ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page
Migraine Education Improves Headache Treatment in El Paso, TX

Migraine Education Improves Headache Treatment in El Paso, TX

Migraine symptoms are painful and debilitating, often affecting the quality of life of many migraine sufferers around the globe. Although headache pain is one of the most prevalent reasons for doctor office visits each year, migraines are considered to be one of the most underdiagnosed and undertreated diseases in the medical field. Furthermore, the emotional distress caused by the unresolved physical symptoms of migraines can create a number of mental health issues which can lead to worsened symptoms.�As a result, migraine education efforts have been implemented as a part of many headache treatment options, including chiropractic care. The purpose of the following article is to demonstrate the benefits of a primary care migraine education program, known as the Mercy Migraine Management Program or MMMP, on headache impact and quality of life.

 

A Primary Care Migraine Education Program has Benefit on Headache Impact and Quality of Life: Results from the Mercy Migraine Management Program

 

Abstract

 

  • Objective: The objective of this study was to evaluate the effectiveness of the Mercy Migraine Management Program (MMMP), an educational program for physicians and patients. The primary outcome was change in headache days from baseline at 3, 6, and 12 months. Secondary outcomes were changes in migraine-related disability and quality of life, worry about headaches, self-efficacy for managing migraines, ER visits for headache, and satisfaction with headache care.
  • Background: Despite progress in the understanding of the pathophysiology of migraine and development of effective therapeutic agents, many practitioners and patients continue to lack the knowledge and skills to effectively manage migraine. Educational efforts have been helpful in improving the quality of care and quality of life for migraine sufferers. However, little work has been done to evaluate these changes over a longer period of time. Also, there is a paucity of published research evaluating the influence of education about migraine management on cognitive and emotional factors (e.g., self-efficacy for managing headaches, worry about headaches).
  • Methods: In this open-label, prospective study, 284 individuals with migraine (92% female, mean age = 41.6) participated in the MMMP, an educational and skills based program. Of the 284 who participated in the program, 228 (80%) provided data about their headache frequency, headache-related disability (as measured by the Headache Impact Test-6 (HIT-6), migraine-specific quality of life (MSQ), worry about headaches, self-efficacy for managing headaches, ER visits for headaches, and satisfaction with care at four time points over 12 months (baseline, 3 months, 6 months, 12 months).
  • Results: Overall, 46% (106) of subjects reported a 50% or greater reduction in headache frequency. Over 12 months, patients reported fewer headaches and improvement on the HIT-6 and MSQ (all p < .001). The improvement in headache impact and quality of life was greater among those who had more worry about their headaches at baseline. There were also significant improvements in �worry about headaches�, �self-efficacy for managing headaches�, and �satisfaction with headache care�.
  • Conclusion: The findings demonstrate that patients participating in the MMMP reported improvements in their headache frequency as well as the cognitive and emotional aspects of headache management. This program was especially helpful among those with high amounts of worry about their headaches at the beginning of the program. The findings from this study are impetus for further research that will more clearly, through evaluate the effects of education and skill development not only on headache but also emotional and cognitive influences.

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

Migraine headache pain is characterized as a disabling symptom which can tremendously impact an individual’s quality of life. Plus, the stress created by the worry of an imminent migraine can result in a variety of mental health issues. Many healthcare professionals and migraine sufferers lack the proper knowledge and skills on how to effectively manage migraine symptoms. Fortunately, migraine education programs, like the Mercy Migraine Management Program (MMMP), were designed to teach patients how to improve their quality of care and quality of life. Migraine education programs such as these have been demonstrated to especially benefit migraineurs with higher levels of stress. Aside from providing spinal adjustments and manual manipulations to correct the alignment of the spine, chiropractic care focuses on the treatment of the body as a whole, making sure patients are educated regarding their migraine symptoms.

 

Introduction

 

Migraine headache is a highly prevalent, painful, disabling and costly disease. The evaluation, treatment and management of migraine have been estimated to involve 5 to 9 million office visits per year to primary care physicians in the United States.[1,2] Migraine is one of the most common reason for an outpatient office visit.[3] Numerous studies have reported that patients with migraines have significantly higher pharmacy and medical claims than those without migraine.[4�7] Migraine also has high indirect costs; it has been estimated to cost US employers between 17 and 20 billion dollars annually in lost work productivity.[8,9]

 

Despite its prevalence and high cost, migraine remains an underdiagnosed and undertreated disease.[10�14] Given the availability of migraine-specific therapeutic agents, it is vital that physicians be able to accurately diagnose migraine. Moreover, it is important for physicians to recognize the benefits of treating migraine as a specific condition as opposed to simply �head pain�. Unfortunately recent findings concerning the accurate diagnosis and treatment of migraine suggest that most patients with migraine are not accurately diagnosed or treated.[10�12,14]

 

Migraine is currently conceptualized as a chronic neurologic disease characterized by intermittent episodes of acute pain.[15�17] Current guidelines for managing chronic diseases emphasize the importance of self-management.[18�22] In self-management, the emphasis is on both the patient and the provider actively treating the disease, with the patient managing the disease outside the clinical setting. Self-management (or self-care) requires that the provider afford the patient the opportunity to take the right dose of the right medication at the right time, is educated about migraine and its management, and is equipped with tools to minimize the frequency and deleterious effects of migraine attacks.

 

Most migraine sufferers experience some disability from headache pain and the associated symptoms of migraine.[23�26] It is often the disability emanating from migraine attacks that compromises quality of life, thus making migraine both a pain problem and a life problem. For many patients, recurrent disability combined with a lack of effective coping tools and medications that are not always effective can create uneasiness, worry and anxiety between attacks as well as when an impending attack seems imminent. This worry and anxiety may be related to low self-efficacy, a cognitive variable that involves an individual�s belief that she or he is able to successfully manage a situation.[27�29] Self-efficacy has been theorized as a potent influence of how well one manages migraines.[29�33] Recent development of new therapeutic agents and the advent of improved educational efforts have been helpful in validating migraine and improving the quality of care for migraine sufferers. However, demonstrating the overall value of a primary care based educational program for migraine is difficult. Previously published articles evaluating the benefits of migraine education have reported successful results.[34�39] However, these programs mainly involved referral of patients into a specialized clinic or educational facility for instruction from specialist practitioners or educators and followed outcomes of the patients after enrollment. Unfortunately, few communities have access to such headache specialty clinics. Accordingly, most patients rely on their primary care clinicians for educational content and counseling regarding headache care. With these concepts in mind, the Mercy Migraine Management Program (MMMP), a multi-center, targeted enrollment study was undertaken to demonstrate the overall value of a migraine educational program through a provider-group setting. Given the paucity of programs whereby the physicians and participants are provided a one-time educational program, the decision was made to evaluate whether a program of this nature was feasible and suggestive of efficacy. If so, then this would allow for further investigation using a more elegant design.

 

The current study was an open trial looking at the effects of the MMMP. The effect of participation in the educational program on headache frequency, headache-related quality of life, headache-related worry, self-efficacy, treatment satisfaction, and emergency room visits for headache was assessed.

 

Methods

 

Participants

 

The research was conducted within a 120-clinician primary care group practice caring for more than 200,000 patients (St. Johns Mercy Medical Group in St. Louis, Missouri). A total of 31 physicians and three nurse practitioners from 14 of the group�s practice sites agreed to participate. From these sites, a total of 284 patients with migraine were identified and recruited by the clinicians and agreed to participate. Among participants 92% (n = 260) were female and the mean age was 42 (SD = 12.45). In order to be eligible, patients were required to have one or more of the following: (a) ICD-9-CM code for migraine/headache diagnosis in the previous six months; (b) one or more claims for acute migraine/headache medications in the previous six months; or (c) patients with one or more ER or urgent care center visits in the previous six months coded for migraine/headache or headache NOS and at least one migraine medication. In addition, patients who presented to the primary care office for evaluation of headache were eligible for enrollment in the program if they were given an ICD-9-CM code for migraine/headache diagnosis at that time.

 

Procedures

 

Provider Education and Training

 

Clinicians who expressed interest in participating attended a two-hour continuing medical education program on migraine. The program covered four key concepts: (1) impact recognition diagnosis of headache (office recognition of migraine based on headache repercussions and disability rather than the characteristics of pain alone), (2) the benefits of early abortive intervention, especially with migraine-specific medications, (3) effective preventive regimens, and (4) non-pharmacologic management. The overarching goal of the program was to educate providers about how to equip the patient with tools they can use to manage their migraines on a daily basis. Participating clinicians and their staff were provided printed educational materials. A majority of the materials were developed or selected for use by the first author. These were supplemented by standardized educational materials which included: (a) Patient Centered Strategies for Effective Management of Migraine[40]; (b) The Migraineur�s Guide to Migraine[41]; and (c) Provider and Patient Tipsheets from the Migraine Matrix� education program[41], a comprehensive migraine management program for providers.

 

Following their participation in the educational session, physicians from the practice sites sent IRB approved notices to potentially eligible patients, identified from claims data, informing them of the study or spoke with them directly during routine office visits for headache treatment. Interested individuals who responded to the mailed invitations then came to the practice site where their migraine diagnoses were confirmed and informed consent for participation was provided, as approved by the local IRB. The subjects subsequently completed study related questionnaires. Subjects recruited at the time of an office encounter were invited to participate at the time of said visit, provided informed consent in like-manner to those described above, and completed the baseline questonnaire.

 

After the questionnaires were completed, the clinician provided medication or other treatment recommendations based on their knowledge attained from the educational seminar and print materials previously provided to them. No mandatory interventions were required on the part of the provider. They were to make medication and other management decisions as they saw fit for each individual participant according to their own knowledge, understanding, and preferences. They were however required to provide the educational information from the study to the individual subjects enrolled in the trial. The clinician or a member of the health care team provided the patient with the educational materials and instructed them on how to use them. The patients were encouraged to use the materials as best fit their individual situation. The materials were designed to give the patient tools to self-manage their migraines in conjunction with ongoing care from their health care team. These materials included: (a) The Migraineur�s Guide to Migraine[41]; (b) a headache diary; (c) Patient Tipsheets from the Migraine Matrix� education program[42]; (d) educational materials on diet recommendations from the National Headache Foundation; (e) written and visual instruction on how to do cervical range of motion and stretching exercises from the physical therapy department that is associated with the St John�s Mercy Medical Group; (f) biofeedback tapes developed by the Primary Care Network; and (g) Managing Your Migraine Headaches.

 

The patients took the materials home with instructions to be as consistent as possible with adherence to the concepts proscribed by the educational packet. After 3-months, assessments were mailed to the participants with a self-addressed stamped envelope to return. The same assessments were mailed at 6-months and 12-months post-baseline as well.

 

Measures

 

The measures below were self-administered at baseline, 3-months, 6-months, and 12-months post-baseline.

 

Headache Days. Individuals reported the number of days they experienced headaches over the previous 90 days. This was a primary outcome of interest.

 

Disability/Quality of Life

 

Headache Impact Test-6 (HIT-6). The HIT-6 is a six-item measure that is a reliable and valid measure assessing the impact of headache on patients� lives.[43�44] Scores for the HIT-6 are derived by summing the responses to all the items. Higher scores reflect higher levels of headache impact (i.e., poorer quality of life). This was a primary outcome of interest.

 

Migraine Specific Quality of life (MSQ). The MSQ is a 14-item measure designed to assess the effects of migraine on an individual�s quality of life.[45�46] There are three MSQ subscales, Emotional (MSQ-E), restrictive (MSQ-R), and preventive (MSQ-P). The MSQ has been shown to be an internally consistent, valid measure. The MSQ was not done at 3 months. This was a primary outcome of interest.

 

Worry about headaches. Individuals indicated the extent to which they worried about headaches disrupting their life using a 4-point scale with options of �rarely�, �sometimes�, �often�, and �almost always�. For purposes of the current study, dichotomous groups were created. Individuals who answered �rarely� or �sometimes� were labeled Low Worry. Those who answered �often� or �almost always� were labeled High Worry.

 

Self-efficacy for controlling headaches. Individuals indicated the extent to which they were confident in their ability to do things to help control their headaches using a 4-point scale with options of �not confident�, �a little confident�, �fairly confident�, and �very confident�. Individuals who answered �not confident� or �a little confident� were labeled Low Self-Efficacy. Those who answered �fairly confident� or �very confident� were labeled High Self-Efficacy.

 

Satisfaction with headache care. Individuals indicated (Yes/No) whether they were satisfied with the headache care they were receiving.

 

ER visits. Individuals indicated the number of times they had been to the ER for headaches during the previous 3 months. For purposes of the current study a dichotomous yes/no variable was created in order to create a percentage of individuals who had visited the ER during the previous 90 days.

 

Statistical Analyses

 

All analyses were conducted using SPSS v. 15.[47] Prior to analysis, data were checked for the fit between scale distribution and the assumptions of normality. Headache frequency violated normality assumptions and was transformed (although the transformed variables were used in the model, the original data is used in the figures for ease of understanding for the reader).

 

A linear random mixed model (treating subjects as random effects) was used to model the change in headache frequency at the four time points over 12 months (baseline, 3 months, 6 months, 12 months). The same was done for the HIT-6 (measured at baseline, 3-months, 6-months and 12-months) and the MSQ subscales (measured at baseline, 6-months and 12-months). In order to determine whether baseline worry and confidence influenced changes in headache and quality of life, these variables were included in the models. Although the potential existed to investigate 3-way interactions (time � worry � confidence), doing so created cells with extremely low n and thus 2-way interactions were the higher order interactions analyzed. For all comparisons, Bonferroni adjustments were made.

 

In order to evaluate whether there were significant changes over time for worry, efficacy, patient�s satisfaction with their headache care, or ER visits, McNemar�s test was conducted. To account for multiple comparisons, the significance level for each set of comparisons was adjusted to p<.008.

 

The protocol and procedures for this study were approved by the local Institutional Review Board.

 

Results

 

Headache Frequency Change Over Time

 

Results indicated that overall, at 3 months, 34% (n = 77/228) reported at least a 50% reduction in headache frequency from baseline. This increased to 38% (N=86) at 6 months and 46% (N=106) at 12 months.

 

Results indicated that the main effect for reduction in headache frequency was significant (F [3, 691] = 27.89, p < .001). Figure 1 shows headache frequency per month at each time point. Table 1 shows that there was a significant reduction in headache frequency from baseline to each subsequent time point (p < .001). Also, headache frequency at month 12 was significantly lower than at month 3 and 6 (p<.001). The main effect for worry was also significant (F [1, 308] = 12.03, p < .001). Those who were labeled as having High Worry had significantly more headaches (M = 8.00, SE = .63) across the time frames than did those who were labeled as having Low Worry (M = 5.89, SE = .46) (95% CID = .62�3.68). The main effect for confidence, the time X worry interaction, and the time X confidence were all non-significant.

 

Figure 1 Headache Days per Month at Baseline, 3 Months, 6 Months, and 12 Months

Figure 1: Headache days per month at baseline, 3 months, 6 months, and 12 months.

 

Table 1 Comparisons of Change in Headache Frequency

 

Quality of Life Disability

 

HIT-6. Results indicate that the time X worry interaction was significant (F [2, 464] = 4.54, p < .01). Figure 2 shows HIT-6 scores for each time point by level of worry. Simple effects analysis showed that the degree of reduction in headache impact was greater at 3 months among those with High Worry than among those with Low Worry. Also, those with Low Worry showed a significant reduction in headache impact comparing baseline to 3 months and 6 months, and from 3 months to 6 months, whereas those with High Worry had a significant reduction in headache impact from baseline to 3 months but not from 3 months 6 months. The main effect for confidence was significant (F [1, 292] = 4.54, p < .001) such that those with High Self-Efficacy (M = 59.60, SE = .52) had less headache impact than those with Low Self-Efficacy (M = 61.72, SD = .70) (CID = .79�3.45). Neither the time X self-efficacy or worry X self-efficacy interaction was not significant.

 

Figure 2 HIT-6 at Each Time Point by Worry

Figure 2: HIT-6 at each time point by worry.

 

MSQ-E. Results indicate that the time X worry interaction was significant (F [2, 468] = 5.18, p < .01). Figure 3 shows MSQ-E scores for each time point by level of worry. Simple effects analysis showed that the degree of improvement in MSQ-E was greater at 3 months among those with High Worry than among those with Low Worry. The main effect for confidence was significant (F [1, 292] = 4.54, p < .001) such that those with High Self-Efficacy (M = 59.60, SD = 1.74) had better quality of life than those with Low Self-Efficacy (M = 61.72, SD = 1.87) (CID = .79�3.45). The main effect for self-efficacy, the time X self-efficacy interaction, and the worry X self-efficacy interaction were not significant.

 

Figure 3 MSQ-E at Each Time Point by Worry

Figure 3: MSQ-E at each time point by worry.

 

MSQ-R. Results indicate that the main effect for time was significant (F [2, 472] = 47.60, p < .001). Figure 4 shows MSQ-R for each time point by level of worry. Relative to baseline (M = 53.67, SD = 1.23), MSQ-R was significantly improved at 6 months (M = 66.02, SD = 1.35) (CID = 8.96�13.75) and at 12 months (M = 68.05, SD = 1.38) (CID = 10.34�18.42). No difference was found comparing 6 month and 12 month MSQ-R scores. The main effect for worry was significant (F [1, 281] = 34.86, p < .001) such that those with High Worry had significantly lower quality of life (M = 56.75, SD = 1.17) than those with Low Worry (M = 68.41, SD = 1.60) (CID = 7.78�15.57). The main effect for self-efficacy was significant (F [1, 281] = 7.89, p < .01) such that those with Low Self-Efficacy had significantly lower quality of life (M = 59.81, SD = 1.35) than those with Low Worry (M = 65.36, SD = 1.45) (CID = 1.67�9.44). Neither the main effect for self-efficacy or the time X confidence interaction was significant.

 

Figure 4 MSQ-R at Each Time Point by Worry

Figure 4: MSQ-R at each time point by worry.

 

MSQ-P. Results indicate that the time X worry interaction was significant (F [2, 449] = 4.01, p < .05). Figure 5 shows MSQ-P scores for each time point by level of worry. Simple effects analysis showed that those with High Worry showed significant improvement comparing baseline to 6 months and 12 months, and from 6 month to 12 months, while those with Low Worry showed significant improvement comparing baseline to 6 months and 12 months, but no significant improvement from 6 months to 12 months. The main effect for confidence was significant (F [1, 272] = 4.11, p < .05) such that those with Low Self-Efficacy (M = 75.08, SD = 1.48) had lower quality of life than those with High Self-Efficacy (M = 79.47, SD = 1.58) (CID = .13�8.65). The time X self-efficacy interaction and the worry X self-efficacy interaction were not significant.

 

Figure 5 MSQ-P at Each Time Point

Figure 5: MSQ-P at each time point.

 

Worry about headaches. Figure 6 shows the percentage of individuals with High Worry at baseline, 3 months, 6 months, and 12 months. Results indicated that when compared to baseline, the percentage of individuals with High Worry was significantly less at 3 months (?2 [223] = 20.42, p < .001), 6 months (?2 [223] = 29.98, p < .001), and 12 months (?2 [223] = 29.82, p < .001). No other significant differences were found.

 

Figure 6 Percentage of Individuals with High Worry and High Self-Efficacy at Each Time Point

Figure 6: Percentage of individuals with high worry and high self-efficacy at each time point.

 

Self-Efficacy for managing headaches. Figure 6 shows the percentage of individuals with High Self-Efficacy at baseline, 3 months, 6 months, and 12 months. Results indicated that the percentage of individuals with High Self-Efficacy at 12 months was significantly more than at baseline (?2 [223] = 10.92, p < .001) and 3 months (?2 [223] = 8.02, p < .001). No other significant differences were found.

 

Satisfaction. Figure 7 shows the percentage of individuals who were satisfied with their headache care. Results indicated that when compared to baseline, the percentage of individuals who were satisfied with their headache care was significantly higher at 3 months (?2 [223] = 66.39, p < .001), 6 months (?2 [223] = 75.87, p < .001), and 12 months (?2 [223] = 100.99, p < .001). Also, the percentage of individuals who were satisfied with their headache care at 12 months was significantly higher than at 3 months (?2 [223] = 16.25, p < .001) and 6 months (?2 [223] = 9.80, p < .001). No other significant differences were found.

 

Figure 7 Satisfaction with Headache Care

Figure 7: Satisfaction with headache care.

 

ER visits. Results indicated that at baseline, 8.33% (n=19) has gone to the ER for headache in the previous 3 months. Although there was a decrease in ER visits at 3 months (3.08%; n= 7), 6 months (3.95%; n = 9), and 12 months (5.26%; n = 12), these reductions were not significant.

 

Discussion

 

The primary outcome was the impact that the MMMP would have on headache frequency. Almost half (46%) of all participants reported a 50% or greater reduction in headache frequency at 12 months. It is notable that the percentage of participants experiencing a >50% reduction in headache frequency increased steadily over the 12 months, showing a lasting effect of the educational intervention. The degree of change was not significantly greater in either High Worry or Low Worry groups. However, the reduction in HIT-6 scores was significantly greater for those with High Worry compared to those with Low Worry at 3 months after baseline. In a related finding, participants with Low Self-Efficacy at baseline reported significantly greater reduction in headache impact than those with High Self-Efficacy. It is likely that this was due to participants gaining greater confidence in their own ability to manage their headaches through the education and headache management skills provided in the MMMP. This hypothesis is supported by the increasing percentage of participants with High Self-Efficacy scores and declining percentage of subjects with High Worry over the 12 month study period.

 

Participants reported that headache-related disability decreased and quality of life improved during the course of the study. This is an encouraging finding given that most patients seek treatment for headaches due to the disability and burden of disease. It is notable that this improvement was achieved through a low-cost, easy to administer educational program. The results also showed that patients worried less about their headaches. It has been well established among chronic pain patients that anxiety and worry about impending pain can significantly increase pain and inhibit efficacy of analgesic therapies.[48�49] To date, however, little research has looked at these phenomena among those with migraine. What research has been conducted has found that worry and anxiety appear to be a significant issue in migraine.[50�54]

 

It is interesting to note the interactions of worry with disability and quality of life. The focus of the current intervention was solely on education. Not enough research has been published to fully establish the importance of education in changing disease outcomes, particularly as it relates to headache pain. Perhaps the education and basic headache management skills provided in the education program equipped patients with enough knowledge and basic skills that worry and anxiety about headaches were reduced. This idea is supported by the finding that those with high worry at the beginning of the study reported the greatest amount of improvement on ratings of disability and quality of life.

 

The finding that satisfaction was higher serves as an encouragement that an intervention that is low cost and easy to administer can have a positive impact on patients� perception of care. There are a number of possibilities as to why this may have occurred. It could be that as a result of their education the health care providers were able to better answer patients� questions about migraine and its management. It is possible that the educational materials distributed to the patients resulted in their becoming more knowledgeable about migraine and, in turn, more satisfied with their care. It is also possible that the greater satisfaction came from having fewer headaches and headaches that were less disabling. The current study was not designed to answer these mechanistic questions, thus it is difficult to determine the influence of each of these variables on patient satisfaction. In regards to ER visits; although there was a decrease in ER visits at each time point, the percentage of individuals who had gone to the ER at baseline (8.33%) was low enough that there was little chance to see significant decline.

 

The results of this study imply that increased knowledge about migraine and management skills can lessen the burden of disease. This is congruent with research in other chronic disease areas (e.g., diabetes, asthma, cardiovascular disease) where providing patients with education about their disease state has been demonstrated to reduce disease burden and reduce worry and anxiety.

 

Although the current study is encouraging in its findings and raises the specter of future research into the disease management benefits of migraine education, there are limitations to the current study. Likely the greatest limitation to the study was the lack of a parallel condition. Not including such a condition did not allow us to evaluate the possibility that the results emanated from a positive bias or even a �self-fulfilling� outcome whereby decreases in headache were a function of participants� expectations. However, in the current study, the issue of positive bias may have been lessened by the fact the participants had no regular direct interaction with the researchers, and what interaction occurred did so at 3 or more month intervals. At the same time, with a lack of a control condition, this possibility cannot be discounted. This study was undertaken in an effort to see whether an approach that involved a one-time contact would have any impact on headache and associated outcomes. As a result, the conclusions that can be drawn from the current study are limited.

 

There was no formal oversight of prophylactic prescription patterns, so it is possible that the improvements seen in the participants was due to the 15% increase in the number of individuals prescribed migraine prophylaxis. However, a regression analysis was conducted to evaluate the possibility that starting migraine prophylaxis predicted improvement on the various outcomes (headache frequency, disability, quality of life, worry, satisfaction with care) at each time point. Starting migraine prophylaxis predicted a decrease in headache frequency at 3 months, but had no significant influence on any other domains at any time point. Another limitation was the lack of a parallel comparison group that did not receive the educational intervention. It is possible that the reported improvements in all these domains is a result of positive response bias. Another area of concern is that the scales and questionnaires were based on patient recall rather than diaries, allowing for recall bias. It is also possible that the physicians who participated in the educational seminar tend to have a more interactive communication approach with their patients which can have a positive influence on patient management.[50]

 

In summary, the purpose of the current study was to evaluate the efficacy of the MMMP which provided education about migraine and its management to health care providers and persons with migraine. In this open-label trial that utilized a linear random mixed model to evaluate change over a 12-month period, patients who participated reported fewer headaches, less disability, and improved quality of life. Also, a significant proportion of the patients reported having less worry, increased self-efficacy, and greater satisfaction with their migraine treatment. It is also worthwhile to note that the increased satisfaction, decreased worry and improved quality of life scores demonstrated in this program were achieved through a low-cost, easy to administer educational program.

 

Acknowledgments

 

The authors would like to thank Ms. Mitzi Corzine and Ms. Sally Kane at St. John�s Mercy Health Research (for managing the project), the health care providers and practices in the St. John�s Mercy Medical Group who participated, and Dr. Timothy Houle (statistical assistance). This project was funded by small unrestricted grants provided by the Primary Care Network, GlaxoSmithKline Pharmaceuticals, and Abbott Laboratories. The manuscript was prepared while the second author was funded by the National Institutes of Health (NINDS #K23NS048288).

 

In conclusion,�despite the fact that headache is one of the most prevalent reasons for doctor office visits each year, migraine still continues to be one of the most underdiagnosed and undertreated diseases in the medical field, impacting the overall health as wellness of migraine sufferers around the world. According to the findings of the article above, patients who participated in the Mercy Migraine Management Program, or MMMP, reported improvements in their migraine symptoms. Furthermore, migraineurs demonstrated additional improvements in a variety of other headache treatment options. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC: Migraine Pain Treatment

 

 

MORE TOPICS: EXTRA EXTRA: El Paso, Tx | Athletes

 

Blank
References
1.�Gibbs TS, Fleischer AB, Jr, Feldman SR, Sam MC, O�Donovan CA. Health care utilization in patients with migraine: Demographics and patterns of care in the ambulatory setting.�Headache.�2003;43:330�335.[PubMed]
2.�Smith R. Management of chronic headache.�Can Fam Physician.�1989;35:1835�9.�[PMC free article][PubMed]
3.�Young WB, Silberstein SD.�Migraine and Other Headaches.�New York, NY: Demos Medical; 2004.
4.�Clouse JC, Osterhaus JT. Healthcare resource use and costs associated with migraine in a managed healthcare setting.�Ann Pharmacother.�1994;28:659�664.�[PubMed]
5.�Elston Lafata J, Moon C, Leotta C, Kolodner K, Poisson L, Lipton RB. The medical care utilization and costs associated with migraine headache.�J Gen Intern Med.�2004;19:1005�1012.�[PMC free article][PubMed]
6.�Pesa J, Lage MJ. The medical costs of migraine and comorbid anxiety and depression.�Headache.�2004;44:562�570.�[PubMed]
7.�Edmeads J, Mackell JA. The economic impact of migraine: An analysis of direct and indirect costs.�Headache.�2002;42:501�509.�[PubMed]
8.�Hu XH, Markson LE, Lipton RB, Stewart WF, Berger ML. Burden of migraine in the United States: disability and economic costs.�Arch Intern Med.�1999;159:813�818.�[PubMed]
9.�Stewart WF, Ricci JA, Chee E, Morganstein D, Lipton R. Lost productive time and cost due to common pain conditions in the US workforce.�JAMA.�2003;290:2443�2454.�[PubMed]
10.�Lipton RB, Stewart WF, Diamond S, Diamond ML, Reed M. Prevalence and burden of migraine in the United States: Data from the American Migraine Study II.�Headache.�2001;41:646�657.�[PubMed]
11.�Lipton RB, Stewart WF, Simon D. Medical consultation for migraine: Results from the American Migraine Study.�Headache.�1998;38:87�96.�[PubMed]
12.�Lipton RB, Diamond S, Reed M, Diamond ML, Stewart WF. Migraine diagnosis and treatment: Results from the American Migraine Study II.�Headache.�2001;41:638�645.�[PubMed]
13.�Patel NV, Bigal ME, Kolodner KB, Leotta C, Lafata JE, Lipton RB. Prevalence and impact of migraine and probable migraine in a health plan.�Neurology.�2004;63:1432�1438.�[PubMed]
14.�Diamond S, Bigal ME, Silberstein S, Loder E, Reed M, Lipton RB. Patterns of diagnosis and acute and preventive treatment for migraine in the United States: Results from the American Migraine Prevalence and Prevention Study.�Headache.�2007;47:355�363.�[PubMed]
15.�Hazard E, Munakata J, Bigal ME, Rupnow MFT, Lipton RB. The burden of migraine in the United States: Current and emerging perspectives on disease management and economic analysis.�Value Health�[PubMed]
16.�Lipton RB, Pan J. Is migraine a progressive brain disease?�JAMA.�2004;291:493�494.�[PubMed]
17.�Scher AI, Stewart WF, Ricci JA, Lipton RB. Factors associated with the onset and remission of chronic daily headache in a population-based study.�Pain.�2003;106:81�89.�[PubMed]
18.�Bodenheimer T, Lorig K, Holman H, Grumbach K. Patient self-management of chronic disease in primary care.�JAMA.�2002;288:2469�2475.�[PubMed]
19.�Chodosh J, Morton SC, Mojica W. Meta-analysis: Chronic disease self-management programs for older adults.�Ann Intern Med.�2005;143:427�438.�[PubMed]
20.�Lorig KR, Holmon H. Self-management education: history, definition, outcomes, and mechanisms.�Ann Behav Med.�2003 Aug;26(1):1�7.�[PubMed]
21.�Lorig KR, Mazonson PD, Holman HR. Evidence suggesting that health education for self-management in patients with chronic arthritis has sustained health benefits while reducing health care costs.�Arthritis Rheum.�1993;36:439�446.�[PubMed]
22.�Lorig KR, Sobel DS, Stewart AL, Brown BW, Jr, Bandura A, et al. Evidence suggesting that a chronic disease self-management program can improve health status while reducing hospitalization: A randomized trial.�Med Care.�1999;37:5�14.�[PubMed]
23.�Ferrari MD. The economic burden of migraine to society.�Pharmacoeconomics.�1998;13:667�676.[PubMed]
24.�Ford S, Calhoun A, Kahn K, Mann J, Finkel A. Predictors of disability in migraineurs referred to a tertiary clinic: Neck pain, headache characteristics, and coping behaviors.�Headache.�2008;48:523�528.[PubMed]
25.�Jelinski SE, Becker WJ, Christie SN, Giammarco R, Mackie GF, Gawel MJ, Eloff AG, Magnusson JE. Demographics and clinical features of patients referred to headache specialists.�Can J Neurol Sci.�2006;33:228�234.�[PubMed]
26.�Stewart WF, Lipton RB, Simon D. Work-related disability: results from the American Migraine study.�Cephalalgia.�1996;16:231�238.�[PubMed]
27.�Bandura A, O�Leary A, Taylor C, Gauthier J, Gossard D. Perceived self-efficacy and pain control: Opioid and nonopioid mechanisms.�J Personal Social Psychol.�1987;53:563�571.�[PubMed]
28.�Bandura A.�Self-efficacy: The Exercise of Control.�New York: W.H. Freeman and Company; 1997.
29.�Nicholson RA, Houle TT, Rhudy JL, Norton PJ. Psychological risk factors in headache.�Headache.�2007;47:413�426.�[PMC free article][PubMed]
30.�Lake AI. Behavioral and nonpharmacologic treatments of headache.�Med Clin North Am.�2001;85:1055�1075.�[PubMed]
31.�Maizels M. Why should physicians care about behavioral research?�Headache.�2005;45:411�413.[PubMed]
32.�Nicholson RA, Hursey KG, Nash J. Moderators and mediators of behavioral treatment for headache.�Headache.�2005;45:513�519.�[PubMed]
33.�Penzien D, Rains J, Lipchik G, Nicholson R, Lake A, Hursey K. Future directions in behavioral headache research: Applications for an evolving health care environment.�Headache.�2005;45:526�534.[PubMed]
34.�Blumenfeld A, Tischio M. Center of excellence for headache care: Group model at Kaiser Permanente.�Headache.�2003;43:431�440.�[PubMed]
35.�Cady R, Farmer K, Beach ME, Tarrasch T. Nurse-based education: An office-based comparative model for education of migraine patients.�Headache.�2008;48:564�569.�[PubMed]
36.�Kwong WJ, Landy SH, Braverman-Panza J, Rosen JH, Hutchinson S, Burch SP. A migraine disease management program in the primary care setting: impact on patient quality of life and productivity loss.�J Clin Outcomes Manage.�2007 Jun;14(6):332�338.
37.�Maizels M, Saenz V, Wirjo J. Impact of a group-based model of disease management for headache.�Headache.�2003;43:621�627.�[PubMed]
38.�Rothrock JF, Parada VA, Sims C, Key K, Walters NS, Zweifler RM. The impact of intensive patient education on clinical outcome in a clinic-based migraine population.�Headache.�2006;46:726�731.[PubMed]
39.�Harpole L, Samsa G, Jurgelski A, et al. Headache management program improves outcome for chronic headache.�Headache.�2003;43:715�724.�[PubMed]
40.�Primary Care Network.�Patient Centered Strategies for Effective Management of Migraine.�2000.
41.�Primary Care Network.�The Migraineur�s Guide to Migraine.�1998.
42.�GlaxoSmithKline.�Migraine Matrix�.�2001.
43.�Kosinski M, Bayliss MS, Bjorner JB, et al. A six-item short-form survey for measuring headache impact: The HIT-6.�Qual Life Res.�2003;12:963�974.�[PubMed]
44.�Nachit-Ouinekh F, Dartigues JF, Henry P, et al. Use of the headache impact test (HIT-6) in general practice: Relationship with quality of life and severity.�Eur J Neurol.�2005;12:189�193.�[PubMed]
45.�Jhingran P, Osterhaus JT, Miller DW, et al. Development and validation of the Migraine-Specific Quality of Life Questionnaire.�Headache.�1998;38:295�302.�[PubMed]
46.�Jhingran P, Davis SM, LaVange LM, et al.�Migraine-Specific Quality of Life Questionnaire: Further investigation of the factor structure.[PubMed]
47.�Statistical Packages for the Social Sciences (SPSS) [computer program]. Version 14.0.�Chicago: SPSS Inc; 2006.
48.�Asmundson GJG, Norton PJ, Norton GR. Beyond pain: The role of fear and avoidance in chronicity.�Clin Psych Rev.�1999;19:97�119.�[PubMed]
49.�McCracken LM, Gross RT. Does anxiety affect coping with chronic pain?�Clin J Pain.�1993;9:253�259.[PubMed]
50.�Bishop KL, Holm JA, Borowiak DM, Wilson BA. Perceptions of pain in women with headache: a laboratory investigation of the influence of pain-related anxiety and fear.�Headache.�2001;41:494�9.[PubMed]
51.�Lanteri-Minet M, Radat F, Chautard MH, Lucas C. Anxiety and depression associated with migraine: Influence on migraine subjects� disability and quality of life, and acute migraine management.�Pain.�2005;118:319�26.�[PubMed]
52.�Radat F, Mekies C, Geraud G, Valade D, Vives E, Lucas C. Anxiety, stress, and coping behaviours in primary care migraine patients: results of the SMILE study.�Cephalagia.�2008;28:1115�25.�[PubMed]
53.�Smith T, Nicholson R. Are changes in cognitive and emotional factors important in improving headache impact and quality of life?�Headache.�2006;46:878.
54.�White KD, Farrell AD. Anxiety and psychosocial stress as predictors of headache and abdominal pain in urban early adolescents.�J Ped Psych.�2006;31:582�96.�[PubMed]
55.�Hahn SR, Cady RK, Nelson MR. Improving healthcare professional-patient communication to promote more effective assessment of migraine impairment during and between attacks: results of the American Migraine Communication Study (AMCS) Phase II. Presented at: the Diamond Headache Clinic�s 20th Annual Practicing Physician�s Approach to the Difficult Headache Patient; February 12�15, 2007; California: Rancho Mirage;
Close Accordion
Spinal Manipulation vs. Mobilization for Cervicogenic Headache in El Paso, TX

