral body above it; for example, the disc between L4 and L5 may be labeled ��the L4 disc��.
  3. Note: ��a motion segment,�� numbered in the same way, is a functional unit of the spine, comprising the vertebral body above and below, the disc, the facet joints, and the connecting soft tissues and is most often referenced with regard to the stability of the spine.

Disc of origin:�disc from which a displaced fragment originated. Synonym: parent disc. Note: since displaced fragments often contain tissues other than nucleus, disc of origin is preferred to nucleus of origin. Parent disc is synonymous, but more colloquial and nonpreferred.

Disc space:�space limited, craniad and caudad, by the end plates of the vertebrae and peripherally by the edges of the vertebral body ring apophyses, exclusive of osteophytes. Synonym: intervertebral disc space. See ��disc�� level for naming and numbering of discs.

Discogenic vertebral sclerosis:�increased bone density and calcification adjacent to the end plates of the vertebrae, craniad and caudad, to a degenerated disc, sometimes associated with intervertebral osteochondrosis. Manifested on MRI as Modic Type�III.

Discogram, discography:�a diagnostic procedure in which contrast material is injected into the nucleus of the disc with radiographic guidance and observation, often followed by CT/discogram. The procedure is often accompanied by pressure measurements and assessment of pain response (provocative discography). The degree of annular fissuring identified by discography may be defined by the Dallas classification and its modifications (See Dallas classification).

Disc-osteophyte complex:�intervertebral disc displacement, whether bulge, protrusion, or extrusion, associated with calcific ridges or ossification. Sometimes called a hard disc or chronic disc herniation (nonpreferred). Distinction should be made between ��spondylotic disc herniation,�� or ��calcified disc herniation�� (nonpreferred), the remnants of an old disc herniation; and ��spondylotic bulging disc,�� a broad-based bony ridge presumably related to chronic bulging disc.

Displaced disc�(nonstandard): a disc in which disc material is beyond the outer edges of the vertebral body ring apophyses (exclusive of osteophytes) of the craniad and caudad vertebrae, or, as in the case of intravertebral herniation, has penetrated through the vertebral body end plate.

Note: displaced disc is a general term that does not imply knowledge of the underlying pathology, cause, relationship to symptoms, or need for treatment. The term includes, but is not limited to, disc herniation and disc migration. See: herniated disc, migrated disc.

Epidural membrane:�See peridural membrane.

Extraforaminal zone:�the peridiscal zone beyond the sagittal plane of the lateral edges of the pedicles, having no well-defined lateral border, but definitely posterior to the anterior zone. Synonym: ��far lateral zone,�� also ��far-out zone�� (nonstandard).

Extraligamentous:�posterior or lateral to the posterior longitudinal ligament. Note: extraligamentous disc refers to displaced disc tissue that is located posterior or lateral to the posterior longitudinal ligament. If the disc has extruded through the posterior longitudinal ligament, it is sometimes called ��transligamentous�� or ��perforated�� and if through the peridural membrane, it is sometimes refined to ��transmembranous.��

Extruded disc, extrusion (n), extrude (v):�a herniated disc in which, in at least one plane, any one distance between the edges of the disc material beyond the disc space is greater than the distance between the edges of the base of the disc material beyond the disc space in the same plane or when no continuity exists between the disc material beyond the disc space and that within the disc space. Note: the preferred definition is consistent with the common image of extrusion, as an expulsion of material from a container through and beyond an aperture. Displacement beyond the outer annulus of the disc material with any distance between its edges greater than the distance between the edges of the base distinguishes extrusion from protrusion. Distinguishing extrusion from protrusion by imaging is best done by measuring the edges of the displaced material and the remaining continuity with the disc of origin, whereas relationship of the displaced portion to the aperture through which it has passed is more readily observed surgically. Characteristics of protrusion and extrusion may coexist, in which case the disc should be subcategorized as extruded. Extruded discs in which all continuity with the disc of origin is lost may be further characterized as ��sequestrated.�� Disc material displaced away from the site of extrusion may be characterized as ��migrated.�� See: herniated disc, migrated disc, protruded disc.

Note: An alternative scheme is espoused by some respected radiologists who believe it has better clinical application. This scheme defines extruded disc as synonymous with �uncontained disc� and does not use comparative measurements of the base versus the displaced material. Per this definition, a disc extrusion can be identified by the presence of a continuous line of low signal intensity surrounding the disc herniation. Future study will further determine the validity of this alternative definition. See: contained disc.

Far lateral zone:�the peridiscal zone beyond the sagittal plane of the lateral edge of the pedicle, having no well defined lateral border, but definitely posterior to the anterior zone. Synonym: ��extraforaminal zone.��

Fissure of annulus:�see annular fissure.

Foraminal zone:�the zone between planes passing through the medial and lateral edges of the pedicles. Note: the foraminal zone is sometimes called the ��pedicle zone�� (nonstandard), which can be confusing because pedicle zone might also refer to measurements in the sagittal plane between the upper and lower surfaces of a given pedicle that is properly called the ��pedicle level.�� The foraminal zone is also sometimes called the ��lateral zone�� (nonstandard), which can be confusing because the ��lateral zone�� can be confused with ��lateral recess�� (subarticular zone) and can also mean extraforaminal zone or an area including both the foraminal and extraforaminal zones.

Free fragment

  1. A fragment of disc that has separated from the disc of origin and has no continuous bridge of disc tissue with disc tissue within the disc of origin. Synonym: sequestrated disc.
  2. (Nonstandard) A fragment that is not contained within the outer perimeter of the annulus.
  3. (Nonstandard) A fragment that is not contained within the annulus, posterior longitudinal ligament, or peridural membrane.

