ClickCease
+1-915-850-0900 spinedoctors@gmail.com
Select Page

Wellness

Clinic Wellness Team. A key factor to spine or back pain conditions is staying healthy. Overall wellness involves a balanced diet, appropriate exercise, physical activity, restful sleep, and a healthy lifestyle. The term has been applied in many ways. But overall, the definition is as follows.

It is a conscious, self-directed, and evolving process of achieving full potential. It is multidimensional, bringing together lifestyles both mental/spiritual and the environment in which one lives. It is positive and affirms that what we do is, in fact, correct.

It is an active process where people become aware and make choices towards a more successful lifestyle. This includes how a person contributes to their environment/community. They aim to build healthier living spaces and social networks. It helps in creating a person’s belief systems, values, and a positive world perspective.

Along with this comes the benefits of regular exercise, a healthy diet, personal self-care, and knowing when to seek medical attention. Dr. Jimenez’s message is to work towards being fit, being healthy, and staying aware of our collection of articles, blogs, and videos.


Nutritional Regulation for Inflammatory Bowel Disease

Nutritional Regulation for Inflammatory Bowel Disease

Inflammatory bowel disease is an umbrella term used to describe a group of gastrointestinal diseases characterized by chronic, ongoing inflammation of all or part of the gastrointestinal tract, or GI tract, such as Crohn’s disease, or CD, and ulcerative colitis, UC. While many factors have been determined to cause inflammatory bowel disease, research studies have concluded that nutrition can increase the risk of gastrointestinal diseases, including inflammatory bowel disease.

 

How does nutrition affect inflammatory bowel disease?

 

Nutrient deficiencies are common among individuals with inflammatory bowel disease, or IBD. Both complete parenteral and enteral nutrition can provide significant supportive treatment for patients with IBD, however, in adults those alone may not be helpful as a form of primary treatment. Clinical intervention using omega-3 polyunsaturated fatty acids found in fish oil could be beneficial for the nutritional regulation of IBD patients and recent research studies have emphasized the function of PPAR on NF?B action towards its possible beneficial impact on dietary lipids for overall intestinal functioning.

 

Nutrition in Inflammatory Bowel Disease

 

Specific antibody isotypes of essential milk proteins are located in both UC and CD patients. In CD, the antibodies are associated with disease. Although cultural origin, rather than the IBD disease condition, seems to be the primary cause of lactose intolerance, the avoidance of milk products by IBD patients is extensive. Lack of breast-feeding during infancy was associated with CD but not UC. Additionally, higher carbohydrate intake was recorded in CD. Others have suggested a deficiency of dietary fiber as a predisposing factor for IBD. The growth of UC has also been associated with higher intakes of polyunsaturated fatty acids (MUFA), n6 polyunsaturated fatty acids (n6 PUFA), sulphur-containing diets and vitamin B6.

 

Deficiencies

 

Inflammatory bowel disease is related to several nutritional deficiencies, such as anemia, hypoalbuminemia, hypomagnesia, hypocalcemia and hypophosphatemia, including deficiencies in folic acid, niacin, vitamins A, B12, C, and D, in addition to deficiencies of iron, magnesium and zinc. Further research studies are needed to determine if reduced levels of micronutrients are of some significance to the result of gastrointestinal diseases. Plasma antioxidant concentrations are lower in IBD patients, especially those who have an active form of the disease. Antioxidant action, evaluated by measuring selenium levels and erythrocyte glutathione peroxidase activity, is inversely associated with inflammatory biomarkers, such as TNF?. Hyperhomocysteinemia is more prevalent in patients with IBD, and is characterized with low serum as well as reduced concentrations of vitamin B12, folate and B6.

 

Several mechanisms are responsible for the malnutrition observed in IBD patients. Primarily, there’s a decline in the oral consumption of nutrients due to abdominal pain and anorexia. Second, the mucosal inflammation and related diarrhea reduces blood, protein, minerals, electrolytes and trace components. Paradoxically, multiple resections or bacterial vaginosis might have an adverse nutrient impact; and finally, herbal remedies may also cause malnutrition. By way of instance, sulfasalazine reduces nitric acid absorption, and corticosteroids reduce calcium absorption in addition to negatively impacting protein metabolism. Alterations in energy metabolism may result in increased resting energy expenditure and lipid oxidation in patients with inflammatory bowel disease. There are many effects of malnutrition and each can decrease bone mineral density, in addition to growth retardation and delayed sexual maturity in children. Osteoporosis may also be involved as a consequence of pro-inflammatory cytokine profiles.

 

Nutritional treatment may take on a range of forms including Total Parenteral Nutrition (TPN) and Complete Enteral Nutrition (TEN). The diets used are elemental, polymeric, and exception diets. Elemental diets contain nutrients reduced to their fundamental elements: amino acids, such as proteins, sugar for carbs, and short-chain triglycerides, such as fats. Polymeric formulas contain entire proteins, such as nitrogen, glucose polymers for carbs and long-chain triglycerides for fat or starch.

 

Total Parenteral Nutrition (TPN)

 

Using TPN for the nutritional regulation of IBD is based on specific theoretical benefits, including how: gut rest may be beneficial since it reduces motor and transportation function in the diseased intestine; a drop in antigenic stimulation can remove the immunologic reactions to food, particularly in the presence of diminished intestinal permeability; TPN promotes protein synthesis in the gut which provides cell renewal, recovery, and alteration of impaired immunocompetence.

 

Researchers demonstrated remission rates of 63 percent to 89 percent with TPN in a large retrospective collection of CD patients which were difficult in standard medical management. But, Matuchansky et al highlighted that there have been high relapse rates (40%-62%) after two decades. It’s been implied that TPN be utilized exclusively in a nutritionally supportive function. In UC, there’s absolutely no evidence for much better results with TPN. Though remission rates of 9 percent to 80 percent are reported, TPN provided to patients with acute colitis seems to be beneficial as perioperative nutritional support. In patients with moderate disease, TPN is significantly more successful but isn’t better than steroid treatment, and so the invasiveness and price of TPN are unjustified. Any advantages related to TPN might be due to the nutritional regulation, rather than gut rest, as gut rest alone has no impact on disease activity. Accordingly, though TPN has a function in patients using a non-functioning gut or the brief gut syndrome because of excess resections, TPN is of limited use as a primary treatment in IBD. This isn’t designed to be an extensive breakdown of TPN, but it needs to be cautioned that in specialist centers, TPN is associated with complications like sepsis and cholestatic liver disease.

 

Total enteral nutrition (TEN), Elemental & Defined Formula Diets

 

TEN prevents possible toxic dietary variables and antigenic exposure, because there are only amino acids, sugar or oligosaccharides and very low lipid content. TEN isn’t associated with cholestasis, biliary sludge or gallstone formation, as can be observed with TPN. Atrophy of the small intestinal mucosa was discovered in animal models receiving long-term TPN, yet this atrophy is prevented with TEN. Additionally, a 6-wk TPN therapy in dogs led to marked decrease in pancreatic fat, a reduction in small intestinal mass as well as a decline in intestinal disaccharidase activity in puppies. Because of this, TEN is more preferable than TPN.

 

The subject of nutrition in gastrointestinal disorders which occur in IBD has been recently reviewd. In comparison to TPN, enteral nutrition yielded similar outcomes towards preventing and combating malnutrition. Though Voitk et al suggested that elemental diets could be an effective treatment for IBD, enteral nutrition as a primary therapy has failed to produce consistent results in several clinical trials. It’s correct that quite a few trials have shown remission levels in CD patients getting elemental diets, like the rates observed with prostate cancer treatment. But, it’s important to note that greater remission rates were detected in patients receiving steroid therapy versus standard diets when including all of the diet category fall outs (i.e., in an intent-to-treat foundation). The question remains concerning the best means of assessing the results when a sizable proportion of individuals receiving diet treatment fall out due to unpalatibility or intolerance. What’s more, a few research studies have demonstrated no distinction with elemental diets compared to steroid treatment. In children, elemental diets have been associated with higher linear gain, whereas in adults those diets maintain nitrogen equilibrium. The use of supplements in the context of pediatric onset illness was also reviewed. Therefore, enteral nutrition is simpler to use, is less costly, and it’s also a far better choice than TPN. Unfortunately, its unpalatability limits individual agreement, but with powerful encouragement this might be partly overcome.

 

The fat composition of enteral diets can influence the results that are obtained in the several clinical trials. Elemental diets include a reduced fat content, although a lot of healthier diets generally contain more fat, such as more lactic acid, which can be a precursor for the synthesis of possible pro-inflammatory eicosanoids.

 

Defined formula diets are often more palatable and more affordable than would be the elemental diets. When some researchers reported no gaps between utopian and defined formula diets in patients with severe CD, Giaffer et al discovered elemental diets are far more successful for active CD. A randomized double-blind study in Crohn’s patients revealed that elemental and polymeric, or characterized, diets differing only in their own source of nitrogen, were equally effective in lessening the Crohn’s disease activity index, or CDAI, also inducing clinical remission. Though defined formula diets supply less gut rest, they have the possible benefit of exposing the GI tract to the typical dietary substrates, which permit thereby for the complete manifestation of intestinal, biliary and pancreatic action. In animal research, it has also been discovered that luminal nutrition has trophic impacts on the intestine.