Spinal Manipulation vs. Mobilization for Cervicogenic Headache in El Paso, TX

A primary headache is characterized as head pain caused by a headache disorder itself. The three types of primary headache disorders include, migraine, tension-type headaches and cluster headaches. Head pain is a painful and debilitating symptom that can also occur as a result of another underlying cause. A secondary headache is characterized as head pain which occurs due to an injury and/or condition. A spinal misalignment, or subluxation, along the cervical spine, or neck, is commonly associated with a variety of headache symptoms.

 

Cervicogenic headache is a secondary headache caused by an injury and/or condition affecting the surrounding structures of the cervical spine, or neck. Many healthcare professionals will recommend the use of drugs/medications to help improve headache, however, several alternative treatment options can be safely and effectively used to treat secondary headaches. The purpose of the following article is to demonstrate the impact of upper cervical and upper thoracic manipulation versus mobilization and exercise in patients with cervicogenic headache.

 

Upper Cervical and Upper Thoracic Manipulation Versus Mobilization and Exercise in Patients with Cervicogenic Headache: a Multi-Center Randomized Clinical Trial

 

Abstract

 

  • Background: Although commonly utilized interventions, no studies have directly compared the effectiveness of cervical and thoracic manipulation to mobilization and exercise in individuals with cervicogenic headache (CH). The purpose of this study was to compare the effects of manipulation to mobilization and exercise in individuals with CH.
  • Methods: One hundred and ten participants (n?=?110) with CH were randomized to receive both cervical and thoracic manipulation (n?=?58) or mobilization and exercise (n?=?52). The primary outcome was headache intensity as measured by the Numeric Pain Rating Scale (NPRS). Secondary outcomes included headache frequency, headache duration, disability as measured by the Neck Disability Index (NDI), medication intake, and the Global Rating of Change (GRC). The treatment period was 4 weeks with follow-up assessment at 1 week, 4 weeks, and 3 months after initial treatment session. The primary aim was examined with a 2-way mixed-model analysis of variance (ANOVA), with treatment group (manipulation versus mobilization and exercise) as the between subjects variable and time (baseline, 1 week, 4 weeks and 3 months) as the within subjects variable.
  • Results: The 2X4 ANOVA demonstrated that individuals with CH who received both cervical and thoracic manipulation experienced significantly greater reductions in headache intensity (p?<?0.001) and disability (p?<?0.001) than those who received mobilization and exercise at a 3-month follow-up. Individuals in the upper cervical and upper thoracic manipulation group also experienced less frequent headaches and shorter duration of headaches at each follow-up period (p?<?0.001 for all). Additionally, patient perceived improvement was significantly greater at 1 and 4-week follow-up periods in favor of the manipulation group (p?<?0.001).
  • Conclusions: Six to eight sessions of upper cervical and upper thoracic manipulation were shown to be more effective than mobilization and exercise in patients with CH, and the effects were maintained at 3 months.
  • Trial registration: NCT01580280 April 16, 2012.
  • Keywords: Cervicogenic headache, Spinal manipulation, Mobilization, High velocity low amplitude thrust

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

In comparison to primary headache, such as migraine, cluster headache and tension-type headache, secondary headache is characterized as head pain caused by another illness or physical issue. In the case of cervicogenic headache, the cause of head pain is due to an injury and/or condition along the cervical spine and its surrounding structures, including the vertebrae, intervertebral discs and soft tissues. In addition, many healthcare professionals believe that primary headache can be associated with health issues in the cervical spine, or neck. Cervicogenic headache treatment should target the source of the symptoms and it can vary depending on the patient. Chiropractic care utilizes spinal adjustments and manual manipulations to carefully restore the original structure and function of the spine, helping to reduce stress and pressure in order to improve cervicogenic headache symptoms, among other type of headache. Chiropractic care can also be utilized to help treat primary headaches, such as migraines.

 

Background

 

The International Classification of Headache Disorders defines cervicogenic headache (CH) as, �headache caused by a disorder of the cervical spine and its component bony, disc, and/or soft tissue elements, usually but not invariably accompanied by neck pain.� [1] (p.760) The prevalence of CH has been reported to be between 0.4 and 20 % of the headache population [2, 3], and as high as 53 % in patients with headache after whiplash injury [4]. The dominant features of CH usually include: unilaterality of head pain without side-shift, elicitation of pain with external pressure over the ipsilateral upper neck, limited cervical range of motion, and the triggering of attacks by various awkward or sustained neck movements [4, 5].

 

Individuals with CH are frequently treated with spinal manipulative therapy including both mobilization and manipulation [6]. Spinal mobilization consists of slow, rhythmical, oscillating techniques whereas manipulation consists of high-velocity low-amplitude thrust techniques. [7] In a recent systematic review, Bronfort and colleagues reported that spinal manipulative therapy (both mobilization and manipulation) were effective in the management of adults with CH [8]. However, they did not report if manipulation resulted in superior outcomes compared to mobilization for the management of this population.

 

Several studies have investigated the effect of spinal manipulation in the management of CH [9�13]. Haas et al. [10] investigated the effectiveness of cervical manipulation in subjects with CH. Jull et al. [11] demonstrated treatment efficacy for manipulative therapy and/or exercise in the management of CH. However the manipulative therapy group included manipulation and mobilization therefore it cannot be determined if the beneficial effect was a result of the manipulation, mobilization or the combination.

 

A few studies have examined the benefits of manipulation versus mobilization for the management of mechanical neck pain with or without exercise [14�16]. However, no studies have directly compared the effects of manipulation versus mobilization and exercise in patients with CH. Considering the purported risks of manipulation [17], it is essential to determine if manipulation results in improved outcomes compared to mobilization for the management of patients with CH. Therefore, the purpose of this randomized clinical trial was to compare the effects of manipulation versus mobilization and exercise in patients with CH. We hypothesized that patients receiving manipulation over a 4-week treatment period would experience greater reductions in headache intensity, headache frequency, headache duration, disability, and medication intake at a 3-month follow-up than patients receiving cervical and thoracic mobilization combined with exercise.

 

Methods

 

Participants

 

In this multi-center randomized clinical trial, consecutive patients with CH presenting to 1 of 8 outpatient physical therapy clinics from a variety of geographical locations (Arizona, Georgia, New York, Ohio, Pennsylvania, South Carolina) were recruited over a 29-month period (from April 2012 to August 2014). For patients to be eligible, they had to present with a diagnosis of CH according to the revised diagnostic criteria [5] developed by the Cervicogenic Headache International Study Group (CHISG) [5, 18, 19]. CH was classified according to the �major criteria� (not including confirmatory evidence by diagnostic anesthetic blockades) and �head pain characteristics� of the CHISG. Therefore, in order to be included in the study, patients had to exhibit all of the following criteria: (1) unilaterality of the head pain without sideshift, starting in the upper posterior neck or occipital region, eventually spreading to the oculofrontotemporal area on the symptomatic side, (2) pain triggered by neck movement and/or sustained awkward positions, (3) reduced range of motion in the cervical spine [20] (i.e., less than or equal to 32 � of right or left passive rotation on the Flexion-Rotation Test [21�23], (4) pain elicited by external pressure over at least one of the upper cervical joints (C0-3), and (5) moderate to severe, non-throbbing and non-lancinating pain. In addition, participants had to have a headache frequency of at least 1 per week for a minimum of 3 months, a minimum headache intensity pain score of two points (0�10 on the NPRS scale), a minimum disability score of 20 % or greater (i.e., 10 points or greater on the 0�50 NDI scale), and be between 18 and 65 years of age.

 

Patients were excluded if they exhibited other primary headaches (i.e., migraine, TTH), suffered from bilateral headaches, or exhibited any red flags (i.e., tumor, fracture, metabolic diseases, rheumatoid arthritis, osteoporosis, resting blood pressure greater than 140/90 mmHg, prolonged history of steroid use, etc.), presented with two or more positive neurologic signs consistent with nerve root compression (muscle weakness involving a major muscle group of the upper extremity, diminished upper extremity deep tendon reflex, or diminished or absent sensation to pinprick in any upper extremity dermatome), presented with a diagnosis of cervical spinal stenosis, exhibited bilateral upper extremity symptoms, had evidence of central nervous system involvement (hyperreflexia, sensory disturbances in the hand, intrinsic muscle wasting of the hands, unsteadiness during walking, nystagmus, loss of visual acuity, impaired sensation of the face, altered taste, the presence of pathological reflexes), had a history of whiplash injury within the previous 6 weeks, had prior surgery to the head or neck, had received treatment for head or neck pain from any practitioner within the previous month, had received physical therapy or chiropractic treatment for head or neck pain within the previous 3 months, or had pending legal action regarding their head or neck pain.

 

The most recent literature suggests that pre-manipulative cervical artery testing is unable to identify those individuals at risk of vascular complications from cervical manipulation [24, 25], and any symptoms detected during pre-manipulative testing may be unrelated to changes in blood flow in the vertebral artery [26, 27]. Hence, pre-manipulative cervical artery testing was not performed in this study; however, screening questions for cervical artery disease had to be negative [24, 28, 29]. This study was approved by the Institutional Review Board at Long Island University, Brooklyn, NY. The study was registered at www.clinicaltrials.gov with trial identifier NCT01580280. All patients were informed that they would receive either manipulation or mobilization and exercise and then provided informed consent before their enrollment in the study.

 

Treating Therapists

 

Twelve physical therapists (mean age 36.6 years, SD 5.62) participated in the delivery of treatment for patients in this study. They had an average of 10.3 (SD 5.66, range 3�20 years) years of clinical experience, and all had completed a 60 h post-graduate certification program that included practical training in manual techniques including the use of cervical and thoracic manipulation. To ensure all examination, outcome assessments, and treatment procedures were standardized, all participating physical therapists were required to study a manual of standard operating procedures and participate in a 4 h training session with the principal investigator.

 

Examination Procedures

 

All patients provided demographic information, completed the Neck Pain Medical Screening Questionnaire, and completed a number of self-report measures, followed by a standardized history and physical examination at baseline. Self-report measures included headache intensity as measured by the NPRS (0�10), the NDI (0�50), headache frequency (number of days with headache in the last week), headache duration (total hours of headache in the last week), and medication intake (number of times the patient had taken narcotic or over-the-counter pain medication in the past week).

 

The standardized physical examination was not limited to, but included measurements of C1-2 (atlanto-axial joint) passive right and left rotation ROM using the Flexion-Rotation Test (FRT). The inter-rater reliability for the FRT has been found to be excellent (ICC: 0.93; 95 % CI: 0.87, 0.96) [30].

 

Outcome Measures

 

The primary outcome measure used in this study was the patient�s headache intensity as measured by the NPRS. Patients were asked to indicate the average intensity of headache pain over the past week using an 11-point scale ranging from 0 (�no pain�) to 10 (�worst pain imaginable�) at baseline, 1-week, 1-month, and 3-months following the initial treatment session [31]. The NPRS is a reliable and valid instrument to assess pain intensity [32�34]. Although no data exists in patients with CH, the MCID for the NPRS has been shown to be 1.3 in patients with mechanical neck pain [32] and 1.74 in patients with a variety of chronic pain conditions [34]. Therefore, we chose to only include patients with an NPRS score of 2 points (20 %) or greater.

 

Secondary outcome measures included the NDI, the Global Rating of Change (GRC), headache frequency, headache duration, and medication intake. The NDI is the most widely used instrument for assessing self-rated disability in patients with neck pain [35�37]. The NDI is a self-report questionnaire with 10-items rated from 0 (no disability) to five (complete disability) [38]. The numeric responses for each item are summed for a total score ranging between 0 and 50; however, some evaluators have chosen to multiply the raw score by two, and then report the NDI on a 0�100 % scale [36, 39]. Higher scores represent increased levels of disability. The NDI has been found to possess excellent test-retest reliability, strong construct validity, strong internal consistency and good responsiveness in assessing disability in patients with mechanical neck pain [36], cervical radiculopathy [33, 40], whiplash associated disorder [38, 41, 42], and mixed non-specific neck pain [43, 44]. Although no studies have examined the psychometric properties of the NDI in patients with CH, we chose to only include patients with an NDI score of ten points (20 %) or greater, because this cut-off score captures the MCID for the NDI, which has been reported to approximate four, eight, and nine points (0�50) in patients with mixed non-specific neck pain [44], mechanical neck pain [45], and cervical radiculopathy [33], respectively. Headache frequency was measured as the number of days with headache in the last week, ranging from 0 to 7 days. Headache duration was measured as the total hours of headache in the last week, with six possible ranges: (1) 0�5 h, (2) 6�10 h, (3) 11�15 h, (4) 16�20 h, (5) 21�25 h, or (6) 26 or more hours. Medication intake was measured as the number of times the patient had taken prescription or over-the-counter analgesic or anti-inflammatory medication in the past week for their headaches, with five options: (1) not at all, (2) once a week, (3) once every couple of days, (4) once or twice a day, or (5) three or more times a day.

 

Patients returned for 1-week, 4-weeks, and 3-months follow-ups where the aforementioned outcome measures were again collected. In addition, at the 1-week, 4-weeks and 3-months follow-ups, patients completed a 15-point GRC question based on a scale described by Jaeschke et al. [46] to rate their own perception of improved function. The scale ranges from -7 (a very great deal worse) to zero (about the same) to +7 (a very great deal better). Intermittent descriptors of worsening or improving are assigned values from -1 to -6 and +1 to +6, respectively. The MCID for the GRC has not been specifically reported but scores of +4 and +5 have typically been indicative of moderate changes in patient status [46]. However, it should be noted that recently Schmitt and Abbott reported that the GRC might not correlate with changes in function in a population with hip and ankle injuries [47]. All outcome measures were collected by an assessor blind to group assignment.

 

On the initial visit patients completed all outcome measures then received the first treatment session. Patients completed 6�8 treatment sessions of either manipulation or mobilization combined with exercise over 4 weeks. Additionally, subjects were asked if they had experienced any �major� adverse events [48, 49] (stroke or permanent neurological deficits) at each follow-up period.

 

Randomization

 

Following the baseline examination, patients were randomly assigned to receive either manipulation or mobilization and exercise. Concealed allocation was performed by using a computer-generated randomized table of numbers created by an individual not involved with recruiting patients prior to the beginning of the study. Individual, sequentially numbered index cards with the random assignment were prepared for each of 8 data collection sites. The index cards were folded and placed in sealed opaque envelopes. Blinded to the baseline examination, the treating therapist opened the envelope and proceeded with treatment according to the group assignment. Patients were instructed not to discuss the particular treatment procedure received with the examining therapist. The examining therapist remained blind to the patient�s treatment group assignment at all times; however, based on the nature of the interventions it was not possible to blind patients or treating therapists.

 

Manipulation Group

 

Manipulations targeting the right and left C1-2 articulations and bilateral T1-2 articulations were performed on at least one of the 6�8 treatment sessions (Figs. 1 and ?and2).2). On other treatment sessions, therapists either repeated the C1-2 and/or T1-2 manipulations or targeted other spinal articulations (i.e., C0-1, C2-3, C3-7, T2-9, ribs 1�9) using manipulation. The selection of the spinal segments to target was left to the discretion of the treating therapist and it was based on the combination of patient reports and manual examination. For both the upper cervical and upper thoracic manipulations, if no popping or cracking sound was heard on the first attempt, the therapist repositioned the patient and performed a second manipulation. A maximum of 2 attempts were performed on each patient similar to other studies [14, 50�53]. The clinicians were instructed that the manipulations are likely to be accompanied by multiple audible popping sounds [54�58]. Patients were encouraged to maintain usual activity within the limits of pain; however, mobilization and the prescription of exercises, or any use of other modalities, were not provided to this group.

 

Figure 1 HVLA Thrust Manipulation Directed to the right C1-2 Articulation | El Paso, TX Chiropractor

 

Figure 2 HVLA Thrust Manipulation Directed Bilaterally to the Upper Thoracic Spine | El Paso, TX Chiropractor

 

The manipulation targeting C1-2 was performed with the patient in supine. For this technique, the patient�s left posterior arch of the atlas was contacted with the lateral aspect of the proximal phalanx of the therapist�s left second finger using a �cradle hold�. To localize the forces to the left C1-2 articulation, the patient was positioned using extension, a posterior-anterior (PA) shift, ipsilateral side-bend and contralateral side-shift. While maintaining this position, the therapist performed a single high-velocity, low-amplitude thrust manipulation to the left atlanto-axial joint using right rotation in an arc toward the underside eye and translation toward the table (Fig. 1). This was repeated using the same procedure but directed to the right C1-2 articulation.

 

The manipulation targeting T1-2 was performed with the patient in supine. For this technique, the patient held her/his arms and forearms across the chest with the elbows aligned in a superoinferior direction. The therapist contacted the transverse processes of the lower vertebrae of the target motion segment with the thenar eminence and middle phalanx of the third digit. The upper lever was localized to the target motion segment by adding rotation away and side-bend towards the therapist while the underside hand used pronation and radial deviation to achieve rotation toward and side-bend away moments, respectively. The space inferior to the xiphoid process and costochondral margin of the therapist was used as the contact point against the patient�s elbows to deliver a manipulation in an anterior to posterior direction targeting T1-2 bilaterally (Fig. 2).

 

Mobilization and Exercise Group

 

Mobilizations targeting the right and left C1-2 articulations and bilateral T1-2 articulations were performed on at least one of the 6�8 treatment sessions. On other treatment sessions, therapists either repeated the C1-2 and/or T1-2 mobilizations or targeted other spinal articulations (i.e., C0-1, C2/3, C3-7, T2-9, ribs 1�9) using mobilization. The selection of the spinal segments to target was left to the discretion of the treating therapist and it was based on the combination of patient reports and manual examination. However, in order to avoid a �contact� or �attention effect� when compared with the manipulation group, therapists were instructed to mobilize one cervical segment (i.e., right and left) and one thoracic segment or rib articulation on each treatment session.

 

The mobilization targeting the C1-2 articulation was performed in prone. For this technique, the therapist performed one 30 s bout of left-sided unilateral grade IV PA mobilizations to the C1-2 motion segment as described by Maitland [7]. This same procedure was repeated for one 30 s bout to the right atlanto-axial joint. In addition, and on at least one session, mobilization directed to the upper thoracic (T1-2) spine with the patient prone was performed. For this technique, the therapist performed one 30 s bout of central grade IV PA mobilizations to the T1-2 motion segment as described by Maitland [7]. Therefore, we used 180 (i.e., three 30 s bouts at approximately 2 Hz) end-range oscillations in total on each subject for the mobilization treatment. Notably, there is no high quality evidence to date to suggest that longer durations of mobilization result in greater pain reduction than shorter durations or dosages of mobilization [59, 60].

 

Cranio-cervical flexion exercises [11, 61�63] were performed with the patient in supine, with the knees bent and the position of the head standardized by placing the craniocervical and cervical spines in a mid-position, such that a line between the subject�s forehead and chin was horizontal, and a horizontal line from the tragus of the ear bisected the neck longitudinally. An air-filled pressure biofeedback unit (Chattanooga Group, Inc., Hixson, TN) was placed suboccipitally behind the patient�s neck and preinflated to a baseline of 20 mmHg [63]. For the staged exercises, patients were required to perform the craniocervical flexion action (�a nod of the head, similar to indicating yes�) [63] and attempt to visually target pressures of 22, 24, 26, 28, and 30 mmHg from a resting baseline of 20 mmHg and to hold the position steady for 10 s [61, 62]. The action of nodding was performed in a gentle and slow manner. A 10 s rest was allowed between trials. If the pressure deviated below the target pressure, the pressure was not held steady, substitution with the superficial flexors (sternocleidomastoid or anterior scalene) occurred, or neck retraction was noticed before the completion of the 10 s isometric hold, it was regarded as a failure [63]. The last successful target pressure was used to determine each patient�s exercise level wherein 3 sets of 10 repetitions with a 10 s isometric hold were performed. In addition to mobilizations and cranio-cervical flexion exercises, patients were required to perform 10 min of progressive resistance exercises (i.e., using Therabands� or free weights) to the muscles of the shoulder girdle during each treatment session, within their own tolerance, and specifically focusing on the lower trapezius and serratus anterior [11].

 

Sample Size

 

The sample size and power calculations were performed using online software from the MGH Biostatistics Center (Boston, MA). The calculations were based on detecting a 2-point (or 20 %) difference in the NPRS (headache intensity) at the 3 months follow-up, assuming a standard deviation of three points, a 2-tailed test, and an alpha level equal to 0.05. This generated a sample size of 49 patients per group. Allowing for a conservative dropout rate of 10 %, we planned to recruit at least 108 patients into the study. This sample size yielded greater than 90 % power to detect a statistically significant change in the NPRS scores.

 

Data Analysis

 

Descriptive statistics, including frequency counts for categorical variables and measures of central tendency and dispersion for continuous variables were calculated to summarize the data. The effects of treatment on headache intensity and disability were each examined with a 2-by-4 mixed-model analysis of variance (ANOVA), with treatment group (manipulation versus mobilization and exercise) as the between-subjects variable and time (baseline, 1 week, 4 weeks, and 3 months follow-up) as the within-subjects variable. Separate ANOVAs were performed with the NPRS (headache intensity) and NDI (disability) as the dependent variable. For each ANOVA, the hypothesis of interest was the 2-way interaction (group by time).

 

An independent t-test was used to determine the between group differences for the percentage change from baseline to 3-month follow-up in both headache intensity and disability. Separate Mann�Whitney U tests were performed with the headache frequency, GRC, headache duration and medication intake as the dependent variable. We performed Little�s Missing Completely at Random (MCAR) test [64] to determine if missing data points associated with dropouts were missing at random or missing for systematic reasons. Intention-to-treat analysis was performed by using Expectation-Maximization whereby missing data are computed using regression equations. Planned pairwise comparisons were performed examining the difference between baseline and follow-up periods between-groups using the Bonferroni correction at an alpha level of .05.

 

We dichotomized patients as responders at the 3-month follow-up using a cut score of 2 points improvement for headache intensity as measured by the NPRS. Numbers needed to treat (NNT) and 95 % confidence intervals (CI) were also calculated at the 3 months follow-up period using each of these definitions for a successful outcome. Data analysis was performed using SPSS 21.0.

 

Results

 

Two hundred and fifty-one patients with a primary complaint of headaches were screened for possible eligibility. The reasons for ineligibility can be found in Fig. 3, the flow diagram of patient recruitment and retention. Of the 251 patients screened, 110 patients, with a mean age of 35.16 years (SD 11.48) and a mean duration of symptoms of 4.56 years (SD 6.27), satisfied the eligibility criteria, agreed to participate, and were randomized into manipulation (n?=?58) and mobilization and exercise (n?=?52) groups. Baseline variables for each group can be found in Table 1. Twelve therapists from 8 outpatient physical therapy clinics each treated 25, 23, 20, 14, 13, 7, 6 or 2 patients, respectively; furthermore, each of the 12 therapists treated approximately an equal proportion of patients in each group. There was no significant difference (p?=?0.227) between the mean number of completed treatment sessions for the manipulation group (7.17, SD 0.96) and the mobilization and exercise group (6.90, SD 1.35). In addition, the mean number of treatment sessions that targeted the C1-2 articulation was 6.41 (SD 1.63) for the manipulation group and 6.52 (SD 2.01) for the mobilization and exercise group, and this was not significantly different (p?=?0.762). One hundred seven of the 110 patients completed all outcome measures through 3 months (97 % follow-up). Little�s Missing Completely at Random (MCAR) test was not statistically significant (p?=?0.281); therefore, we used the Expectation-Maximization imputation technique to replace missing values with predicted values for the missing 3-month outcomes.

 

Figure 3 Flow Diagram of Patient Recruitment and Retention | El Paso, TX Chiropractor

 

Table 1 Baseline Variables, Demographics and Outcome Measures | El Paso, TX Chiropractor

 

The overall group by time interaction for the primary outcome of headache intensity was statistically significant for the NPRS (F(3,106)?=?11.196; p?<?0.001; partial eta squared?=?0.24). Between-group differences revealed that the manipulation group experienced statistically significant greater improvement in the NPRS at both the 1-week (2.1, 95 % CI: 1.2, 2.9), 4-week (2.3, 95 % CI: 1.5, 3.1) and 3-month (2.1, 95 % CI: 1.2, 3.0) follow-up periods (Table 2). In addition, an independent samples t-test revealed the between-group difference in percentage change in headache intensity (36.58 %, 95 % CI: 22.52, 50.64) from baseline to 3-month follow-up was statistically significant (t(108)?=?5.156; p?<?0.001) in favor of manipulation. See Table 3 for the percentage of subjects gaining 50, 75, and 100 % reduction in headache intensity at 3 months.

 

Table 2 Changes in Headache Intensity and Disability | El Paso, TX Chiropractor

 

Table 3 Percentage of Subjects Gaining 50, 75, and 100 Percent Reduction | El Paso, TX Chiropractor

 

For secondary outcomes a significant group by time interaction existed for the NDI (F(3,106)?=?8.57; p?<?0.001; partial eta squared?=?0.20). At each follow-up period the manipulation group had superior outcomes in disability reduction as compared to the mobilization and exercise group. An independent samples t- test revealed the between-group mean percentage change in disability (35.56 %, 95 % CI: 24.95, 46.17) from baseline to 3 months follow-up was statistically significant (t(108)?=?6.646, p?<?0.001); indicating the manipulation group experienced a significantly greater percentage in disability reduction (Table 3).

 

Mann�Whitney U tests revealed that patients in the upper cervical and upper thoracic manipulation group experienced less frequent headaches at 1 week (p?<?0.001; median 2.0 versus 3.0), 4 weeks (p?<?0.001; median 1.0 versus 3.0) and 3 months (p?<?0.001; median 1.0 versus 2.5) than patients in the mobilization and exercise group. Headache duration was significantly lower at 1 week (p?=?0.005; median 2.0 versus 3.0, 4 weeks (p?<?0.001; median 1.0 versus 2.0) and 3 months (p?<?0.001; median 1.0 versus 2.0) in the manipulation group. Additionally, patient perceived improvement as measured by the GRC was significantly greater at 1 week (p?<?0.001, 4.0 versus 1.0), 4 weeks (p?<?0.001, 6.0 versus 3.0) and 3 months (p?<?0.001, 6.0 versus 3.0) than patients in the mobilization and exercise group. At 3 months, patients receiving upper cervical and upper thoracic manipulation experienced significantly (p?<?0.001) greater reductions in medication intake as compared to the mobilization and exercise group. Based on the cutoff score of 2 points on the NPRS, the NNT was 4.0 (95 % CI: 2.3, 7.7) in favor of the manipulation group at 3-month follow-up.

 

We did not collect any data on the occurrence of �minor� adverse events [48, 49] (transient neurological symptoms, increased stiffness, radiating pain, fatigue or other); however, no �major� adverse events [48, 49] (stroke or permanent neurological deficits) were reported for either group.