Note: ��sequestrated disc�� and ��free fragment�� are virtually synonymous. When referring to the condition of the disc, categorization as extruded with subcategorization as sequestrated is preferred, whereas when referring specifically to the fragment, free fragment is preferred.

Gap of annulus:�see annular gap.

Hard disc (colloquial):�disc displacement in which the displaced portion has undergone calcification or ossification and may be intimately associated with apophyseal osteophytes. Note: the term ��hard disc�� is most often used in reference to the cervical spine to distinguish chronic hypertrophic and reactive changes at the periphery of the disc from the more acute extrusion of soft, predominantly nuclear tissue. See: chronic disc herniation, disc-osteophyte complex.

Herniated disc, herniation (n), herniated (v):�localized or focal displacement of disc material beyond the normal margin of the intervertebral disc space. Note: ��localized�� or ��focal�� means, by way of convention, less than 25% (90�) of the circumference of the disc.

Herniated disc material may include nucleus pulposus, cartilage, fragmented apophyseal bone, or annulus fibrosus tissue. The normal margins of the intervertebral disc space are defined, craniad and caudad, by the vertebral body end plates and peripherally by the edges of the vertebral body ring apophyses, exclusive of osteophytic formations. Herniated disc generally refers to displacement of disc tissues through a disruption in the annulus, the exception being intravertebral herniations (Schmorl nodes) in which the displacement is through the vertebral end plate. Herniated discs may be further subcategorized as protruded or extruded. Herniated disc is sometimes referred to as HNP, but the term ��herniated disc�� is preferred because displaced disc tissues often include cartilage, bone fragments, or annular tissues. The terms ��prolapse�� and ��rupture�� when referring to disc herniations are nonstandard and their use should be discontinued. Note: ��herniated disc�� is a term that does not imply knowledge of the underlying pathology, cause, relationship to symptoms, or need for treatment.

Herniated nucleus pulposus�(HNP, nonpreferred): see herniated disc.

High intensity zone (HIZ):�area of high intensity on T2-weighted MRIs of the disc, located commonly in the outer annulus. Note: HIZs within the posterior annular substance may indicate the presence of an annular fissure within the annulus, but these terms are not synonymous. An HIZ itself may represent the actual annular fissure or alternatively, may represent vascularized fibrous tissue (granulation tissue) within the substance of the disc in an area adjacent to a fissure. The visualization of an HIZ does not imply a traumatic etiology or that the disc is a source of pain.

Infrapedicular level:�the level between the axial planes of the inferior edges of the pedicles craniad to the disc in question and the inferior end plate of the vertebral body above the disc in question. Synonym: superior vertebral notch.

Internal disc disruption:�disorganization of structures within the disc. See intraannular displacement

Interspace:�see disc space.

Intervertebral chondrosis:�see intervertebral osteochondrosis.

Intervertebral disc:�see disc.

Intervertebral disc space:�see disc space.

Intervertebral osteochondrosis:�degenerative process of the disc and vertebral body end plates that is characterized by disc space narrowing, vacuum phenomenon, and vertebral body reactive changes. Synonym: osteochondrosis (nonstandard).

Intraannular displacement:�displacement of central, predominantly nuclear, tissue to a more peripheral site within the disc space, usually into a fissure in the annulus. Synonym: (nonstandard) intraannular herniation, intradiscal herniation. Note: intraannular displacement is distinguished from disc herniation, that is, herniation of disc refers to displacement of disc tissues beyond the disc space. Intraannular displacement is a form of internal disruption. When referring to intraannular displacement, it is best not to use the term ��herniation�� to avoid confusion with disc herniation.

Intraannular herniation (nonstandard):�see intraannular displacement.

Intradiscal herniation (nonstandard):�see intraannular displacement.

Intradural herniation:�disc material that has penetrated the dura so that it lies in an intradural extramedullary location.

Intravertebral herniation:�a disc displacement in which a portion of the disc projects through the vertebral end plate into the centrum of the vertebral body. Synonym: Schmorl node.

Lateral recess:�that portion of the subarticular zone that is medial to the medial border of the pedicle. It refers to the entire cephalad-caudad region that exists medial to the pedicle, where the same numbered thoracic or lumbar nerve root travels caudally before exiting the nerve root foramen under the caudal margin of the pedicle. It does not refer to the nerve root foramen itself. See also subarticular zone.

Lateral zone�(nonstandard): see foraminal zone.

Leaking disc�(nonstandard): see communicating disc.

Limbus vertebra:�separation of a segment of vertebral ring apophysis. Note: limbus vertebra may be a developmental abnormality caused by failure of integration of the ossifying apophysis to the vertebral body; a chronic herniation (extrusion) of the disc into the vertebral body at the junction of the fusing apophyseal ring, with separation of a portion of the ring with bony displacement; or a fracture through the apophyseal ring associated with intrabody disc herniation. This occurs in children before the apophyseal ring fuses to the vertebral body. In adults, a limbus vertebra should not be confused with an acute fracture. A limbus vertebra does not imply that there has been an injury to the disc or the adjacent apophyseal end plate.

Marginal osteophyte:�osteophyte that protrudes from and beyond the outer perimeter of the vertebral end plate apophysis.

Marrow changes (of vertebral body):�see Modic classification.

Migrated disc, migration (n), migrate (v)

  • 1.Herniated disc in which a portion of the extruded disc material is displaced away from the fissure in the outer annulus through which it has extruded in either sagittal or axial plane.
  • 2.(Nonstandard) A herniated disc with a free fragment or sequestrum beyond the disc level.