 

Can there be a beneficial effect of supplementing polymeric formulas with TGF-?1? In pediatric CD, reductions in pro-inflammatory cytokine concentrations and mRNA, paired with an up-regulation of TGF-? mRNA, was associated with enhanced macroscopic and microscopic mucosal inflammation. A meta-analysis along with a Cochrane review have demonstrated that in adults, corticosteroids are more effective than enteral diet treatment. It’s uncertain what is the use of supplements in adults with CD, even though there are some signs in Japan that enteral nutrition enjoys support as principal treatment. In contrast to this generally agreed part in adults of enteral nutrition being used to enhance the patient’s nutritional status because its principal advantage, in children with CD enteral nutrition has a far clearer benefit to enhance clinical, biochemical and growth parameters, and may as well have a steroid sparing effect.

 

Information referenced from the National Center for Biotechnology Information (NCBI) and the National University of Health Sciences. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

By Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

WELLNESS TOPIC: EXTRA EXTRA: Managing Workplace Stress

 

 

Blank
References
1.�Liu Y, van Kruiningen HJ, West AB, Cartun RW, Cortot A, Colombel JF. Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn’s disease.�Gastroenterology.�1995;108:1396�1404.�[PubMed]
2.�Sartor R.�Microbial factors in the pathogenesis of Crohn’s disease, ulcerative colitis and experimental intestinal inflammation.�Baltimore: Williams & Wilkins; 1995.
3.�Wakefield AJ, Ekbom A, Dhillon AP, Pittilo RM, Pounder RE. Crohn’s disease: pathogenesis and persistent measles virus infection.�Gastroenterology.�1995;108:911�916.�[PubMed]
4.�Sartor RB. Current concepts of the etiology and pathogenesis of ulcerative colitis and Crohn’s disease.�Gastroenterol Clin North Am.�1995;24:475�507.�[PubMed]
5.�Sartor RB. Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases.�Am J Gastroenterol.�1997;92:5S�11S.�[PubMed]
6.�MacDermott RP. Alterations in the mucosal immune system in ulcerative colitis and Crohn’s disease.�Med Clin North Am.�1994;78:1207�1231.�[PubMed]
7.�Podolsky DK. Inflammatory bowel disease (1)�N Engl J Med.�1991;325:928�937.�[PubMed]
8.�Podolsky DK. Inflammatory bowel disease (2)�N Engl J Med.�1991;325:1008�1016.�[PubMed]
9.�Yang H, Rotter J.�The genetics of inflammatory disease.�Baltimore: Williams & Wilkins; 1994.
10.�Wurzelmann JI, Lyles CM, Sandler RS. Childhood infections and the risk of inflammatory bowel disease.�Dig Dis Sci.�1994;39:555�560.�[PubMed]
11.�Knoflach P, Park BH, Cunningham R, Weiser MM, Albini B. Serum antibodies to cow’s milk proteins in ulcerative colitis and Crohn’s disease.�Gastroenterology.�1987;92:479�485.�[PubMed]
12.�De Palma GD, Catanzano C. Removable self-expanding metal stents: a pilot study for treatment of achalasia of the esophagus.�Endoscopy.�1998;30:S95�S96.�[PubMed]
13.�Bernstein CN, Ament M, Artinian L, Ridgeway J, Shanahan F. Milk tolerance in adults with ulcerative colitis.�Am J Gastroenterol.�1994;89:872�877.�[PubMed]
14.�Matsui T, Iida M, Fujishima M, Imai K, Yao T. Increased sugar consumption in Japanese patients with Crohn’s disease.�Gastroenterol Jpn.�1990;25:271.�[PubMed]
15.�Kelly DG, Fleming CR. Nutritional considerations in inflammatory bowel diseases.�Gastroenterol Clin North Am.�1995;24:597�611.�[PubMed]
16.�Geerling BJ, Dagnelie PC, Badart-Smook A, Russel MG, Stockbr�gger RW, Brummer RJ. Diet as a risk factor for the development of ulcerative colitis.�Am J Gastroenterol.�2000;95:1008�1013.�[PubMed]
17.�Dudrick SJ, Latifi R, Schrager R. Nutritional management of inflammatory bowel disease.�Surg Clin North Am.�1991;71:609�623.�[PubMed]
18.�D’Odorico A, Bortolan S, Cardin R, D’Inca’ R, Martines D, Ferronato A, Sturniolo GC. Reduced plasma antioxidant concentrations and increased oxidative DNA damage in inflammatory bowel disease.�Scand J Gastroenterol.�2001;36:1289�1294.�[PubMed]
19.�Reimund JM, Hirth C, Koehl C, Baumann R, Duclos B. Antioxidant and immune status in active Crohn’s disease. A possible relationship.�Clin Nutr.�2000;19:43�48.�[PubMed]
20.�Romagnuolo J, Fedorak RN, Dias VC, Bamforth F, Teltscher M. Hyperhomocysteinemia and inflammatory bowel disease: prevalence and predictors in a cross-sectional study.�Am J Gastroenterol.�2001;96:2143�2149.�[PubMed]
21.�Lewis JD, Fisher RL. Nutrition support in inflammatory bowel disease.�Med Clin North Am.�1994;78:1443�1456.�[PubMed]
22.�Azcue M, Rashid M, Griffiths A, Pencharz PB. Energy expenditure and body composition in children with Crohn’s disease: effect of enteral nutrition and treatment with prednisolone.�Gut.�1997;41:203�208.[PMC free article][PubMed]
23.�Mingrone G, Capristo E, Greco AV, Benedetti G, De Gaetano A, Tataranni PA, Gasbarrini G. Elevated diet-induced thermogenesis and lipid oxidation rate in Crohn disease.�Am J Clin Nutr.�1999;69:325�330.[PubMed]
24.�Bjarnason I, Macpherson A, Mackintosh C, Buxton-Thomas M, Forgacs I, Moniz C. Reduced bone density in patients with inflammatory bowel disease.�Gut.�1997;40:228�233.�[PMC free article][PubMed]
25.�Griffiths AM, Nguyen P, Smith C, MacMillan JH, Sherman PM. Growth and clinical course of children with Crohn’s disease.�Gut.�1993;34:939�943.�[PMC free article][PubMed]
26.�Fischer JE, Foster GS, Abel RM, Abbott WM, Ryan JA. Hyperalimentation as primary therapy for inflammatory bowel disease.�Am J Surg.�1973;125:165�175.�[PubMed]
27.�Reilly J, Ryan JA, Strole W, Fischer JE. Hyperalimentation in inflammatory bowel disease.�Am J Surg.�1976;131:192�200.�[PubMed]
28.�Ganem D, Schneider RJ. Hepadnaviridae: The viruses and their replication. In: Knipe DM, Howley PM, editors.�Fields Virology. Volume 2.�Philadelphia: Lippincott, Williams & Wilkins; 2001. pp. 2923�2969.
29.�Jones VA, Dickinson RJ, Workman E, Wilson AJ, Freeman AH, Hunter JO. Crohn’s disease: maintenance of remission by diet.�Lancet.�1985;2:177�180.�[PubMed]
30.�Suzuki I, Kiyono H, Kitamura K, Green DR, McGhee JR. Abrogation of oral tolerance by contrasuppressor T cells suggests the presence of regulatory T-cell networks in the mucosal immune system.�Nature.�1986;320:451�454.�[PubMed]
31.�Ostro MJ, Greenberg GR, Jeejeebhoy KN. Total parenteral nutrition and complete bowel rest in the management of Crohn’s disease.�JPEN J Parenter Enteral Nutr.�1985;9:280�287.�[PubMed]
32.�Matuchansky C. Parenteral nutrition in inflammatory bowel disease.�Gut.�1986;27 Suppl 1:81�84.[PMC free article][PubMed]
33.�Payne-James JJ, Silk DB. Total parenteral nutrition as primary treatment in Crohn’s disease–RIP?�Gut.�1988;29:1304�1308.�[PMC free article][PubMed]
34.�Shiloni E, Coronado E, Freund HR. Role of total parenteral nutrition in the treatment of Crohn’s disease.�Am J Surg.�1989;157:180�185.�[PubMed]
35.�Dickinson RJ, Ashton MG, Axon AT, Smith RC, Yeung CK, Hill GL. Controlled trial of intravenous hyperalimentation and total bowel rest as an adjunct to the routine therapy of acute colitis.�Gastroenterology.�1980;79:1199�1204.�[PubMed]
36.�McIntyre PB, Powell-Tuck J, Wood SR, Lennard-Jones JE, Lerebours E, Hecketsweiler P, Galmiche JP, Colin R. Controlled trial of bowel rest in the treatment of severe acute colitis.�Gut.�1986;27:481�485.[PMC free article][PubMed]