 

Discussion

 

Statement of Principal Findings

 

To our knowledge, this study is the first randomized clinical trial to directly compare the effectiveness of both cervical and thoracic manipulation to mobilization and exercise in patients with CH. The results suggest 6�8 sessions of manipulation over 4 weeks, directed mainly to both the upper cervical (C1-2) and upper thoracic (T1-2) spines, resulted in greater improvements in headache intensity, disability, headache frequency, headache duration, and medication intake than mobilization combined with exercises. The point estimates for between-group changes in headache intensity (2.1 points) and disability (6.0 points or 12.0 %) exceeded the reported MCIDs for both measures. Although the MCID for the NDI in patients with CH has not yet been investigated, it should however be noted that the lower bound estimate of the 95 % CI for disability (3.5 points) was slightly below (or approximated in two cases) the MCID that has been found to be 3.5 [65], 5 [66], and 7.5 [45] points in patients with mechanical neck pain, 8.5 [33] points in patients with cervical radiculopathy, and 3.5 [44] points in patients with mixed, non-specific neck pain. However, it should be recognized that both groups made clinical improvement. In addition, the NNT suggests for every four patients treated with manipulation, rather than mobilization, one additional patient achieves clinically important pain reduction at 3 months follow-up.

 

Strengths and Weaknesses of the Study

 

The inclusion of 12 treating physical therapists from 8 private clinics in 6 different geographical states enhances the overall generalizability of our findings. Although significant differences were recognized up to 3 months, it is not known if these benefits would have been sustained at long-term. In addition, we used high-velocity, low-amplitude manipulation techniques that employed bidirectional thrusts into rotation and translation simultaneously and Maitland based grade IV PA mobilization techniques; thus, we cannot be certain that these results are generalizable to other kinds of manual therapy techniques. Some might argue that the comparison group might have not received adequate intervention. We sought to balance internal and external validity so standardized treatment for both groups and provided a very explicit description of the techniques used which will also allow for replication. Furthermore, we did not measure minor adverse events and only asked about two potential major adverse events. Another limitation is that we included multiple secondary outcomes. Therapist preferences as to which technique they thought would be superior was not collected and potentially could impact the results.

 

Strengths and Weaknesses in Relation to Other Studies: Important Differences in Results

 

Jull et al. [11] demonstrated treatment efficacy for manipulative therapy and exercise in the management of CH; however, this treatment package included both mobilization and manipulation. The current study may provide evidence that the management of patients with CH should include some form of manipulation despite the fact it is often suggested that cervical manipulation should be avoided because of the risk of serious adverse events [67, 68]. Furthermore, it has been shown that individuals receiving spinal manipulation for neck pain and headaches are no more likely to experience a vertebrobasilar stroke than if they received treatment by their medical physician [69]. Additionally, after reviewing 134 case reports, Puentedura et al. concluded that with appropriate selection of patients by careful screening of red flags and contraindications, the majority of adverse events associated with cervical manipulation could have been prevented [70].

 

Meaning of the Study: Possible Explanations and Implications for Clinicians and Policymakers

 

Based on the results of the current study clinicians should consider incorporating spinal manipulation for individuals with CH. A recent systematic review found both mobilization and manipulation to be effective for the management of patients with CH but was unable to determine which technique was superior [8]. Additionally, clinical guidelines reported that manipulation, mobilization and exercise were all effective for the management of patients with CH; however, the guideline made no suggestions regarding the superiority of either technique. [71] The current results may assist authors of future systematic reviews and clinical guidelines in providing more specific recommendations about the use of spinal manipulation in this population.

 

Unanswered Questions and Future Research

 

The underlying mechanisms as to why manipulation may have resulted in greater improvements remains to be elucidated. It has been suggested that high-velocity displacement of vertebrae with impulse durations of less than 200 ms may alter afferent discharge rates [72] by stimulating mechanoreceptors and proprioceptors, thereby changing alpha motorneuron excitability levels and subsequent muscle activity [72�74]. Manipulation might also stimulate receptors in the deep paraspinal musculature, and mobilization might be more likely to facilitate receptors in the superficial muscles [75]. Biomechanical [76, 77], spinal or segmental [78, 79] and central descending inhibitory pain pathway [80�83] models are plausible explanations for the hypoalgesic effects observed following manipulation. Recently, the biomechanical effects of manipulation have been under scientific scrutiny [84], and it is plausible that the clinical benefits found in our study are associated with a neurophysiological response involving temporal sensory summation at the dorsal horn of the spinal cord [78]; however, this proposed model is currently supported only on findings from transient, experimentally induced pain in healthy subjects [85, 86], not patients with CH. Future studies should examine different manual therapy techniques with varying dosages and include a 1-year follow-up. Furthermore, future studies examining the neurophysiological effects of both manipulation and mobilization will be important for determining why there may or may not be a difference in clinical effects between these two treatments.

 

Conclusion

 

The results of the current study demonstrated that patients with CH who received cervical and thoracic manipulation experienced significantly greater reductions in headache intensity, disability, headache frequency, headache duration, and medication intake as compared to the group that received mobilization and exercise; furthermore, the effects were maintained at 3 months follow-up. Future studies should examine the effectiveness of different types and dosages of manipulation and include a long-term follow-up.

 

Acknowledgements

 

None of the authors received any funding for this study. The authors wish to thank all the participants of the study.

 

Footnotes

 

  • Competing interests: Dr. James Dunning is the President of the American Academy of Manipulative Therapy (AAMT). AAMT provides postgraduate training programs in spinal manipulation, spinal mobilization, dry needling, extremity manipulation, extremity mobilization, instrument-assisted soft-tissue mobilization and therapeutic exercise to licensed physical therapists, osteopaths and medical doctors. Drs. James Dunning, Raymond Butts, Thomas Perreault, and Firas Mourad are senior instructors for AAMT. The other authors declare that they have no competing interests.
  • Authors� contributions: JRD participated in the conception, design, data acquisition, statistical analyses and drafting of the manuscript. RB and IY participated in the design, data collection, statistical analyses and revision of the manuscript. FM participated in the design, statistical analyses, data interpretation and revision of the manuscript. MH participated in the conception, design and revision of the manuscript. CF and JC were involved in the statistical analyses, interpretation of data, and critical revision of the manuscript for important intellectual content. TS, JD, DB, and TH were involved in data collection and revision of the manuscript. All authors read and approved the final manuscript.

 

Contributor Information

 

Ncbi.nlm.nih.gov/pmc/articles/PMC4744384/

 

In conclusion,�head pain caused by secondary headache due to a health issue along the surrounding structures of the cervical spine, or neck, can cause painful and debilitating symptoms which can affect the patient’s quality of life. Spinal manipulation and mobilization can be safely and effectively utilized to help improve cervicogenic headache symptoms. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC: Migraine Pain Treatment

 

 

MORE TOPICS: EXTRA EXTRA: El Paso, Tx | Athletes

 

Blank
References
1.�The International Classifcation of Headache Disorders: 3rd Edition. Cephalalgia. 2013;33(9):629-808.[PubMed]
2.�Anthony M. Cervicogenic headache: prevalence and response to local steroid therapy.�Clin Exp Rheumatol.�2000;18(2 Suppl 19):S59�64.�[PubMed]
3.�Nilsson N. The prevalence of cervicogenic headache in a random population sample of 20-59 year olds.�Spine (Phila Pa 1976)�1995;20(17):1884�8. doi: 10.1097/00007632-199509000-00008.�[PubMed][Cross Ref]
4.�Bogduk N, Govind J. Cervicogenic headache: an assessment of the evidence on clinical diagnosis, invasive tests, and treatment.�Lancet Neurol.�2009;8(10):959�68. doi: 10.1016/S1474-4422(09)70209-1.[PubMed][Cross Ref]
5.�Sjaastad O, Fredriksen TA, Pfaffenrath V. Cervicogenic headache: diagnostic criteria. The Cervicogenic Headache International Study Group.�Headache.�1998;38(6):442�5. doi: 10.1046/j.1526-4610.1998.3806442.x.�[PubMed][Cross Ref]
6.�Fernandez-de-Las-Penas C, Alonso-Blanco C, Cuadrado ML, Pareja JA. Spinal manipulative therapy in the management of cervicogenic headache.�Headache.�2005;45(9):1260�3. doi: 10.1111/j.1526-4610.2005.00253_1.x.�[PubMed][Cross Ref]
7.�Maitland GD.�Vertebral Manipulation.�5. Oxford: Butterworth-Heinemann; 1986.
8.�Bronfort G, Haas M, Evans R, Leininger B, Triano J. Effectiveness of manual therapies: the UK evidence report.�Chiropr Osteopat.�2010;18:3. doi: 10.1186/1746-1340-18-3.�[PMC free article][PubMed][Cross Ref]
9.�Haas M, Groupp E, Aickin M, Fairweather A, Ganger B, Attwood M, et al. Dose response for chiropractic care of chronic cervicogenic headache and associated neck pain: a randomized pilot study.�J Manipulative Physiol Ther.�2004;27(9):547�53. doi: 10.1016/j.jmpt.2004.10.007.�[PubMed][Cross Ref]
10.�Haas M, Spegman A, Peterson D, Aickin M, Vavrek D. Dose response and efficacy of spinal manipulation for chronic cervicogenic headache: a pilot randomized controlled trial.�Spine J.�2010;10(2):117�28. doi: 10.1016/j.spinee.2009.09.002.�[PMC free article][PubMed][Cross Ref]
11.�Jull G, Trott P, Potter H, Zito G, Niere K, Shirley D, et al. A randomized controlled trial of exercise and manipulative therapy for cervicogenic headache.�Spine (Phila Pa 1976)�2002;27(17):1835�43. doi: 10.1097/00007632-200209010-00004.�[PubMed][Cross Ref]
12.�Nilsson N. A randomized controlled trial of the effect of spinal manipulation in the treatment of cervicogenic headache.�J Manipulative Physiol Ther.�1995;18(7):435�40.�[PubMed]
13.�Nilsson N, Christensen HW, Hartvigsen J. The effect of spinal manipulation in the treatment of cervicogenic headache.�J Manipulative Physiol Ther.�1997;20(5):326�30.�[PubMed]
14.�Dunning JR, Cleland JA, Waldrop MA, Arnot CF, Young IA, Turner M, et al. Upper cervical and upper thoracic thrust manipulation versus nonthrust mobilization in patients with mechanical neck pain: a multicenter randomized clinical trial.�J Orthop Sports Phys Ther.�2012;42(1):5�18. doi: 10.2519/jospt.2012.3894.�[PubMed][Cross Ref]
15.�Hurwitz EL, Morgenstern H, Harber P, Kominski GF, Yu F, Adams AH. A randomized trial of chiropractic manipulation and mobilization for patients with neck pain: clinical outcomes from the UCLA neck-pain study.�Am J Public Health.�2002;92(10):1634�41. doi: 10.2105/AJPH.92.10.1634.[PMC free article][PubMed][Cross Ref]
16.�Leaver AM, Maher CG, Herbert RD, Latimer J, McAuley JH, Jull G, et al. A randomized controlled trial comparing manipulation with mobilization for recent onset neck pain.�Arch Phys Med Rehabil.�2010;91(9):1313�8. doi: 10.1016/j.apmr.2010.06.006.�[PubMed][Cross Ref]
17.�Wand BM, Heine PJ, O’Connell NE. Should we abandon cervical spine manipulation for mechanical neck pain? Yes.�BMJ.�2012;344:e3679. doi: 10.1136/bmj.e3679.�[PubMed][Cross Ref]
18.�Sjaastad O, Fredriksen TA. Cervicogenic headache: criteria, classification and epidemiology.�Clin Exp Rheumatol.�2000;18(2 Suppl 19):S3�6.�[PubMed]
19.�Vincent MB, Luna RA. Cervicogenic headache: a comparison with migraine and tension-type headache.�Cephalalgia.�1999;19(Suppl 25):11�6. doi: 10.1177/0333102499019S2503.�[PubMed][Cross Ref]
20.�Zwart JA. Neck mobility in different headache disorders.�Headache.�1997;37(1):6�11. doi: 10.1046/j.1526-4610.1997.3701006.x.�[PubMed][Cross Ref]
21.�Hall T, Robinson K. The flexion-rotation test and active cervical mobility–a comparative measurement study in cervicogenic headache.�Man Ther.�2004;9(4):197�202. doi: 10.1016/j.math.2004.04.004.[PubMed][Cross Ref]
22.�Hall TM, Briffa K, Hopper D, Robinson KW. The relationship between cervicogenic headache and impairment determined by the flexion-rotation test.�J Manipulative Physiol Ther.�2010;33(9):666�71. doi: 10.1016/j.jmpt.2010.09.002.�[PubMed][Cross Ref]
23.�Ogince M, Hall T, Robinson K, Blackmore AM. The diagnostic validity of the cervical flexion-rotation test in C1/2-related cervicogenic headache.�Man Ther.�2007;12(3):256�62. doi: 10.1016/j.math.2006.06.016.�[PubMed][Cross Ref]
24.�Hutting N, Verhagen AP, Vijverman V, Keesenberg MD, Dixon G, Scholten-Peeters GG. Diagnostic accuracy of premanipulative vertebrobasilar insufficiency tests: a systematic review.�Man Ther.�2013;18(3):177�82. doi: 10.1016/j.math.2012.09.009.�[PubMed][Cross Ref]
25.�Kerry R, Taylor AJ, Mitchell J, McCarthy C. Cervical arterial dysfunction and manual therapy: a critical literature review to inform professional practice.�Man Ther.�2008;13(4):278�88. doi: 10.1016/j.math.2007.10.006.�[PubMed][Cross Ref]
26.�Thomas LC, Rivett DA, Bateman G, Stanwell P, Levi CR. Effect of selected manual therapy interventions for mechanical neck pain on vertebral and internal carotid arterial blood flow and cerebral inflow.�Phys Ther.�2013;93(11):1563�74. doi: 10.2522/ptj.20120477.�[PubMed][Cross Ref]
27.�Quesnele JJ, Triano JJ, Noseworthy MD, Wells GD. Changes in vertebral artery blood flow following various head positions and cervical spine manipulation.�J Manipulative Physiol Ther.�2014;37(1):22�31. doi: 10.1016/j.jmpt.2013.07.008.�[PubMed][Cross Ref]
28.�Taylor AJ, Kerry R. The ‘vertebral artery test’.�Man Ther.�2005;10(4):297. doi: 10.1016/j.math.2005.02.005.�[PubMed][Cross Ref]
29.�Kerry R, Taylor AJ, Mitchell J, McCarthy C, Brew J. Manual therapy and cervical arterial dysfunction, directions for the future: a clinical perspective.�J Man Manip Ther.�2008;16(1):39�48. doi: 10.1179/106698108790818620.�[PMC free article][PubMed][Cross Ref]
30.�Hall TM, Robinson KW, Fujinawa O, Akasaka K, Pyne EA. Intertester reliability and diagnostic validity of the cervical flexion-rotation test.�J Manipulative Physiol Ther.�2008;31(4):293�300. doi: 10.1016/j.jmpt.2008.03.012.�[PubMed][Cross Ref]
31.�Jensen MP, Karoly P, Braver S. The measurement of clinical pain intensity: a comparison of six methods.�Pain.�1986;27(1):117�26. doi: 10.1016/0304-3959(86)90228-9.�[PubMed][Cross Ref]
32.�Cleland JA, Childs JD, Whitman JM. Psychometric properties of the Neck Disability Index and numeric pain rating scale in patients with mechanical neck pain.�Arch Phys Med Rehabil.�2008;89(1):69�74. doi: 10.1016/j.apmr.2007.08.126.�[PubMed][Cross Ref]
33.�Young IA, Cleland JA, Michener LA, Brown C. Reliability, construct validity, and responsiveness of the Neck Disability Index, patient-specific functional scale, and numeric pain rating scale in patients with cervical radiculopathy.�Am J Phys Med Rehabil.�2010;89(10):831�9. doi: 10.1097/PHM.0b013e3181ec98e6.�[PubMed][Cross Ref]
34.�Farrar JT, Young JP, Jr, LaMoreaux L, Werth JL, Poole RM. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale.�Pain.�2001;94(2):149�58. doi: 10.1016/S0304-3959(01)00349-9.�[PubMed][Cross Ref]
35.�Vernon H. The Neck Disability Index: state-of-the-art, 1991-2008.�J Manipulative Physiol Ther.�2008;31(7):491�502. doi: 10.1016/j.jmpt.2008.08.006.�[PubMed][Cross Ref]
36.�MacDermid JC, Walton DM, Avery S, Blanchard A, Etruw E, McAlpine C, et al. Measurement properties of the Neck Disability Index: a systematic review.�J Orthop Sports Phys Ther.�2009;39(5):400�17. doi: 10.2519/jospt.2009.2930.�[PubMed][Cross Ref]
37.�Pietrobon R, Coeytaux RR, Carey TS, Richardson WJ, DeVellis RF. Standard scales for measurement of functional outcome for cervical pain or dysfunction: a systematic review.�Spine (Phila Pa 1976)�2002;27(5):515�22. doi: 10.1097/00007632-200203010-00012.�[PubMed][Cross Ref]
38.�Vernon H, Mior S. The Neck Disability Index: a study of reliability and validity.�J Manipulative Physiol Ther.�1991;14(7):409�15.�[PubMed]
39.�Vernon H. The psychometric properties of the Neck Disability Index.�Arch Phys Med Rehabil.�2008;89(7):1414�5. doi: 10.1016/j.apmr.2008.05.003.�[PubMed][Cross Ref]
40.�Cleland JA, Fritz JM, Whitman JM, Palmer JA. The reliability and construct validity of the Neck Disability Index and patient specific functional scale in patients with cervical radiculopathy.�Spine (Phila Pa 1976)�2006;31(5):598�602. doi: 10.1097/01.brs.0000201241.90914.22.�[PubMed][Cross Ref]
41.�Hoving JL, O’Leary EF, Niere KR, Green S, Buchbinder R. Validity of the neck disability index, Northwick Park neck pain questionnaire, and problem elicitation technique for measuring disability associated with whiplash-associated disorders.�Pain.�2003;102(3):273�81. doi: 10.1016/S0304-3959(02)00406-2.�[PubMed][Cross Ref]
42.�Miettinen T, Leino E, Airaksinen O, Lindgren KA. The possibility to use simple validated questionnaires to predict long-term health problems after whiplash injury.�Spine (Phila Pa 1976)�2004;29(3):E47�51. doi: 10.1097/01.BRS.0000106496.23202.60.�[PubMed][Cross Ref]
43.�McCarthy MJ, Grevitt MP, Silcocks P, Hobbs G. The reliability of the Vernon and Mior neck disability index, and its validity compared with the short form-36 health survey questionnaire.�Eur Spine J.�2007;16(12):2111�7. doi: 10.1007/s00586-007-0503-y.�[PMC free article][PubMed][Cross Ref]
44.�Pool JJ, Ostelo RW, Hoving JL, Bouter LM, de Vet HC. Minimal clinically important change of the Neck Disability Index and the Numerical Rating Scale for patients with neck pain.�Spine (Phila Pa 1976)�2007;32(26):3047�51. doi: 10.1097/BRS.0b013e31815cf75b.�[PubMed][Cross Ref]
45.�Young BA, Walker MJ, Strunce JB, Boyles RE, Whitman JM, Childs JD. Responsiveness of the Neck Disability Index in patients with mechanical neck disorders.�Spine J.�2009;9(10):802�8. doi: 10.1016/j.spinee.2009.06.002.�[PubMed][Cross Ref]
46.�Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference.�Control Clin Trials.�1989;10(4):407�15. doi: 10.1016/0197-2456(89)90005-6.[PubMed][Cross Ref]
47.�Schmitt J, Abbott JH. Global ratings of change do not accurately reflect functional change over time in clinical practice.�J Orthop Sports Phys Ther.�2015;45(2):106�11. doi: 10.2519/jospt.2015.5247.�[PubMed][Cross Ref]
48.�Carlesso L, Macdermid JC, Santaguida L. Standardization of adverse event terminology and reporting in orthopaedic physical therapy – applications to the cervical spine.�J Orthop Sports Phys Ther.�2010;40:455�63. doi: 10.2519/jospt.2010.3229.�[PubMed][Cross Ref]
49.�Carlesso LC, Gross AR, Santaguida PL, Burnie S, Voth S, Sadi J. Adverse events associated with the use of cervical manipulation and mobilization for the treatment of neck pain in adults: a systematic review.�Man Ther.�2010;15(5):434�44. doi: 10.1016/j.math.2010.02.006.�[PubMed][Cross Ref]
50.�Cleland JA, Glynn P, Whitman JM, Eberhart SL, MacDonald C, Childs JD. Short-term effects of thrust versus nonthrust mobilization/manipulation directed at the thoracic spine in patients with neck pain: a randomized clinical trial.�Phys Ther.�2007;87(4):431�40. doi: 10.2522/ptj.20060217.�[PubMed][Cross Ref]
51.�Gonzalez-Iglesias J, Fernandez-de-las-Penas C, Cleland JA, Alburquerque-Sendin F, Palomeque-del-Cerro L, Mendez-Sanchez R. Inclusion of thoracic spine thrust manipulation into an electro-therapy/thermal program for the management of patients with acute mechanical neck pain: a randomized clinical trial.�Man Ther.�2009;14(3):306�13. doi: 10.1016/j.math.2008.04.006.�[PubMed][Cross Ref]
52.�Gonzalez-Iglesias J, Fernandez-de-las-Penas C, Cleland JA, Gutierrez-Vega MR. Thoracic spine manipulation for the management of patients with neck pain: a randomized clinical trial.�J Orthop Sports Phys Ther.�2009;39(1):20�7. doi: 10.2519/jospt.2009.2914.�[PubMed][Cross Ref]
53.�Lau HM, Wing Chiu TT, Lam TH. The effectiveness of thoracic manipulation on patients with chronic mechanical neck pain – a randomized controlled trial.�Man Ther.�2011;16(2):141�7. doi: 10.1016/j.math.2010.08.003.�[PubMed][Cross Ref]
54.�Beffa R, Mathews R. Does the adjustment cavitate the targeted joint? An investigation into the location of cavitation sounds.�J Manipulative Physiol Ther.�2004;27(2):e2. doi: 10.1016/j.jmpt.2003.12.014.[PubMed][Cross Ref]
55.�Dunning J, Mourad F, Barbero M, Leoni D, Cescon C, Butts R. Bilateral and multiple cavitation sounds during upper cervical thrust manipulation.�BMC Musculoskelet Disord.�2013;14:24. doi: 10.1186/1471-2474-14-24.�[PMC free article][PubMed][Cross Ref]
56.�Reggars JW. The manipulative crack. Frequency analysis.�Australas Chiropr Osteopathy.�1996;5(2):39�44.�[PMC free article][PubMed]
57.�Ross JK, Bereznick DE, McGill SM. Determining cavitation location during lumbar and thoracic spinal manipulation: is spinal manipulation accurate and specific?�Spine (Phila Pa 1976)�2004;29(13):1452�7. doi: 10.1097/01.BRS.0000129024.95630.57.�[PubMed][Cross Ref]
58.�Evans DW, Lucas N. What is ‘manipulation’? A reappraisal.�Man Ther.�2010;15(3):286�91. doi: 10.1016/j.math.2009.12.009.�[PubMed][Cross Ref]
59.�Gross A, Miller J, D’Sylva J, Burnie SJ, Goldsmith CH, Graham N, et al. Manipulation or mobilisation for neck pain: a cochrane review.�Man Ther.�2010;15(4):315�33. doi: 10.1016/j.math.2010.04.002.[PubMed][Cross Ref]
60.�Moss P, Sluka K, Wright A. The initial effects of knee joint mobilization on osteoarthritic hyperalgesia.�Man Ther.�2007;12(2):109�18. doi: 10.1016/j.math.2006.02.009.�[PubMed][Cross Ref]
61.�Falla D, Bilenkij G, Jull G. Patients with chronic neck pain demonstrate altered patterns of muscle activation during performance of a functional upper limb task.�Spine (Phila Pa 1976)�2004;29(13):1436�40. doi: 10.1097/01.BRS.0000128759.02487.BF.�[PubMed][Cross Ref]
62.�Falla D, Jull G, Dall’Alba P, Rainoldi A, Merletti R. An electromyographic analysis of the deep cervical flexor muscles in performance of craniocervical flexion.�Phys Ther.�2003;83(10):899�906.�[PubMed]
63.�Jull G. Deep cervical flexor muscle dysfunction in whiplash.�Journal of Musculoskeletal Pain.�2000;8:143�54. doi: 10.1300/J094v08n01_12.�[Cross Ref]
64.�Rubin LH, Witkiewitz K, Andre JS, Reilly S. Methods for handling missing data in the behavioral neurosciences: Don’t throw the baby Rat out with the bath water.�J Undergrad Neurosci Educ.�2007;5(2):A71�7.�[PMC free article][PubMed]
65.�Jorritsma W, Dijkstra PU, de Vries GE, Geertzen JH, Reneman MF. Detecting relevant changes and responsiveness of neck pain and disability scale and Neck Disability Index.�Eur Spine J.�2012;21(12):2550�7. doi: 10.1007/s00586-012-2407-8.�[PMC free article][PubMed][Cross Ref]
66.�Stratford PW, Riddle DL, Binkley JM, Spadoni G, Westaway MD, Padfield B. Using the Neck Disability Index to make decisions concerning individual patients.�Physiother Can.�1999;51:107�12.
67.�Ernst E. Manipulation of the cervical spine: a systematic review of case reports of serious adverse events, 1995-2001.�Med J Aust.�2002;176(8):376�80.�[PubMed]
68.�Oppenheim JS, Spitzer DE, Segal DH. Nonvascular complications following spinal manipulation.�Spine J.�2005;5(6):660�6. doi: 10.1016/j.spinee.2005.08.006.�[PubMed][Cross Ref]
69.�Cassidy JD, Boyle E, Cote P, He Y, Hogg-Johnson S, Silver FL, et al. Risk of vertebrobasilar stroke and chiropractic care: results of a population-based case-control and case-crossover study.�Spine (Phila Pa 1976)�2008;33(4 Suppl):S176�83. doi: 10.1097/BRS.0b013e3181644600.�[PubMed][Cross Ref]
70.�Puentedura EJ, March J, Anders J, Perez A, Landers MR, Wallmann HW, et al. Safety of cervical spine manipulation: are adverse events preventable and are manipulations being performed appropriately? A review of 134 case reports.�J Man Manip Ther.�2012;20(2):66�74. doi: 10.1179/2042618611Y.0000000022.[PMC free article][PubMed][Cross Ref]
71.�Childs JD, Cleland JA, Elliott JM, Teyhen DS, Wainner RS, Whitman JM, et al. Neck pain: clinical practice guidelines linked to the international classification of functioning, disability, and health from the orthopedic section of the American Physical Therapy Association.�J Orthop Sports Phys Ther.�2008;38(9):A1�A34. doi: 10.2519/jospt.2008.0303.�[PubMed][Cross Ref]
72.�Pickar JG, Kang YM. Paraspinal muscle spindle responses to the duration of a spinal manipulation under force control.�J Manipulative Physiol Ther.�2006;29(1):22�31. doi: 10.1016/j.jmpt.2005.11.014.[PubMed][Cross Ref]
73.�Herzog W, Scheele D, Conway PJ. Electromyographic responses of back and limb muscles associated with spinal manipulative therapy.�Spine (Phila Pa 1976)�1999;24(2):146�52. doi: 10.1097/00007632-199901150-00012.�[PubMed][Cross Ref]
74.�Indahl A, Kaigle AM, Reikeras O, Holm SH. Interaction between the porcine lumbar intervertebral disc, zygapophysial joints, and paraspinal muscles.�Spine (Phila Pa 1976)�1997;22(24):2834�40. doi: 10.1097/00007632-199712150-00006.�[PubMed][Cross Ref]
75.�Bolton PS, Budgell BS. Spinal manipulation and spinal mobilization influence different axial sensory beds.�Med Hypotheses.�2006;66(2):258�62. doi: 10.1016/j.mehy.2005.08.054.�[PubMed][Cross Ref]
76.�Cassidy JD, Lopes AA, Yong-Hing K. The immediate effect of manipulation versus mobilization on pain and range of motion in the cervical spine: a randomized controlled trial.�J Manipulative Physiol Ther.�1992;15(9):570�5.�[PubMed]
77.�Martinez-Segura R, Fernandez-de-las-Penas C, Ruiz-Saez M, Lopez-Jimenez C, Rodriguez-Blanco C. Immediate effects on neck pain and active range of motion after a single cervical high-velocity low-amplitude manipulation in subjects presenting with mechanical neck pain: a randomized controlled trial.�J Manipulative Physiol Ther.�2006;29(7):511�7. doi: 10.1016/j.jmpt.2006.06.022.�[PubMed][Cross Ref]
78.�Bialosky JE, Bishop MD, Price DD, Robinson ME, George SZ. The mechanisms of manual therapy in the treatment of musculoskeletal pain: a comprehensive model.�Man Ther.�2009;14(5):531�8. doi: 10.1016/j.math.2008.09.001.�[PMC free article][PubMed][Cross Ref]
79.�Dunning J, Rushton A. The effects of cervical high-velocity low-amplitude thrust manipulation on resting electromyographic activity of the biceps brachii muscle.�Man Ther.�2009;14(5):508�13. doi: 10.1016/j.math.2008.09.003.�[PubMed][Cross Ref]
80.�Haavik-Taylor H, Murphy B. Cervical spine manipulation alters sensorimotor integration: a somatosensory evoked potential study.�Clin Neurophysiol.�2007;118(2):391�402. doi: 10.1016/j.clinph.2006.09.014.�[PubMed][Cross Ref]
81.�Millan M. Descending control of pain.�Prog Neurobiology.�2002;66:355�74. doi: 10.1016/S0301-0082(02)00009-6.�[PubMed][Cross Ref]
82.�Skyba D, Radhakrishnan R, Rohlwing J, Wright A, Sluka K. Joint manipulation reduces hyperalgesia by activation of monoamine receptors but not opioid or GABA receptors in the spinal cord.�Pain.�2003;106:159�68. doi: 10.1016/S0304-3959(03)00320-8.�[PMC free article][PubMed][Cross Ref]
83.�Zusman M. Forebrain-mediated sensitization of central pain pathways: “non-specific” pain and a new image for manual therapy.�Man Ther.�2002;7:80�8. doi: 10.1054/math.2002.0442.�[PubMed][Cross Ref]
84.�Bialosky JE, George SZ, Bishop MD. How spinal manipulative therapy works: why ask why?�J Orthop Sports Phys Ther.�2008;38(6):293�5. doi: 10.2519/jospt.2008.0118.�[PubMed][Cross Ref]
85.�Bishop MD, Beneciuk JM, George SZ. Immediate reduction in temporal sensory summation after thoracic spinal manipulation.�Spine J.�2011;11(5):440�6. doi: 10.1016/j.spinee.2011.03.001.[PMC free article][PubMed][Cross Ref]
86.�George SZ, Bishop MD, Bialosky JE, Zeppieri G, Jr, Robinson ME. Immediate effects of spinal manipulation on thermal pain sensitivity: an experimental study.�BMC Musculoskelet Disord.�2006;7:68. doi: 10.1186/1471-2474-7-68.�[PMC free article][PubMed][Cross Ref]
Close Accordion
Chiropractic Headache Treatment Guidelines in El Paso, TX

Chiropractic Headache Treatment Guidelines in El Paso, TX

Headache pain is one of the most prevalent reasons for doctor office visits. The majority of people experience them at some point in their life and they can affect anyone, regardless of age, race and gender. The International Headache Society, or IHS, categorizes headaches as primary, when they are not caused by another injury and/or condition, or secondary, when there is an underlying cause behind them. From migraines to cluster headaches and tension headaches, people who suffer from constant head pain may find it difficult to participate in their everyday activities. Many healthcare professionals treat headache pain, however, chiropractic care has become a popular alternative treatment option for a variety of health issues. The purpose of the following article is to demonstrate evidence-based guidelines for the chiropractic treatment of adults with headache.