Note: migration refers to the position of the displaced disc material, rather than to its continuity with disc tissue within the disc of origin; therefore, it is not synonymous with sequestration.

Modic classification (Type I, II, and III)�[30]: a classification of degenerative changes involving the vertebral end plates and adjacent vertebral bodies associated with disc inflammation and degenerative disc disease, as seen on MRIs. Type I refers to decreased signal intensity on T1-weighted spin echo images and increased signal intensity on T2-weighted images, representing penetration of the end plate by fibrovascular tissue, inflammatory changes, and perhaps edema. Type I changes may be chronic or acute. Type II refers to increased signal intensity on T1-weighted images and isointense or increased signal intensity on T2-weighted images, indicating replacement of normal bone marrow by fat. Type III refers to decreased signal intensity on both T1-and T2-weighted images, indicating reactive osteosclerosis (See: discogenic vertebral sclerosis).

Motion segment:�the functional unit of the spine. See disc level.

Nonmarginal osteophyte:�an osteophyte that occurs at sites other than the vertebral end plate apophysis. See: marginal osteophyte.

Normal disc:�a fully and normally developed disc with no changes attributable to trauma, disease, degeneration, or aging. Note: many congenital and developmental variations may be clinically normal; that is, they are not associated with symptoms, and certain adaptive changes in the disc may be normal considering adjacent pathology; however, classification and reporting for medical purposes is best served if such discs are not considered normal. Note, however, that a disc finding considered not normal does not necessarily imply a cause for clinical signs or symtomatology; the description of any variation of the disc is independent of clinical judgment regarding what is normal for a given patient.

Nucleus of origin (nonpreferred):�the central, nuclear portion of the disc of reference, usually used to reference the disc from which the tissue has been displaced. Note: since displaced fragments often contain tissues other than the nucleus, disc of origin is preferred to nucleus of origin. Synonym: disc of origin (preferred), parent nucleus (nonpreferred).

Osteochondrosis:�see intervertebral osteochondrosis.

Osteophyte:�focal hypertrophy of the bone surface and/or ossification of the soft tissue attachment to the bone.

Paracentral:�in the right or left central zone of the vertebral canal. See central zone. Note: the terms ��right central�� or ��left central�� are preferable when speaking of a single site when the side can be specified, as when reporting the findings of imaging procedures. ��Paracentral�� is appropriate if the side is not significant or when speaking of mixed sites.

Parent disc�(nonpreferred): see disc of origin.

Parent nucleus�(nonpreferred): see nucleus of origin, disc of origin.

Pedicular level:�the space between the axial planes through the upper and lower edges of the pedicle. Note: the pedicular level may be further designated with reference to the disc in question as ��pedicular level above�� or ��pedicular level below�� the disc in question.

Perforated (nonstandard):�see transligamentous.

Peridural membrane:�a delicate, translucent membrane that attaches to the undersurface of the deep layer of the posterior longitudinal ligament, and extends laterally and posteriorly, encircling the bony spinal canal outside the dura. The veins of Batson plexus lie on the dorsal surface of the peridural membrane and pierce it ventrally. Synonym: lateral membrane, epidural membrane.

Pfirrmann classification:�a grading system for the severity of degenerative changes within the nucleus of the intervertebral disc. A Pfirrmann Grade I disc has a uniform high signal in the nucleus on T2-weighted MRI; Grade II shows a central horizontal line of low signal intensity on sagittal images; Grade III shows high intensity in the central part of the nucleus with lower intensity in the peripheral regions of the nucleus; Grade IV shows low signal intensity centrally and blurring of the distinction between nucleus and annulus; and Grade V shows homogeneous low signal with no distinction between nucleus and annulus.[61]

Prolapsed disc, prolapse (n, v)�(nonstandard): the term is variously used to refer to herniated discs. Its use is not standardized and the term does not add to the precision of disc description, so is regarded as nonstandard in deference to ��protrusion�� or ��extrusion.��

Protruded disc, protrusion (n), protrude (v):�1. One of the two subcategories of a ��herniated disc�� (the other being an ��extruded disc��) in which disc tissue extends beyond the margin of the disc space, involving less than 25% of the circumference of the disc margin as viewed in the axial plane. The test of protrusion is that there must be localized (less than 25% of the circumference of the disc) displacement of disc tissue and the distance between the corresponding edges of the displaced portion must not be greater than the distance between the edges of the base of the displaced disc material at the disc space of origin (See base of displaced disc). While sometimes used as a general term in the way herniation is defined, the use of the term ��protrusion�� is best reserved for subcategorization of herniation meeting the above criteria. 2. (nonstandard) Any or unspecified type of disc herniation.

Radial fissure:�disruption of annular fibers extending from the nucleus outward toward the periphery of the annulus, usually in the craniad-caudad (vertical) plane, although, at times, with axial horizontal (transverse) components. ��Fissure�� is the preferred term to the nonstandard term ��tear.�� Neither term implies knowledge of injury or other etiology. Note: Occasionally, a radial fissure extends in the transverse plane to include an avulsion of the outer layers of annulus from the apophyseal ring. See concentric fissures, transverse fissures.

Rim lesion (nonstandard): See limbus vertebra.

Rupture of annulus, ruptured annulus:�see annular rupture.

Ruptured disc, rupture�(nonstandard): a herniated disc. The term ��ruptured disc�� is an improper synonym for herniated disc, not to be confused with violent disruption of the annulus related to injury. Its use should be discontinued.

Schmorl node:�see intravertebral herniation.