37.�Greenberg GR, Fleming CR, Jeejeebhoy KN, Rosenberg IH, Sales D, Tremaine WJ. Controlled trial of bowel rest and nutritional support in the management of Crohn’s disease.�Gut.�1988;29:1309�1315.[PMC free article][PubMed]
38.�Hughes CA, Bates T, Dowling RH. Cholecystokinin and secretin prevent the intestinal mucosal hypoplasia of total parenteral nutrition in the dog.�Gastroenterology.�1978;75:34�41.�[PubMed]
39.�Stratton RJ, Smith TR. Role of enteral and parenteral nutrition in the patient with gastrointestinal and liver disease.�Best Pract Res Clin Gastroenterol.�2006;20:441�466.�[PubMed]
40.�O’Sullivan M, O’Morain C. Nutrition in inflammatory bowel disease.�Best Pract Res Clin Gastroenterol.�2006;20:561�573.�[PubMed]
41.�Gonz�lez-Huix F, Fern�ndez-Ba�ares F, Esteve-Comas M, Abad-Lacruz A, Cabr� E, Acero D, Figa M, Guilera M, Humbert P, de Le�n R. Enteral versus parenteral nutrition as adjunct therapy in acute ulcerative colitis.�Am J Gastroenterol.�1993;88:227�232.�[PubMed]
42.�Voitk AJ, Echave V, Feller JH, Brown RA, Gurd FN. Experience with elemental diet in the treatment of inflammatory bowel disease. Is this primary therapy?�Arch Surg.�1973;107:329�333.�[PubMed]
43.�Axelsson C, Jarnum S. Assessment of the therapeutic value of an elemental diet in chronic inflammatory bowel disease.�Scand J Gastroenterol.�1977;12:89�95.�[PubMed]
44.�Lochs H, Steinhardt HJ, Klaus-Wentz B, Zeitz M, Vogelsang H, Sommer H, Fleig WE, Bauer P, Schirrmeister J, Malchow H. Comparison of enteral nutrition and drug treatment in active Crohn’s disease. Results of the European Cooperative Crohn’s Disease Study. IV.�Gastroenterology.�1991;101:881�888.[PubMed]
45.�Malchow H, Steinhardt HJ, Lorenz-Meyer H, Strohm WD, Rasmussen S, Sommer H, Jarnum S, Brandes JW, Leonhardt H, Ewe K. Feasibility and effectiveness of a defined-formula diet regimen in treating active Crohn’s disease. European Cooperative Crohn’s Disease Study III.�Scand J Gastroenterol.�1990;25:235�244.�[PubMed]
46.�O’Brien CJ, Giaffer MH, Cann PA, Holdsworth CD. Elemental diet in steroid-dependent and steroid-refractory Crohn’s disease.�Am J Gastroenterol.�1991;86:1614�1618.�[PubMed]
47.�Okada M, Yao T, Yamamoto T, Takenaka K, Imamura K, Maeda K, Fujita K. Controlled trial comparing an elemental diet with prednisolone in the treatment of active Crohn’s disease.�Hepatogastroenterology.�1990;37:72�80.�[PubMed]
48.�O’Mor�in C, Segal AW, Levi AJ. Elemental diet as primary treatment of acute Crohn’s disease: a controlled trial.�Br Med J (Clin Res Ed)�1984;288:1859�1862.�[PMC free article][PubMed]
49.�Raouf AH, Hildrey V, Daniel J, Walker RJ, Krasner N, Elias E, Rhodes JM. Enteral feeding as sole treatment for Crohn’s disease: controlled trial of whole protein v amino acid based feed and a case study of dietary challenge.�Gut.�1991;32:702�707.�[PMC free article][PubMed]
50.�Rocchio MA, Cha CJ, Haas KF, Randall HT. Use of chemically defined diets in the management of patients with acute inflammatory bowel disease.�Am J Surg.�1974;127:469�475.�[PubMed]
51.�Saverymuttu S, Hodgson HJ, Chadwick VS. Controlled trial comparing prednisolone with an elemental diet plus non-absorbable antibiotics in active Crohn’s disease.�Gut.�1985;26:994�998.�[PMC free article][PubMed]
52.�Teahon K, Bjarnason I, Pearson M, Levi AJ. Ten years’ experience with an elemental diet in the management of Crohn’s disease.�Gut.�1990;31:1133�1137.�[PMC free article][PubMed]
53.�Teahon K, Smethurst P, Pearson M, Levi AJ, Bjarnason I. The effect of elemental diet on intestinal permeability and inflammation in Crohn’s disease.�Gastroenterology.�1991;101:84�89.�[PubMed]
54.�Heuschkel RB, Menache CC, Megerian JT, Baird AE. Enteral nutrition and corticosteroids in the treatment of acute Crohn’s disease in children.�J Pediatr Gastroenterol Nutr.�2000;31:8�15.�[PubMed]
55.�Sanderson IR, Boulton P, Menzies I, Walker-Smith JA. Improvement of abnormal lactulose/rhamnose permeability in active Crohn’s disease of the small bowel by an elemental diet.�Gut.�1987;28:1073�1076.[PMC free article][PubMed]
56.�Sanderson IR, Udeen S, Davies PS, Savage MO, Walker-Smith JA. Remission induced by an elemental diet in small bowel Crohn’s disease.�Arch Dis Child.�1987;62:123�127.�[PMC free article][PubMed]
57.�Ruemmele FM, Roy CC, Levy E, Seidman EG. Nutrition as primary therapy in pediatric Crohn’s disease: fact or fantasy?�J Pediatr.�2000;136:285�291.�[PubMed]
58.�O’Morain C, O’Sullivan M. Nutritional support in Crohn’s disease: current status and future directions.�J Gastroenterol.�1995;30 Suppl 8:102�107.�[PubMed]
59.�Rigaud D, Cosnes J, Le Quintrec Y, Ren� E, Gendre JP, Mignon M. Controlled trial comparing two types of enteral nutrition in treatment of active Crohn’s disease: elemental versus polymeric diet.�Gut.�1991;32:1492�1497.�[PMC free article][PubMed]
60.�Royall D, Wolever TM, Jeejeebhoy KN. Evidence for colonic conservation of malabsorbed carbohydrate in short bowel syndrome.�Am J Gastroenterol.�1992;87:751�756.�[PubMed]
61.�Giaffer MH, North G, Holdsworth CD. Controlled trial of polymeric versus elemental diet in treatment of active Crohn’s disease.�Lancet.�1990;335:816�819.�[PubMed]
62.�Verma S, Kirkwood B, Brown S, Giaffer MH. Oral nutritional supplementation is effective in the maintenance of remission in Crohn’s disease.�Dig Liver Dis.�2000;32:769�774.�[PubMed]
63.�Levine GM, Deren JJ, Steiger E, Zinno R. Role of oral intake in maintenance of gut mass and disaccharide activity.�Gastroenterology.�1974;67:975�982.�[PubMed]
64.�Weser E, Heller R, Tawil T. Stimulation of mucosal growth in the rat ileum by bile and pancreatic secretions after jejunal resection.�Gastroenterology.�1977;73:524�529.�[PubMed]
65.�Fell JM, Paintin M, Arnaud-Battandier F, Beattie RM, Hollis A, Kitching P, Donnet-Hughes A, MacDonald TT, Walker-Smith JA. Mucosal healing and a fall in mucosal pro-inflammatory cytokine mRNA induced by a specific oral polymeric diet in paediatric Crohn’s disease.�Aliment Pharmacol Ther.�2000;14:281�289.�[PubMed]
66.�Souba WW, Smith RJ, Wilmore DW. Glutamine metabolism by the intestinal tract.�JPEN J Parenter Enteral Nutr.�1985;9:608�617.�[PubMed]
67.�Windmueller HG, Spaeth AE. Uptake and metabolism of plasma glutamine by the small intestine.�J Biol Chem.�1974;249:5070�5079.�[PubMed]
68.�Higashiguchi T, Hasselgren PO, Wagner K, Fischer JE. Effect of glutamine on protein synthesis in isolated intestinal epithelial cells.�JPEN J Parenter Enteral Nutr.�1993;17:307�314.�[PubMed]
69.�Burke DJ, Alverdy JC, Aoys E, Moss GS. Glutamine-supplemented total parenteral nutrition improves gut immune function.�Arch Surg.�1989;124:1396�1399.�[PubMed]
70.�Souba WW, Herskowitz K, Klimberg VS, Salloum RM, Plumley DA, Flynn TC, Copeland EM. The effects of sepsis and endotoxemia on gut glutamine metabolism.�Ann Surg.�1990;211:543�549; discussion 543-551;.�[PMC free article][PubMed]
71.�Den Hond E, Hiele M, Peeters M, Ghoos Y, Rutgeerts P. Effect of long-term oral glutamine supplements on small intestinal permeability in patients with Crohn’s disease.�JPEN J Parenter Enteral Nutr.�1999;23:7�11.�[PubMed]