 

Evidence-Based Guidelines for the Chiropractic Treatment of Adults with Headache

 

Abstract

 

  • Objective: The purpose of this manuscript is to provide evidence-informed practice recommendations for the chiropractic treatment of headache in adults.
  • Methods: Systematic literature searches of controlled clinical trials published through August 2009 relevant to chiropractic practice were conducted using the databases MEDLINE; EMBASE; Allied and Complementary Medicine; the Cumulative Index to Nursing and Allied Health Literature; Manual, Alternative, and Natural Therapy Index System; Alt HealthWatch; Index to Chiropractic Literature; and the Cochrane Library. The number, quality, and consistency of findings were considered to assign an overall strength of evidence (strong, moderate, limited, or conflicting) and to formulate practice recommendations.
  • Results: Twenty-one articles met inclusion criteria and were used to develop recommendations. Evidence did not exceed a moderate level. For migraine, spinal manipulation and multimodal multidisciplinary interventions including massage are recommended for management of patients with episodic or chronic migraine. For tension-type headache, spinal manipulation cannot be recommended for the management of episodic tension-type headache. A recommendation cannot be made for or against the use of spinal manipulation for patients with chronic tension-type headache. Low-load craniocervical mobilization may be beneficial for longer term management of patients with episodic or chronic tension-type headaches. For cervicogenic headache, spinal manipulation is recommended. Joint mobilization or deep neck flexor exercises may improve symptoms. There is no consistently additive benefit of combining joint mobilization and deep neck flexor exercises for patients with cervicogenic headache. Adverse events were not addressed in most clinical trials; and if they were, there were none or they were minor.
  • Conclusions: Evidence suggests that chiropractic care, including spinal manipulation, improves migraine
    and cervicogenic headaches. The type, frequency, dosage, and duration of treatment(s) should be based on guideline recommendations, clinical experience, and findings. Evidence for the use of spinal manipulation as an isolated intervention for patients with tension-type headache remains equivocal. (J Manipulative Physiol Ther 2011;34:274-289)
  • Key Indexing Terms: Spinal Manipulation; Migraine Disorders; Tension-Type Headache; Post-traumatic Headache; Practice Guideline; Chiropractic

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

Headache, or head pain, including migraine and other types of headaches, is one of the most common types of pain reported among the general population. These may occur on one or both sides of the head, can be isolated to a specific location or they may radiate across the head from one point. While headache symptoms can vary depending on the type of head pain as well as due to the source of the health issue, headaches are considered to be a general complaint regardless of their severity and form. Headache, or head pain, may occur as a result of spinal misalignment, or subluxation, along the length of the spine. Through the use of spinal adjustments and manual manipulations, chiropractic care can safely and effectively realign the spine, reducing stress and pressure on the surrounding structures of the spine, to ultimately help improve migraine headache pain symptoms as well as overall health and wellness.

 

Headache is a common experience in adults. Recurring headaches negatively impact family life, social activity, and work capacity.[1,2] Worldwide, according to the World Health Organization, migraine alone is 19th among all causes of years lived with disability. Headache is third among reasons for seeking chiropractic care in North America.[3]

 

Accurate diagnosis is key to management and treatment, and a wide range of headache types are described in the International Classification of Headache Disorders 2 (International Headache Society [IHS]).[4] The categories are intended for clinical as well as research use. The most common headaches, tension-type and migraine, are considered primary headaches that are episodic or chronic in nature. Episodic migraine or tension-type headaches occur fewer than 15 days per month, whereas chronic headaches occur more than 15 days per month for at least 3 (migraine) or 6 months (tension-type headache).[4] Secondary headaches are attributed to underlying clinical problems in the head or neck that may also be episodic or chronic. Cervicogenic headaches are secondary headaches commonly treated by chiropractors and involve pain referred from a source in the neck and perceived in 1 or more regions of the head. The IHS recognizes cervicogenic headache as a distinct disorder,[4] and evidence that headache can be attributed to a neck disorder or lesion based on history and clinical features (history of neck trauma, mechanical exacerbation of pain, reduced cervical range of motion, and focal neck tenderness, excluding myofascial pain alone) is relevant to diagnosis but is not without controversy in the literature.[4,5] When myofascial pain alone is the cause, the patient should be managed as having tension-type headaches.[4]

 

Treatment modalities typically used by chiropractors to care for patients with headaches include spinal manipulation, mobilization, device-assisted spinal manipulation, education about modifiable lifestyle factors, physical therapy modalities, heat/ice, massage, advanced soft tissue therapies such as trigger point therapy, and strengthening and stretching exercises. There is a growing expectation for health professions, including chiropractic, to adopt and use research-based knowledge, taking sufficient account of the quality of available research evidence to inform clinical practice. As a result, the purpose of the Canadian Chiropractic Association (CCA) and the Canadian Federation of Chiropractic Regulatory and Educational Accrediting Boards (Federation) Clinical Practice Guidelines Project is to develop guidelines for practice based on available evidence. The purpose of this manuscript is to provide evidence-informed practice recommendations for the chiropractic treatment of headache in adults.

 

Methods

 

The Guidelines Development Committee (GDC) planned for and adapted systematic processes for literature�searching, screening, review, analysis, and interpretation. Methods are consistent with criteria proposed by the �Appraisal of Guidelines Research and Evaluation� collaboration (www.agreecollaboration.org). This guideline is a supportive tool for practitioners. It is not intended as a standard of care. The guideline links available published evidence to clinical practice and is only 1 component of an evidence-informed approach to patient care.

 

Data Sources and Searches

 

Systematic search and evaluation of the treatment literature were conducted using methods recommended by The Cochrane Collaboration Back Review Group[6] and Oxman and Guyatt.[7] The search strategy was developed in MEDLINE by exploring MeSH terms related to chiropractic and specific interventions and later modified for other databases. The literature search strategy was intentionally broad. Chiropractic treatment was defined as including the most common therapies used by practitioners and was not restricted to treatment modalities delivered only by chiropractors. A wide net was cast to include treatments that may be administered in chiropractic care as well as those that could also be delivered in the context of care by other health care professionals in a specific research study (Appendix A). Spinal manipulation was defined as a high-velocity low-amplitude thrust delivered to the spine. Excluded therapies included invasive analgesic or neurostimulation procedures, pharmacotherapy, injections of botulinum toxin, cognitive or behavioral therapies, and acupuncture.

 

Literature searches were completed from April to May 2006, updated in 2007 (phase 1), and updated again in August 2009 (phase 2). Databases searched included MEDLINE; EMBASE; Allied and Complementary Medicine; the Cumulative Index to Nursing and Allied Health Literature; Manual, Alternative, and Natural Therapy Index System; Alt HealthWatch; Index to Chiropractic Literature; and the Cochrane Library (Appendix A). Searches included articles published in English or with English abstracts. The search strategy was limited to adults (?18 years); although research studies with subject inclusion criteria encompassing a broad range of ages, such as adults and adolescents, were retrieved using the search strategy. Reference lists provided in systematic reviews (SRs) were also reviewed by the GDC to minimize relevant articles from being missed.

 

Evidence Selection Criteria

 

Search results were screened electronically, and multi-stage screening was applied (Appendix B): stage 1A (title), 1B (abstract); stage 2A (full text), 2B (full text-methodology, relevance); and stage 3 (full text-final GDC screening as clinical content experts). Duplicate citations were removed, and relevant articles were retrieved as electronic�and/or hard copies for detailed analysis. Different assessors, using the same criteria, completed the literature screens in 2007 and 2009 due to the time span between searches.

 

Only controlled clinical trials (CCTs); randomized, controlled trials (RCTs); and systematic reviews (SRs) were selected as the evidence base for this guideline consistent with current standards for interpreting clinical findings. The GDC did not rate observational studies, case series, or case reports because of their uncontrolled nature and probable low methodological quality vs CCTs. This approach is consistent with updated methods for SRs published by the Cochrane Back Review Group.[8] If multiple SRs were published by the same authors on a given topic, only the most recent publication was counted and used for evidence synthesis. Systematic reviews of SRs were also excluded to avoid double counting of research results.

 

Literature Assessment and Interpretation

 

Quality ratings of CCTs or RCTs included 11 criteria answered by �yes (score 1)� or �no (score 0)/do not know (score 0)� (Table 1). The GDC documented 2 additional criteria of interest: (1) researchers’ use of IHS diagnostic criteria for subject enrollment and (2) evaluation of side effects (Table 1, columns L and M). Use of IHS criteria[4] was relevant to this Clinical Practice Guideline (CPG) process to confirm diagnostic specificity within and across research studies. Studies were excluded if IHS diagnostic criteria were not applied by the researchers for subject inclusion into a study (Appendix C); and if before 2004, before cervicogenic headache was included in the IHS classification, the diagnostic criteria of the Cervicogenic Headache International Study Group[9] were not used. Side effects were reviewed as a proxy for potential risk(s) with treatment. No weighting factor(s) was applied to individual criteria, and possible quality ratings ranged from 0 to 11. Both blinding of subjects and care providers were rated in the research articles by the GDC, since these items are listed in the quality rating tool.[6] The GDC’s methods did not adapt or alter the rating tool. The rationale for this approach was that certain treatment modalities (eg, transcutaneous electrical nerve stimulation [TENS], ultrasound) and trial designs may achieve patient and/or practitioner blinding.[10] The GDC did not limit the evaluation of these benchmarks of quality if indeed they were reported in clinical studies for the treatment of headache disorders. The GDC also considered it outside their scope of expertise to modify, without validation, a widely used rating tool used to assess the clinical literature.[6] New research tools for the analysis and rating of the manual therapy literature, however, are urgently needed and are noted as an area for future research in the discussion section below.

 

Table 1 Qualitative Ratings of Controlled Trials of Physical Treatments for the Management of Headache Disorders

 

Literature assessors were project contributors separate from the GDC and were unblinded as to study authors, institutions, and source journals. Three members of the GDC (MD, RR, and LS) corroborated quality rating methods by completing quality assessments on a random subset of 10 articles.[11-20] A high level of agreement was confirmed across quality ratings. Complete agreement on all items was achieved for 5 studies: in 10 of 11 items for 4 studies and 8 of 11 items for the 1 remaining study. All discrepancies were easily resolved through discussion and�consensus by the GDC (Table 1). Due to heterogeneity of research methods across trials, no meta-analysis or statistical pooling of trial results was done. Trials scoring more than half of the total possible rating (ie, ?6) were considered high quality. Trials scoring 0 through 5 were considered low quality. Studies with major methodological flaws or investigating specialized treatment techniques were excluded (eg, treatment not considered relevant by the GDC for the chiropractic care of patients with headache; Appendix Table 3).

 

Quality rating of SRs included 9 criteria answered by yes (score 1) or no (score 0)/do not know (score 0) and a qualitative response for item J �no flaws,� �minor flaws,� or �major flaws� (Table 2). Possible ratings ranged from 0 to 9. The determination of overall scientific quality of SRs with major flaws, minor flaws, or no flaws, as listed in column J (Table 2), was based on the literature raters’ answers to the previous 9 items. The following parameters were used to derive the overall scientific quality of a SR: if the no/do not know response was used, an SR was likely to have minor flaws at best. However, if �No� was used on items B, D, F, or H, the review was likely to have major flaws.[21] Systematic reviews scoring more than half of the total possible rating (ie, ?5) with no or minor flaws were rated as high quality. Systematic reviews scoring 4 or less and/or with major flaws were excluded.

 

Table 2 Qualitative Ratings of Systematic Reviews of Physical Treatments for the Management of Headache Disorders

 

Reviews were defined as systematic if they included an explicit and repeatable method for searching and analyzing the literature and if inclusion and exclusion criteria for studies were described. Methods, inclusion criteria, methods for rating study quality, characteristics of included studies, methods for synthesizing data, and results were evaluated. Raters achieved complete agreement for all rating items for 7 SRs[22-28] and for 7 of 9 items for the 2�additional SRs.[29,30] The discrepancies were deemed minor and easily resolved through GDC review and consensus (Table 2).

 

Developing Recommendations for Practice

 

The GDC interpreted the evidence relevant to chiropractic treatment of headache patients. A detailed summary of the relevant articles will be posted to the CCA/Federation Clinical Practice Guidelines Project web site.

 

Randomized, controlled trials and their findings were appraised to inform treatment recommendations. To assign an overall strength of evidence (strong, moderate, limited, conflicting, or no evidence),[6] the GDC considered the number, quality, and consistency of research results (Table 3). Strong evidence was considered only when multiple high-quality RCTs corroborated the findings of other researchers in other settings. Only high-quality SRs were appraised in relation to the body of evidence and to inform treatment recommendations. The GDC considered treatment modalities to have proven benefit(s) when supported by a minimum of moderate level of evidence.

 

Table 3 Strength of Evidence

 

Recommendations for practice were developed in collaborative working group meetings.

 

Results

 

Table 4 Literature Summary of !uality Ratings of the Evidence for Interventions for Migraine Headache with or without Aura

 

Table 5 Literature Summary and Quality Ratings of the Evidence for Interventions for Tension-Type Headache

 

Table 6 Literature Summary and Quality Ratings of the Evidence for Interventions for Cervicogenic Headache

 

Table 7 Literature Summary and Quality Ratings of Systematic Reviews of Physical Treatments for the Management of Headache Disorders

 

Literature

 

From the literature searches, initially 6206 citations were identified. Twenty-one articles met final criteria for inclusion and were considered in developing practice recommendations (16 CCTs/RCTs[11-20,31-36] and 5 SRs[24-27,29]). Quality ratings of the included articles are provided in Tables 1 and 2. Appendix Table 3 lists articles excluded in final screening by the GDC and reason(s) for their exclusion. Absence of subject and practitioner blinding and unsatisfactory descriptions of cointerventions were commonly identified methodological limitations of the controlled trials. Headache types evaluated in these trials included migraine (Table 4), tension-type headache (Table 5), and cervicogenic headache (Table 6). Consequently, only these headache types are represented by the evidence and practice recommendations in this CPG. Evidence summaries of SRs are provided in Table 7.

 

Practice Recommendations: Treatment of Migraine

 

  • Spinal manipulation is recommended for the management of patients with episodic or chronic migraine with or without aura. This recommendation is based on studies that used a treatment frequency 1 to 2 times per week for 8 weeks (evidence level, moderate). One high-quality RCT,[20] 1 low-quality RCT,[17] and 1 high- quality SR[24] support the use of spinal manipulation for patients with episodic or chronic migraine (Tables 4 and 7).
  • Weekly massage therapy is recommended for reducing episodic migraine frequency and for improving affective symptoms potentially linked to headache pain (evidence level, moderate). One high-quality RCT[16] supports this practice recommendation (Table 4). Researchers used a 45-minute massage with focus on neuromuscular and trigger point framework of the back, shoulder, neck, and head.
  • Multimodal multidisciplinary care (exercise, relaxation, stress and nutritional counseling, massage therapy) is recommended for the management of patients with episodic or chronic migraine. Refer as appropriate (evidence level, moderate). One high-quality RCT[32] supports the effectiveness of multi-modal multidisciplinary intervention for migraine (Table 4). The intervention prioritizes a general management approach consisting of exercise, education, lifestyle change, and self-management.
  • There are insufficient clinical data to recommend for or against the use of exercise alone or exercise combined with multimodal physical therapies for the management of patients with episodic or chronic migraine (aerobic exercise, cervical range of motion [cROM], or whole body stretching). Three low-quality CCTs[13,33,34] contribute to this conclusion (Table 4).

 

Practice Recommendations: Tension-Type Headache

 

  • Low-load craniocervical mobilization (eg, Thera-Band, Resistive Exercise Systems; Hygenic Corporation, Akron, OH) is recommended for longer term (eg, 6 months) management of patients with episodic or�chronic tension-type headaches (evidence level, moderate). One high-quality RCT[36] showed that low-load mobilization significantly reduced symptoms of tension-type headaches for patients during the longer term (Table 5).
  • Spinal manipulation cannot be recommended for the management of patients with episodic tension-type headache (evidence level, moderate). There is moderate-level evidence that spinal manipulation after premanipulative soft tissue therapy provides no additional benefit for patients with tension-type headaches. One high-quality RCT[12] (Table 5) and observations reported in 4 SRs[24-27] (Table 7) suggest no benefit of spinal manipulation for patients with episodic tension-type headaches.
  • A recommendation cannot be made for or against the use of spinal manipulation (2 times per week for 6 weeks) for patients with chronic tension-type headache. Authors of 1 RCT[11] rated as high quality by the quality assessment tool[6] (Table 1), and summaries of this study in 2 SRs[24,26] suggest that spinal manipulation may be effective for chronic tension-type headache. However, the GDC considers the RCT[11] difficult to interpret and inconclusive (Table 5). The trial is inadequately controlled with imbalances in the number of subject-clinician encounters between study groups (eg, 12 visits for subjects in the soft tissue therapy plus spinal manipulation group vs 2 visits for subjects in the amitriptyline group). There is no way of knowing whether a comparable level of personal attention for subjects in the amitriptyline group may have impacted the study outcomes. These considerations and interpretations from 2 other SRs[25,27]contribute to this conclusion (Table 7).
  • There is insufficient evidence to recommend for or against the use of manual traction, connective tissue manipulation, Cyriax’s mobilization, or exercise/ physical training for patients with episodic or chronic tension-type headache. Three low-quality inconclusive studies[19,31,35] (Table 5), 1 low-quality negative RCT,[14] and 1 SR[25] contribute to this conclusion (Table 7).

 

Practice Recommendations: Cervicogenic Headache

 

  • Spinal manipulation is recommended for the management of patients with cervicogenic headache. This recommendation is based on 1 study that used a treatment frequency of 2 times per week for 3 weeks (evidence level, moderate). In a high-quality RCT, Nilsson et al[18] (Table 6) showed a significantly positive effect of high-velocity, low-amplitude spinal manipulation for patients with cervicogenic headache. Evidence synthesis from 2 SRs[24,29] (Table 7) supports this practice recommendation.
  • Joint mobilization is recommended for the management of patients with cervicogenic headache (evidence level, moderate). Jull et al[15] examined the effects of Maitland joint mobilization 8 to 12 treatments for 6 weeks in a high-quality RCT (Table 6). Mobilization followed typical clinical practice, in which the choice of low-velocity and high-velocity techniques was based on initial and progressive assessments of patients’ cervical joint dysfunction. Beneficial effects were reported for headache frequency, intensity, as well as neck pain and disability. Evidence synthesis from 2 SRs[24,29] (Table 7) supports this practice recommendation.
  • Deep neck flexor exercises are recommended for the management of patients with cervicogenic headache (evidence level, moderate). This recommendation is based on a study of 2 times daily for 6 weeks. There is no consistently additive benefit of combining deep neck flexor exercises and joint mobilization for cervicogenic headache. One high-quality RCT[15] (Table 6) and observations provided in 2 SRs[24,29] (Table 7) support this practice recommendation.

 

Safety

 

Practitioners select treatment modalities in conjunction with all available clinical information for a given patient. Of the 16 CCTs/RCTS[11-20,31-36] included in the body of evidence for this CPG, only 6 studies[11,12,15,20,32,36] adequately assessed or discussed patient side effects or safety parameters (Table 1, column M). Overall, reported risks were low. Three of the trials reported safety information for spinal manipulation.[11,12,20] Boline et al[11] reported that 4.3% of subjects experienced neck stiffness after initial spinal manipulation that disappeared for all cases after the first 2 weeks of treatment. Soreness or increase in headaches after spinal manipulation (n = 2) were reasons for treatment discontinuation cited by Tuchin et al.[20] No side effects were experienced by any subjects studied by Bove et al[12] using spinal manipulation for the treatment of episodic tension-type headache. Treatment trials to evaluate efficacy outcomes may not enroll adequate numbers of subjects to assess the incidence of rare adverse events. Other research methods are required to�develop a full understanding of the balance between benefits and risks.

 

Discussion

 

Spinal manipulation and other manual therapies commonly used in chiropractic have been studied in several CCTs that are heterogeneous in subject enrollment, design, and overall quality. Patient and headache types systematically represented in the evidence base are migraine, tension-type headaches, and cervicogenic headache. The primary health status outcomes reported are typically headache frequency, intensity, duration, and quality-of-life measures. The evidence is no greater than a moderate level at this time.

 

The evidence supports the use of spinal manipulation for the chiropractic management of patients with migraine or cervicogenic headaches but not tension-type headaches. For migraine, multidisciplinary care using weekly 45-minute massage therapy and multimodal care (exercise, relaxation, and stress and nutritional counseling) may also be effective. Alternatively, joint mobilization or deep neck flexor exercises are recommended for improving symptoms of cervicogenic headache. There appears to be no consistently additive benefit of combining joint mobilization and deep neck flexor exercises for patients with cervicogenic headache. Moderate evidence support the use of low-load craniocervical mobilization for longer term management of tension-type headaches.

 

Limitations

 

Shortcomings for this guideline include the quantity and quality of supporting evidence found during the searches. No recent adequately controlled high-quality research studies with reproducible clinical findings have been published for the chiropractic care of headache patients. Studies are needed to further our understanding of specific manual therapies in isolation or in well-controlled combinations for the treatment of migraine, tension-type headache, cervicogenic headache, or other headache types presenting to clinicians (eg, cluster, posttraumatic head- ache). Another shortcoming of this literature synthesis is the reliance on published research studies with small sample sizes (Tables 4-6), short-term treatment paradigms, and follow-up periods. Well-designed clinical trials with sufficient numbers of subjects, longer term treatments, and follow-up periods need to be funded to advance chiropractic care, and spinal manipulation in particular, for the management of patients with headache disorders. As with any literature review and clinical practice guideline, foundational information and published literature are evolving. Studies that may have informed this work may have been published after the conclusion of this study.[37-39]

 

Considerations for Future Research

 

The GDC consensus is that there is a need for further chiropractic studies with patients with headache disorders.

 

  • More high-quality clinical research is needed. Future research requires study designs using active comparators and nontreatment and/or placebo group(s) to enhance the evidence base for patient care. Patient blinding to physical interventions to manage expectancy results is needed and has been explored by researchers in chiropractic for other pain conditions.[10] The lack of systematically reported studies presents a practical challenge for generating evidence-based treatment recommendations. All future studies should be structured using systematic validated methods (eg, Consolidated Standards of Reporting Trials [CONSORT] and Transparent Reporting of Evaluations with Non-randomized Designs [TREND]).
  • Systematic reporting of safety data is needed in chiropractic research. All clinical trials must collect and report on potential side effects or harms even if none are observed.
  • Develop novel quantitative tools for evaluating manual therapy research. Blinding serves to control expectancy effects and nonspecific effects of subject-provider interactions across study groups. It is typically not possible to blind subjects and providers in efficacy studies of manual therapies. Despite inherent limitations, both blinding of subjects and care providers were rated in the research articles by the GDC, since these items are included in high-quality rating instruments.[6] Advanced research tools for analyzing and subsequent rating of the manual therapy literature are urgently needed.
  • To advance research on functional outcomes in the chiropractic care of headache. This guideline identified that headache studies use a variable range of measures in evaluating the effect of treatment on health outcomes. Headache frequency, intensity, and duration are the most consistently used outcomes (Tables 4-6). Serious efforts are needed to include validated patient-centered outcome measures in chiropractic research that are congruent with improvements in daily living and resumption of meaningful routines.
  • Cost-effectiveness. No research studies were retrieved on cost-effectiveness of spinal manipulation for the treatment of headache disorders. Future clinical trials of spinal manipulation should evaluate cost-effectiveness.

 

Other research methods are required to develop a full understanding of the balance between benefits and risks. This CPG does not provide a review of all chiropractic treatments. Any omissions reflect gaps in the clinical literature. The type, frequency, dosage, and duration of treatment(s) should be based on guideline recommendations, clinical experience, and knowledge of the patient until higher levels of evidence are available.

 

Conclusions

 

There is a baseline of evidence to support chiropractic care, including spinal manipulation, for the management of migraine and cervicogenic headaches. The type, frequency, dosage, and duration of treatment(s) should be based on guideline recommendations, clinical experience, and knowledge of the patient. Evidence for the use of spinal manipulation as an isolated intervention for patients with tension-type headache remains equivocal. More research is needed.
Practice guidelines link the best available evidence to good clinical practice and are only 1 component of an evidence-informed approach to providing good care. This guideline is intended to be a resource for the delivery of chiropractic care for patients with headache. It is a �living document� and subject to revision with the emergence of new data. Furthermore, it is not a substitute for a practitioner’s clinical experience and expertise. This document is not intended to serve as a standard of care. Rather, the guideline attests to the commitment of the profession to advance evidence-based practice through engaging a knowledge exchange and transfer process to support the movement of research knowledge into practice.

 

Practical Applications

 

  • This guideline is a resource for the delivery of chiropractic care for patients with headache.
  • Spinal manipulation is recommended for the management of patients with migraine or cervicogenic headaches.
  • Multimodal multidisciplinary interventions including massage may benefit patients with migraine.
  • Joint mobilization or deep neck flexor exercises may improve symptoms of cervicogenic headache.
  • Low-load craniocervical mobilization may improve tension-type headaches.

 

Acknowledgements

 

The authors thank the following for input on this guideline: Ron Brady, DC; Grayden Bridge, DC; H James Duncan; Wanda Lee MacPhee, DC; Keith Thomson, DC, ND; Dean Wright, DC; and Peter Waite (Members of the Clinical Practice Guidelines Task Force). The authors thank the following for assistance with the Phase I literature search assessment: Simon Dagenais, DC, PhD; and Thor Eglinton, MSc, RN. The authors thank the following for assistance with the Phase II additional literature search and evidence rating: Seema Bhatt, PhD; Mary-Doug Wright, MLS. The�authors thank Karin Sorra, PhD for assistance with literature searches, evidence rating, and editorial support.

 

Funding Sources and Potential Conflicts of Interest

 

Funding was provided by the CCA, Canadian Chiropractic Protective Association, and provincial chiropractic contributions from all provinces except British Columbia. This work was sponsored by The CCA and the Federation. No conflicts of interest were reported for this study.

 

In conclusion, headache is one of the most common reasons people seek medical attention. Although many healthcare professionals can treat headaches, chiropractic care is a well-known alternative treatment option frequently used to treat a variety of health issues, including several types of headaches. According to the article above, evidence suggests that chiropractic care, including spinal adjustments and manual manipulations, can improve headache and migraine. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC:�Neck Pain Treatment El Paso, TX Chiropractor

 

 

MORE TOPICS: EXTRA EXTRA: El Paso, Tx | Athletes

 