Sequestrated disc, sequestration (n), sequestrate (v); (variant: sequestered disc):�an extruded disc in which a portion of the disc tissue is displaced beyond the outer annulus and maintains no connection by disc tissue with the disc of origin. Note: an extruded disc may be subcategorized as ��sequestrated�� if no disc tissue bridges the displaced portion and the tissues of the disc of origin. If even a tenuous connection by disc tissue remains between a displaced fragment and disc of origin, the disc is not sequestrated. If a displaced fragment has no connection with the disc of origin, but is contained within peridural membrane or under a portion of posterior longitudinal ligament that is not intimately bound with the annulus of origin, the disc is considered sequestrated. Sequestrated and sequestered are used interchangeably. Note: ��sequestrated disc�� and ��free fragment�� are virtually synonymous. See: free fragment. When referring to the condition of the disc, categorization as extruded with subcategorization as sequestered is preferred, whereas when referring specifically to the fragment, free fragment is preferred. See sequestrum.

Sequestrum (nonpreferred):�refers to disc tissue that has displaced from the disc space of origin and lacks any continuity with disc material within the disc space of origin. Synonym: free fragment (preferred). See sequestrated disc. Note: ��sequestrum�� (nonpreferred) refers to the isolated free fragment itself, whereas sequestrated disc defines the condition of the disc.

Spondylitis:�inflammatory disease of the spine, other than degenerative disease. Note: spondylitis usually refers to noninfectious inflammatory spondyloarthropathies.

Spondylosis:�1. Common nonspecific term used to describe effects generally ascribed to degenerative changes in the spine, particularly those involving hypertrophic changes to the apophyseal end plates and zygapophyseal joints. 2. (nonstandard) Spondylosis deformans, for which spondylosis is a shortened form.

Spondylosis deformans:�degenerative process of the spine involving the annulus fibrosus and vertebral body apophysis, characterized by anterior and lateral marginal osteophytes arising from the vertebral body apophyses, while the intervertebral disc height is normal or only slightly decreased. See degeneration, spondylosis.

Subarticular zone:�the zone, within the vertebral canal, sagittally between the plane of the medial edges of the pedicles and the plane of the medial edges of the facets and coronally between the planes of the posterior surfaces of the vertebral bodies and the anterior surfaces of the superior facets. Note: the subarticular zone cannot be precisely delineated in two-dimensional depictions because the structures that define the planes of the zone are irregular. The lateral recess is that portion of the subarticular zone defined by the medial wall of the pedicle, where the same numbered nerve root traverses before turning under the inferior wall of the pedicle into the foramen.

Subligamentous:�beneath the posterior longitudinal ligament. Note: although the distinction between outer annulus and posterior longitudinal ligament may not always be identifiable, subligamentous has meaning distinct from subannular when the distinction can be made. When the distinction cannot be made, subligamentous is appropriate. Subligamentous contrasts to extraligamentous, transligamentous, or perforated. See extraligamentous, transligamentous.

Submembranous:�enclosed within the peridural membrane. Note: with reference to the displaced disc material, characterization of a herniation as submembranous usually infers that the displaced portion is extruded beyond annulus and posterior longitudinal ligament so that only the peridural membrane invests it.

Suprapedicular level:�the level within the vertebral canal between the axial planes of the superior end plate of the vertebra caudad to the disc space in question and the superior margin of the pedicle of that vertebra. Synonym: inferior vertebral notch.

Syndesmophytes:�thin and vertically oriented bony outgrowths extending from one vertebral body to the next and representing ossification within the outer portion of the annulus fibrosus.

Tear of annulus, torn annulus�(nonstandard): see annular tear.

Thompson classification:�a five-point grading scale of degenerative changes in the human intervertebral disc, from 0 (normal) to 5 (severe degeneration), based on gross pathologic morphology of midsagittal sections of the lumbar spine.

Traction osteophytes:�bony outgrowth arising from the vertebral body apophysis, 2 to 3 mm above or below the edge of the intervertebral disc, projecting in a horizontal direction.

Transligamentous:�displacement, usually extrusion, of disc material through the posterior longitudinal ligament. Synonym: (nonstandard) (perforated). See also extraligamentous, transmembranous.

Transmembranous:�displacement of extruded disc material through the peridural membrane.

Transverse fissure:�fissure of the annulus in the axial (horizontal) plane. When referring to a large fissure in the axial plane, the term is synonymous with a horizontally oriented radial fissure. Often ��transverse fissure�� refers to a more limited, peripheral separation of annular fibers including attachments to the apophysis. These more narrowly defined peripheral fissures may contain gas visible on radiographs or CT images and may represent early manifestations of spondylosis deformans. See annular fissure, concentric fissure, radial fissure.

Uncontained disc:�displaced disc material that is not contained by the outer annulus and/or posterior longitudinal ligament. See discussion under contained disc.

Vacuum disc:�a disc with imaging findings characteristic of gas (predominantly nitrogen) in the disc space, usually a manifestation of disc degeneration.

Vertebral body marrow changes:�reactive vertebral body signal changes associated with disc inflammation and disc degeneration, as seen on MRIs. See Modic classification.

Vertebral notch (inferior):�incisura of the upper surface of the pedicle corresponding to the lower part of the foramen (suprapedicular level).

Vertebral notch (superior):�incisura of the under surface of the pedicle corresponding to the upper part of the foramen (infrapedicular level).