72.�Akobeng AK, Miller V, Stanton J, Elbadri AM, Thomas AG. Double-blind randomized controlled trial of glutamine-enriched polymeric diet in the treatment of active Crohn’s disease.�J Pediatr Gastroenterol Nutr.�2000;30:78�84.�[PubMed]
73.�Jacobs LR, Lupton JR. Effect of dietary fibers on rat large bowel mucosal growth and cell proliferation.�Am J Physiol.�1984;246:G378�G385.�[PubMed]
74.�Spaeth G, Berg RD, Specian RD, Deitch EA. Food without fiber promotes bacterial translocation from the gut.�Surgery.�1990;108:240�246; discussion 246-247;.�[PubMed]
75.�Roediger WE, Moore A. Effect of short-chaim fatty acid on sodium absorption in isolated human colon perfused through the vascular bed.�Dig Dis Sci.�1981;26:100�106.�[PubMed]
76.�Sakata T. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors.�Br J Nutr.�1987;58:95�103.�[PubMed]
77.�Roediger WE. The colonic epithelium in ulcerative colitis: an energy-deficiency disease?�Lancet.�1980;2:712�715.�[PubMed]
78.�Chapman MA, Grahn MF, Boyle MA, Hutton M, Rogers J, Williams NS. Butyrate oxidation is impaired in the colonic mucosa of sufferers of quiescent ulcerative colitis.�Gut.�1994;35:73�76.[PMC free article][PubMed]
79.�Den Hond E, Hiele M, Evenepoel P, Peeters M, Ghoos Y, Rutgeerts P. In vivo butyrate metabolism and colonic permeability in extensive ulcerative colitis.�Gastroenterology.�1998;115:584�590.�[PubMed]
80.�Simpson EJ, Chapman MA, Dawson J, Berry D, Macdonald IA, Cole A. In vivo measurement of colonic butyrate metabolism in patients with quiescent ulcerative colitis.�Gut.�2000;46:73�77.[PMC free article][PubMed]
81.�Tappenden KA, Thomson AB, Wild GE, McBurney MI. Short-chain fatty acid-supplemented total parenteral nutrition enhances functional adaptation to intestinal resection in rats.�Gastroenterology.�1997;112:792�802.�[PubMed]
82.�Senagore AJ, MacKeigan JM, Scheider M, Ebrom JS. Short-chain fatty acid enemas: a cost-effective alternative in the treatment of nonspecific proctosigmoiditis.�Dis Colon Rectum.�1992;35:923�927.[PubMed]
83.�Segain JP, Raingeard de la Bl�ti�re D, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blotti�re HM, Galmiche JP. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease.�Gut.�2000;47:397�403.�[PMC free article][PubMed]
84.�Aslan A, Triadafilopoulos G. Fish oil fatty acid supplementation in active ulcerative colitis: a double-blind, placebo-controlled, crossover study.�Am J Gastroenterol.�1992;87:432�437.�[PubMed]
85.�Shoda R, Matsueda K, Yamato S, Umeda N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan.�Am J Clin Nutr.�1996;63:741�745.�[PubMed]
86.�Vilaseca J, Salas A, Guarner F, Rodr�guez R, Mart�nez M, Malagelada JR. Dietary fish oil reduces progression of chronic inflammatory lesions in a rat model of granulomatous colitis.�Gut.�1990;31:539�544.�[PMC free article][PubMed]
87.�Campos FG, Waitzberg DL, Habr-Gama A, Logullo AF, Noronha IL, Jancar S, Torrinhas RS, F�rst P. Impact of parenteral n-3 fatty acids on experimental acute colitis.�Br J Nutr.�2002;87 Suppl 1:S83�S88.[PubMed]
88.�Loeschke K, Ueberschaer B, Pietsch A, Gruber E, Ewe K, Wiebecke B, Heldwein W, Lorenz R. n-3 fatty acids only delay early relapse of ulcerative colitis in remission.�Dig Dis Sci.�1996;41:2087�2094.[PubMed]
89.�Belluzzi A, Brignola C, Campieri M, Pera A, Boschi S, Miglioli M. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease.�N Engl J Med.�1996;334:1557�1560.�[PubMed]
90.�Hawthorne AB, Daneshmend TK, Hawkey CJ, Belluzzi A, Everitt SJ, Holmes GK, Malkinson C, Shaheen MZ, Willars JE. Treatment of ulcerative colitis with fish oil supplementation: a prospective 12 month randomised controlled trial.�Gut.�1992;33:922�928.�[PMC free article][PubMed]
91.�Hillier K, Jewell R, Dorrell L, Smith CL. Incorporation of fatty acids from fish oil and olive oil into colonic mucosal lipids and effects upon eicosanoid synthesis in inflammatory bowel disease.�Gut.�1991;32:1151�1155.�[PMC free article][PubMed]
92.�Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma)�J Biol Chem.�1995;270:12953�12956.�[PubMed]
93.�Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs.�J Biol Chem.�1997;272:3406�3410.�[PubMed]
94.�Delerive P, Furman C, Teissier E, Fruchart J, Duriez P, Staels B. Oxidized phospholipids activate PPARalpha in a phospholipase A2-dependent manner.�FEBS Lett.�2000;471:34�38.�[PubMed]
95.�Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma.�Proc Natl Acad Sci USA.�1997;94:4318�4323.�[PMC free article][PubMed]
96.�Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta.�Proc Natl Acad Sci USA.�1997;94:4312�4317.�[PMC free article][PubMed]
97.�Mans�n A, Guardiola-Diaz H, Rafter J, Branting C, Gustafsson JA. Expression of the peroxisome proliferator-activated receptor (PPAR) in the mouse colonic mucosa.�Biochem Biophys Res Commun.�1996;222:844�851.�[PubMed]
98.�Desreumaux P, Ernst O, Geboes K, Gambiez L, Berrebi D, M�ller-Alouf H, Hafraoui S, Emilie D, Ectors N, Peuchmaur M, et al. Inflammatory alterations in mesenteric adipose tissue in Crohn’s disease.�Gastroenterology.�1999;117:73�81.�[PubMed]
99.�Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, Flanigan A, Murthy S, Lazar MA, Wu GD. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response.�J Clin Invest.�1999;104:383�389.�[PMC free article][PubMed]
100.�Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, Witztum JL, Auwerx J, Palinski W, Glass CK. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein.�Proc Natl Acad Sci USA.�1998;95:7614�7619.�[PMC free article][PubMed]
101.�Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, Delerive P, Fadel A, Chinetti G, Fruchart JC, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators.�Nature.�1998;393:790�793.�[PubMed]
102.�Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J. PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease.�Arterioscler Thromb Vasc Biol.�1999;19:546�551.�[PubMed]
103.�Delerive P, Martin-Nizard F, Chinetti G, Trottein F, Fruchart JC, Najib J, Duriez P, Staels B. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway.�Circ Res.�1999;85:394�402.�[PubMed]
104.�Sakai M, Matsushima-Hibiya Y, Nishizawa M, Nishi S. Suppression of rat glutathione transferase P expression by peroxisome proliferators: interaction between Jun and peroxisome proliferator-activated receptor alpha.�Cancer Res.�1995;55:5370�5376.�[PubMed]
105.�Zhou YC, Waxman DJ. STAT5b down-regulates peroxisome proliferator-activated receptor alpha transcription by inhibition of ligand-independent activation function region-1 trans-activation domain.�J Biol Chem.�1999;274:29874�29882.�[PubMed]
106.�Desreumaux P, Dubuquoy L, Nutten S, Peuchmaur M, Englaro W, Schoonjans K, Derijard B, Desvergne B, Wahli W, Chambon P, et al. Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies.�J Exp Med.�2001;193:827�838.�[PMC free article][PubMed]
107.�Lewis JD, Lichtenstein GR, Stein RB, Deren JJ, Judge TA, Fogt F, Furth EE, Demissie EJ, Hurd LB, Su CG, et al. An open-label trial of the PPAR-gamma ligand rosiglitazone for active ulcerative colitis.�Am J Gastroenterol.�2001;96:3323�3328.�[PubMed]
108.�G�ttlicher M, Widmark E, Li Q, Gustafsson JA. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.�Proc Natl Acad Sci USA.�1992;89:4653�4657.[PMC free article][PubMed]
Close Accordion
Assessment and Treatment of Tensor Fascia Lata