Blank
References

1. Robbins MS, Lipton RB. The epidemiology of primary headache disorders. Semin Neurol 2010;30:107-19.
2. Stovner LJ, Andree C. Prevalence of headache in Europe: a review for the Eurolight project. J Headache Pain Aug 2010; 11:289-99.
3. Coulter ID, Hurwitz EL, Adams AH, Genovese BJ, Hays R, Shekelle PG. Patients using chiropractors in North America: who are they, and why are they in chiropractic care? Spine (Phila Pa 1976) 2002;27(3):291-6 [discussion 297-98].
4. International Headache Society. The International Classifi- cation of Headache Disorders, 2nd ed. Cephalalgia 2004;24: 9-160 (Suppl 1).
5. Bogduk N, Govind J. Cervicogenic headache: an assessment of the evidence on clinical diagnosis, invasive tests, and treatment. Lancet Neurol 2009;8:959-68.
6. van Tulder M, Furlan A, Bombardier C, Bouter L. Updated method guidelines for systematic reviews in the cochrane collaboration back review group. Spine (Phila Pa 1976) 2003; 28:1290-9.
7. Oxman AD, Guyatt GH. Validation of an index of the quality of review articles. J Clin Epidemiol 1991;44:1271-8.
8. Furlan AD, Pennick V, Bombardier C, van Tulder M. 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine (Phila Pa 1976) 2009; 34:1929-41.
9. Sjaastad O, Fredriksen TA, Pfaffenrath V. Cervicogenic headache: diagnostic criteria. The Cervicogenic Headache International Study Group. Headache 1998;38:442-5.
10. Hawk C, Long CR, Reiter R, Davis CS, Cambron JA, Evans R. Issues in planning a placebo-controlled trial of manual methods: results of a pilot study. J Altern Complement Med 2002;8:21-32.
11. Boline PD, Kassak K, Bronfort G, Nelson C, Anderson AV. Spinal manipulation vs. amitriptyline for the treatment of chronic tension-type headaches: a randomized clinical trial. J Manipulative Physiol Ther 1995;18:148-54.
12. Bove G, Nilsson N. Spinal manipulation in the treatment of episodic tension-type headache: a randomized controlled trial. JAMA 1998;280:1576-9.
13. Dittrich SM, Gunther V, Franz G, Burtscher M, Holzner B, Kopp M. Aerobic exercise with relaxation: influence on pain and psychological well-being in female migraine patients. Clin J Sport Med 2008;18:363-5.
14. Donkin RD, Parkin-Smith GF, Gomes N. Possible effect of chiropractic manipulation and combined manual traction and manipulation on tension-type headache: a pilot study. J Neuromusculoskeletal Systen 2002;10:89-97.
15. Jull G, Trott P, Potter H, et al. A randomized controlled trial of exercise and manipulative therapy for cervicogenic headache. Spine (Phila Pa 1976) 2002;27:1835-43 [discussion 1843].
16. Lawler SP, Cameron LD. A randomized, controlled trial of massage therapy as a treatment for migraine. Ann Behav Med 2006;32:50-9.
17. Nelson CF, Bronfort G, Evans R, Boline P, Goldsmith C, Anderson AV. The efficacy of spinal manipulation, amitrip- tyline and the combination of both therapies for the prophylaxis of migraine headache. J Manipulative Physiol Ther 1998;21:511-9.
18. Nilsson N, Christensen HW, Hartvigsen J. The effect of spinal manipulation in the treatment of cervicogenic headache. J Manipulative Physiol Ther 1997;20:326-30.
19. Soderberg E, Carlsson J, Stener-Victorin E. Chronic tension- type headache treated with acupuncture, physical training and relaxation training. Between-group differences. Cephalalgia 2006;26:1320-9.
20. Tuchin PJ, Pollard H, Bonello R. A randomized controlled trial of chiropractic spinal manipulative therapy for migraine. J Manipulative Physiol Ther 2000;23:91-5.
21. Chou R, Huffman LH. Nonpharmacologic therapies for acute and chronic low back pain: a review of the evidence for an American Pain Society/American College of Physicians clinical practice guideline. Ann Intern Med 2007;147: 492-504.
22. Astin JA, Ernst E. The effectiveness of spinal manipulation for the treatment of headache disorders: a systematic review of randomized clinical trials. Cephalalgia 2002;22:617-23.
23. Biondi DM. Physical treatments for headache: a structured review. Headache 2005;45:738-46.
24. Bronfort G, Nilsson N, Haas M, et al. Non-invasive physical treatments for chronic/recurrent headache. Cochrane Database Syst Rev 2004:CD001878.
25. Fernandez-de-Las-Penas C, Alonso-Blanco C, Cuadrado ML, Miangolarra JC, Barriga FJ, Pareja JA. Are manual therapies effective in reducing pain from tension-type headache?: a systematic review. Clin J Pain 2006;22:278-85.
26. Hurwitz EL, Aker PD, Adams AH, Meeker WC, Shekelle PG. Manipulation and mobilization of the cervical spine. A systematic review of the literature. Spine (Phila Pa 1976) 1996;21:1746-59.
27. Lenssinck ML, Damen L, Verhagen AP, Berger MY, Passchier J, Koes BW. The effectiveness of physiotherapy and manipulation in patients with tension-type headache: a systematic review. Pain 2004;112:381-8.
28. Vernon H, McDermaid CS, Hagino C. Systematic review of randomized clinical trials of complementary/alternative ther- apies in the treatment of tension-type and cervicogenic headache. Complement Ther Med 1999;7:142-55.
29. Fernandez-de-Las-Penas C, Alonso-Blanco C, Cuadrado ML, Pareja JA. Spinal manipulative therapy in the management of cervicogenic headache. Headache 2005;45:1260-3.
30. Maltby JK, Harrison DD, Harrison D, Betz J, Ferrantelli JR, Clum GW. Frequency and duration of chiropractic care for headaches, neck and upper back pain. J Vertebr Subluxat Res 2008;2008:1-12.
31. Demirturk F, Akarcali I, Akbayrak T, Cita I, Inan L. Results of two different manual therapy techniques in chronic tension- type headache. Pain Clin 2002;14:121-8.
32. Lemstra M, Stewart B, Olszynski WP. Effectiveness of multidisciplinary intervention in the treatment of migraine: a randomized clinical trial. Headache 2002;42:845-54.
33. Marcus DA, Scharff L, Mercer S, Turk DC. Nonpharmaco- logical treatment for migraine: incremental utility of physical therapy with relaxation and thermal biofeedback. Cephalalgia 1998;18:266-72.
34. Narin SO, Pinar L, Erbas D, Ozturk V, Idiman F. The effects of exercise and exercise-related changes in blood nitric oxide level on migraine headache. Clin Rehabil 2003;17:624-30.
35. Torelli P, Jensen R, Olesen J. Physiotherapy for tension-type headache: a controlled study. Cephalalgia 2004;24:29-36.
36. van Ettekoven H, Lucas C. Efficacy of physiotherapy
including a craniocervical training programme for tension- type headache; a randomized clinical trial. Cephalalgia 2006; 26:983-91.
37. Vavrek D, Haas M, Peterson D. Physical examination and self-reported pain outcomes from a randomized trial on chronic cervicogenic headache. J Manipulative Physiol Ther 2010;33:338-48.
38. Haas M, Aickin M, Vavrek D. A preliminary path analysis of expectancy and patient-provider encounter in an open-label randomized controlled trial of spinal manipulation for cervicogenic headache. J Manipulative Physiol Ther 2010; 33:5-13.
39. Toro-Velasco C, Arroyo-Morales M, Ferna?ndez-de-Las- Pen?as C, Cleland JA, Barrero-Herna?ndez FJ. Short-term effects of manual therapy on heart rate variability, mood state, and pressure pain sensitivity in patients with chronic tension-type headache: a pilot study. J Manipulative Physiol Ther 2009;32:527-35.
40. Allais G, De Lorenzo C, Quirico PE, et al. Non-pharmaco- logical approaches to chronic headaches: transcutaneous electrical nerve stimulation, lasertherapy and acupuncture in transformed migraine treatment. Neurol Sci 2003;24(Suppl 2): S138-42.
41. Nilsson N. A randomized controlled trial of the effect of spinal manipulation in the treatment of cervicogenic head- ache. J Manipulative Physiol Ther 1995;18:435-40.
42. Annal N, Soundappan SV, Palaniappan KMC, Chadrasekar S. Introduction of transcutaneous, low-voltage, non-pulsatile direct current (DC) therapy for migraine and chronic headaches. A comparison with transcutaneous electrical nerve stimulation (TENS). Headache Q 1992;3:434-7.
43. Nilsson N, Christensen HW, Hartvigsen J. Lasting changes in passive range motion after spinal manipulation: a randomized, blind, controlled trial. J Manipulative Physiol Ther 1996;19: 165-8.
44. Anderson RE, Seniscal C. A comparison of selected osteopathic treatment and relaxation for tension-type head- aches. Headache 2006;46:1273-80.
45. Ouseley BR, Parkin-Smith GF. Possible effects of chiropractic spinal manipulation and mobilization in the treatment of chronic tension-type headache: a pilot study. Eur J Chiropr 2002;50:3-13.
46. Fernandez-de-las-Penas C, Fernandez-Carnero J, Plaza Fernandez A, Lomas-Vega R, Miangolarra-Page JC. Dorsal manipulation in whiplash injury treatment: a randomized controlled trial. J Whiplash Related Disorders 2004;3:55-72.
47. Parker GB, Pryor DS, Tupling H. Why does migraine improve during a clinical trial? Further results from a trial of cervical manipulation for migraine. Aust N Z J Med 1980; 10:192-8.
48. Parker GB, Tupling H, Pryor DS. A controlled trial of cervical manipulation of migraine. Aust N Z J Med 1978;8:589-93.
49. Foster KA, Liskin J, Cen S, et al. The Trager approach in the treatment of chronic headache: a pilot study. Altern Ther Health Med 2004;10:40-6.
50. Haas M, Groupp E, Aickin M, et al. Dose response for chiropractic care of chronic cervicogenic headache and associated neck pain: a randomized pilot study. J Manipula- tive Physiol Ther 2004;27:547-53.
51. Sjogren T, Nissinen KJ, Jarvenpaa SK, Ojanen MT, Vanharanta H, Malkia EA. Effects of a workplace physical exercise intervention on the intensity of headache and neck and shoulder symptoms and upper extremity muscular strength of office workers: a cluster randomized controlled cross-over trial. Pain 2005;116:119-28.
52. Hanten WP, Olson SL, Hodson JL, Imler VL, Knab VM, Magee JL. The effectiveness of CV-4 and resting position techniques on subjects with tension-type headaches. J Manual Manipulative Ther 1999;7:64-70.
53. Solomon S, Elkind A, Freitag F, Gallagher RM, Moore K, Swerdlow B, et al. Safety and effectiveness of cranial electrotherapy in the treatment of tension headache. Headache 1989;29:445-50.
54. Hall T, Chan HT, Christensen L, Odenthal B, Wells C, Robinson K. Efficacy of a C1-C2 self-sustained natural apophyseal glide (SNAG) in the management of cervicogenic headache. J Orthop Sports Phys Ther 2007;37:100-7.
55. Solomon S, Guglielmo KM. Treatment of headache by transcutaneous electrical stimulation. Headache 1985;25: 12-5.
56. Hoyt WH, Shaffer F, Bard DA, Benesler ES, Blankenhorn GD, Gray JH, et al. Osteopathic manipulation in the treatment of muscle-contraction headache. J Am Osteopath Assoc 1979;78:322-5.
57. Vernon H, Jansz G, Goldsmith CH, McDermaid C. A randomized, placebo-controlled clinical trial of chiropractic and medical prophylactic treatment of adults with tension-type headache: results from a stopped trial. J Manipulative Physiol Ther 2009;32:344-51.
58. Mongini F, Ciccone G, Rota E, Ferrero L, Ugolini A, Evangelista A, et al. Effectiveness of an educational and physical programme in reducing headache, neck and shoulder pain: a workplace controlled trial. Cephalalgia 2008;28: 541-52.
59. Fernandez-de-las-Penas C, Alonso-Blanco C, San-Roman J, Miangolarra-Page JC. Methodological quality of randomized controlled trials of spinal manipulation and mobilization in tension-type headache, migraine, and cervicogenic headache. J Orthop Sports Phys Ther 2006;36:160-9.
60. Lew HL, Lin PH, Fuh JL, Wang SJ, Clark DJ, Walker WC. Characteristics and treatment of headache after traumatic brain injury: a focused review. Am J Phys Med Rehabil 2006; 85:619-27.

Close Accordion
Migraine Headache Pain Chiropractic Therapy in El Paso, TX

Migraine Headache Pain Chiropractic Therapy in El Paso, TX

Migraine headaches have been considered to be one of the most frustrating ailments when compared to other common health issues. Generally triggered by stress, the symptoms of migraines, including the debilitating head pain, sensitivity to light and sound as well as the nausea, can tremendously affect a migraineur’s quality of life. However, research studies have found that chiropractic care can help reduce the frequency and the severity of your migraine pain. Many healthcare professionals have demonstrated that a spinal misalignment, or subluxation, may be the source of migraine headache pain. The purpose of the article below is to demonstrate the outcome measures of chiropractic spinal manipulative therapy for migraine.

 

Chiropractic Spinal Manipulative Therapy for Migraine: a Three?Armed, Single?Blinded, Placebo, Randomized Controlled Trial

 

Abstract

 

  • Background and purpose: To investigate the efficacy of chiropractic spinal manipulative therapy (CSMT) for migraineurs.
  • Methods: This was a prospective three?armed, single?blinded, placebo, randomized controlled trial (RCT) of 17 months duration including 104 migraineurs with at least one migraine attack per month. The RCT was conducted at Akershus University Hospital, Oslo, Norway. Active treatment consisted of CSMT, whereas placebo was a sham push manoeuvre of the lateral edge of the scapula and/or the gluteal region. The control group continued their usual pharmacological management. The RCT consisted of a 1?month run?in, 3 months intervention and outcome measures at the end of the intervention and at 3, 6 and 12 months follow?up. The primary end?point was the number of migraine days per month, whereas secondary end?points were migraine duration, migraine intensity and headache index, and medicine consumption.
  • Results: Migraine days were significantly reduced within all three groups from baseline to post?treatment (P < 0.001). The effect continued in the CSMT and placebo group at all follow?up time points, whereas the control group returned to baseline. The reduction in migraine days was not significantly different between the groups (P > 0.025 for interaction). Migraine duration and headache index were reduced significantly more in the CSMT than the control group towards the end of follow?up (P = 0.02 and P = 0.04 for interaction, respectively). Adverse events were few, mild and transient. Blinding was strongly sustained throughout the RCT.
  • Conclusions: It is possible to conduct a manual?therapy RCT with concealed placebo. The effect of CSMT observed in our study is probably due to a placebo response.
  • Keywords: chiropractic, headache, migraine, randomized controlled trial, spinal manipulative therapy

 

Dr-Jimenez_White-Coat_01.png

Dr. Alex Jimenez’s Insight

Neck pain and headaches are the third most common reason people seek chiropractic care. Many research studies have demonstrated that chiropractic spinal manipulative therapy is a safe and effective alternative treatment option for migraines. Chiropractic care can carefully correct any spinal misalignment, or subluxation, found along the length of the spine, which has been shown to be a source for migraine headaches. In addition, spinal adjustments and manual manipulations can help reduce stress and muscle tension by decreasing the amount of pressure being placed against the complex structures of the spine as a result of a spinal misalignment, or subluxation. By realigning the spine as well as reducing stress and muscle tension, chiropractic care can improve migraine symptoms and decrease their frequency.

 

Introduction

 

The socio?economic costs of migraine are enormous due to its high prevalence and disability during attacks [1, 2, 3]. Acute pharmacological treatment is usually the first treatment option for migraine in adults. Migraineurs with frequent attacks, insufficient effect and/or contraindication to acute medication are potential candidates for prophylactic treatment. Migraine prophylactic treatment is often pharmacological, but manual therapy is not unusual, especially if pharmacological treatment fails or if the patient wishes to avoid medicine [4]. Research has suggested that spinal manipulative therapy may stimulate neural inhibitory systems at different spinal cord levels because it might activate various central descending inhibitory pathways [5, 6, 7, 8, 9, 10].

 

Pharmacological randomized controlled trials (RCTs) are usually double?blinded, but this is not possible in manual?therapy RCTs, as the interventional therapist cannot be blinded. At present there is no consensus on a sham procedure in manual?therapy RCTs that mimics placebo in pharmacological RCTs [11]. Lack of a proper sham procedure is a major limitation in all previous manual?therapy RCTs [12, 13]. Recently, we developed a sham chiropractic spinal manipulative therapy (CSMT) procedure, where participants with migraine were unable to distinguish between real and sham CSMT evaluated after each of 12 individual interventions over a 3?month period [14].

 

The first objective of this study was to conduct a manual?therapy three?armed, single?blinded, placebo RCT for migraineurs with a methodological standard similar to that of pharmacological RCTs.

 

The second objective was to assess the efficacy of CSMT versus sham manipulation (placebo) and CSMT versus controls, i.e. participants who continued their usual pharmacological management.

 

Methods

 

Study Design

 

The study was a three?armed, single?blinded, placebo RCT over 17 months. The RCT consisted of a 1?month baseline, 12 treatment sessions over 3 months with follow?up measures at the end of intervention, 3, 6 and 12 months later.

 

Participants were, before baseline, randomized equally into three groups: CSMT, placebo (sham manipulation) and control (continued their usual pharmacological management).

 

The design of the study conformed to the recommendations of the International Headache Society (IHS) and CONSORT (Appendix S1) [1, 15, 16]. The Norwegian Regional Committee for Medical Research Ethics and the Norwegian Social Science Data Services approved the project. The RCT was registered at ClinicalTrials.gov (ID no: NCT01741714). The full trial protocol has been published previously [17].

 

Participants

 

Participants were recruited from January to September 2013 primarily through the Department of Neurology, Akershus University Hospital. Some participants were also recruited through General Practitioners from Akershus and Oslo Counties or media advertisement. All participants received posted information about the project followed by a telephone interview.

 

Eligible participants were migraineurs of 18�70 years old with at least one migraine attack per month and were allowed to have concomitant tension?type headache but no other primary headaches. All participants were diagnosed by a chiropractor with experience in headache diagnostics during the interview and according to the International Classification of Headache Disorders?II (ICHD?II) 2. A neurologist had diagnosed all migraineurs from Akershus University Hospital.

 

Exclusion criteria were contraindication to spinal manipulative therapy, spinal radiculopathy, pregnancy, depression and CSMT within the previous 12 months. Participants who received manual therapy [18], changed their prophylactic migraine medicine or became pregnant during the RCT were informed that they would be withdrawn from the study at that time and regarded as drop?outs. Participants were allowed to continue and change acute migraine medication throughout the study period.

 

Eligible participants were invited to an interview and physical assessment including meticulous spinal column investigation by a chiropractor (A.C.). Participants randomized to the CSMT or the placebo group had a full spine radiographic examination.

 

Randomization and Masking

 

After written consent was obtained, participants were equally randomized into one of the three study arms by drawing one single lot. Numbered sealed lots with the three study arms were each subdivided into four subgroups by age and gender, i.e. 18�39 or 40�70 years, and men or women.

 

After each treatment session, the participants in the CSMT and the placebo group completed a questionnaire on whether they believed CSMT treatment was received, and how certain they were that active treatment was received on a 0�10 numeric rating scale, where 10 represented absolute certainty [14].

 

Both the block randomization and the blinding questionnaire were exclusively administered by a single external party.

 

Interventions

 

The CSMT group received spinal manipulative therapy using the Gonstead method, a specific contact, high?velocity, low?amplitude, short?lever spinal with no post?adjustment recoil that was directed to spinal biomechanical dysfunction (full spine approach) as diagnosed by standard chiropractic tests at each individual treatment session [19].

 

The placebo group received sham manipulation, a broad non?specific contact, low?velocity, low?amplitude sham push manoeuvre in a non?intentional and non?therapeutic directional line of the lateral edge of the scapula and/or the gluteal region [14]. All of the non?therapeutic contacts were performed outside the spinal column with adequate joint slack and without soft tissue pre?tension so that no joint cavitations occurred. The sham manipulation alternatives were pre?set and equally interchanged among the placebo participants according to protocol during the 12?week treatment period to strengthen the study validity. The placebo procedure is described in detail in the available trial protocol [17].

 

Each intervention session lasted for 15 min and both groups underwent the same structural and motion assessments prior to and after each intervention. No other intervention or advice was given to participants during the trial period. Both groups received interventions at Akershus University Hospital by a single experienced chiropractor (A.C.).

 

The control group continued their usual pharmacological management without receiving manual intervention by the clinical investigator.

 

Outcomes

 

The participants filled in a validated diagnostic headache diary throughout the study and returned them on a monthly basis [20]. In the case of unreturned diaries or missing data, the participants were contacted by phone to secure compliance.

 

The primary end?point was number of migraine days per month (30 days/month). At least 25% reduction of migraine days from baseline to end of intervention, with the same level maintained at 3, 6 and 12 months follow?up was expected in the CSMT group.

 

Secondary end?points were migraine duration, migraine intensity and headache index (HI), and medicine consumption. At least 25% reduction in duration, intensity and HI, and at least 50% reduction in medicine consumption were expected from baseline to end of intervention, with the same level maintained at 3, 6 and 12 months follow?up in the CSMT group.

 

No change was expected for primary and secondary end?point in the placebo and the control group.

 

A migraine day was defined as a day on which migraine with aura, migraine without aura or probable migraine occurred. Migraine attacks lasting for >24 h were calculated as one attack unless pain?free intervals of ?48 h had occurred [21]. If a patient fell asleep during a migraine attack and woke up without a migraine, in accordance with the ICHD?III ?, the duration of the attack was recorded as persisting until the time of awakening [22]. The minimum duration of a migraine attack was 4 h unless a triptan or drug containing ergotamine was used, in which case we specified no minimum duration. HI was calculated as mean migraine days per month (30 days) � mean migraine duration (h/day) � mean intensity (0�10 numeric rating scale).

 

The primary and secondary end?points were chosen based on the Task Force of the IHS Clinical Trial Subcommittee’s clinical trial guidelines [1, 15]. Based on previous reviews on migraine, a 25% reduction was considered to be a conservative estimate [12, 13].

 

The outcome analyses were calculated during the 30 days after the last intervention session and 30 days after the follow?up time points, i.e. 3, 6 and 12 months, respectively.

 

All adverse events (AEs) were recorded after each intervention in accordance with the recommendations of CONSORT and the IHS Task Force on AEs in migraine trials [16, 23].

 

Statistical Analysis

 

We based the power calculation on a recent study of topiramate in migraineurs [24]. We hypothesized the average difference in reduction of number of migraine days per month between the active and the placebo, and between the active and the control groups of 2.5 days, with SD of 2.5 for reduction in each group. As primary analysis includes two group comparisons, the significance level was set at 0.025. For the power of 80%, a sample size of 20 patients was required in each group to detect a significant difference in reduction of 2.5 days.

 

Patient characteristics at baseline were presented as means and SD or frequencies and percentages in each group and compared by independent samples t?test and ? 2 test.

 

Time profiles of all end?points were compared between the groups. Due to repeated measurements for each patient, linear mixed models accounting for the intra?individual variations were estimated for all end?points. Fixed effects for (non?linear) time, group allocation and interaction between the two were included. Random effects for patients and slopes were entered into the model. As the residuals were skewed, the bootstrap inference based on 1000 cluster samples was used. Pairwise comparisons were performed by deriving individual time point contrasts within each group at each time point with the corresponding P?values and 95% confidence intervals. Medicine consumption within groups was reported by mean doses with SD, and groups were compared by an independent samples median test. A dose was defined as a single administration of a triptan or ergotamine; paracetamol 1000 mg � codeine; non?steroidal anti?inflammatory drugs (tolfenamic acid, 200 mg; diclofenac, 50 mg; aspirin, 1000 mg; ibuprofen, 600 mg; naproxen, 500 mg); and morphinomimetics (tramadol, 50 mg). None of the patients changed study arm and none of the drop?outs filled in headache diaries after withdrawal from the study. Hence, only per protocol analysis was relevant.

 

The analyses were blinded to treatment allocation and conducted in SPSS v22 (IBM Corporation, Armonk, NY, USA) and STATA v14 (JSB) (StataCorp LP, College Station, TX, USA). A significance level of 0.025 was applied for the primary end?point, whereas elsewhere a level of 0.05 was used.

 

Ethics

 

Good clinical practice guidelines were followed [25]. Oral and written information about the project was provided in advance of inclusion and group allocation. Written consent was obtained from all participants. Participants in the placebo and control group were promised CSMT treatment after the RCT, if the active intervention was found to be effective. Insurance was provided through the Norwegian System of Compensation to Patients (Patient Injury Compensation), an independent national body that compensates patients injured by treatments provided by the Norwegian health service. A stopping rule was defined for withdrawing participants from this study in accordance with the recommendations in the CONSORT extension for Better Reporting of Harms [26]. All AEs were monitored during the intervention period and acted on as they occurred according to the recommendations of CONSORT and the IHS Task Force on AEs in migraine trials [16, 23]. In case of severe AE, the participant would be withdrawn from the study and referred to the General Practitioner or hospital emergency department depending on the event. The investigator (A.C.) was available by mobile phone at any time throughout the study treatment period.

 

Results

 

Figure ?1 shows a flow chart of the 104 migraineurs included in the study. Baseline and demographic characteristics were similar across the three groups (Table 1).

 

Figure 1 Study Flow Chart

Figure 1: Study flow chart.

 

Table 1 Baseline Demographic and Clinical Characteristics

 

Outcome Measures

 

The results on all end?points are presented in Fig. ?2a�d and Tables 2, 3, 4.

 

Figure 2

Figure 2: (a) Headache days; (b) headache duration; (c) headache intensity; (d) headache index. Time profiles in primary and secondary end?points, means and error bars represent 95% confidence intervals. BL, baseline; control, control group (�); CSMT, chiropractic spinal manipulative therapy (?); placebo, sham manipulation (?); PT, post?treatment; 3 m, 3?month follow?up; 6 m, 6?month follow?up; 12 m, 12?month follow?up; VAS, visual analogue scale.

 

Table 2 Regression Coefficients and SE

 

Table 3 Means and SD

 

Table 4 Mean SD Doses of Medications

 

Primary end?point. Migraine days were significantly reduced within all groups from baseline to post?treatment (P < 0.001). The effect continued in the CSMT and the placebo groups at 3, 6 and 12 months follow?up, whereas migraine days reverted to baseline level in the control group (Fig. ?2a). The linear mixed model showed no overall significant differences in change in migraine days between the CSMT and the placebo groups (P = 0.04) or between the CSMT and the control group (P = 0.06; Table 2). However, the pairwise comparisons at individual time points showed significant differences between the CSMT and the control group at all time points starting at post?treatment (Table 3).

 

Secondary end?points. There was a significant reduction from baseline to post?treatment in migraine duration, intensity and HI in the CSMT (P = 0.003, P = 0.002 and P < 0.001, respectively) and the placebo (P < 0.001, P = 0.001 and P < 0.001, respectively) groups, and the effect continued at 3, 6 and 12 months follow?up.

 

The only significant differences between the CSMT and control groups were change in migraine duration (P = 0.02) and in HI (P = 0.04; Table 2).

 

At 12 months follow?up, change in consumption of paracetamol was significantly lower in the CSMT group as compared with the placebo (P = 0.04) and control (P = 0.03) groups (Table 4).

 

Blinding. After each of the 12 intervention sessions, >80% of the participants believed they had received CSMT regardless of group allocation. The odds ratio for believing that CSMT treatment was received was >10 at all treatment sessions in both groups (all P < 0.001).

 

Adverse effects. A total of 703 of the potential 770 intervention sessions were assessed for AEs (355 in the CSMT group and 348 in the placebo group). Reasons for missed AE assessment were drop?out or missed intervention sessions. AEs were significantly more frequent in the CSMT than the placebo intervention sessions (83/355 vs. 32/348; P < 0.001). Local tenderness was the most common AE reported by 11.3% (95% CI, 8.4�15.0) in the CSMT group and 6.9% (95% CI, 4.7�10.1) in the placebo group, whereas tiredness on the intervention day and neck pain were reported by 8.5% and 2.0% (95% CI, 6.0�11.8 and 1.0�4.0), and 1.4% and 0.3% (95% CI, 0.6�3.3 and 0.1�1.9), respectively. All other AEs (lower back pain, face numbness, nausea, provoked migraine attack and fatigue in arms) were rare (<1%). No severe or serious AEs were reported.

 

Discussion

 

To our knowledge, this is the first manual?therapy RCT with a documented successful blinding. Our three?armed, single?blinded, placebo RCT evaluated the efficacy of CSMT in the treatment of migraine versus placebo (sham chiropractic) and control (usual pharmacological treatment). The results showed that migraine days were significantly reduced within all three groups from baseline to post?treatment. The effect continued in the CSMT and placebo groups at all follow?up time points, whereas the control group returned to baseline. AEs were mild and transient, which is in accordance with previous studies.

 

The study design adhered to the recommendations for pharmacological RCTs as given by the IHS and CONSORT [1, 15, 16]. Manual?therapy RCTs have three major obstacles as compared with pharmacological RCTs. Firstly, it is impossible to blind the investigator in relation to the applied treatment. Secondly, consensus on an inert placebo treatment is lacking [11]. Thirdly, previous attempts to include a placebo group have omitted validating the blinding, thus, it remains unknown whether active and placebo treatment were concealed [27]. Due to these challenges we decided to conduct a three?armed, single?blinded RCT, which also included a control group that continued usual pharmacological treatment in order to obtain an indication of the magnitude of the placebo response.

 

It has been suggested that, in pharmacological double?blind placebo RCTs, only 50% will believe that they receive active treatment in each group, if the blinding is perfect. However, this may not be true in manual?therapy RCTs, because the active and placebo physical stimulus might be more convincing than a tablet [28]. A single investigator reduces inter?investigator variability by providing similar information to all participants and it is generally recommended that the placebo intervention should resemble the active treatment in terms of procedure, treatment frequency and time spent with the investigator to allow for similar expectations in both groups [28]. The importance of our successful blinding is emphasized by the fact that all previous manual?therapy RCTs on headache lack placebo. Thus, we believe that our results discussed below are valid at the same level as a pharmacological RCT [14].

 

Prospective data are more reliable than retrospective data in terms of recall bias; however, non?compliance can be a challenge, especially at the end of the study. We believe the frequent contact between participants and the investigator, including monthly contact in the follow?up period, probably maintained high compliance throughout our study.

 

Although our study sample ended with 104 participants in the three groups, the power calculation assumption and the high completion rate support the data achieved being valid for the investigated population. The Gonstead method is used by 59% of chiropractors [19] and, thus, the results are generalizable for the profession. Diagnostic certainty is one of our major strengths as nearly all of the participants had been diagnosed by a neurologist according to the ICHD?II [2]. In contrast to previous chiropractic migraine RCTs that recruited participants through media such as newspapers and radio advertisement [12], the majority of our participants were recruited from the Department of Neurology, Akershus University Hospital, indicating that the migraineurs may have more frequent/severe attacks that are difficult to treat than the general population, as they were referred by their General Practitioner and/or practicing neurologist. Thus, our study is representative of primarily the tertiary clinic population, and the outcome might have been different if participants had been recruited from the general population. The percentage of neck pain has been found to be high in patients with migraine [29] and, thus, the high percentage of non?radicular spinal pain in our study might be a confounder for which effect was seen on migraine days.

 

Three pragmatic chiropractic manual?therapy RCTs using the diversified technique have previously been conducted for migraineurs [12, 30, 31, 32]. An Australian RCT showed within?group reduction in migraine frequency, duration and intensity of 40%, 43% and 36%, respectively, at 2 months follow?up [30]. An American study found migraine frequency and intensity to reduce within?group by 33% and 42%, respectively, at 1 month follow?up [31]. Another Australian study, which was the only RCT to include a control group, i.e. detuned ultrasound, found a within?group reduction of migraine frequency and duration of 35% and 40%, respectively, at 2 months follow?up in the CSMT group, as compared with a within?group reduction of 17% and 20% in the control group, respectively [32]. The reduction in migraine days was similar to ours (40%) in the CSMT group from baseline to 3 months follow?up, whereas migraine duration and intensity were less reduced at 3 months follow?up, i.e. 21% and 14%, respectively. Long?term follow?up comparisons are impossible as neither of the previous studies included a sufficient follow?up period. Our study design including strong internal validity allows us to interpret the effect seen as a placebo response.

 

Our RCT had fewer AEs as compared with previous manual?therapy studies, but of similar transient and mild character [33, 34, 35, 36, 37, 38, 39]. However, it was not sufficiently powered to detect uncommon serious AEs. In comparison, AEs in pharmacological migraine prophylactic placebo RCTs are common including non?mild and non?transient AEs [40, 41].

 

Conclusion

 

The blinding was strongly sustained throughout the RCT, AEs were few and mild, and the effect in the CSMT and placebo group was probably a placebo response. Because some migraineurs do not tolerate medication because of AEs or co?morbid disorders, CSMT might be considered in situations where other therapeutic options are ineffective or poorly tolerated.

 

Disclosure of Conflicts of Interest

 

All authors have completed the International Committee of Medical Journal Editors uniform disclosure form and declare no financial or other conflicts of interest.

 

Supporting Information

 

Ncbi.nlm.nih.gov/pmc/articles/PMC5214068/#ene13166-tbl-0001

 

Acknowledgements

 

The authors want to express their sincere gratitude to Akershus University Hospital, which kindly provided the research facilities, and Chiropractor Clinic 1, Oslo, Norway, which performed all x?ray assessments. This study was supported by grants from Extrastiftelsen, the Norwegian Chiropractic Association, Akershus University Hospital and University of Oslo in Norway.