Supplementary Appendix

Appendix

A herniated disc most commonly develops as a result of age-related wear and tear or degeneration on the spine. In children and young adults, the intervertebral discs have a much higher water content. As we age, however, the water content of the intervertebral discs decreases and these begin to shrink while the spaces between the vertebra gets narrower, ultimately turning less flexible and becoming more prone to disc herniation. Proper diagnosis and treatment are essential to avoid further symptoms of low back pain. The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

Curated by Dr. Alex Jimenez

References

  1. Fardon, D.F. and Milette, P.C.�Nomenclature and classification of lumbar disc pathology: recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology.�Spine.�2001;�26:�E93�E113
  2. Stadnik, T.W., Lee, R.R., Coen, H.L. et al.�Annular tear and disk herniation: prevalence and contrast enhancement on MR images in the absence of low back pain or sciatica.�Radiology.�1998;�206:�49�55
  3. Mink, J.H.�Terminology of lumbar spine disorders, the problem… and a solution.�California Managed Imaging Medical Group Publication,�Burlingame, CA;�1993
  4. Murtagh, F.R.�The importance of being Earnest-about disk nomenclature.�Am J Neuroradiol.�2007;28:�1�2
  5. in:�E.J. Nordby, M.D. Brown, E.D. Dawson, (Eds.)�A glossary on spinal terminology.�American Academy of Orthopaedic Surgeons,�Chicago;�1985:�31�32
  6. Bonneville, J.F. and Dietemann, J.L.�L�imagerie dans les sciatiques.�Rev Prat (Paris).�1992;�42:�554�566
  7. Brant-Zawadzki, M.N. and Jensen, M.C.�Imaging corner: spinal nomenclature. Inter- and intra-observer variability in interpretation of lumbar disc abnormalities: a comparison of two nomenclatures.�Spine.�1995;�20:�388�390
  8. Breton, G.�Is that a bulging disc, a small herniation, or a moderate protrusion?.�Can Assoc Radiol J.�1991;�42:�318
  9. Fardon, D.F., Herzog, R.J., and Mink, J.H.�Nomenclature of lumbar disc disorders.�in:�S.R. Garfin, A.R. Vaccaro (Eds.)�Orthopaedic knowledge update: spine.�American Academy of Orthopaedic Surgeons,Rosemont, IL;�1997:�A3�A14
  10. Milette, P.C.�The proper terminology for reporting lumbar intervertebral disc disorders.�Am J Neuroradiol.�1997;�18:�1859�1866
  11. Fardon DF, White AH, Wiesel S. Diagnostic terms and conservative treatments favored for lumbar disorders by spine surgeons in North America. Presented at the first annual meeting, North American Spine Society, Lake George, New York,�1986.
  12. Arana, E., Royuela, A., Kovacs, F.M. et al.�Lumbar spine: agreement in�the interpretation of 1.5T MR images by using the Nordic Modic�consensus group classification form.�Radiology.�2010;�254:�809�817
  13. Bonneville, J.F.�Plaidoyer pour une classification par l�image des hernies discales lombaires: la carte-image.�Rev Im Med.�1990;�2:�557�560
  14. Fardon, D.F., Pinkerton, S., Balderston, R. et al.�Terms used for diagnosis by English speaking spine surgeons.�Spine.�1993;�18:�1�4
  15. Farfan, H.F., Huberdeau, R.M., and Dubow, H.I.�Lumbar intervertebral disc degeneration: the influence of geometrical features on the pattern of disc degeneration: a post-mortem study.�J Bone Joint Surg [Am].�1972;�54:�492�510
  16. Milette, P.C., Fontaine, S., Lepanto, L. et al.�Differentiating lumbar disc protrusions, disc bulges, and discs with normal contour but abnormal signal intensity.�Spine.�1999;�24:�44�53
  17. Milette, P.C., Melancon, D., Dupuis, P. et al.�A simplified terminology for abnormalities of the lumbar disc.�Can Assoc Radiol J.�1991;�42:�319�325
  18. Taveras, J.M.�Herniated intervertebral disk. A plea for a more uniform terminology.�Am J Neuroradiol.�1989;�10:�1283�1284
  19. Thompson, J.P., Pearce, R.H., Schechter, M.T. et al.�Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc.�Spine.�1990;�15:�411�415
  20. Fardon, D.F., Balderston, R.A., Garfin, S.R. et al.�Disorders of the spine, a coding system for diagnoses.�Hanley and Belfus,�Philadelphia;�1991:�20�22
  21. Herzog, R.J.�The radiologic assessment for a lumbar disc herniation.�Spine.�1996;�21:�19S�38S
  22. International anatomical nomenclature committee approved by Eleventh International Congress of anatomists. Nomina anatomica.�5th ed.�Waverly Press,�Baltimore, MD;�1983:�A23
  23. Jarvik, J.G., Haynor, D.R., Koepsell, T.D. et al.�Interreader reliability for a new classification of lumbar disc abnormalities.�Acad Radiol.�1996;�3:�537�544
  24. Ketler, A. and Wilke, H.J.�Review of existing grading systems for cervical or lumbar disc and facet joint degeneration.�(with Erratum note in Eur Spine J 15(6); 729)Eur Spine J.�2006;�15:�705�718
  25. Kieffer, S.A., Stadlan, E.M., Mohandas, A., and Peterson, H.O.�Discographic-anatomical correlation of developmental changes with age in the intervertebral disc.�Acta Radiol [Diagn] (Stockholm).�1969;�9:�733�739
  26. Bundschuh, C.V.�Imaging of the postoperative lumbosacral spine.�Neuroimaging Clin N Am.�1993;�3:�499�516
  27. Bartynski, W.S., Rothfus, W.E., and Kurs-Lasky, M.�Post-diskogram CT features of lidocaine-sensitive and lidocaine-insensitive severely painful disks at provocation lumbar diskography.�AJNR.�2008;�29:�1455�1460
  28. Ford, L.T., Gilula, L.A., Murphy, W.A., and Gado, M.�Analysis of gas in vacuum lumbar disc.�AJR.�1977;�128:�1056�1057
  29. Modic, M.T. and Herfkens, R.J.�Intervertebral disc: normal age-related changes in MR signal intensity.�Radiology.�1990;�177:�332�334
  30. Modic, M.T., Masaryk, T.J., Ross, J.S., and Carter, J.R.�Imaging of degenerative disc disease.Radiology.�1988;�168:�177�186
  31. Resnick, D. and Niwayama, G.�Degenerative disease of the spine.�in:�D. Resnick (Ed.)�Diagnosis of bone and joint disorders.�3rd ed.�WB Saunders,�Philadelphia;�1995:�1372�1462
  32. Eckert, C. and Decker, A.�Pathological studies of intervertebral discs.�J Bone Joint Surg.�1947;�29:�447�454