Assessment and Treatment of Tensor Fascia Lata

These assessment and treatment recommendations represent a synthesis of information derived from personal clinical experience and from the numerous sources which are cited, or are based on the work of researchers, clinicians and therapists who are named (Basmajian 1974, Cailliet 1962, Dvorak & Dvorak 1984, Fryette 1954, Greenman 1989, 1996, Janda 1983, Lewit 1992, 1999, Mennell 1964, Rolf 1977, Williams 1965).

 

Clinical Application of Neuromuscular Techniques: Tensor Fascia Lata

 

�Assessment of shortness in tensor fascia lata (TFL)

 

The test recommended is a modified form of Ober�s test (see Fig. 4.14).

 

Figure 4 14 Assessment for Shortness of TFL Modified Obers Test Image 1

 

Figure 4.14 Assessment for shortness of TFL � modified Ober�s test. When the hand supporting the flexed knee is removed the thigh should fall to the table if TFL is not short.

 

Patient is side-lying with back close to the edge of the table. The practitioner stands behind the patient, whose lower leg is flexed at hip and knee and held in this position, by the patient, for stability. The tested leg is supported by the practitioner, who must ensure that there is no hip flexion, which would nullify the test.

 

The leg is extended only to the point where the iliotibial band lies over the greater trochanter. The tested leg is held by the practitioner at ankle and knee, with the whole leg in its anatomical position, neither abducted nor adducted and not forward or backward of the body.

 

Box 4.5 Notes on TFL

 

  • Mennell (1964) and Liebenson (1996) say that TFL shortness can produce all the symptoms of acute and chronic sacroiliac problems.
  • Pain from TFL shortness can be localised to the posterior superior iliac spine (PSIS), radiating to the groin or down any aspect of the thigh to the knee.
  • Although the pain may arise in the sacroiliac (SI) joint, dysfunction in the joint may be caused and maintained by taut TFL structures.
  • Pain from the band itself can be felt in the lateral thigh, with referral to hip or knee.
  • TFL can be �riddled� with sensitive fibrotic deposits and trigger point activity.
  • There is commonly a posteriority of the ilium associated with short TFL.
  • TFL�s prime phasic activity (all postural structures also have some phasic function) is to assist the gluteals in abduction of the thigh.
  • If TFL and psoas are short they may, according to Janda, �dominate� the gluteals on abduction of the thigh, so that a degree of lateral rotation and flexion of the hip will be produced, rotating the pelvis backwards.
  • Rolf (1977) points out that persistent exercise such as cycling will shorten and toughen the fascial iliotibial band �until it becomes reminiscent of a steel cable�. This band crosses both hip and knee, and spatial compression allows it to squeeze and compress cartilaginous elements such as the menisci. Ultimately, it will no longer be able to compress, and rotational displacement at knee and hip will take place.

 

The practitioner carefully introduces flexion at the knee to 90�, without allowing the hip to flex, and then, holding just the ankle, allows the knee to fall towards the table. If TFL is normal, the thigh and knee will fall easily, with the knee contacting the table surface (unless unusual hip width, or thigh length prevent this).

 

If the upper leg remains aloft, with little sign of �falling� towards the table, then either the patient is not letting go or the TFL is short and does not allow it to fall. As a rule the band will palpate as tender under such conditions.

 

Lewit�s TFL Palpation

(Lewit 1999; see also functional assessment method in Ch. 5)

 

Patient is side-lying and practitioner stands facing the patient�s front, at hip level. The practitioner�s cephalad hand rests over the anterior superior iliac spine (ASIS) so that it can also palpate over the trochanter. It should be placed so that the fingers rest on the TFL and trochanter with the thumb on gluteus medius. The caudad hand rests on the mid-thigh to apply slight resistance to the patient�s effort to abduct the leg.

 

The patient�s table-side leg is slightly flexed to provide stability, and there should be a vertical line to the table between one ASIS and the other (i.e. no forwards or backwards �roll� of the pelvis). The patient abducts the upper leg (which should be extended at the knee and slightly hyperextended at the hip) and the practitioner should feel the trochanter �slip away� as this is done.

 

If, however, the whole pelvis is felt to move rather than just the trochanter, there is inappropriate muscular imbalance. (In balanced abduction gluteus comes into action at the beginning of the movement, with TFL operating later in the pure abduction of the leg. If there is an overactivity (and therefore shortness) of TFL, then there will be pelvic movement on the abduction, and TFL will be felt to come into play before gluteus.)

 

The abduction of the thigh movement will then be modified to include external rotation and flexion of the thigh (Janda 1996). This confirms a stressed postural structure (TFL), which implies shortness.

 

It is possible to increase the number of palpation elements involved by having the cephalad hand also palpate (with an extended small finger) quadratus lumborum during leg abduction. In a balanced muscular effort to lift the leg sideways, quadratus should not become active until the leg has been abducted to around 25�30�. When quadratus is overactive it will often start the abduction along with TFL, thus producing a pelvic tilt.�(See also Fig. 5.11A and B)

 

Method (a) Supine MET treatment of shortened TFL (Fig. 4.15) The patient lies supine with the unaffected leg flexed at hip and knee. The affected side leg is adducted to its barrier which necessitates it being brought under the opposite leg/foot.

 

Figure 4 15 MET Treatment of TFL Image 2

 

Figure 4.15 MET treatment of TFL (see Fig. 1.4 for description of isolytic variation). If a standard MET method is being used, the stretch will follow the isometric contraction in which the patient will attempt to move the right leg to the right against sustained resistance. It is important for the practitioner to maintain stability of the pelvis during the procedure. Note: the hand positions in this figure are a variation of those described in the text.

 

Using guidelines for acute and chronic problems, the structure will either be treated at, or short of, the barrier of resistance, using light or fairly strong isometric contractions for short (7 second) or long (up to 20 seconds) durations, using appropriate breathing patterns as described earlier in this chapter (Box 4.2).

 

The practitioner uses his trunk to stabilise the patient�s pelvis by leaning against the flexed (nonaffected side) knee. The practitioner�s caudad arm supports the affected leg so that the knee is stabilised by the hand. The other hand maintains a stabilising contact on the affected side ASIS.

 

The patient is asked to abduct the leg against resistance using minimal force. After the contraction ceases and the patient has relaxed using appropriate breathing patterns, the leg is taken to or through the new restriction barrier (into adduction past the barrier) to stretch the muscular fibres of TFL (the upper third of the structure).

 

Care should be taken to ensure that the pelvis is not tilted during the stretch. Stability is achieved by the practitioner increasing pressure against the flexed knee/thigh. This whole process is repeated until no further gain is possible.

 

Method (b) Alternative supine MET treatment of shortened TFL (Fig. 4.16) The patient adopts the same position as for psoas assessment, lying at the end of the table with non-tested side leg in full hip flexion and held by the patient, with the tested leg hanging freely, knee flexed.

 

Figure 4 16 MET Treatment of Psoas Using Grieves Method Image 3

 

Figure 4.16 MET treatment of psoas using Grieve�s method, in which there is placement of the patient�s foot, inverted, against the operator�s thigh. This allows a more precise focus of contraction into psoas when the hip is flexed against resistance.

 

The practitioner stands at the end of the table facing the patient so that his left lower leg (for a right-sided TFL treatment) can contact the patient�s foot. The practitioner�s left hand is placed on the patient�s distal femur and with this he introduces internal rotation of the thigh, and external rotation of the tibia (by means of light pressure on the distal foot from his lower leg).

 

During this process the practitioner senses for resistance (the movement should have an easy �springy� feel, not wooden or harsh) and observes for a characteristic depression or groove on the lateral thigh, indicating shortness of TFL.

 

This resistance barrier is identified and the leg held just short of it for a chronic problem, as the patient is asked to externally rotate the tibia, and to adduct the femur, against resistance, for 7�10 seconds. Following this the practitioner eases the leg into a greater degree of internal hip rotation and external tibial rotation, and holds this stretch for 10�30 seconds.

 

Method (c) Isolytic variation If an isolytic contraction is introduced in order to stretch actively the interface between elastic and non-elastic tissues, then there is a need to stabilise the pelvis more efficiently, either by use of wide straps or another pair of hands holding the ASIS downwards towards the table during the stretch.

 

The procedure consists of the patient attempting to abduct the leg as the practitioner overcomes the muscular effort, forcing the leg into adduction. The contraction/stretch should be rapid (2�3 seconds at most to complete). Repeat several times.

 

Method (d) Side-lying MET treatment of TFL The patient lies on the affected TFL side with the upper leg flexed at hip and knee and resting forward of the affected leg. The practitioner stands behind patient and uses caudad hand and arm to raise the affected leg (which is on the table) while stabilising the pelvis with the cephalad hand, or uses both hands to raise the affected leg into slight adduction (appropriate if strapping used to hold pelvis to table).

 

The patient contracts the muscle against resistance by trying to take the leg into abduction (towards the table) using breathing assistance as appropriate (see notes on breathing, Box 4.2). After the effort, on an exhalation, the practitioner lifts the leg into adduction beyond the barrier to stretch the interface between elastic and non-elastic tissues. Repeat as appropriate or modify to use as an isolytic contraction by stretching the structure past the barrier during the contraction.

 

Additional TFL Methods

 

Mennell has described superb soft tissue stretching techniques for releasing TFL. These involve a series of snapping actions applied by thumbs to the anterior fibres with patient side-lying, followed by a series of heel of hand thrusts across the long axis of the posterior TFL fibres.