 

In conclusion, the debilitating symptoms of migraines, including the severe head pain and the sensitivity to light and sound as well as the nausea, can affect an individual’s quality of life, fortunately, chiropractic care has been demonstrated to be a safe and effective treatment option for migraine headache pain. Furthermore, the article above demonstrated that migraineurs experienced reduced symptoms and migraine days as a result of chiropractic care.�Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC:�Neck Pain Treatment El Paso, TX Chiropractor

 

 

MORE TOPICS: EXTRA EXTRA: El Paso, Tx | Athletes

 

Blank
References
1.�Tfelt?Hansen P, Block G, Dahlof C,�et alInternational Headache Society Clinical Trial Subcommittee. Guidelines for controlled trials of drugs in migraine: second edition.�Cephalalgia�2000;�20: 765�786.[PubMed]
2.�Headache Classification Subcommittee of the International Headache Society .�The International Classification of Headache Disorders: 2nd edition.�Cephalalgia�2004;�24(Suppl. 1): 9�160.�[PubMed]
3.�Vos T, Flaxman AD, Naghavi M,�et alYears lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990�2010: a systematic analysis for the Global Burden of Disease Study 2010.�Lancet�2012;�380: 2163�2196.�[PubMed]
4.�Diener HC, Charles A, Goadsby PJ, Holle D.�New therapeutic approaches for the prevention and treatment of migraine.�Lancet Neurol�2015;�14: 1010�1022.�[PubMed]
5.�McLain RF, Pickar JG.�Mechanoreceptor endings in human thoracic and lumbar facet joints.�Spine (Phila Pa 1976)�1998;�23: 168�173.�[PubMed]
6.�Vernon H.�Qualitative review of studies of manipulation?induced hypoalgesia.�J Manipulative Physiol Ther�2000;�23: 134�138.�[PubMed]
7.�Vicenzino B, Paungmali A, Buratowski S, Wright A.�Specific manipulative therapy treatment for chronic lateral epicondylalgia produces uniquely characteristic hypoalgesia.�Man Ther�2001;�6: 205�212.[PubMed]
8.�Boal RW, Gillette RG.�Central neuronal plasticity, low back pain and spinal manipulative therapy.�J Manipulative Physiol Ther�2004;�27: 314�326.�[PubMed]
9.�Bialosky JE, Bishop MD, Price DD, Robinson ME, George SZ.�The mechanisms of manual therapy in the treatment of musculoskeletal pain: a comprehensive model.�Man Ther�2009;�14: 531�538.�[PubMed]
10.�De Camargo VM, Alburquerque?Sendin F, Berzin F, Stefanelli VC, de Souza DP, Fernandez?de?las?Penas C.�Immediate effects on electromyographic activity and pressure pain thresholds after a cervical manipulation in mechanical neck pain: a randomized controlled trial.�J Manipulative Physiol Ther�2011;�34: 211�220.�[PubMed]
11.�Hancock MJ, Maher CG, Latimer J, McAuley JH.�Selecting an appropriate placebo for a trial of spinal manipulative therapy.�Aust J Physiother�2006;�52: 135�138.�[PubMed]
12.�Chaibi A, Tuchin PJ, Russell MB.�Manual therapies for migraine: a systematic review.�J Headache Pain2011;�12: 127�133.�[PubMed]
13.�Chaibi A, Russell MB.�Manual therapies for primary chronic headaches: a systematic review of randomized controlled trials.�J Headache Pain�2014;�15: 67.�[PubMed]
14.�Chaibi A, Saltyte Benth J, Bjorn Russell M.�Validation of placebo in a manual therapy randomized controlled trial.�Sci Rep�2015;�5: 11774.�[PubMed]
15.�Silberstein S, Tfelt?Hansen P, Dodick DW,�et alTask force of the International Headache Society Clinical Trial Subcommittee. Guidelines for controlled trials of prophylactic treatment of chronic migraine in adults.�Cephalalgia�2008;�28: 484�495.�[PubMed]
16.�Moher D, Hopewell S, Schulz KF,�et alCONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials.�BMJ�2010;�340: c869.�[PubMed]
17.�Chaibi A, Saltyte Benth J, Tuchin PJ, Russell MB.�Chiropractic spinal manipulative therapy for migraine: a study protocol of a single?blinded placebo?controlled randomised clinical trial.�BMJ Open2015;�5: e008095.�[PMC free article][PubMed]
18.�French HP, Brennan A, White B, Cusack T.�Manual therapy for osteoarthritis of the hip or knee ? a systematic review.�Man Ther�2011;�16: 109�117.�[PubMed]
19.�Cooperstein R.�Gonstead chiropractic technique (GCT).�J Chiropr Med�2003;�2: 16�24.�[PubMed]
20.�Russell MB, Rasmussen BK, Brennum J, Iversen HK, Jensen RA, Olesen J.�Presentation of a new instrument: the diagnostic headache diary.�Cephalalgia�1992;�12: 369�374.�[PubMed]
21.�Tfelt?Hansen P, Pascual J, Ramadan N,�et alGuidelines for controlled trials of drugs in migraine: third edition. A guide for investigators.�Cephalalgia�2012;�32: 6�38.�[PubMed]
22.�Headache Classification Subcommittee of the International Headache Society .�The International Classification of Headache Disorders, 3rd edition (beta version).�Cephalalgia�2013;�33: 629�808.[PubMed]
23.�Tfelt?Hansen P, Bjarnason NH, Dahlof C, Derry S, Loder E, Massiou H.�Evaluation and registration of adverse events in clinical drug trials in migraine.�Cephalalgia�2008;�28: 683�688.�[PubMed]
24.�Silberstein SD, Neto W, Schmitt J, Jacobs D.�Topiramate in migraine prevention: results of a large controlled trial.�Arch Neurol�2004;�61: 490�495.�[PubMed]
25.�Dixon JR.�The International Conference on Harmonization Good Clinical Practice guideline.�Qual Assur�1998;�6: 65�74.�[PubMed]
26.�Ioannidis JP, Evans SJ, Gotzsche PC,�et alBetter reporting of harms in randomized trials: an extension of the CONSORT statement.�Ann Intern Med�2004;�141: 781�788.�[PubMed]
27.�Scholten?Peeters GG, Thoomes E, Konings S,�et alIs manipulative therapy more effective than sham manipulation in adults: a systematic review and meta?analysis.�Chiropr Man Therap�2013;�21: 34.�[PMC free article][PubMed]
28.�Meissner K, Fassler M, Rucker G,�et alDifferential effectiveness of placebo treatments: a systematic review of migraine prophylaxis.�JAMA Intern Med�2013;�173: 10.�[PubMed]
29.�Ashina S, Bendtsen L, Lyngberg AC, Lipton RB, Hajiyeva N, Jensen R.�Prevalence of neck pain in migraine and tension?type headache: a population study.�Cephalalgia�2015;�35: 211�219.�[PubMed]
30.�Parker GB, Tupling H, Pryor DS.�A controlled trial of cervical manipulation of migraine.�Aust NZ J Med�1978;�8: 589�593.�[PubMed]
31.�Nelson CF, Bronfort G, Evans R, Boline P, Goldsmith C, Anderson AV.�The efficacy of spinal manipulation, amitriptyline and the combination of both therapies for the prophylaxis of migraine headache.�J Manipulative Physiol Ther�1998;�21: 511�519.�[PubMed]
32.�Tuchin PJ, Pollard H, Bonello R.�A randomized controlled trial of chiropractic spinal manipulative therapy for migraine.�J Manipulative Physiol Ther�2000;�23: 91�95.�[PubMed]
33.�Cagnie B, Vinck E, Beernaert A, Cambier D.�How common are side effects of spinal manipulation and can these side effects be predicted?Man Ther�2004;�9: 151�156.�[PubMed]
34.�Hurwitz EL, Morgenstern H, Vassilaki M, Chiang LM.�Adverse reactions to chiropractic treatment and their effects on satisfaction and clinical outcomes among patients enrolled in the UCLA Neck Pain Study.�J Manipulative Physiol Ther�2004;�27: 16�25.�[PubMed]
35.�Thiel HW, Bolton JE, Docherty S, Portlock JC.�Safety of chiropractic manipulation of the cervical spine: a prospective national survey.�Spine (Phila Pa 1976)�2007;�32: 2375�2378.�[PubMed]
36.�Rubinstein SM, Leboeuf?Yde C, Knol DL, de Koekkoek TE, Pfeifle CE, van Tulder MW.�The benefits outweigh the risks for patients undergoing chiropractic care for neck pain: a prospective, multicenter, cohort study.�J Manipulative Physiol Ther�2007;�30: 408�418.�[PubMed]
37.�Eriksen K, Rochester RP, Hurwitz EL.�Symptomatic reactions, clinical outcomes and patient satisfaction associated with upper cervical chiropractic care: a prospective, multicenter, cohort study.�BMC Musculoskelet Disord�2011;�12: 219.�[PubMed]
38.�Walker BF, Hebert JJ, Stomski NJ,�et alOutcomes of usual chiropractic. The OUCH randomized controlled trial of adverse events.�Spine�2013;�38: 1723�1729.�[PubMed]
39.�Maiers M, Evans R, Hartvigsen J, Schulz C, Bronfort G.�Adverse events among seniors receiving spinal manipulation and exercise in a randomized clinical trial.�Man Ther�2015;�20: 335�341.�[PubMed]
40.�Jackson JL, Cogbill E, Santana?Davila R,�et alA comparative effectiveness meta?analysis of drugs for the prophylaxis of migraine headache.�PLoS One�2015;�10: e0130733.�[PubMed]
41.�Ferrari MD, Roon KI, Lipton RB, Goadsby PJ.�Oral triptans (serotonin 5?HT(1B/1D) agonists) in acute migraine treatment: a meta?analysis of 53 trials.�Lancet�2001;�358: 1668�1675.�[PubMed]
Close Accordion
Chiropractic Treatment for Migraine Pain in El Paso, TX

Chiropractic Treatment for Migraine Pain in El Paso, TX

Migraine headache pain can be characterized as a throbbing pain or a pulsing sensation of varying intensity, which is generally accompanied by nausea as well as extreme sensitivity to light and sound. According to the American Migraine Association, migraines affect about 36 million Americans, or approximately 12 percent of the population in the United States. Because the symptoms can often become very debilitating, many migraine sufferers will have tried everything to attempt to relieve their headache pain, including avoiding triggers and using drugs and/or medications to reduce the symptoms. However, research studies have found that one alternative treatment option can greatly benefit migraineurs: chiropractic care.

 

Chiropractor Treating Migraine Pain

 

Chiropractic care is a safe and effective alternative treatment option which focuses on the diagnosis, treatment and prevention of a variety of injuries and/or conditions associated with the musculoskeletal and nervous system. A doctor of chiropractic, or chiropractor, will commonly utilize a series of chiropractic methods and techniques, including spinal adjustments and manual manipulations, to carefully correct any spinal misalignment, or subluxation, located along the length of the spine. Although the true source of migraines is still misunderstood today, healthcare professionals believe that a misalignment of the cervical spine, or neck, may trigger migraine symptoms. By correcting the alignment of the spine, a chiropractor can release the pressure being placed against the spinal column which may be irritating and/or compressing the complex structures surrounding the spine, manifesting the well-known symptoms of migraines. Furthermore, chiropractic care can decrease muscle tension and increase circulation, eliminating stress in the body which is also known to be a factor behind migraines, promoting further relief.

 

Dr. Alex Jimenez chiropractor treating migraine pain.

 

Dr. Jimenez using chiropractic treatment to release pressure on a patient's neck

 

The Efficacy of Chiropractic Spinal Manipulative Therapy (SMT) in the Treatment of Migraine

 

Abstract

 

  • Objective: To test the efficacy of Chiropractic spinal manipulative therapy (SMT) in the treatment of migraine, using an uncontrolled clinical trial.
  • Design: A clinical trial of six months duration. The trial consisted of 3 stages: two months of pre-treatment, two months of treatment, and two months post treatment. Comparison was made to initial baseline episodes of migraine preceding commencement of SMT.
  • Setting: Chiropractic Research Centre of Macquarie University
  • Participants: Thirty two volunteers, between the ages of 23 to 60 were recruited through media advertising. The diagnosis of migraine based on a detailed questionnaire, regarding self reported symptoms or signs, with minimum of one migraine with aura per month.
  • Interventions: Two months of SMT provided by an experienced chiropractor at a university clinic.
  • Main Outcome Measures: Participants completed diaries during the entire trial noting the frequency, intensity, duration, disability, associated symptoms and use of medication for each migraine episode. In addition, clinic records were compared to their diary entries of migraine episodes.
  • Results: A total of fifty nine participants responded to the advertising, with twenty five being excluded or deciding not to continue in the trial. Two participants (5.9%) withdrew during the trial, one due to alteration in work situation and one following soreness after SMT. The Chiropractic SMT group showed statistically significant improvement (p < 0.05) in migraine frequency and duration, when compared to initial baseline levels. Only one participant (3.1%) reported that the migraine episodes were worse after the two months of SMT, and this was not sustained at the two month post treatment follow up period.
  • Conclusion: The results of this study suggest that Chiropractic SMT is an effective treatment for migraine with aura. However, due to the cyclical nature of migraine with aura, and the finding that episodes usually reduce following any intervention, further research is required. A prospective randomised controlled trial utilising detuned EPT (interferential), a sham manipulation group and an SMT group is nearing conclusion. It is anticipated this trial will provide further information of the efficacy of Chiropractic SMT in the treatment of migraine with aura.
  • Key Indexing Terms (MeSH): Migraine, chiropractic, spinal manipulation, clinical trial.

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

According to the American Chiropractic Association, a 2011 report published in the Journal of Manipulative and Physiological Therapeutics, or JMPT, found that chiropractic care, including spinal adjustments and manual manipulations, can improve migraine and cervicogenic headache symptoms. Healthcare professionals have associated primary headaches with stress and muscle tension. Chiropractic care can help decrease the frequency of migraines and manage its symptoms by carefully correcting any spinal misalignment, or subluxation, found along the spine. By restoring the proper alignment of the spine, chiropractic care can improve overall spinal function by alleviating pressure on the nervous system, increasing circulation and reducing muscle tension and stress which causes migraine pain.

 

Introduction

 

Some studies appear to have demonstrated significant reduction in migraines following chiropractic intervention (1-8). However, this reduction may in part have been due to inaccurate diagnosis or overlapping symptoms (4,9,10). Many different conditions of the cervical spine, including mechanical and joint pathology, have been reported to cause headache (10-16). Sjaastad (17) used the term �cervicogenic headache� to describe a type of the chronic paroxysmal unilateral headache, which is accompanied by autonomic symptoms and provacated by movements of the head and neck. Sjaastad proposed that entrapment of the occipital nerve or a C2-C3 rhizopathy may produce this headache (18).

 

There are a number of aetiologies of migraines proposed in the literature. These include: vascular (19-21); autonomic (22); biochemical/cellular/immunological (23- 27); psychophysiological (28,29); neurogenic (9,15,25,30) and somatic (1-9,31,32). This has made a common treatment regime difficult. One early medical model was vascular cause of migraine, where a migrainous attack is initiated by a decreased blood flow to the cerebral vasculature or a cerebrovascular spasm, but characterized by extracranial vasodilation during the headache phase (19,20). However, later aetiological models have demonstrated more complex vascular changes with associated neurological changes (9).

 

Many practitioners involved in the treatment of migraine would, however, accept that a number of aetiological factors are involved and that there is substantial overlap in both aetiology or diagnosis (9,15,26,33,34). In addition, no single model appears to explain all the possible symptoms associated with migraine.

 

One possible aetiological factor is cervical spondylosis with associated neck pain and stiffness (34). Anthony states �when this is recognised, appropriate treatment can give impressive results…the aim is to relieve pressure on nerve roots in the upper neck thereby reducing activation of the spinal tract of the trigeminal nerve, which is part of the pain centre in the head and neck� (34). Surgical decompression of the lower cervical nerve�roots as carried out by Ghavamian (36) showed relief of migraine symptoms. He proposed that irritation and compression of the deep sympathetic fibres incited such symptomatology.

 

Vernon (7), proposed a vertebrogenic model which involves components from the different categories previously stated. One part involves lesions in the low cervical/upper thoracic spine and the upper cervical spine. The low cervical spine/upper thoracic spine (C7-T4) model proposed that dysfunction (i.e. somatic dysfunction) at these vertebral levels causes joint fixation and pain. This pain alters the neural messages received, and therefore sent, by the Central Nervous System (CNS). The Autonomic Nervous System which controls, amongst other functions, blood supply, is thus also affected. It is proposed that when certain threshold levels of transient cerebral ischaemia (due to vasoconstriction caused by the above mechanism) are reached, a migraine cascade of symptomatology may be precipitated.

 

A second part involves somatic dysfunction in the upper cervical spine (Occiput-C2), which produces local pain and fixation leading to increased neural input to the CNS. This results in a reduction in descending pain-inhibiting impulses from the CNS and consequently increases activity within the spinal trigeminal tract (which transmits the majority of sensory afferents and pain signals from the upper cervical region to the brain). Having exceeded a threshold level, this excessive afferent input to the CNS will trigger focal, and spreading vasoconstriction within the intracerebral vasculature. This will in turn promote extra-carotid vasodilation and cranial pain which is mediated by the ipsilateral trigeminal nerve (7).

 

Another model contends that irritation of the vertebral nerve by cervical lesions can produce a sympathetic syndrome, giving symptoms of headache, vertigo, visual disturbances and tinnitus. However, this model has not been well substantiated and appears more likely a cause of vascular headache as opposed to migraine (11). The source of pain in migraines is found in the intra- and extracranial blood vessels. The blood vessel walls are pain sensitive to distension, traction or displacement. The idiopathic dilation of cranial blood vessels, together with an increase in a pain threshold lowering substance, result in headache of migraine type (26).

 

Migraine has a well established symptomatology that has been outlined in various studies (4,12,15). The debilitating and frequent nature of symptoms that include head pain, nausea, vomiting, phonophobia, and photophobia, costs our society both socially and economically (4,12,15,20). As such, effective treatment has long been sought, therefore justifying study in this area. However, there is substantial overlap of symptoms between migraine and cervicogenic�headache, and some authors believe elements of the migraine headache continuum involve cervical headache (9,10).

 

The Headache Classification Committee of the International Headaches Society, has discarded the former terms classical migraine and common migraine in favour of migraine with aura and migraine without aura. In migraine with aura (MA), this condition is defined as recurrent, periodic, unilateral headache which is preceded or accompanied by transient visual, sensory, motor, or other focal neurological symptoms which localise to the cerebral cortex or brainstem. Migraine without aura, (MWA) is defined as a vascular headache without striking prodromal or associated symptoms of cerebral dysfunction (37).

 

The incidence of migraine in Australia is estimated at 12%, with the cost to industry an estimated $250 million (38). In the USA approximately 8% of headaches diagnosed by medical practitioners are called migraine headaches (39). Migraine, in its various forms, affects an estimated 5-20% of people throughout the world (40).

 

A review of the literature appears to indicate that migraine is an associated feature of cervical dysfunction. This paper will evaluate chiropractic spinal manipulative treatment directed towards improving vertebral function, and its role in the management of the migraines.

 

Methodology

 

Chiropractic spinal manipulative therapy (SMT) is defined as a passive manual manoeuvre during which the three joint complex is carried beyond the normal physiological range of movement without exceeding the boundaries of anatomical integrity (41). SMT requires a dynamic force in a specific direction, usually with a short amplitude, to correct a problem of reduced vertebral motion or positional fault.

 

The study design was based on a previous study which involved 82 subjects who received either chiropractic SMT, physiotherapy manipulation, or a control treatment of medical mobilization (1). Parker et al, concluded that manipulation was not found to be more effective than mobilisation, and chiropractic treatment not more effective than the other two groups (3). However, much criticism was received over the study, especially the statistical analysis (42).

 

People with migraines were advertised for participation in the study via the radio and newspapers within a local region of Sydney. All applicants completed a questionnaire, developed from Vernon (12), which contains over 25 sections, including details of the initial�history, frequency, severity, location and reaction to the pain, associated symptoms, precipitating or aggravating factors, relieving factors, past treatment for migraines, medical history including medications and other diagnostic tests.

 

The participants to take part in the trial were selected according to responses in the questionnaire of specific symptoms. The criteria for migraine diagnosis was compliance with at least 5 out of the following indicators: reaction to pain requiring cessation of activities or the need to seek a quiet dark area; pain located around the temples; pain described as throbbing; associated symptoms of nausea, vomiting, aura, photophobia or phonophobia; migraine precipitated by weather changes; migraine aggravated by head or neck movements; previous diagnosis of migraine by a specialist; and a family history of migraine.

 

Participants also had to experience migraine at least once a month, but not daily, and the migraines could not have been initiated by trauma. Participants were excluded from the study if there were contra-indications to SMT, such as meningitis or cerebral aneurysm. In addition, participants with temporal arteritis, benign intracranial hypertension or space occupying lesions, were also excluded due to safety aspects.

 

Participants were informed that they were involved in a trial of manipulative therapy for migraine, and that they may be randomly assigned to a control group which would receive a placebo (non effective) treatment, or to an intervention group which would receive Chiropractic SMT. However, because of the small numbers of participants that were involved in the trial, a control group was not used. Participants were also informed that a thorough physical examination would be performed prior to commencement of treatment to assess any physical problems precluding them receiving SMT. Patients were blinded, by believing that they may or may not receive an effective treatment. In addition, practitioners were not aware of ongoing treatment results, therefore they were also �blinded� to the stage of progress of the patients condition or response to treatment.

 

The trial was conducted over six months, and consisted of 3 stages: two months pretreatment, two months treatment, and two months post treatment. Participants completed diaries during the entire trial noting the frequency, intensity, duration, disability, associated symptoms and use of medication for each migraine episode. In addition, clinic records were compared to their diary entries of migraine episodes. Concurrently, the subjects were contacted by telephone by the author every month and asked to describe the migraine episodes for comparison to their diaries.

 

Patients were instructed at the beginning of the study on the use of the diary and were given an instruction sheet to use throughout the course of the trial. The diary consisted of a table for entries of each of the outcome measures. This included noting the date of each episode, a number representing a visual analogue score, letters denoting associated symptoms, the length (in hours) of each migraine, the time (in hours) before the person could return to normal duties, type and use of medications and the overall relief from the medication. The diaries were modified from standard diaries used by the Brain Foundation of Australia.

 

A detailed history of the patient’s subjective pain features was taken during the initial consultation. This included the type of pain, duration, onset, severity, radiation, aggravating and relieving factors. The history also included medical features, a systems review for potential pathologies, previous treatments and its effects.

 

Factors for assessing subluxation included: orthopaedic and neurological testing, segmental springing, mobility measures such as visual estimation of range of motion, assessment of previous radiographs, specific chiropractic vertebral testing procedures, as well as response of the patient to SMT.

 

In addition, several vascular investigations were performed where indicated, which included: vertebral artery test, manipulative provocation test, blood pressure assessment, and abdominal aortic aneurysm screening.

 

During the treatment period, the subjects continued to record migraine episodes in their diary, and receive telephone calls from the authors. Treatment consisted of short amplitude, high velocity spinal manipulative thrusts, or areas of fixation determined by the physical examination. Patients were allowed a maximum of sixteen treatments, and the frequency of treatment was dependent on the clinicians opinion of the severity of the vertebral dysfunction. The majority of patients received a minimum of twelve treatments.

 

Comparison was made to initial baseline episodes of migraine preceding commencement of SMT. Statistical analysis involved comparing the effects of the different treatment regimes on the incidence, intensity, and duration of migraines throughout the trial. Statistical tests employed were a students t test to test for significant difference between each group and a one way analysis of variance (ANOVA) to test for changes for all groups. Statistical calculations were performed via a computer software program Minitab for Macintosh.

 

Results

 

A total of fifty nine participants responded to the�advertising, with twenty five being excluded or deciding not to continue in the trial. These included: six cases of infrequent recurrence of the migraines (less than one per month); two cases of contraindications to SMT; one case of cluster headache; one case of motor vehicle accident during pre treatment; one case of fear of SMT; fourteen cases where the university clinic was inconvenient or time constraints were too difficult for participants. Two participants (5.9%) withdrew during the trial, one due to alteration in work situation and one following soreness after SMT.

 

Thirty two participants, between the ages of 23 to 60, joined the study with there being 14 males and 18 females. Table 1 gives the comparative descriptive statistics for the group.

 

Table 1 Comparative Descriptive Statistics

 

The Chiropractic SMT group showed statistically significant improvement (p < 0.05) in migraine severity (Figure 1), duration (Figure 2) and disability (Figure 3), when compared to initial baseline levels. Only one participant (3.1%) reported that their migraine episodes were worse after the two months of SMT, but this was not sustained at the two month post treatment follow up period. Table 2 demonstrates variate scores in each of the six diary categories for the three phases of the trial.

 

Table 2 Variate Scores for the Three Phases of the Trial

 

The greatest area for improvement was with disability scores (p < 0.01), where participants were asked to rate the time that elapsed before they could return to normal activities (Table 3). In addition, the duration of the migraine and the use of medication, reduced significantly following the SMT intervention (p < 0.05). Table 3 shows mean variate scores for the three phases of the trial�and statistical significance by analysis of variance (ANOVA).

 

Table 3 Mean Variate Scores

 

There was no apparent difference in the number of associated symptoms and the time taken for treatment to give relief of each migraine episode (Table 3). In addition, self reported possible trigger factors demonstrated no significant findings, predominantly due to the small sample size. Common trigger factors that were cited included stress, lack of sleep, work changes, or family situations. Most participants could not state a particular trigger factor.

 

Discussion

 

The majority of people who participated in this trial had chronic migraines that were severe and debilitating. However, the results have demonstrated a significant (p< 0.05) reduction in their�migraine episodes and their associated disability. The mean number of migraine per month reduced from 7.6 to 4.9 episodes.

 

This trial was conducted using a similar design to a previous study which demonstrated significant improvement in migraines following chiropractic SMT (1,3). The initial trial had limitations due to an inadequate control group, and this could also be a limitation with this study(2). However, the use of self reported, non treatment period as a control, allows flexibility regarding use of medication and any alteration during the trial.

 

Figure 1 Comparison of Visual Analogue Scores

Figure 1: Comparison of visual analogue scores for pre-treatment, treatment and post-treatment group means.

 

Figure 2 Comparison of Duration Time of Migraine Hours

Figure 2: Comparison of duration time of migraine (hours) for pre-treatment, treatment and post-treatment group means.

 

Figure 3 Comparison of Disability Time of Migraine Hours

Figure 3: Comparison of disability time of migraine (hours) for pre-treatment, treatment and post-treatment group means.

 

A similar design to this study has also been used in a study of headache and SMT (14). The Boline study was a randomised controlled trial using two parallel groups, with a two week baseline, a six week treatment period and a four week post treatment period. The results of this study show that SMT was an effective method of treatment for tension type headaches, and that the benefit was sustained for the four weeks after cessation of the treatment.

 

The present study was conducted over a six month period which gives the results substantial significance because early criticisms of studies were that the length of the trial was too short to allow for the cyclical nature of migraines. However, the study is limited in the sample size and the fact that the trial was a pragmatic study which did not consider what aspects of chiropractic SMT had contributed to the improvement in the migraine episodes.

 

In addition, the study is limited due to the lack of a control group. However, the fact that the trial was conducted over a six month period, with two months pre-treatment, it could be argued that participants acted as their own form of control.

 

A further limitation of this study, as with other studies of migraine or headaches is that there is substantial overlap in diagnosis and classification of migraines. The questionnaire used in this study proved to have good reliability, however, there is strong suggestion that many headache sufferers may have more than one type of headache (12). An advantage with the design of this study is that regardless of the exact �diagnosis� of the migraine, self reported, non-treatment controls still allow assessment of the therapy in question.

 

The measurement used for relief scores proved to be poor, which was probably due in part to the small scale for response that participants were given. Future studies should address this issue. In addition, associated symptoms did not give a clear result because the study only measured the total number of associated symptoms, and the sample size was too small for a significant percentage breakdown. Future studies should also address this issue.

 

Conclusion

 

The results of this study suggest that Chiropractic SMT may be an effective treatment for migraine. However, due to the cyclical nature of migraine, and the finding that episodes usually reduce following any intervention, further research is required. A prospective randomised controlled trial utilising detuned EPT (interferential), a sham manipulation group and an SMT group is nearing�conclusion. It is anticipated this trial will provide further information of the efficacy of Chiropractic SMT in the treatment of migraine.

 

In conclusion,�chiropractic care is a safe and effective alternative treatment option which can be used to improve migraine symptoms as well as decrease their frequency. A chiropractor will utilize spinal adjustments and manual manipulations to correct spinal misalignments, or subluxations, releasing pressure being placed against the complex structures surrounding the spine, decreasing muscle tension and improving circulation to eliminate stress, ultimately benefitting migraine sufferers. Finally, the purpose of the article above was to demonstrate the efficacy of chiropractic spinal manipulative therapy, or SMT, in the treatment of migraine. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC:�Neck Pain Treatment El Paso, TX Chiropractor

 

 

MORE TOPICS: EXTRA EXTRA: El Paso, Tx | Athletes

 

Blank
References

1. Parker GB, Tupling H, Pryor DS. A controlled trial of cervical manipulation for migraine. Aust NZ J Med 1978; 8: 585-93.
2. Parker GB, Tupling H, Pryor DS. Letters to the editor: cervical manipulation for migraine. Aust NZ J Med 1979; 9: 341-2.
3. Parker GB, Tupling H, Pryor DS. Why does migraine improve during a clinical trial? Further results from a trial of cervical manipulation for migraine. Aust NZ J Med 1980; 10: 192-8.
4. Tuchin PJ, Bonello R. Classic migraine or not classic migraine, that is the question. Aust Chiro & Osteo 1996; 5: 66-74.
5. Whittingham W, Ellis WS, Molyneux TP. The effect of manipulation (Toggle recoil technique) for headaches with upper cervical joint dysfunction: a case study. J Manipulative Physiol Ther 1994; 17(6): 369-75.
6. Wight JS. Migraine: a statistical analysis of chiropractic treatment. J Am Chiro Assoc 1978; 12: 363-7.
7. Vernon H, Steiman I, Hagino C. Cervicogenic dysfunction in muscle contraction headache and migraine: a descriptive study. J Manipulative Physiol Ther 1992; 15: 418-29
8. Lenhart LJ. Chiropractic management of migraine without aura: a case study. JNMS 1995; 3: 20-6.
9. Nelson CF. The tension headache, migraine continuum: a hypothesis. J Manipulative Physiol Ther 1994; 17(3): 157-67.
10. Jull GA. Cervical headache: a review. In: Greive GP, ed. Modern manual therapy of the vertebral column. 2nd ed. Edinburgh: Churchill Livingstone, 1994: 333-46
11. Bogduk N. Cervical causes of headache and dizziness In: Greive GP, ed. Modern manual therapy of the vertebral column. 2nd ed. Edinburgh: Churchill Livingstone, 1994: 317-31.
12. Vernon H. ed. Upper cervical syndrome: cervical diagnosis and treatment. In: Differential diagnosis of headache. Baltimore: Williams & Wilkins. 1988: l46
13. Vernon HT. Spinal manipulation and headache of cervical origin. J Manipulative Physiol Ther 1989; 12: 455-68
14. Boline PD, Kassak K, Bronfort G, Nelson C, Anderson AV. Spinal manipulations vs. amitriptyline for the treatment of chronic tension-type headaches: a randomized clinical trial. J Manipulative Physiol Ther 1995; 18(3): 148-54.
15. Milne E. The mechanism and treatment of migraine and other disorders of cervical and postural dysfunction. Cephalgia 1989; 9 (suppl 10): 381-2.
16. Young K, Dharmi M. The efficacy of cervical manipulation as opposed to pharmocological therapeutics in the treatment of migraine patients. Transactions of the Consortium for Chiropractic Research. 1987
17. Sjaastad O, Saunte C, Hovdahl H, Breivok H, Gronback E. Cervical headache: an hypothesis. Cephalgia 1983; 3: 249-56.
18. Sjaastad O, Fredricksen TA, Stolt-Nielsen A. Cervicogenic headache, C2 rhizopathy, and occipital neuralgia: a connection. Cephalgia 1986; 6: 189-95.
19. Wolff�s Headache and other head pain. Revised by Dalessio DJ. 3rd ed. New York: Oxford University Press. 1972.
20. Selby G, Lance JW. Observations on 500 cases of migraine and allied vascular headache. J Neurol Neurosurg Psychiatry 1960; 23: 23-32.
21. Anderson A, Friberg L, Olsen T, Olsen J. Delayed hyperemia following hypoperfusion in classic migraine. Arch Neurol 1988; 45: 154-9.
22. Appel S, Kiritzky A, Zahavi I, et al. Evidence for instability of the autonomic nervous system in patients with migraine headache. Headache 1992; 32: 10-7.
23. Takasha T, Shimomura T, Kazuro T. Platelet activation in muscle contraction headache and migraine. Cephalgia 1987; 7: 239-43.
24. Lance J, Lambert G, Goadsby P, et al. 5-Hydroxytryptamine and its putative aetiological involvement in migraine. Cephalgia 1989; 9(Suppl 9): 7-13
25. Ferrari M, Odink J, Tapparelli C, et al. Serotonin metabolisminmigraine.Neurology1989;39:1239-42.
26. Dalassio D. The pathology of migraine. Clin J Pain 1990; 6: 235-9.
27. Stellar S, et al. Migraine prevention with timolol. JAMA 1984; 252(18): 2576-80.
28. Couch J, Hassanein R. Amitriptyline in migraine prophylaxis. Arch Neurol 1979; 36: 695-9.
29. Zeigler D, Hurwitz A, Hassanein R, et al. Migraine prophylaxis: a comparison of propranolol and amitriptyline. Arch Neurol 1987; 44: 486-9.
30. Anthony MN, Lance JW. Plasma serotonin in patients with chronic tension headache. J Neurol Neurosurg Psychiatry 1989; 52: 182-4.
31. Sjasstad 0, Fredricksen TA, Sand T. The localization of the initial pain of attack: a comparison between classic migraine and cervicogenic headache. Functional Neurololgy 1989; 4: 73-8
32. Commission of Enquiry Into Chiropractic. Chiropractic in New Zealand. 1979 NZ PD Hasselburg.
33. Marcus DA. Migraine and tension type headaches: the questionable validity of current classification systems. Pain 1992; 8: 28-36
34. Anthony M. Migraine and its management. Aust
Fam Phys 1986; 15(5): 643-9.
35. Grayham JR. Migraine headache: diagnosis and
management. Headache 1979; 19(3): 133-41.
36. Ghavamian T. Cervical discopathy and a new concept in the sympathetics of the cervical spine and
head. J Bone Joint Surg 1971; 53A: 1233.
37. Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalgia 1988; 9 (Suppl
7): 1-93.
38. King J. Migraine in the workplace. Brainwaves. Australian Brain Foundation 1995 Hawthorn, Victoria.
39. Lipton RB, Stewart WE. Migraine in the United States: a review of epidemiology and health care use. Neurology 1993; 43(Suppl 3): S6-10.
40. Stewart WE, Lipton RB, Celentous DD, et al. Prevalence of migraine headache in the United States. JAMA 1992; 267: 64-9.
41. Brunarski DJ. Clinical trials of spinal manipulation: a critical appraisal and review of the literature. JMPT 1984; 7(4): 243-7.
42. Marosszeky JE. Letters to the editor: cervical manipulation for migraine. Aust NZ J Med 1979; 9: 339.