  33. Marinelli, N.L., Haughton, V.M., and Anderson, P.A.�T2 relaxation times correlated with stage of lumbar disc degeneration and patient age.�AJNR.�2010;�31:�1278�1282
  34. Yasuma, T., Koh, S., Okamura, T. et al.�Histologic changes in aging lumbar intervertebral discs.�J Bone Joint Surg [Am].�1990;�72:�220�229
  35. Oh, K.-J., Lee, J.W., Kwon, E.T. et al.�Comparison of MR imaging findings between extraligamentous and subligamentous disk herniations in the lumbar spine.�AJNR.�2013;�34:�683�687
  36. United States Department of Health and Human Services. Publication no (PHS) 91-1260, International Classification of Diseases Ninth Revision, clinical modification fifth edition, Washington, DC, 1998; Adapted and published by Practice Management Information Corporation, Los Angeles, and by St. Anthony�s Publishing Company, Alexandria, Virginia,�1999.
  37. Williams, A.L., Haughton, V.M., Daniels, D.L., and Grogan, J.P.�Differential CT diagnosis of extruded nucleus pulposus.�Radiology.�1983;�148:�141�148
  38. Modic, M.T.�Degenerative disorders of the spine.�in:�Magnetic resonance imaging of the spine.�Yearbook Medical,�New York;�1989:�83�95
  39. Boden, S.D., Davis, D.O., Dina, T.S. et al.�Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation.�J Bone Joint Surg.�1990;�72:�403�408
  40. Yu, S., Haughton, V.M., Sether, L.A., and Wagner, M.�Anulus fibrosus in bulging intervertebral disks.Radiology.�1988;�169:�761�763
  41. Yasuma, T., Makino, E., Saito, S., and Inui, M.�Histologic development of intervertebral disc herniation.�J Bone Joint Surg.�1986;�68A:�1066�1073
  42. Sachs, B.L., Vanharanta, H., Spivey, M.A. et al.�Dallas discogram description. A new classification of CT/discography in low-back disorders.�Spine.�1987;�12:�287�294
  43. Carragee, E.J., Paragioudakis, S.J., and Khurana, S.�Lumbar high-intensity zone and discography in subject without low back problems.�Spine.�2000;�25:�2987�2992
  44. Schellhas, K.P., Pollei, S.R., Gundry, C.R. et al.�Lumbar disc high intensity zone. Correlation of magnetic resonance imaging and discography.�Spine.�1996;�21:�79�86
  45. Munter, F.M., Wasserman, B.A., Wu, H.M., and Yousem, D.M.�Serial MR imaging of annular tears in lumbar intervertebral disks.�Am J Neuroradiol.�2002;�23:�1105�1109
  46. Quencer, R.M.�The abnormal annulus fibrosus: can we infer the acuteness of an annular injury?.Am J Neuroradiol.�2002;�23:�1069
  47. Czervionke, L.F.�Lumbar intervertebral disc disease.�Neuroimaging Clin N Am.�1993;�:�465�485
  48. Rothman, S.L.G. and Chafetz, N.I.�An anatomic explanation for overreading disc herniations on MRI imaging studies of the lumbar spine: poster presentation.�American Society of Neuroradiology,Chicago, Illinois;�1995
  49. Twomey, L.T. and Taylor, J.R.�Age changes in lumbar vertebrae and intervertebral discs.�Clin Orthop.�1987;�224:�97�104
  50. Coventry, M.B., Ghormley, R.K., and Kernohan, J.W.�The intervertebral disc: its microscopic anatomy and pathology.�(233�7)J Bone Joint Surg.�1945;�27:�105�112
  51. Farfan, H.F.�Mechanical disorders of the low back.�Lea & Febiger,�;�1973:�141
  52. Hirsch, C. and Schajowicz, F.�Studies in structural changes in the lumbar annulus fibrosus.�Acta Orthop Scand.�1952;�22:�184�231
  53. Ito, T., Yamada, M., Ikuta, F. et al.�Histologic evidence of absorption of sequestration-type herniated disc.�Spine.�1996;�21:�230�234
  54. Liebscher, T., Haefeli, M., Wuertz, K. et al.�Age-related variation in cell density of human lumbar intervertebral disc.�Spine.�2011;�36:�153�159
  55. Nathan, H.�Osteophytes of the vertebral column. An anatomical study of their development according to age, race, and sex, with consideration as to their etiology and significance.�J Bone Joint Surg Am.�1962;�44:�243�268
  56. Sether, L.A., Yu, S., Haughton, V.M., and Fischer, M.E.�Intervertebral disk: normal age-related changes in MR signal intensity.�Radiology.�1990;�177:�385�388
  57. Twomey, L.T. and Taylor, J.R.�Age changes in lumbar intervertebral discs.�Acta Orthop Scand.�1985;56:�496�499
  58. Schmorl, G. and Junghanns, H.�(American Ed, 1971. Transl. by EF Besemann) (186�98)in:�The human spine in health and disease.�2nd.�Grune and Stratton,�New York;�1971:�141�148
  59. Pritzker, K.P.H.�Aging and degeneration in the lumbar intervertebral disk.�Orthop Clin North Am.�1977;�8:�65�77
  60. Ross, J.S.�Babel 2.0.�Radiology.�2010;�254:�640�641
  61. Pfirrmann, C.W., Metzdorf, A., Zanetti, M. et al.�Magnetic resonance classification of lumbar intervertebral disc degeneration.�Spine.�2001;�26:�1873�1878
  62. Griffith, J.F., Wang, W.X., and Antonio, G.E.�Modified Pfirrmann grading system for lumbar intervertebral disc degeneration.�Spine.�2007;�32:�E708�E712
  63. Yu, S., Haughton, V.M., Sether, L.A. et al.�Criteria for classifying normal and degenerated lumbar intervertebral disks.�Radiology.�1989;�170:�323�326
  64. Brock, M., Patt, S., and Mayer, H.M.�The form and structure of the extruded disc.�Spine.�1992;�17:�1457�1461
  65. Williams, A.L.�CT diagnosis of degenerative disc disease. The bulging annulus.�Radiol Clin North Am.�1983;�21:�289�300
  66. Masaryk, T.J., Ross, J.S., Modic, M.T. et al.�High-resolution MR imaging of sequestered lumbar intervertebral discs.�Am J Neuroradiol.�1988;�9:�351�358
  67. Wiltse, L.L., Berger, P.E., and McCulloch, J.A.�A system for reporting the size and location of lesions in the spine.�Spine.�1997;�22:�1534�1537
  68. Saal, J.A., Saal, J.S., and Herzog, R.J.�The natural history of lumbar intervertebral disc extrusions treated nonoperatively.�Spine.�1990;�15:�683�686
  69. Fardon DF. Disc nomenclature: current journal practices. Poster presentation, American Orthopaedic Association 110th annual meeting, Boca Raton, FL,�1997.
  70. Federative Committee on Anatomic Terminology.�Terminologia anatomica.�George Thieme Verlag,Struttgart;�1998:�27
Green Call Now Button H .png