 

Additional release of TFL contractions is possible by use of elbow or heel of hand �stripping� of the structure, neuromuscular deep tissue approaches (using thumb or a rubber-tipped T-bar) applied to the upper fibres and those around the knee, and specific deep tissue release methods. Most of these are distinctly uncomfortable and all require expert tuition.

 

Self-Treatment and Maintenance

 

The patient lies on her side, on a bed or table, with the affected leg uppermost and hanging over the edge (lower leg comfortably flexed). The patient may then introduce an isometric contraction by slightly lifting the hanging leg a few centimeters, and holding this position for 10 seconds, before slowly releasing and allowing gravity to take the leg towards the floor, so introducing a greater degree of stretch.

 

This is held for up to 30 seconds and the process is then repeated several times in order to achieve the maximum available stretch in the tight soft tissues. The counterforce in this isometric exercise is gravity.

 

Dr. Alex Jimenez offers an additional assessment and treatment of the hip flexors as a part of a referenced clinical application of neuromuscular techniques by Leon Chaitow and Judith Walker DeLany. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

By Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

WELLNESS TOPIC: EXTRA EXTRA: Managing Workplace Stress

 

 

Environmental Factors for Autoimmune Diseases

Environmental Factors for Autoimmune Diseases

It has currently been accepted that the interaction between environmental factors, and that of certain genes, can influence the destructive immune response characterized in many autoimmune diseases. As a matter of fact, approximately less than 10 percent of those people with a higher genetic susceptibility to disease may actually develop autoimmunity. This implies a solid environmental cause behind the beginning of the autoimmune process. Environmental factors have also been believed to likely affect the results of the process as well as the rate of development of autoimmune diseases. One theory is that intestinal luminal antigens absorbed through the gut might be involved in the pathogenesis of autoimmune diseases. The intestinal epithelium is the largest mucosal surface in the human body and it provides a connection between the external environment and the mammalian host.

 

What environmental factors cause autoimmune diseases?

 

Healthy, mature intestinal mucosa with its absolute tight junctions, or TJs, is the most significant barrier for the passage of macromolecules, as seen on Figure 1. In a physiological state, quantitatively small but immunologically active antigens can cross the mucosal barrier. These antigens are absorbed through the mucosa via two practical paths. The massive collection of absorbed proteins, amounting to about 90 percent, cross the intestinal barrier throughout the transcellular pathway followed by lysosomal degradation which converts the proteins into smaller, non-immunogenic peptides. The remaining proteins are then carried as entire proteins, causing antigen-specific immune responses in the body. This occurrence utilizes the Microfold (M) cell pathway or the paracellular pathway, which requires a subtle but complex balance of intercellular TJs that can result in antigenic tolerance.

 

Figure 1 Macroscopic Arrangement and Microscopic Composition of Intercellular Tight Junctions Image 1

Figure 1

 

After the integrity of the intestinal barrier are compromised, best known as TJ disassembly, an immune response to environmental antigens that spanned the gut mucosa can grow, leading to autoimmune diseases or allergies. The cells that play a vital part in this immune response lie in close proximity to the intestinal epithelial barrier. Another critical component for this immune response is the human leukocyte antigen, or HLA, system. HLA class I and II genes encode the antigen presenting cell (APC) glycoprotein receptors that present antigens to T cells in the intestinal mucosa. Susceptibility to up to 50 diseases, such as celiac disease, or CD, and type 1 diabetes, or T1D, has been associated with certain HLA class I or class II alleles. A typical denominator of these diseases is the occurrence of numerous preexisting conditions which can lead to autoimmunity. The first is a hereditary susceptibility for the host immune system to recognize, and potentially misinterpret, an environmental antigen introduced within the gastrointestinal tract, or GI tract. Second, the host needs to be exposed to the antigen. Finally, the antigen needs to be introduced into the gastrointestinal mucosal immune system, following its M-cell passage or paracellular passage, usually blocked by TJ competency, from the intestinal lumen to acquire the intestine submucosa. In most instances, higher intestinal permeability precedes disease and triggers an abnormality in antigen delivery which triggers an immune response, ultimately causing autoimmunity. Researchers have therefore hypothesized that genes, environment, and decreased intestinal barrier function are all critical to develop autoimmune diseases, especially CD and T1D.

 

Gliadin as an Environmental Factor of Autoimmune Diseases

 

Celiac Disease

 

Gluten is a well-known environmental factor that triggers celiac disease. It is the gliadin fraction of wheat germ and equal alcohol-soluble proteins in distinct grains, known as prolamins, which are connected to the growth of intestinal damage. A standard characteristic of the prolamins of wheat, rye, and barley is a greater content of glutamine (>30%) and proline (>15%), whereas the non-toxic prolamins of rice and corn have decreased glutamine and proline content. However, the environmental factor that influenced the development CD is complex and unknown. Some aspects of gluten consumption might help determine the risk of CD incidence, particularly in: the amount of gluten intake, the higher the amount, the larger the risk; the caliber of consumed gluten, a few grains contain more hazardous epitopes than others; and the pattern/timing of infant feeding. Recent research studies suggest that the pattern of infant nutrition might have a very important role on the development of the CD as well as that of other autoimmune diseases. Breastfeeding is believed to delay or reduce the possibility of developing CD. The positive effects of breast milk may be attributed to its influence on the microbial colonization procedure for the own newborn’s intestine. The genus Bifidobacterium is predominant in the feces of breast-fed infants, while a larger variety of bacterial groups, including Bacteroides, Streptococcus, Clostridium, etc., are found in the fecal microbiota of all formula-fed infants. Changes in the composition of the intestinal microbiota also occur as a consequence of the following changes from breastfeeding or formula feeding to weaning and even the introduction of solid food. Alterations in the intestinal balance between favorable and possibly harmful bacteria have also been associated with allergy symptoms, type 1 diabetes and inflammatory bowel diseases, among others.

 

Type 1 Diabetes

 

It is believed that genetically predisposed individuals develop T1D after encountering one or more environmental factors of the disease. Fast improvements could be made in disease prevention and treatment if these environmental factors were identified. Amongst the others, gliadin has only been the subject of a series of research studies that aim at establishing its part in the pathogenesis of type 1 diabetes. Early introduction of gliadin-containing cereals were reported to raise the prospect of islet cell autoimmunity in humans. Gliadin-specific, lamina propria-derived T cells play an important role in the pathogenesis of CD. The same HLA class II haplotype, DQ (? 1 * 0501, �1 * 0201), that can be connected with gliadin peptides in CD is also one of two HLA class II haplotypes inherited most frequently by people with T1D. There are also signs of immunological activity in the intestine of T1D patients: jejunal specimens from T1D patients have been found to consist of much higher doses of interferon gamma (IFN?)- and tumor necrosis factor-alpha (TNF-?) positive cells in contrast to people with healthy controls, suggesting an inflammatory response. Still another study found substantially increased manifestation of HLA-DR and HLA-DP molecules on intestinal villi of jejunal specimens from T1D patients in comparison with specimens from healthy controls. Recent evidence confirmed these findings by assessing the mucosal immune response to gliadin in the jejunum of patients with T1D. Small intestinal biopsies from children with T1D were cultured with gliadin and evaluated for epithelial infiltration and lamina propria T-cell activation. The caliber of intraepithelial CD3+ cells and of lamina propria CD25+ mononuclear cells has been higher in jejunal biopsies from T1D patients versus control subjects. In the patients’ biopsies cultured with enzymatically treated gliadin, there was epithelial infiltration by CD3 cells, a more significant growth in lamina propria CD25+ and CD80+ cells, enhanced manifestation of lamina propria cells favorable into ligand and receptor molecules ?4/?7 and ICAM 1, along with enhanced expression of CD54 and crypt HLA-DR. Also, ?4 positive T cells have been recovered in the pancreatic islets of an T1D person, providing an immediate connection between gliadin-activated T cells and destruction of pancreatic islet cells.

 

Findings from research studies using non-obese diabetic, or NOD, mice in addition to the BioBreeding diabetes-prone, or BBDP, rats have also implicated wheat gliadin as a nutritional supplement diabetogen. In BBDP rats, gliadin vulnerability is accompanied by increased intestinal permeability, and changes in gut microbiota composition, as seen on Figure 2., presumably allow food antigens to grow in contact with all the underlying lamina propria. Feeding NOD mice and BBDP rats a gluten free hydrolyzed casein diet resulted in a delay and decline in T1D development. Interestingly, these T1D animal models additionally demonstrated the moment of exposure to wheat proteins is quite important to the development of T1D. Delaying the vulnerability of diabetogenic wheat proteins by prolonging the breastfeeding period decreased T1D expansion from the BBDP rats. What is more, exposing neonatal rats or mice to diabetogenic wheat components or bacterial antigens diminished T1D incidence, which is perhaps due to the induction of immunological tolerance.