Close Accordion
Migraine Headache Treatment in El Paso, TX

Migraine Headache Treatment in El Paso, TX

A migraine is a neurological condition commonly characterized by an intense, debilitating headache. Approximately 12 percent of the population in the United States suffers from migraines. Other symptoms may include: nausea, vomiting, difficulty speaking, numbness or tingling, and sensitivity to light and sound. Several factors can trigger a migraine. These include: stress, lack of food or sleep, exposure to light, hormonal changes in women and anxiety. Although healthcare professionals have yet to understand the true source of migraines, doctors of chiropractic have concluded that a spinal misalignment, or subluxation, may be associated with different types of headaches. The purpose of the following article is to demonstrate the results of a case of chronic migraine remission after a 72-year-old woman with a 60-year history of migraine headaches received chiropractic care.

 

A Case of Chronic Migraine Remission After Chiropractic Care

 

Abstract

 

  • Objective: To present a case study of migraine sufferer who had a dramatic improvement after chiropractic spinal manipulative therapy (CSMT).
  • Clinical features: The case presented is a 72-year�old woman with a 60-year history of migraine headaches, which included nausea, vomiting, photophobia, and phonophobia.
  • Intervention and outcome: The average frequency of migraine episodes before treatment was 1 to 2 per week, including nausea, vomiting, photophobia, and phonophobia; and the average duration of each episode was 1 to 3 days. The patient was treated with CSMT. She reported all episodes being eliminated after CSMT. The patient was certain there had been no other lifestyle changes that could have contributed to her improvement. She also noted that the use of her medication was reduced by 100%. A 7-year follow-up revealed that the person had still not had a single migraine episode in this period.
  • Conclusion: This case highlights that a subgroup of migraine patients may respond favorably to CSMT. While a case study does not represent significant scientific evidence, in context with other studies conducted, this study suggests that a trial of CSMT should be considered for chronic, nonresponsive migraine headache, especially if migraine patients are nonresponsive to pharmaceuticals or prefer to use other treatment methods.
  • Key indexing terms: Migraine, Chiropractic, Spinal manipulative therapy

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

Migraine is a prevalent and debilitating condition which affects about 12 percent of the population in the U.S.� Furthermore, migraine affects more women than men. While the causes and symptoms of migraine headache pain have been identified, many healthcare professionals believe that a spinal misalignment, or subluxation, may often lead to various types of headaches. Chiropractic care utilizes spinal adjustments and manual manipulations to carefully correct the alignment of the spine, restoring proper structure and function. According to the research study below, chiropractic can be an effective migraine headache treatment. Chiropractic care is a safe and effective alternative treatment option for patients with migraine who seek a natural method and technique to reduce their symptoms without the use of drugs and/or medications.

 

Introduction

 

Migraine remains a common and debilitating condition.[1,2] It has an estimated incidence of 6% in males and 18% in females.[2] A study in Australia found the cost to industry to be an estimated $750 million.[3] Lipton et al found that migraine is one of the most frequent reasons for consultations with general practitioners, affecting between 12 million and 18 million people each year in the United States.[4] The estimated cost in the United States is $25 billion in lost productivity due to 156 million full-time work days being lost each year.[5] Recent information has suggested that these older figures above are still current, but also underestimated, because of many sufferers not stating their problem because of a perceived poor social stigma.[6]

 

The Brain Foundation in Australia notes that 23% of households contain at least one migraine sufferer. Nearly all migraine sufferers and 60% of those with tension-type headache experience reductions in social activities and work capacity. The direct and indirect costs of migraine alone would be about $1 billion per annum.[3]

 

The Headache Classification Committee of the International Headache Society (IHS) defines migraines as having the following: unilateral location, pulsating quality, moderate or severe intensity, and aggravated by routine physical activity. During the headache, the person must also experience nausea and/or vomiting, photophobia, and/or phonophobia.[7] In addition, there is no suggestion either by history or by physical or neurologic examination that the person has a headache listed in groups 5 to 11 of their classification system.[7] Groups 5 to 11 of the classification system include headache associated with head trauma, vascular disorder, nonvascular intracranial disorder, substances or their withdrawal, noncephalic infection, or metabolic disorder, or with disorders of cranium, neck, eyes, nose, sinuses, teeth, mouth, or other facial or cranial structures.

 

Some confusion relates to the �aura� feature that distinguishes migraine with aura (MA) and migraine without aura (MW). An aura usually consists of homonymous visual disturbances, unilateral paresthesias and/or numbness, unilateral weakness, aphasia, or unclassifiable speech difficulty.[7] Some migraineurs describe the aura as an opaque object, or a zigzag line around a cloud; even cases of tactile hallucinations have been recorded.[8] The new terms MA and MW replace the old terms classic migraine and common migraine, respectively.

 

The IHS diagnostic criteria for MA (category 1.2) is at least 3 of the following:

 

  • 1) One or more fully reversible aura symptoms indicating focal cerebral cortex and/or brain stem dysfunction.
  • 2) At least 1 aura symptom develops gradually over more than 4 minutes or 2 or more symptoms occurring in succession.
  • 3) No aura symptom lasts more than 60 minutes.
  • 4) Headache follows aura with a free interval of less than 60 minutes.

 

Migraine is often still nonresponsive to treatment.[9] However, several studies have demonstrated statistically significant reduction in migraines after chiropractic spinal manipulative therapy (CSMT).[10-15]

 

This article will discuss a patient presenting with MW and her response after CSMT. The discussion will also outline specific diagnostic criteria for migraine and other headaches relevant to chiropractors, osteopaths, or other health practitioners.

 

Case Report

 

A 72-year�old 61-kg white woman presented with migraine headaches that had commenced in early childhood (approximately 12 years old). The patient could not relate anything to the commencement of her migraines, although she believed there was a family history (father) of the condition. During the history, the patient stated that she suffered regular migraine headaches (1-2 per week) with which she also experienced nausea, vomiting, vertigo, and photophobia. She needed to cease activities to alleviate the symptoms, and she often required acetaminophen and codeine medication (25 mg) or sumatriptan succinate for pain relief. The patient was also taking verapamil (calcium ion antagonist, for essential hypertension), calcitriol (calcium uptake, for osteoporosis), pnuemenium on a daily basis, and carbamazipine (antiepileptic, neurotropic medication) twice daily.

 

The patient reported that an average episode lasted 1 to 3 days and that she could not perform activities of daily living for a minimum of 12 hours. In addition, a visual analogue scale score for an average episode was 8.5 out of a possible maximum score of 10, corresponding to a description of �terrible� pain. The patient noted that stress or tension would precipitate a migraine and that light and noise aggravated her condition. She described the migraine as a throbbing head pain located in the parietotemporal region and was always left-sided.

 

The patient had a previous history of a pulmonary embolism (2 years before treatment) and had a partial hysterectomy 4 years before treatment. She also stated she had hypertension that was controlled. She was a widow with 2 children, and she had never smoked. The patient had tried acupuncture, physiotherapy, substantial dental treatment, and numerous other medications; but nothing had changed her migraine pattern. She stated that she had never had previous chiropractic treatment. The patient also stated that she had been treated by a neurologist for �migraines� over many years.

 

On examination, she was found to have very sensitive suboccipital and upper cervical musculature and decreased range of motion at the joint between the occiput and first cervical vertebra (Occ-C1), coupled with pain on flexion and extension of the cervical spine. She also had significant reduction in thoracic spine motion and a marked increase in her thoracic kyphosis.

 

Blood pressure testing revealed she was hypertensive (178/94), which the patient reported was an average result (stage 2 hypertension using the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure 7 guidelines).

 

Based on the IHS Headache Classification Committee classification and diagnostic criteria, the patient had an MW�category 1.1, previously called common migraine (Table 1). This appeared secondary to moderate cervical segmental dysfunction with mild to moderate suboccipital and cervical paraspinal myofibrosis.

 

Table 1 Headache Classifications

Table 1: Headache classifications (IHS Headache Classification Committee).

 

The patient received CSMT (diversified chiropractic �adjustments�) to her Occ-C1 joint, upper thoracic spine (T2 through T7), and the affected hypertonic musculature. Hypertonic muscles were released through gentle massage and stretching. An initial course of 8 treatments was conducted at a frequency of twice a week for 4 weeks. The treatment program also included recording several features for every migraine episode. This included frequency, visual analogue scores, episode duration, medication, and time before they could return to normal activities.

 

The patient reported a dramatic improvement after her first treatment and noticed a reduction in the intensity of her head and neck pain. This continued with the patient reporting having no migraines in the initial month course of treatment. Further treatment was recommended to increase her range of motion, increase muscle tone, and reduce suboccipital muscle tension. In addition, monitoring of her migraine symptoms was continued. A program of treatment at a frequency of once a week for a further 8 weeks was instigated. After the next phase of treatment, the patient noted much less neck tension, better movement, and no migraine. In addition, she no longer used pain-relieving medication (acetaminophen, codeine, and sumatriptan succinate) and noted that she did not experience nausea, vomiting, photophobia, or phonophobia (Table 2). The patient continued treatment at 2-weekly intervals and stated that, after 6 months, her migraine episodes had disappeared completely. In addition, she was no longer experiencing neck pain. Examination revealed no pain on active neck movement; however, a passive motion restriction at the C1-2 motion segment was still present.

 

Table 2 Category 1 Migraine

Table 2: Category 1: migraine (IHS Headache Classification Committee).

 

The patient is currently having treatment every 4 weeks, and she still reports no return of her migraine episodes or neck pain. The patient has now not experienced any migraines for a period of more than 7 years since her last episode, which was immediately before her having her first chiropractic treatment.

 

Discussion

 

Case studies do not form high levels of scientific data. However, some cases do present significant findings. For example, cases with long (chronic) and/or severe symptomatology can highlight alternative treatment options. With case studies such as this, there is always a possibility that the symptoms spontaneously resolved, with no effective from the treatment. The case presented highlights a potential alternative treatment option. A 7-year follow-up revealed that the person had still not had a single migraine episode in this period. The patient was certain that there had been no other lifestyle changes that could have contributed to her improvement. She also noted that the migraines had stopped after her first treatment.

 

The average frequency of her migraines before treatment was 1 to 2 per week, with episodes that always included nausea, vomiting, photophobia, and phonophobia. In addition, the average duration of each episode was 1 to 3 days before her receiving CSMT. The person also noted that the use of her pain-relieving medication was also reduced by 100% (Table 3).

 

Table 3 Summary of Key Changes for this Case

Table 3: Summary of key changes for this case.

 

Migraines are a common and debilitating condition; yet because they have an uncertain etiology, the most appropriate treatment regime is often unclear.[16] Previous etiological models described vascular causes of migraine, where episodes seem to be initiated by a decreased blood flow to the cerebrum followed by extracranial vasodilation during the headache phase.[8] However, other etiological models seem connected with vascular changes related to neurologic changes and associated serotonergic disturbances.[9] Therefore, previous treatments have focused on pharmacological modification of blood flow or serotonin antagonist block.[17]

 

Studies examining the role of the cervical spine to headache (ie, �cervicogenic headache�) have been well described in the literature.[18-30] However, the relation of the cervical spine to migraine is less well documented.[10-15] Previous studies by this author have demonstrated an apparent reduction in migraines after CSMT.[10,11] In addition, other studies have suggested that CSMT may be an effective intervention for migraine.[14,15] Although, previous studies have some limitations (inaccurate diagnosis, overlapping symptoms, inadequate control groups), the level of evidence gives support for CSMT in migraine treatment.[11] However, practitioners need to be critically aware of potential overlap of diagnoses when reviewing migraine research or case studies on effectiveness of their treatment.[18-22] This is especially important in comparison of migraine patients who may be suitable for chiropractic manipulative therapy.[23-28]

 

Between 40% and 66% of patients with migraine, particularly those with severe or frequent migraine attacks, do not seek help from a physician.[29] Among those who do, many do not continue regular physician visits.[30] This may be due to patients’ perceived lack of empathy from the physician and a belief that physicians cannot effectively treat migraine. In a 1999 British survey, 17% of 9770 migraineurs had not consulted a physician because they believed their condition would not be taken seriously; and 8% had not seen a physician because they believed existing migraine medications were ineffective.[30] The most common reason for not seeking a physician’s advice (cited by 76% of patients) was the patients’ belief that they did not need a physician’s opinion to treat their migraine attacks.

 

The case was presented to assist practitioners making a more informed decision on the treatment of choice for migraines. The outcome of this case is also relevant in relation to other research that concludes that CSMT is a very effective treatment for some people. Practitioners could consider CSMT for migraine based on the following:

 

  • 1) Limitation of passive neck movements.
  • 2) Changes in neck muscle contour, texture, or response to active and passive stretching and contraction.
  • 3) Abnormal tenderness of the suboccipital area.
  • 4) Neck pain before or at the onset of the migraine.
  • 5) Initial response to CSMT.

 

As with all case reports, results are limited in application to larger populations. Careful clinical decision making should be used when applying these results to other patients and clinical situations.

 

Conclusion

 

This case demonstrates that some migraine sufferers may respond well with manual therapies, which includes CSMT. Therefore, migraine patients who have not received a trial of CSMT should be encouraged to consider this treatment and assess any potential response. Where there are no contraindications to CSMT, an initial trial of treatment may be warranted. Following evidence-based medicine guidelines, medical practitioners should discuss CSMT with migraine patients as an option for treatment.[31,32] Subsequent studies should address this issue and the role that CSMT has in migraine management.

 

In conclusion, amigraine is a debilitating and intense type of headache which is often accompanied by a variety of other symptoms. Although still misunderstood today, doctors of chiropractic have shown that a spinal misalignment, or subluxation may trigger migraine headaches. According to the article above, chiropractic care may effectively help individuals who suffer from migraine headaches. However, further research studies are required.�Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC:�Neck Pain Treatment El Paso, TX Chiropractor

 

 

MORE TOPICS: EXTRA EXTRA: El Paso, Tx | Athletes

 

Blank
References
1.�Bigal M.E., Lipton R.B., Stewart W.F. The epidemiology and impact of migraine.�Curr Neurol Neurosci Rep.�2004;4(2):98�104.�[PubMed]
2.�Lipton R.B., Stewart W.F., Diamond M.L., Diamond S., Reed M. Prevalence and burden of migraine in the United States: data from the American Migraine Study 11.�Headache.�2001;41:646�657.�[PubMed]
3.�Alexander L.�Migraine in the workplace. Brainwaves.�Australian Brain Foundation; Hawthorn, Victoria: 2003. pp. 1�4.
4.�Lipton R.B., Bigal M.E. The epidemiology of migraine.�Am J Med.�2005;118(Suppl 1):3S�10S.[PubMed]
5.�Lipton R.B., Bigal M.E. Migraine: epidemiology, impact, and risk factors for progression.�Headache.�2005;45(Suppl 1):S3�S13.�[PubMed]
6.�Stewart W.F., Lipton R.B. Migraine headache: epidemiology and health care utilization.�Cephalalgia.�1993;13(suppl 12):41�46.�[PubMed]
7.�Headache Classification Committee of the International Headache, Society Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain.�Cephalgia.�2004;24(Suppl. 1):1�151.[PubMed]
8.�Goadsby P.J., Lipton R.B., Ferrari M.D. Migraine�current understanding and treatment.�N Engl J Med.�2002;346:257�263.�[PMID 11807151]�[PubMed]
9.�Goadsby P.J. The scientific basis of medication choice in symptomatic migraine treatment.�Can J Neurol Sci.�1999;26(suppl 3):S20�S26.�[PubMed]
10.�Tuchin P.J., Pollard H., Bonello R. A randomized controlled trial of chiropractic spinal manipulative therapy for migraine.�J Manipulative Physiol Ther.�2000;23:91�95.�[PubMed]
11.�Tuchin P.J. The efficacy of chiropractic spinal manipulative therapy (SMT) in the treatment of migraine�a pilot study.�Aust Chiropr Osteopath.�1997;6:41�47.�[PMC free article][PubMed]
12.�Tuchin P.J., Bonello R. Classic migraine or not classic migraine, that is the question.�Aust Chiropr Osteopath.�1996;5:66�74.�[PMC free article][PubMed]
13.�Tuchin P.J., Scwafer T., Brookes M. A case study of chronic headaches.�Aust Chiropr Osteopath.�1996;5:47�53.�[PMC free article][PubMed]
14.�Nelson C.F., Bronfort G., Evans R., Boline P., Goldsmith C., Anderson A.V. The efficacy of spinal manipulation, amitriptyline and the combination of both therapies for the prophylaxis of migraine headache.�J Manipulative Physiol Ther.�1998;21:511�519.�[PubMed]
15.�Parker G.B., Tupling H., Pryor D.S. A controlled trial of cervical manipulation for migraine.�Aust NZ J Med.�1978;8:585�593.�[PubMed]
16.�Dowson A.J., Lipscome S., Sender J. New guidelines for the management of migraine in primary care.�Curr Med Res Opin.�2002;18:414�439.�[PubMed]
17.�Ferrari M.D., Roon K.I., Lipton R.B. Oral triptans (serotonin 5-HT1B/1D agonists) in acute migraine treatment: a meta-analysis of 53 trials.�Lancet.�2001;358:1668�1675.�[PubMed]
18.�Sjasstad O., Saunte C., Hovdahl H., Breivek H., Gronback E. Cervical headache: an hypothesis.�Cephalgia.�1983;3:249�256.
19.�Vernon H.T. Spinal manipulation and headache of cervical origin.�J Manipulative Physiol Ther.�1989;12:455�468.�[PubMed]
20.�Sjasstad O., Fredricksen T.A., Stolt-Nielsen A. Cervicogenic headache, C2 rhizopathy, and occipital neuralgia: a connection.�Cephalgia.�1986;6:189�195.�[PubMed]
21.�Bogduk N. Cervical causes of headache and dizziness. In: Greive G.P., editor.�Modern manual therapy of the vertebral column.�2nd ed. Edinburgh; Churchill Livingstone: 1994. pp. 317�331.
22.�Jull G.A. Cervical headache: a review. In: Greive GP, editor.�Modern manual therapy of the vertebral column.�2nd ed. Edinburgh; Churchill Livingstone: 1994. pp. 333�346.
23.�Boline P.D., Kassak K., Bronfort G. Spinal manipulations vs. amitriptyline for the treatment of chronic tension-type headaches: a randomized clinical trial.�J Manipulative Physiol Ther.�1995;18:148�154.[PubMed]
24.�Vernon H., Steiman I., Hagino C. Cervicogenic dysfunction in muscle contraction headache and migraine: a descriptive study.�J Manipulative Physiol Ther.�1992;15:418�429.�[PubMed]
25.�Kidd R., Nelson C. Musculoskeletal dysfunction of the neck in migraine and tension headache.�Headache.�1993;33:566�569.�[PubMed]
26.�Whittingham W., Ellis W.S., Molyneux T.P. The effect of manipulation (Toggle recoil technique) for headaches with upper cervical joint dysfunction: a case study.�J Manipulative Physiol Ther.�1994;17:369�375.�[PubMed]
27.�Jull G., Trott P., Potter H., Zito G., Shirley D., Richardson C. A randomized controlled trial of exercise and spinal manipulation for cervicogenic headache.�Spine.�2002;27:1835�1843.�[PubMed]
28.�Bronfort G, Nilsson N, Assendelft WJJ, Bouter L, Goldsmith C, Evans R, et al. Non-invasive physical treatments for chronic headache (a Cochrane review). In: The Cochrane Library Issue 2 2003. Oxford: Update Software.
29.�Dowson A., Jagger S. The UK migraine patient survey: quality of life and treatment.�Curr Med Res Opin.�1999;15:241�253.�[PubMed]
30.�Solomon G.D., Price K.L. Burden of migraine: a review of its socioeconomic impact.�Pharmacoeconomics.�1997;11(Suppl 1):1�10.�[PubMed]
31.�Bronfort G., Assendelft W.J.J., Evans R., Haas M., Bouter L. Efficacy of spinal manipulation for chronic headache: a systematic review.�J Manipulative Physiol Ther.�2001;24:457�466.�[PubMed]
32.�Vernon H.T. Spinal manipulation in the management of tension-type migraine and cervicogenic headaches: the state of the evidence.�Top Clin Chiropr.�2002;9:14�21.
Close Accordion
Psychology, Headache, Back Pain, Chronic Pain and Chiropractic in El Paso, TX

Psychology, Headache, Back Pain, Chronic Pain and Chiropractic in El Paso, TX

Everyone experiences pain from time to time. Pain is a physical feeling of discomfort caused by injury or illness. When you pull a muscle or cut your finger, for instance, a signal is sent through the nerve roots to the brain, signaling you that something is wrong in the body. Pain may be different for everyone and there are several ways of feeling and describing pain. After an injury or illness heals, the pain will subside, however, what happens if the pain continues even after you’ve healed?

 

Chronic pain is often defined as any pain which lasts more than 12 weeks. Chronic pain can range from mild to severe and it can be the result of previous injury or surgery, migraine and headache, arthritis, nerve damage, infection and fibromyalgia. Chronic pain can affect an individual’s emotional and mental disposition, making it more difficult to relieve the symptoms. Research studies have demonstrated that psychological interventions can assist the chronic pain recovery process. Several healthcare professionals, like a doctor of chiropractic, can provide chiropractic care together with psychological interventions to help restore the overall health and wellness of their patients. The purpose of the following article is to demonstrate the role of psychological interventions in the management of patients with chronic pain, including headache and back pain.

 

 

The Role of Psychological Interventions in the Management of Patients with Chronic Pain

 

Abstract

 

Chronic pain can be best understood from a biopsychosocial perspective through which pain is viewed as a complex, multifaceted experience emerging from the dynamic interplay of a patient�s physiological state, thoughts, emotions, behaviors, and sociocultural influences. A biopsychosocial perspective focuses on viewing chronic pain as an illness rather than disease, thus recognizing that it is a subjective experience and that treatment approaches are aimed at the management, rather than the cure, of chronic pain. Current psychological approaches to the management of chronic pain include interventions that aim to achieve increased self-management, behavioral change, and cognitive change rather than directly eliminate the locus of pain. Benefits of including psychological treatments in multidisciplinary approaches to the management of chronic pain include, but are not limited to, increased self-management of pain, improved pain-coping resources, reduced pain-related disability, and reduced emotional distress � improvements that are effected via a variety of effective self-regulatory, behavioral, and cognitive techniques. Through implementation of these changes, psychologists can effectively help patients feel more in command of their pain control and enable them to live as normal a life as possible despite pain. Moreover, the skills learned through psychological interventions empower and enable patients to become active participants in the management of their illness and instill valuable skills that patients can employ throughout their lives.

 

Keywords: chronic pain management, psychology, multidisciplinary pain treatment, cognitive behavioral therapy for pain

 

Dr Jimenez White Coat

Dr. Alex Jimenez’s Insight

Chronic pain has previously been determined to affect the psychological health of those with persistent symptoms, ultimately altering their overall mental and emotional disposition. In addition, patients with overlapping conditions, including stress, anxiety and depression, can make treatment a challenge. The role of chiropractic care is to restore as well as maintain and improve the original alignment of the spine through the use of spinal adjustments and manual manipulations. Chiropractic care allows the body to naturally heal itself without the need for drugs/medications and surgical interventions, although these can be referred to by a chiropractor if needed. However, chiropractic care focuses on the body as a whole, rather than on a single injury and/or condition and its symptoms. Spinal adjustments and manual manipulations, among other treatment methods and techniques commonly used by a chiropractor, require awareness of the patient’s mental and emotional disposition in order to effectively provide them with overall health and wellness. Patients who visit my clinic with emotional distress from their chronic pain are often more susceptible to experience psychological issues as a result. Therefore, chiropractic care can be a fundamental psychological intervention for chronic pain management, along with those demonstrated below.

 

Introduction

 

Pain is a ubiquitous human experience. It is estimated that approximately 20%�35% of adults experience chronic pain.[1,2] The National Institute of Nursing Research reports that pain affects more Americans than diabetes, heart disease, and cancer combined.[3] Pain has been cited as the primary reason to seek medical care in the United States.[4] Furthermore, pain relievers are the second most commonly prescribed medications in physicians� offices and emergency rooms.[5] Further solidifying the importance of adequate assessment of pain, the Joint Commission on the Accreditation of Healthcare Organizations issued a mandate requiring that pain be evaluated as the fifth vital sign during medical visits.[6]

 

The International Association for the Study of Pain (IASP) defines pain as �an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage�.[7] The IASP�s definition highlights the multidimensional and subjective nature of pain, a complex experience that is unique to each individual. Chronic pain is typically differentiated from acute pain based on its chronicity or persistence, its physiological maintenance mechanisms, and/or its detrimental impact on an individual�s life. Generally, it is accepted that pain that persists beyond the expected period of time for tissue healing following an injury or surgery is considered chronic pain. However, the specific timeframe constituting an expected healing period is variable and often difficult to ascertain. For ease of classification, certain guidelines suggest that pain persisting beyond a 3�6 month time window is considered chronic pain.[7] Nevertheless, classification of pain based solely on duration is a strictly practical and, in some instances, arbitrary criterion. More commonly, additional factors such as etiology, pain intensity, and impact are considered alongside duration when classifying chronic pain. An alternative way to characterize chronic pain has been based on its physiological maintenance mechanism; that is, pain that is thought to emerge as a result of peripheral and central reorganization. Common chronic pain conditions include musculoskeletal disorders, neuropathic pain conditions, headache pain, cancer pain, and visceral pain. More broadly, pain conditions may be primarily nociceptive (producing mechanical or chemical pain), neuropathic (resulting from nerve damage), or central (resulting from dysfunction in the neurons of the central nervous system).[8]

 

Unfortunately, the experience of pain is frequently characterized by undue physical, psychological, social, and financial suffering. Chronic pain has been recognized as the leading cause of long-term disability in the working- age American population.[9] Because chronic pain affects the individual at multiple domains of his/her existence it also constitutes an enormous financial burden to our society. The combined direct and indirect costs of pain have been estimated to range from $125 billion to $215 billion, annually.[10,11] The widespread implications of chronic pain include increased reports of emotional distress (eg, depression, anxiety, and frustration), increased rates of pain-related disability, pain-related alterations in cognition, and reduced quality of life. Thus, chronic pain can be best understood from a biopsychosocial perspective through which pain is viewed as a complex, multifaceted experience emerging from the dynamic interplay of a patient�s physiological state, thoughts, emotions, behaviors, and sociocultural influences.

 

Pain Management

 

Given the widespread prevalence of pain and its multi-dimensional nature, an ideal pain management regimen will be comprehensive, integrative, and interdisciplinary. Current approaches to the management of chronic pain have increasingly transcended the reductionist and strictly surgical, physical, or pharmacological approach to treatment. Current approaches recognize the value of a multidisciplinary treatment framework that targets not only nociceptive aspects of pain but also cognitive-evaluative, and motivational-affective aspects alongside equally unpleasant and impacting sequelae. The interdisciplinary management of chronic pain typically includes multimodal treatments such as combinations of analgesics, physical therapy, behavioral therapy, and psychological therapy. The multimodal approach more adequately and comprehensively addresses pain management at the molecular, behavioral, cognitive-affective, and functional levels. These approaches have been shown to lead to superior and long-lasting subjective and objective outcomes including pain reports, mood, restoration of daily functioning, work status, and medication or health care use; multimodal approaches have also been shown to be more cost-effective than unimodal approaches.[12,13] The focus of this review will be specifically on elucidating the benefits of psychology in the management of chronic pain.

 

Dr. Jimenez performing physical therapy on a patient.

 

Patients will typically initially present to a physician�s office in the pursuit of a cure or treatment for their ailment/acute pain. For many patients, depending on the etiology and pathology of their pain alongside biopsychosocial influences on the pain experience, acute pain will resolve with the passage of time, or following treatments aimed at targeting the presumed cause of pain or its transmission. Nonetheless, some patients will not achieve resolution of their pain despite numerous medical and complementary interventions and will transition from an acute pain state to a state of chronic, intractable pain. For instance, research has demonstrated that approximately 30% of patients presenting to their primary-care physician for complaints related to acute back pain will continue to experience pain and, for many others, severe activity limitations and suffering 12 months later.[14] As pain and its consequences continue to develop and manifest in diverse aspects of life, chronic pain may become primarily a biopsychosocial problem, whereby numerous biopsychosocial aspects may serve to perpetuate and maintain pain, thus continuing to negatively impact the affected individual�s life. It is at this point that the original treatment regimen may diversify to include other therapeutic components, including psychological approaches to pain management.

 

Psychological approaches for the management of chronic pain initially gained popularity in the late 1960s with the emergence of Melzack and Wall�s �gate-control theory of pain�[15] and the subsequent �neuromatrix theory of pain�.[16] Briefly, these theories posit that psychosocial and physiological processes interact to affect perception, transmission, and evaluation of pain, and recognize the influence of these processes as maintenance factors involved in the states of chronic or prolonged pain. Namely, these theories served as integral catalysts for instituting change in the dominant and unimodal approach to the treatment of pain, one heavily dominated by strictly biological perspectives. Clinicians and patients alike gained an increasing recognition and appreciation for the complexity of pain processing and maintenance; consequently, the acceptance of and preference for multidimensional conceptualizations of pain were established. Currently, the biopsychosocial model of pain is, perhaps, the most widely accepted heuristic approach to understanding pain.[17] A biopsychosocial perspective focuses on viewing chronic pain as an illness rather than disease, thus recognizing that it is a subjective experience and that treatment approaches are aimed at the management, rather than the cure, of chronic pain.[17] As the utility of a broader and more comprehensive approach to the management of chronic pain has become evident, psychologically-based interventions have witnessed a remarkable rise in popularity and recognition as adjunct treatments. The types of psychological interventions employed as part of a multidisciplinary pain treatment program vary according to therapist orientation, pain etiology, and patient characteristics. Likewise, research on the effectiveness of psychologically based interventions for chronic pain has shown variable, albeit promising, results on key variables studied. This overview will briefly describe frequently employed psychologically based treatment options and their respective effectiveness on key outcomes.

 

Current psychological approaches to the management of chronic pain include interventions that aim to achieve increased self-management, behavioral change, and cognitive change rather than directly eliminate the locus of pain. As such, they target the frequently overlooked behavioral, emotional, and cognitive components of chronic pain and factors contributing to its maintenance. Informed by the framework offered by Hoffman et al[18] and Kerns et al,[19] the following frequently employed psychologically-based treatment domains are reviewed: psychophysiological techniques, behavioral approaches to treatment, cognitive behavioral therapy, and acceptance-based interventions.