Additional Topics: Acute Back Pain

Back pain�is one of the most prevalent causes of disability and missed days at work worldwide. Back pain attributes to the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments, and muscles, among other soft tissues. Because of this, injuries and/or aggravated conditions, such as�herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief.

blog picture of cartoon paper boy

EXTRA IMPORTANT TOPIC: Sciatica Pain Chiropractic Therapy

Sciatica Chiropractic Treatment Guide

Sciatica Chiropractic Treatment Guide

Dr. Alex Jimenez has great techniques to relieve the discomfort, the inflammation, the swelling, not only does he have a great technique to help with the horrible symptoms of sciatica, he also offers you great information when it comes to foods, anti-inflammatories, and we don’t go to prescription medications. So if you are looking for sciatica relief without the invasive procedures…you need to come see Dr. Jimenez.

Sandra Rubio

Are you currently suffering from debilitating sciatica symptoms? Chiropractic care may help you to find relief for your�sciatic nerve pain.�A doctor of chiropractic, or DC, regularly treats sciatica.

Sciatica is a collection of symptoms rather than a single condition, characterized by pain that originates from the lower back or buttock and travels down one or both legs into the feet. Sciatic nerve pain varies in frequency and intensity; minimum, moderate, severe and intermittent, constant, regular or irregular. Sciatica symptoms can happen when a spine illness, such as spinal stenosis or a bulging/ruptured disk, causes compression into the sciatic nerve or nearby nerves.

When this kind of compression occurs, it could lead to sensations of numbness or shooting pain. From the buttocks, back of the thighs, calves, and toes, sciatica pain may radiate down at times. Sciatic nerve pain is very similar to electrical shocks, and it may be dull, achy, sharp, toothache-like, and have pins�and needles feeling. Other symptoms include numbness, burning, and tingling sensations. Sciatica can be radiating or recognized as neuropathy pain, or neuralgia.

The misconception that sciatica is a disease�is common. However, sciatica is a symptom of a disease. Chiropractic care is a popular treatment which can help treat sciatica. The guide below discusses a comprehensive overview and a chiropractic treatment guide for sciatica.

Common Causes of Sciatica

Sciatica is commonly brought on by compression of the sciatic nerve in the lower back. Disorders known to activate sciatic nerve pain include lumbar spine subluxations, also known as misaligned vertebral bodies, herniated or bulging discs, also known as slipped disks, pregnancy and childbirth, tumors, and even non-spinal ailments such as diabetes, constipation, or sitting on an item�in the back pocket of your�pants.

One�frequent cause of sciatica is piriformis syndrome. Piriformis syndrome involves the piriformis muscle. The piriformis muscle and the thighbone located at the lower part of the backbone�connect and also assists in hip rotation. The sciatic nerve runs along these structures.