 

Figure 2 Postulated Mechanism of Action of Gluten in T1D Pathogenesis Image 2

Figure 2

 

Rats that were fed corn protein-based diets developed T1D and demonstrated a moderate celiac-like enteropathy. Mesenteric lymph nodes, or MLNs, which drain the gut, are the substantial inductive site where dietary antigens are famous in the gut-associated connective tissue. The authors described an increase in the expression ratio of T-bet:Gata3, master transcription factors for Th1 and Th2 cytokines, respectively, in the MLN by wheat-fed BBDP rats compared to this by BBDR rats, mainly due to diminished Gata3 expression. Also, CD3+CD4+IFN?+ T cells were prevalent in the MLN of wheat-fed BBDP rats, but remained at control levels in BBDP rats fed with a diabetes-retardant wheat-free diet. BioBreeding diabetes-prone MLN cells increased quickly in response to wheat protein antigens in a particular, dose-dependent manner, and 93 percent of cells were CD3+CD4+ T cells. This proliferation was connected using a minimum proportion of CD4+CD25+ T cells and a greater proportion of dendritic cells in the MLN of BBDP rats. These results suggest that, before insulitis is established, the MLNs of wheat-fed BBDP rats contain a remarkably large proportion of Th1 cells that rapidly increased particularly in response to wheat protein antigens. Collectively, these research studies suggest a deranged mucosal immune response to gliadin in T1D and a direct connection between gliadin-induced stimulation of gut mucosal T cells and abuse of pancreatic islet cells, as seen on Figure 2.

 

Link between Gliadin, Zonulin & Increased Intestinal Permeability in Autoimmune Diseases

 

Researchers have generated enough evidence to support that gliadin can induce increased intestinal permeability by releasing preformed zonulin. Intestinal cell lines exposed to gliadin released zonulin from the cell medium with subsequent zonulin binding to the cell surface, rearrangement of the cell cytoskeleton, loss of occludin-ZO1 protein interaction, and increased monolayer permeability. Pre-treatment with all of the zonulin antagonist AT1001 blocked these alterations without affecting zonulin release. When exposed to luminal gliadin, intestinal biopsies from patients with celiac disease in remission expressed a continuous luminal zonulin discharge and increase in intestinal permeability. On the contrary, biopsies from non-CD patients showed a limited, transient zonulin release, which was paralleled by a decline in intestinal permeability that had not reached the level of permeability found in celiac disease cells. As a matter of fact, when gliadin was added to the basolateral side of cell lines or intestinal biopsies, no zonulin release was detected. The latter finding indicates that gliadin interacts using an intestinal luminal receptor, which encouraged researchers to comprehend this issue. In vitro experiments revealed specific colocalization of gliadin along with the chemokine receptor CXCR3 expressed in human and mouse intestinal epithelium and lamina propria. Gliadin vulnerability led to a tangible establishment of CXCR3 and MyD88. Ex vivo experiments revealed that gliadin exposure to intestinal segments from wild-type mice increased zonulin terminal and intestinal permeability, whereas CXCR3 intestinal segments failed to respond to gliadin. The increased intestinal permeability appeared cause a specific impact for gliadin, because the subsequent CXCR3 ligand, IP-10, did not affect intestinal barrier function. Based on these figures, researchers suggested that gliadin contrasts to CXCR3 additionally lead to stimulation of the zonulin pathway and improved intestinal permeability in a MyD88-dependent manner.

 

Conclusive Remarks

 

The classical paradigm of the pathogenesis of autoimmune diseases involving certain receptor makeup and exposure to environmental factors was contested with the addition of a third component, the decrease of intestinal barrier function. Genetic predisposition, miscommunication between innate and adaptive immunity, exposure to environmental factors and loss in intestinal barrier function secondary to the breakdown of intercellular tight junctions, or TJs, seem to be vital components in the pathogenesis of autoimmune disorders. Both in CD and T1D gliadin may play a role in inducing loss of intestinal barrier function or inducing the gastrointestinal response in genetically predisposed individuals. This new hypothesis suggests that after the digestive process is triggered, it is not auto-perpetuating, but rather, it might be balanced or reversed by preventing the continuous interaction between genes and the environment. Since TJ dysfunction allows this interaction, new treatment procedures targeted at re-establishing the intestinal barrier function supply innovative, unexplored procedures for caring for autoimmune diseases. Information referenced from the National Center for Biotechnology Information (NCBI) and the National University of Health Sciences. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

By Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

WELLNESS TOPIC: EXTRA EXTRA: Managing Workplace Stress

 

 