 

Psychophysiological Techniques

 

Biofeedback

 

Biofeedback is a learning technique through which patients learn to interpret feedback (in the form of physiological data) regarding certain physiological functions. For instance, a patient may use biofeedback equipment to learn to recognize areas of tension in their body and subsequently learn to relax those areas to reduce muscular tension. Feedback is provided by a variety of measurement instruments that can yield information about brain electrical activity, blood pressure, blood flow, muscle tone, electrodermal activity, heart rate, and skin temperature, among other physiological functions in a rapid manner. The goal of biofeedback approaches is for the patient to learn how to initiate physiological self-regulatory processes by achieving voluntary control over certain physiological responses to ultimately increase physiological flexibility through greater awareness and specific training. Thus a patient will use specific self-regulatory skills in an attempt to reduce an undesired event (eg, pain) or maladaptive physiological reactions to an undesired event (eg, stress response). Many psychologists are trained in biofeedback techniques and provide these services as part of therapy. Biofeedback has been designated as an efficacious treatment for pain associated with headache and temporomandibular disorders (TMD).[20] A meta-analysis of 55 studies revealed that biofeedback interventions (including various biofeedback modalities) yielded significant improvements with regard to frequency of migraine attacks and perceptions of headache management self-efficacy when compared to control conditions.[21] Studies have provided empirical support for biofeedback for TMD, albeit more robust improvements with regard to pain and pain-related disability have been found for protocols that combine biofeedback with cognitive behavioral skills training, under the assumption that a combined treatment approach more comprehensively addresses the gamut of biopsychosocial problems that may be encountered as a result of TMD.[22]

 

Behavioral Approaches

 

Relaxation Training

 

It is generally accepted that stress is a key factor involved in the exacerbation and maintenance of chronic pain.[16,23] Stress can be predominantly of an environmental, physical, or psychological/emotional basis, though typically these mechanisms are intricately intertwined. The focus of relaxation training is to reduce tension levels (physical and mental) through activation of the parasympathetic nervous system and through attainment of greater awareness of physiological and psychological states, thereby achieving reductions in pain and increasing control over pain. Patients can be taught several relaxation techniques and practice them individually or in conjunction with one another, as well as adjuvant components to other behavioral and cognitive pain management techniques. The following are brief descriptions of relaxation techniques commonly taught by psychologists specializing in the management of chronic pain.

 

Diaphragmatic breathing. Diaphragmatic breathing is a basic relaxation technique whereby patients are instructed to use the muscles of their diaphragm as opposed to the muscles of their chest to engage in deep breathing exercises. Breathing by contracting the diaphragm allows the lungs to expand down (marked by expansion of abdomen during inhalation) and thus increase oxygen intake.[24]

 

Progressive muscle relaxation (PMR). PMR is characterized by engaging in a combination of muscle tension and relaxation exercises of specific muscles or muscle groups throughout the body.[25] The patient is typically instructed to engage in the tension/relaxation exercises in a sequential manner until all areas of the body have been addressed.

 

Autogenic training (AT). AT is a self-regulatory relaxation technique in which a patient repeats a phrase in conjunction with visualization to induce a state of relaxation.[26,27] This method combines passive concentration, visualization, and deep breathing techniques.

 

Visualization/Guided imagery. This technique encourages patients to use all of their senses in imagining a vivid, serene, and safe environment to achieve a sense of relaxation and distraction from their pain and pain-related thoughts and sensations.[27]

 

Collectively, relaxation techniques have generally been found to be beneficial in the management of a variety of types of acute and chronic pain conditions as well as in the management of important pain sequelae (eg, health-related quality of life).[28�31] Relaxation techniques are usually practiced in conjunction with other pain management modalities, and there is considerable overlap in the presumed mechanisms of relaxation and biofeedback, for instance.

 

Operant Behavior Therapy

 

Operant behavior therapy for chronic pain is guided by the original operant conditioning principles proposed by Skinner[32] and refined by Fordyce[33] to be applicable to pain management. The main tenets of the operant conditioning model as it relates to pain hold that pain behavior can eventually evolve into and be maintained as chronic pain manifestations as a result of positive or negative reinforcement of a given pain behavior as well as punishment of more adaptive, non-pain behavior. If reinforcement and the ensuing consequences occur with sufficient frequency, they can serve to condition the behavior, thus increasing the likelihood of repeating the behavior in the future. Therefore, conditioned behaviors occur as a product of learning of the consequences (actual or anticipated) of engaging in the given behavior. An example of a conditioned behavior is continued use of medication � a behavior that results from learning through repeated associations that taking medication is followed by removal of an aversive sensation (pain). Likewise, pain behaviors (eg, verbal expressions of pain, low activity levels) can be become conditioned behaviors that serve to perpetuate chronic pain and its sequelae. Treatments that are guided by operant behavior principles aim to extinguish maladaptive pain behaviors through the same learning principles that these may have been established by. In general, treatment components of operant behavior therapy include graded activation, time contingent medication schedules, and use of reinforcement principles to increase well behaviors and decrease maladaptive pain behaviors.

 

Graded activation. Psychologists can implement graded activity programs for chronic pain patients who have vastly reduced their activity levels (increasing likelihood of physical deconditioning) and subsequently experience high levels of pain upon engaging in activity. Patients are instructed to safely break the cycle of inactivity and deconditioning by engaging in activity in a controlled and time-limited fashion. In this manner, patients can gradually increase the length of time and intensity of activity to improve functioning. Psychologists can oversee progress and provide appropriate reinforcement for compliance, correction of misperceptions or misinterpretations of pain resulting from activity, where appropriate, and problem-solve barriers to adherence. This approach is frequently embedded within cognitive-behavioral pain management treatments.

 

Time-contingent medication schedules. A psychologist can be an important adjunct healthcare provider in overseeing the management of pain medications. In some cases, psychologists have the opportunity for more frequent and in-depth contact with patients than physicians and thus can serve as valuable collaborators of an integrated multidisciplinary treatment approach. Psychologists can institute time-contingent medication schedules to reduce the likelihood of dependence on pain medications for attaining adequate control over pain. Furthermore, psychologists are well equipped to engage patients in important conversations regarding the importance of proper adherence to medications and medical recommendations and problem-solve perceived barriers to safe adherence.

 

Fear-avoidance. The fear-avoidance model of chronic pain is a heuristic most frequently applied in the context of chronic low back pain (LBP).[34] This model draws largely from the operant behavior principles described previously. In essence, the fear-avoidance model posits that when acute pain states are repeatedly misinterpreted as danger signals or signs of serious injury, patients may be at risk of engaging in fear-driven avoidance behaviors and cognitions that further reinforce the belief that pain is a danger signal and perpetuate physical deconditioning. As the cycle continues, avoidance may generalize to broader types of activity and result in hypervigilance of physical sensations characterized by misinformed catastrophic interpretations of physical sensations. Research has shown that a high degree of pain catastrophizing is associated with maintenance of the cycle.[35] Treatments aimed at breaking the fear-avoidance cycle employ systematic graded exposure to feared activities to disconfirm the feared, often catastrophic, consequences of engaging in activities. Graded exposure is typically supplemented with psychoeducation about pain and cognitive restructuring elements that target maladaptive cognitions and expectations about activity and pain. Psychologists are in an excellent position to execute these types of interventions that closely mimic exposure treatments traditionally used in the treatment of some anxiety disorders.

 

Though specific graded exposure treatments have been shown to be effective in the treatment of complex regional pain syndrome type I (CRPS-1)[36] and LBP[37] in single-case designs, a larger-scale randomized controlled trial comparing systematic graded exposure treatment combined with multidisciplinary pain program treatment with multidisciplinary pain program treatment alone and with a wait-list control group found that the two active treatments resulted in significant improvements on outcome measures of pain intensity, fear of movement/injury, pain self-efficacy, depression, and activity level.[38] Results from this trial suggest that both interventions were associated with significant treatment effectiveness such that the graded exposure treatment did not appear to result in additional treatment gains.[38] A cautionary note in the interpretation of these results highlights that the randomized controlled trial (RCT) included a variety of chronic pain conditions that extended beyond LBP and CRPS-1 and did not exclusively include patients with high levels of pain-related fear; the interventions were also delivered in group formats rather than individual formats. Although in-vivo exposure treatments are superior at reducing pain catastrophizing and perceptions of harmfulness of activities, exposure treatments seem to be as effective as graded activity interventions in improving functional disability and chief complaints.[39] Another clinical trial compared the effectiveness of treatment-based classification (TBC) physical therapy alone to TBC augmented with graded activity or graded exposure for patients with acute and sub-acute LBP.[40] Outcomes revealed that there were no differences in 4-week and 6-month outcomes for reduction of disability, pain intensity, pain catastrophizing, and physical impairment among treatment groups, although graded exposure and TBC yielded larger reductions in fear-avoidance beliefs at 6 months.[40] Findings from this clinical trial suggest that enhancing TBC with graded activity or graded exposure does not lead to improved outcomes with regard to measures associated with the development of chronic LBP beyond improvements achieved with TBC alone.[40]

 

Cognitive-Behavioral Approaches

 

Cognitive-behavioral therapy (CBT) interventions for chronic pain utilize psychological principles to effect adaptive changes in the patient�s behaviors, cognitions or evaluations, and emotions. These interventions are generally comprised of basic psychoeducation about pain and the patient�s particular pain syndrome, several behavioral components, coping skills training, problem-solving approaches, and a cognitive restructuring component, though the exact treatment components vary according to the clinician. Behavioral components may include a variety of relaxation skills (as reviewed in the behavioral approaches section), activity pacing instructions/graded activation, behavioral activation strategies, and promotion of resumption of physical activity if there is a significant history of activity avoidance and subsequent deconditioning. The primary aim in coping skills training is to identify current maladaptive coping strategies (eg, catastrophizing, avoidance) that the patient is engaging in alongside their use of adaptive coping strategies (eg, use of positive self-statements, social support). As a cautionary note, the degree to which a strategy is adaptive or maladaptive and the perceived effectiveness of particular coping strategies varies from individual to individual.[41] Throughout treatment, problem-solving techniques are honed to aid patients in their adherence efforts and to help them increase their self-efficacy. Cognitive restructuring entails recognition of current maladaptive cognitions the patient is engaging in, challenging of the identified negative cognitions, and reformulation of thoughts to generate balanced, adaptive alternative thoughts. Through cognitive restructuring exercises, patients become increasingly adept at recognizing how their emotions, cognitions, and interpretations modulate their pain in positive and negative directions. As a result, it is presumed that the patients will attain a greater perception of control over their pain, be better able to manage their behavior and thoughts as they relate to pain, and be able to more adaptively evaluate the meaning they ascribe to their pain. Additional components sometimes included in a CBT intervention include social skills training, communication training, and broader approaches to stress management. Via a pain-oriented CBT intervention, many patients profit from improvements with regard to their emotional and functional well-being, and ultimately their global perceived health-related quality of life.

 

Dr. Alex Jimenez engaging in fitness exercise and physical activity.

 

CBT interventions are delivered within a supportive and empathetic environment that strives to understand the patient�s pain from a biopsychosocial perspective and in an integrated manner. Therapists see their role as �teachers� or �coaches� and the message communicated to patients is that of learning to better manage their pain and improve their daily function and quality of life as opposed to aiming to cure or eradicate the pain. The overarching goal is to increase the patients� understanding of their pain and their efforts to manage pain and its sequelae in a safe and adaptive manner; therefore, teaching patients to self-monitor their behavior, thoughts, and emotions is an integral component of therapy and a useful strategy to enhance self-efficacy. Additionally, the therapist endeavors to foster an optimistic, realistic, and encouraging environment in which the patient can become increasingly skilled at recognizing and learning from their successes and learning from and improving upon unsuccessful attempts. In this manner, therapists and patients work together to identify patient successes, barriers to adherence, and to develop maintenance and relapse-prevention plans in a constructive, collaborative, and trustworthy atmosphere. An appealing feature of the cognitive behavioral approach is its endorsement of the patient as an active participant of his/her pain rehabilitation or management program.

 

Research has found CBT to be an effective treatment for chronic pain and its sequelae as marked by significant changes in various domains (ie, measures of pain experience, mood/affect, cognitive coping and appraisal, pain behavior and activity level, and social role function) when compared with wait-list control conditions.[42] When compared with other active treatments or control conditions, CBT has resulted in notable improvements, albeit smaller effects (effect size ~ 0.50), with regard to pain experience, cognitive coping and appraisal, and social role function.[42] A more recent meta-analysis of 52 published studies compared behavior therapy (BT) and CBT against treatment as usual control conditions and active control conditions at various time-points.[43] This meta-analysis concluded that their data did not lend support for BT beyond improvements in pain immediately following treatment when compared with treatment as usual control conditions.[43] With regard to CBT, they concluded that CBT has limited positive effects for pain disability, and mood; nonetheless, there are insufficient data available to investigate the specific influence of treatment content on selected outcomes.[43] Overall, it appears that CBT and BT are effective treatment approaches to improve mood; outcomes that remain robust at follow-up data points. However, as highlighted by several reviews and meta-analyses, a critical factor to consider in evaluating the effectiveness of CBT for the management of chronic pain is centered on issues of effective delivery, lack of uniform treatment components, differences in delivery across clinicians and treatment populations, and variability in outcome variables of interest across research trials.[13] Further complicating the interpretation of effectiveness findings are patient characteristics and additional variables that may independently affect treatment outcome.

 

Acceptance-Based Approaches

 

Acceptance-based approaches are frequently identified as third-wave cognitive-behavioral therapies. Acceptance and commitment therapy (ACT) is the most common of the acceptance-based psychotherapies. ACT emphasizes the importance of facilitating the client�s progress toward attaining a more valued and fulfilling life by increasing psychological flexibility rather than strictly focusing on restructuring cognitions.[44] In the context of chronic pain, ACT targets ineffective control strategies and experiential avoidance by fostering techniques that establish psychological flexibility. The six core processes of ACT include: acceptance, cognitive defusion, being present, self as context, values, and committed action.[45] Briefly, acceptance encourages chronic pain patients to actively embrace pain and its sequelae rather than attempt to change it, in doing so encouraging the patient to cease a futile fight directed at the eradication of their pain. Cognitive defusion (deliteralization) techniques are employed to modify the function of thoughts rather than to reduce their frequency or restructure their content. In this manner, cognitive defusion may simply alter the undesirable meaning or function of negative thoughts and thus decrease the attachment and subsequent emotional and behavioral response to such thoughts. The core process of being present emphasizes a non-judgmental interaction between the self and private thoughts and events. Values are utilized as guides for electing behaviors and interpretations that are characterized by those values an individual strives to instantiate in everyday life. Finally, through committed action, patients can realize behavior changes aligned with individual values. Thus, ACT utilizes the six core principles in conjunction with one another to take a holistic approach toward increasing psychological flexibility and decreasing suffering. Patients are encouraged to view pain as inevitable and accept it in a nonjudgmental manner so that they can continue to derive meaning from life despite the presence of pain. The interrelated core processes exemplify mindfulness and acceptance processes and commitment and behavior change processes.[45]

 

Results of research on the effectiveness of ACT-based approaches for the management of chronic pain are promising, albeit still warranting further evaluation. A RCT comparing ACT with a waitlist control condition reported significant improvements in pain catastrophizing, pain-related disability, life satisfaction, fear of movements, and psychological distress that were maintained at the 7 month follow-up.[46] A larger trial reported significant improvements for pain, depression, pain-related anxiety, disability, medical visits, work status, and physical performance.[47] A recent meta-analysis evaluating acceptance-based interventions (ACT and mindfulness-based stress reduction) in patients with chronic pain found that, in general, acceptance-based therapies lead to favorable outcomes for patients with chronic pain.[48] Specifically, the meta-analysis revealed small to medium effect sizes for pain intensity, depression, anxiety, physical wellbeing, and quality of life, with smaller effects found when controlled clinical trials were excluded and only RCTs were included in the analyses.[48] Other acceptance-based interventions include contextual cognitive-behavioral therapy and mindfulness-based cognitive therapy, though empirical research on the effectiveness of these therapies for the management of chronic pain is still in its infancy.

 

Expectations

 

An important and vastly overlooked common underlying element of all treatment approaches is consideration of the patient�s expectation for treatment success. Despite the numerous advances in the formulation and delivery of effective multidisciplinary treatments for chronic pain, relatively little emphasis has been placed on recognizing the importance of expectations for success and on focusing efforts on enhancement of patients� expectations. The recognition that placebo for pain is characterized by active properties leading to reliable, observable, and quantifiable changes with neurobiological underpinnings is currently at the vanguard of pain research. Numerous studies have confirmed that, when induced in a manner that optimizes expectations (via manipulation of explicit expectations and/or conditioning), analgesic placebos can result in observable and measurable changes in pain perception at a conscious self-reported level as well as a neurological pain-processing level.[49,50] Analgesic placebos have been broadly defined as simulated treatments or procedures that occur within a psychosocial context and exert effects on an individual�s experience and/or physiology.[51] The current conceptualization of placebo emphasizes the importance of the psychosocial context within which placebos are embedded. Underlying the psychosocial context and ritual of treatment are patients� expectations. Therefore, it is not surprising that the placebo effect is intricately embedded in virtually every treatment; as such, clinicians and patients alike will likely benefit from recognition that therein lies an additional avenue by which current treatment approaches to pain can be enhanced.

 

It has been proposed that outcome expectancies are core influences driving the positive changes attained through the various modes of relaxation training, hypnosis, exposure treatments, and many cognitive-oriented therapeutic approaches. Thus, a sensible approach to the management of chronic pain capitalizes on the power of patients� expectations for success. Regrettably, too often, health care providers neglect to directly address and emphasize the importance of patients� expectations as integral factors contributing to successful management of chronic pain. The zeitgeist in our society is that of mounting medicalization of ailments fueling the general expectation that pain (even chronic pain) ought to be eradicated through medical advancements. These all too commonly held expectations leave many patients disillusioned with current treatment outcomes and contribute to an incessant search for the �cure�. Finding the �cure� is the exception rather than the rule with respect to chronic pain conditions. In our current climate, where chronic pain afflicts millions of Americans annually, it is in our best interest to instill and continue to advocate a conceptual shift that instead focuses on effective management of chronic pain. A viable and promising route to achieving this is to make the most of patients� positive (realistic) expectations and educate pain patients as well as the lay public (20% of whom will at some future point become pain patients) on what constitutes realistic expectations regarding the management of pain. Perhaps, this can occur initially through current, evidence-based education regarding placebo and nonspecific treatment effects such that patients can correct misinformed beliefs they may have previously held. Subsequently clinicians can aim to enhance patients� expectations within treatment contexts (in a realistic fashion) and minimize pessimistic expectations that deter from treatment success, therefore, learning to enhance their current multidisciplinary treatments through efforts guided at capitalizing on the improvements placebo can yield, even within an �active treatment�. Psychologists can readily address these issues with their patients and help them become advocates of their own treatment success.

 

Emotional Concomitants of Pain

 

An often challenging aspect of the management of chronic pain is the unequivocally high prevalence of comorbid emotional distress. Research has demonstrated that depression and anxiety disorders are upward to three times more prevalent among chronic pain patients than among the general population.[52,53] Frequently, pain patients with psychiatric comorbidities are labeled �difficult patients� by healthcare providers, possibly diminishing the quality of care they will receive. Patients with depression have poorer outcomes for both depression and pain treatments, compared with patients with single diagnoses of pain or depression.[54,55] Psychologists are remarkably suited to address most of the psychiatric comorbidities typically encountered in chronic pain populations and thus improve pain treatment outcomes and decrease the emotional suffering of patients. Psychologists can address key symptoms (eg, anhedonia, low motivation, problem-solving barriers) of depression that readily interfere with treatment participation and emotional distress. Moreover, irrespective of a psychiatric comorbidity, psychologists can help chronic pain patients process important role transitions they may undergo (eg, loss of job, disability), interpersonal difficulties they may be encountering (eg, sense of isolation brought about by pain), and emotional suffering (eg, anxiety, anger, sadness, disappointment) implicated in their experience. Thus, psychologists can positively impact the treatment course by reducing the influence of emotional concomitants that are addressed as part of therapy.

 

Conclusion

 

Benefits of including psychological treatments in multidisciplinary approaches to the management of chronic pain are abundant. These include, but are not limited to, increased self-management of pain, improved pain-coping resources, reduced pain-related disability, and reduced emotional distress-improvements that are effected via a variety of effective self-regulatory, behavioral, and cognitive techniques. Through implementation of these changes, a psychologist can effectively help patients feel more in command of their pain control and enable them to live as normal a life as possible despite pain. Moreover, the skills learned through psychological interventions empower and enable patients to become active participants in the management of their illness and instill valuable skills that patients can employ throughout their lives. Additional benefits of an integrated and holistic approach to the management of chronic pain may include increased rates of return to work, reductions in health care costs, and increased health-related quality of life for millions of patients throughout the world.

 

Image of a trainer providing training advice to a patient.

 

Footnotes

 

Disclosure: No conflicts of interest were declared in relation to this paper.

 

In conclusion, psychological interventions can be effectively used to help relieve symptoms of chronic pain along with the use of other treatment modalities, such as chiropractic care. Furthermore, the research study above demonstrated how specific psychological interventions can improve the outcome measures of chronic pain management. Information referenced from the National Center for Biotechnology Information (NCBI). The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

Curated by Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Back Pain

 

According to statistics, approximately 80% of people will experience symptoms of back pain at least once throughout their lifetimes. Back pain is a common complaint which can result due to a variety of injuries and/or conditions. Often times, the natural degeneration of the spine with age can cause back pain. Herniated discs occur when the soft, gel-like center of an intervertebral disc pushes through a tear in its surrounding, outer ring of cartilage, compressing and irritating the nerve roots. Disc herniations most commonly occur along the lower back, or lumbar spine, but they may also occur along the cervical spine, or neck. The impingement of the nerves found in the low back due to injury and/or an aggravated condition can lead to symptoms of sciatica.

 

blog picture of cartoon paperboy big news

 

EXTRA IMPORTANT TOPIC: Managing Workplace Stress

 

 

MORE IMPORTANT TOPICS: EXTRA EXTRA: Car Accident Injury Treatment El Paso, TX Chiropractor

 

Blank
References
1.�Boris-Karpel S. Policy and practice issues in pain management. In: Ebert MH, Kerns RD, editors.�Behavioral and psychopharmacologic pain management.�New York: Cambridge University Press; 2010. pp. 407�433.
2.�Harstall C, Ospina M. How prevalent is chronic pain?�Pain: Clinical Updates.�2003;11(2):1�4.
3.�National Institutes of Health.�Fact sheet: pain management.�2007. [Accessed 30 Mar 2011]. Available from:�www.ninr.nih.gov/NR/rdonlyres/DC0351A6-7029-4FE0-BEEA-7EFC3D1B23AE/0/Pain.pdf.
4.�Abbot FV, Fraser MI. Use and abuse of over-the-counter analgesic agents.�J Psychiatry Neurosci.�1998;23(1):13�34.�[PMC free article][PubMed]
5.�Schappert SM, Burt CW. Ambulatory care visits to physician offices, hospital outpatient departments, and emergency departments: United States, 2001�02.�Vital Health Stat.�2006;13(159):1�66.�[PubMed]
6.�Joint Commission of Accreditation of Healthcare Organizations.�Pain assessment and management: an organizational approach.�Oakbrook, IL: 2000.
7.�Merskey H, Bogduk N, editors.�Classification of chronic pain.�2nd edition. Seattle, WA: IASP Press; 1994. Task Force on Taxonomy of the IASP Part III: Pain terms, a current list with definitions and notes on usage; pp. 209�214.
8.�Woessner J. A conceptual model of pain: treatment modalities.�Pract Pain Manag.�2003;3(1):26�36.
9.�Loeser JD. Economic implications of pain management.�Acta Anaesthesiol Scand.�1999;43(9):957�959.[PubMed]
10.�National Research Council.�Musculoskeletal disorders and the workplace: low back and upper extremities.�Washington, DC: National Academy Press; 2001.�[PubMed]
11.�US Bureau of the Census.�Statistical abstract of the United States: 1996.�116th edition. Washington, DC:
12.�Flor H, Fydrich T, Turk DC. Efficacy of multidisciplinary pain treatment centers: a meta-analytic review.�Pain.�1992;49(2):221�230.�[PubMed]
13.�McCracken LM, Turk DC. Behavioral and cognitive-behavioral treatment for chronic pain: outcome, predictors of outcome, and treatment process.�Spine.�2002;27(22):2564�2573.�[PubMed]
14.�Von Korff M, Saunders K. The course of back pain in primary care.�Spine.�1996;21(24):2833�2837.[PubMed]
15.�Melzack R, Wall PD. Pain mechanisms: a new theory.�Science.�1965;150(699):971�979.�[PubMed]
16.�Melzack R. Pain and stress: a new perspective. In: Gatchel RJ, Turk DC, editors.�Psychosocial factors in pain: critical perspectives.�New York: Guilford Press; 1999. pp. 89�106.
17.�Gatchel RJ. The conceptual foundations of pain management: historical overview. In: Gatchel RJ, editor.�Clinical essentials of pain management.�Washington, DC: American Psychological Association; 2005. pp. 3�16.
18.�Hoffman BM, Papas RK, Chatkoff DK, Kerns RD. Meta-analysis of psychological interventions for chronic low back pain.�Health Psychol.�2007;26(1):1�9.�[PubMed]
19.�Kerns RD, Sellinger J, Goodin BR. Psychological treatment of chronic pain.�Annu Rev Clin Psychol.�2010 Sep 27;�[Epub ahead of print]
20.�Yucha C, Montgomery D.�Evidence-based practice in biofeedback and neurofeedback.�Wheat Ridge, CO: AAPB; 2008.
21.�Nestoriuc Y, Martin A. Efficacy of biofeedback for migraine: a meta-analysis.�Pain.�2007;128(1�2):111�127.�[PubMed]
22.�Gardea MA, Gatchel RJ, Mishra KD. Long-term efficacy of biobehavioral treatment of temporomandibular disorders.�J Behav Med.�2001;24(4):341�359.�[PubMed]
23.�Turk DC, Monarch ES. Biopsychosocial perspective on chronic pain. In: Turk DC, Gatchel RJ, editors.�Psychosocial approaches to pain management: a practitioner�s handbook.�2nd edition. New York: Guilford Press; 2002. pp. 3�29.
24.�Philips HC.�The psychological management of chronic pain: a treatment manual.�New York: Springer Publishing; 1988. Orientation: chronic pain and the self-management approach; pp. 45�60.
25.�Bernstein DA, Borkovek TD.�Progressive muscle relaxation training: a manual for helping professions.Champaign, IL: Research Press; 1973.
26.�Linden W.�Autogenic training: a clinical guide.�New York: Guilford; 1990.
27.�Jamison RN.�Mastering chronic pain: a professional�s guide to behavioral treatment.�Sarasota, FL: Professional Resource Press; 1996.
28.�Baird CL, Sands L. Effect of guided imagery with relaxation on health-related quality of life in older women with osteoarthritis.�Res Nurs Health.�2006;29(5):442�451.�[PubMed]
29.�Carroll D, Seers K. Relaxation for the relief of chronic pain: a systematic review.�J Adv Nurs.�1998;27(3):476�487.�[PubMed]
30.�Morone NE, Greco CM. Mind-body interventions for chronic pain in older adults: a structured review.�Pain Med.�2007;8(4):359�375.�[PubMed]
31.�Mannix LK, Chandurkar RS, Rybicki LA, Tusek DL, Solomon GD. Effect of guided imagery on quality of life for patients with chronic tension-type headache.�Headache.�1999;39(5):326�334.�[PubMed]
32.�Skinner BF.�Science and human behavior.�New York: Free Press; 1953.
33.�Fordyce WE.�Behavioural methods for chronic pain and illness.�London, UK: The CV Mosby Company; 1976.
34.�Vlayen JW, Linton SJ. Fear-avoidance and its consequences in chronic musculoskeletal pain: a state of the art.�Pain.�2000;85(3):317�332.�[PubMed]
35.�Vlayen JW, de Jong J, Sieben J, Crombez G. Graded exposure�in vivo�for pain-related fear. In: Turk DC, Gatchel RJ, editors.�Psychosocial approaches to pain management: a practitioner�s handbook.�2nd edition. New York: Guilford Press; 2002. pp. 210�233.
36.�De Jong JR, Vlaeyen JW, Onghena P, Cuypers C, den Hollander M, Ruijgrok J. Reduction of pain-related fear in complex regional pain syndrome type I: the application of graded exposure in vivo.�Pain.�2005;116(3):264�275.�[PubMed]
37.�Boersma K, Linton S, Overmeer T, Jansson M, Vlaeyen J, de Jong J. Lowering fear-avoidance and enhancing function through exposure in vivo: a multiple baseline study across six patients with back pain.�Pain.�2004;108(1�2):8�16.�[PubMed]
38.�Bliokas VV, Cartmill TK, Nagy BJ. Does systematic graded exposure in vivo enhance outcomes in multidisciplinary chronic pain management groups?�Clin J Pain.�2007;23(4):361�374.�[PubMed]
39.�Leeuw M, Goossens ME, van Breukelen GJ, et al. Exposure in vivo versus operant graded activity in chronic low back pain patients: results of a randomized controlled trial.�Pain.�2008;138(1):192�207.[PubMed]
40.�George SZ, Zeppieri G, Cere AL, et al. A randomized trial of behavioral physical therapy interventions for acute and sub-acute low back pain (NCT00373867)�Pain.�2008;140(1):145�157.�[PMC free article][PubMed]
41.�Roditi D, Waxenberg LB, Robinson ME. Frequency and perceived effectiveness of coping define important subgroups of patients with chronic pain.�Clin J Pain.�2010;26(8):677�682.�[PubMed]
42.�Morley S, Eccleston C, Williams A. Systematic review and meta-analysis of randomized controlled trials of cognitive behaviour therapy and behaviour therapy for chronic pain in adults, excluding headache.�Pain.�1999;80(1�2):1�13.�[PubMed]
43.�Eccleston C, Williams AC, Morley S. Psychological therapies for the management of chronic pain (excluding headache) in adults.�Cochrane Database Syst Rev.�2009;(2):CD007407.�[PubMed]
44.�Blackledge JT, Hayes SC. Emotion regulation in acceptance and commitment therapy.�J Clin Psychol.�2001;57(2):243�255.�[PubMed]
45.�Hayes SC, Luoma JB, Bond FW, Masuda A, Lillis J. Acceptance and commitment therapy: model, processes, and outcomes.�Behav Res Ther.�2006;44(1):1�25.�[PubMed]
46.�Wicksell RK, Ahlqvist J, Bring A, Melin L, Olsson GL. Can exposure strategies improve functioning and life satisfaction in people with chronic pain and whiplash-associated disorders (WAD)? A randomized controlled trial.�Cogn Behav Ther.�2008;37(3):169�182.�[PubMed]
47.�Vowles KE, McCracken LM. Acceptance and values-based action in chronic pain: a study of treatment effectiveness and process.�J Consult Clinl Psychol.�2008;76(3):397�407.�[PubMed]
48.�Veehof MM, Oskam MJ, Schreurs KMG, Bohlmeijer ET. Acceptance-based interventions for the treatment of chronic pain: a systematic review and meta-analysis.�Pain.�2011;152(3):533�542.�[PubMed]
49.�Wager TD, Rilling JK, Smith EE, et al. Placebo-induced changes in�f�MRI in the anticipation and experience of pain.�Science.�2004;303(5661):1162�1167.�[PubMed]
50.�Price DD, Craggs J, Verne GN, Perlstein WM, Robinson ME. Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable-bowel syndrome patients.�Pain.�2007;127(1�2):63�72.�[PubMed]
51.�Price D, Finniss D, Benedetti F. A comprehensive review of the placebo effect: recent advances and current thought.�Annu Rev Psychol.�2008;59:565�590.�[PubMed]
52.�Holroyd KA. Recurrent headache disorders. In: Dworkin RH, Breitbart WS, editors.�Psychosocial aspects of pain: a handbook for health care providers.�Seattle, WA: IASP Press; 2004. pp. 370�403.
53.�Fishbain DA. Approaches to treatment decisions for psychiatric comorbitity in the management of the chronic pain patient.�Med Clin North Am.�1999;83(3):737�760.�[PubMed]
54.�Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity � a literature review.�Arch Intern Med.�2003;163(20):2433�2445.�[PubMed]
55.�Poleshuck EL, Talbot NL, Su H, et al. Pain as a predictor of depression treatment outcomes in women with childhood sexual abuse.�Compr Psychiatry.�2009;50(3):215�220.�[PMC free article][PubMed]
Close Accordion