This muscle is vulnerable to injury from a difference in leg length, a slip and fall, or hip arthritis. Such circumstances can cause spasm and cramping to develop in the muscle, leading to inflammation and pain which can potentially end up pinching the sciatic nerve. Sciatic nerve wracking may lead to the loss of feeling,�called sensory loss, paralysis of a single limb or group of muscles, called monoplegia, and insomnia.�

Sciatic Nerve Pain Diagnosis

Before you discover you may need to see a healthcare professional for your sciatica symptoms, a chiropractor can be a good choice to start treatment for sciatic nerve pain. You may first want to visit your doctor to go over your symptoms and to find an accurate diagnosis of your condition. As soon as you’ve got a clear identification of the reason for sciatica, there are many conservative, or non-invasive treatment choices for sciatica which you can try, most of which may be used by a doctor of chiropractic, or chiropractor.

The physician’s first step when diagnosing sciatica is primarily to ascertain what is causing the individual’s relapse since there are lots of ailments that cause sciatica. Forming a diagnosis entails a review of the individual’s health history and a physical and neurological evaluation.

Diagnostic testing involves an x-ray, MRI, CT scan and/or electrodiagnostic tests,�including nerve conduction velocity and electromyography. These examinations and evaluations help to detect possible contraindications to other treatments and spinal adjustments. As described above sciatica may have many distinct causes, including the following:

  • Herniated discs
  • Spondylolisthesis
  • Tumors about the sciatic nerve
  • Pelvic injuries
  • Degenerative disc disease

If your healthcare professional says your condition can be treated with chiropractic care, then you may be able to find relief after proceeding with a couple of sessions, possibly more depending on the patient’s source of their symptoms. In the case that chiropractic care isn’t the ideal choice for the illness, your physician can research other treatment options.

Dr-Jimenez_White-Coat_01.png

Many research studies have demonstrated that chiropractic care is safe and effective for the treatment of lower back pain. Chiropractic is a healthcare profession which focuses on the non-surgical treatment of a variety of injuries and/or conditions associated with the musculoskeletal and nervous system, including sciatic nerve pain. Referred to as a collection of symptoms rather than a single health issue, sciatica can be treated by addressing the underlying problem with chiropractic care.

Dr. Alex Jimenez D.C., C.C.S.T.

Chiropractic Care for Sciatica

Chiropractic care is a form of complementary and alternative medicine, CAM, which relies on the idea that the body has an inherent intelligence that is interrupted by spinal ailments. The philosophy also teaches that these disruptions will be the foundation for all illness in the human body.

Chiropractic care�developed from the late 19th century as a means of adjusting spinal dislocations, referred to as subluxations by chiropractors, restoring the body’s natural integrity. Though several chiropractors still adhere to such beliefs, most chiropractors combine many different kinds of treatment modalities used in traditional medicine.

The objective of chiropractic treatment for sciatica is to assist your human body’s capacity to heal itself, without the need for�drugs and/or medications or surgical interventions. It’s based upon the scientific principle that motion contributes to pain,�structure, and function. Chiropractic care is well-known for being non-invasive, or non-surgical and prescription-free.

The treatment modalities utilized on a patient depends on the reason for their sciatica. A sciatica treatment program may include many distinct treatment�modalities, such as ice/cold therapies, ultrasound, TENS, and spinal adjustments as well as manual manipulations. Below, we will describe the treatment modalities used for sciatica.�

Treatment Modalities for Sciatica

Should you find that you need chiropractic care for sciatic nerve pain, your sciatica chiropractic treatment program plan may contain one or more of the following treatment modalities used by chiropractors, including:

  • Ultrasound is mild warmth created by sound waves which penetrate deep into tissues. Circulation increases and helps reduce cramping pain, swelling and muscle spasms.
  • TENS, or transcutaneous electrical nerve stimulation, is a small box-like, stainless-steel, mobile muscle stimulating machine. Variable intensities of electric stimuli control pain and reduce muscle spasms. Many healthcare professionals use versions of this TENS units.
  • Spinal adjustments and manual manipulations are the most common treatment modality used by chiropractors for sciatica. Manipulation helps to restore misaligned vertebral bodies back into their position in the spine and supports the restricted movement of the spinal column. Adjustment helps to decrease nerve-wracking responsible for causing pain, muscle soreness, other ailments, and inflammation. Adjustments should not be painful. Spinal adjustments and manual manipulations are�proven to be secure and effective.
  • A chiropractor may recommend the use of cold or heat therapies to relieve inflammation, stop spasms and loosen tight muscles associated with sciatic nerve pain. These can often be performed at home with proper guidance from a healthcare professional.

During training, students of chiropractic comprehend many modification methods enabling them to take care of various sorts of subluxations, injuries, and disorders. Techniques combine minimal strain and gentle pressure. Mastery of every treatment modality is an art which needs skill and accuracy. Spinal adjustments and manual manipulations are the treatments that distinguish chiropractic care.

Other disorders can lead to sciatica beyond the scope of chiropractic care. After diagnosis,� The person is referred to a different specialization if the doctor of chiropractic determines the patient’s disease requires additional treatment. Sometimes, co-manage is in the patient’s interest, and the chiropractor may continue to treat the patient with another doctor.

Pain relief for sciatica is possible. Seek sciatica chiropractic treatment for your symptoms. The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at�915-850-0900�.

Curated by Dr. Alex Jimenez

Green Call Now Button H .png

Additional Topics: Acute Back Pain

Back pain�is one of the most prevalent causes of disability and missed days at work worldwide. Back pain attributes to the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments, and muscles, among other soft tissues. Because of this, injuries and/or aggravated conditions, such as�herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief.

 

blog picture of cartoon paper boy

EXTRA IMPORTANT TOPIC: Sciatica Pain Chiropractic Therapy