Blank
References
1.�Fasano A.�Tight Junctions.�CRC Press, Inc.; Boca Raton, FL: 2001. Pathological and therapeutic implications of macromolecule passage through the tight junction; pp. 697�722.
2.�Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens.�Nat. Rev. Immunol.�2003;3:331�341.�[PubMed]
3.�Fasano A. Intestinal zonulin: open sesame!�Gut.�2001;49:159�162.�[PMC free article][PubMed]
4.�Brandtzaeg P, Halstensen TS, Kett K, et al. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes.�Gastroenterol.�1989;97:1562�1584.�[PubMed]
5.�Brandtzaeg P. Overview of the mucosal immune system.�Curr. Top. Microbiol. Immunol.�1989;146:13�25.�[PubMed]
6.�Bjorkman PJ, Saper MA, Samraoui B, et al. Structure of the human class I histocompatibility antigen, HLA-A2.�Nature.�1987;329:506�512.�[PubMed]
7.�Bjorkman PJ, Saper MA, Samraoui B, et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens.�Nature.�1987;329:512�518.�[PubMed]
8.�Cuvelier C, Mielants H, De Vos M, et al. Major histocompatibility complex class II antigen (HLA-DR) expression by ileal epithelial cells in patients with seronegative spondylarthropathy.�Gut.�1990;31:545�549.[PMC free article][PubMed]
9.�Wendling D. Role of the intestine in the physiopathology of inflammatory rheumatism.�Rev. Rhum. Mal. Osteoartic.�1992;59:389�392.�[PubMed]
10.�Bjarnson I, Williams P, Smethurst P, et al. Effect of non-steroidal anti-inflammatory drugs and prostaglandins on the permeability of the human small intestine.�Gut.�1986;27:1292�1297.[PMC free article][PubMed]
11.�Bjarnason I, Peters TJ, Levi AJ. Intestinal permeability: clinical correlates.�Dig. Dis.�1986;4:83�92.[PubMed]
12.�Pratesi R, Gandolfi L, Garcia SG, et al. Prevalence of coeliac disease: unexplained age-related variation in the same population.�Scand. J. Gastroenterol.�2003;38:747�50.�[PubMed]
13.�Fasano A, Berti I, Gerarduzzi T, et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study.�Arch. Int. Med.�2003;163:286�292.�[PubMed]
14.�Nistico L, Fagnani C, Coto I, et al. Concordance, disease progression, and heritability of coeliac disease in Italian twins.�Gut.�2006;55:803�808.�[PMC free article][PubMed]
15.�Louka AS, Sollid LM. HLA in coeliac disease: unravelling the complex genetics of a complex disorder.�Tissue Antigens.�2003;61:105�117.�[PubMed]
16.�Vader W, Stepniak D, Kooy Y, et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses.�Proc. Natl. Acad. Sci. USA.�2003;100:12390�12395.�[PMC free article][PubMed]
17.�Monsuur AJ, Bakker PI, Alidazeh BZ, et al. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect.�Nat. Gen.�2005;37:1341�1344.�[PubMed]
18.�Wapenaar MC, Monsuur AJ, van Bodegraven AA, et al. Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis.�Gut.�2008;57:463�467.�[PubMed]
19.�Kelly MA, Rayner ML, Mijovic CH, et al. Molecular aspects of type 1 diabetes.�Mol. Pathol.�2003;56:1�10.�[PMC free article][PubMed]
20.�Santiago JL, Martinez A, Nunez C, et al. Association of MYO9B haplotype with type 1 diabetes.�Hum. Immunol.�2008;69:112�115.�[PubMed]
21.�Sollid LM. Breast milk against celiac disease.�Gut.�2002;51:767�768.�[PMC free article][PubMed]
22.�Gr�nlund M-M, Arvilommi H, Kero P, et al. Importance of intestinal colonization in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0�6 months.�Arch. Dis. Child. Fetal. Neon.�2000;83:F186�F192.�[PMC free article][PubMed]
23.�Kirjavainen PV, Arvola T, Salminen SJ, et al. Aberrant composition of gut microbiota of allergic infants: a target of bifidobacterial therapy at weaning?�Gut.�2002;51:51�55.�[PMC free article][PubMed]
24.�Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics.�Gastroenterol.�2004;126:1620�1633.�[PubMed]
25.�Lefebvre DE, Powell KL, Strom A, et al. Dietary proteins as environmental modifiers of type 1 diabetes mellitus.�Annu. Rev. Nutr.�2006;26:175�202.�[PubMed]
26.�Ziegler AG, Schmid S, Huber D, et al. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies.�JAMA.�2003;290:1721�1728.�[PubMed]
27.�Norris JM, Barriga K, Klingensmith G, et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity.�JAMA.�2003;290:1713�1720.�[PubMed]
28.�Lundin KEA, Scott H, Hansen T, et al. Gliadin-specific, HLA-DQ (?180501,�1 * 0201) restricted T cells isolated from the small intestinal mucosa of celiac patients.�J. Exp. Med.�1993;178:187�196.[PMC free article][PubMed]
29.�Agardh D, Nilsson A, Tuomi T, et al. Prediction of silent celiac disease at diagnosis of childhood type 1 diabetes by tissue transglutaminase autoantibodies and HLA.�Pediatric Diab.�2001;2:58�65.�[PubMed]
30.�Westerholm-Ormio M, Vaarala O, Pihkala P, et al. Imunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes.�Diabetes.�2003;52:2287�2295.�[PubMed]
31.�Savilahti E, Ormala T, Saukkonen U, et al. Jejuna of patients with insulin-dependent diabetes mellitus (IDDM) show signs of immune activation.�Clin. Exp. Immunol.�1999;116:70�77.�[PMC free article][PubMed]
32.�Auricchio R, Paparo F, Maglio M, et al. In vitro deranged intestinal immune response to gliadin in type 1 diabetes.�Diabetes.�2004;53:1680�1683.�[PubMed]
33.�Hanninen A, Salmi M, Simell O, et al. Endothelial cell-binding properties of lymphocytes infiltrated into human diabetic pancreas: Implications for pathogenesis in IDDM.�Diabetes.�2003;42:1656�1662.[PubMed]
34.�Chakir H, Lefebvre DE, Wang H, et al. Wheat protein-induced proinflammatory T helper 1 bias in mesenteric lymph nodes of young diabetes-prone rats.�Diabetologia.�2005;48:1576�1584.�[PubMed]
35.�Scott FW, Cloutier HE, Kleeman R, et al. Potential mechanisms by which certain foods promote or inhibit the development of spontaneous diabetes in BB rats. Dose, timing, early effect on islet area, and switch in infiltrate from Th1 to Th2 cells.�Diabetes.�1997;46:589�598.�[PubMed]
36.�Funda DP, Kaas A, Taskalova-Hogenova H, et al. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes.�Diab. Metab. Res. Rev.�2008;24:59�63.�[PubMed]
37.�Meddings JB, Jarand J, Urbanski SJ, et al. Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat.�Am. J. Physiol.�1999;276:G951�957.�[PubMed]
38.�Visser J, Brugman S, Klatter F, et al. Short-term dietary adjustment with a hydrolyzed casein-based diet postpones diabetes development in the diabetes-prone BB rat.�Metabolism.�2003;52:333�337.�[PubMed]
39.�Brugman S, Klatter F, Visser J, et al. Neonatal oral administration of DiaPep277, combined with hydrolysed casein diet, protects against Type 1 diabetes in BB-DP rats. An experimental study.�Diabetologia.�2004;47:1331�1333.�[PubMed]
40.�Brugman S, Klatter F, Visser J, et al. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes?�Diabetologia.�2006;49:2105�2108.�[PubMed]
41.�Visser J, Groen H, Klatter F, et al. The diabetes prone BB rat model of IDDM shows duration of breastfeeding to influence Type 1 diabetes development later in life.�Diabetologia.�2003;46:1711�1713.[PubMed]
42.�Scott FW, Rowsell P, Wang GS, et al. Oral exposure to diabetes-promoting food or immunomodulators in neonates alters gut cytokines and diabetes.�Diabetes.�2002;51:73�78.�[PubMed]
43.�Fasano A, Fiorentini C, Donelli G, et al. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization,�in vitro.�J. Clin. Invest.�1995;96:710�720.[PMC free article][PubMed]
44.�Fasano A, Uzzau S, Fiore C, et al. The enterotoxic effect of zonula occludens toxin (Zot) on rabbit small intestine involves the paracellular pathway.�Gastroenterol.�1997;112:839�846.�[PubMed]
45.�Marcial MA, Carlson SL, Madara JL. Partitioning of paracellular conductance along the ileal crypt-villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationships.�J. Membr. Biol.�1984;80:59�70.�[PubMed]
46.�Uzzau S, Lu R, Wang W, et al. Purification and preliminary characterization of the zonula occludens toxin receptor from human (CaCo2) and murine (IEC6) intestinal cell lines.�FEMS Microbiol. Lett.�2001;194:1�5.�[PubMed]
47.�Wang W, Uzzau S, Goldblum SE, et al. Human zonulin, a potential modulator of intestinal tight junctions.�J. Cell Sci.�2000;113:4435�4440.�[PubMed]
48.�Fasano A, Baudry B, Pumplin DW, et al.�Vibrio cholerae�produces a second enterotoxin, which affects intestinal tight junctions.�Proc. Natl. Acad. Sci. USA.�1991;88:5242�5246.�[PMC free article][PubMed]
49.�Baudry B, Fasano A, Ketley JM, et al. Cloning of a gene (zot) encoding a new toxin produced by�Vibrio cholerae.�Infect. Immun.�1992;60:428�434.�[PMC free article][PubMed]
50.�Di Pierro M, Lu R, Uzzau S, et al. Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain.�J. Biol. Chem.�2001;276:19160�19165.�[PubMed]
51.�El Asmar R, Panigrahi P, Bamford P, et al. Host-dependent activation of the zonulin system is involved in the impairment of the gut barrier function following bacterial colonization.�Gastroenterol.�2002;123:1607�1615.
52.�Fasano A, Not T, Wang W, et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease.�Lancet.�2000;358:1518�1519.�[PubMed]
53.�Watts T, Berti I, Sapone A, et al. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type-I diabetes in BB diabetic prone rats.�Proc. Natl. Acad. Sci. USA.�2005;102:2916�2921.�[PMC free article][PubMed]
54.�Sapone A, de Magistris L, Pietzak M, et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives.�Diabetes.�2006;55:1443�1449.�[PubMed]
55.�Clemente MG, Virgiliis S, Kang JS, et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function.�Gut.�2003;52:218�223.�[PMC free article][PubMed]
56.�Drago S, El Asmar R, De Pierro M, et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines.�Scand. J. Gastroenterol.�2006;41:408�419.�[PubMed]
57.�Lammers KM, Lu R, Brownley J, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3.�Gastroenterol.�2008;135:194�204.[PMC free article][PubMed]
58.�Barbeau WE, Bassaganya-Riera J, Hontecillas R. Putting the pieces of the puzzle together � a series of hypotheses on the etiology and pathogenesis of type 1 diabetes.�Med. Hypotheses.�2007;68:607�619.[PubMed]
Close Accordion
Cancer: A Preventable Disease

Cancer: A Preventable Disease

Cancer:�Abstract

This year, more than 1 million Americans and more than 10 million people worldwide are expected to be diagnosed with cancer, a disease commonly believed to be preventable. Only 5�10% of all cancer cases can be attributed to genetic defects, whereas the remaining 90�95% have their roots in the environment and lifestyle. The lifestyle factors include cigarette smoking, diet (fried foods, red meat), alcohol, sun exposure, environmental pollutants, infections, stress, obesity, and physical inactivity. The evidence indicates that of all cancer-related deaths, almost 25�30% are due to tobacco, as many as 30� 35% are linked to diet, about 15�20% are due to infections, and the remaining percentage are due to other factors like radiation, stress, physical activity, environmental pollutants etc. Therefore, cancer prevention requires smoking cessation, increased ingestion of fruits and vegetables, moderate use of alcohol, caloric restriction, exercise, avoidance of direct exposure to sunlight, minimal meat consumption, use of whole grains, use of vaccinations, and regular check-ups. In this review, we present evidence that inflammation is the link between the agents/factors that cause cancer and the agents that prevent it. In addition, we provide evidence that cancer is a preventable disease that requires major lifestyle changes.

KEY WORDS: cancer; environmental risk factors; genetic risk factors; prevention.

INTRODUCTION

After sequencing his own genome, pioneer genomic researcher Craig Venter remarked at a leadership for the twenty-first century conference, �Human biology is actually far more complicated than we imagine. Everybody talks about the genes that they received from their mother and father, for this trait or the other. But in reality, those genes have very little impact on life outcomes. Our biology is way too complicated for that and deals with hundreds of thousands of independent factors. Genes are absolutely not our fate. They can give us useful information about the increased risk of a disease, but in most cases they will not determine the actual cause of the disease, or the actual incidence of somebody getting it. Most biology will come from the complex interaction of all the proteins and cells working with environmental factors, not driven directly by the genetic code� (http://indiatoday.digitalto day.in/index.php?option=com_content&task=view&isseid= 48&id=6022&sectionid=30&Itemid=1).

This statement is very important because looking to the human genome for solutions to most chronic illnesses, including the diagnosis, prevention, and treatment of cancer, is overemphasized in today�s world. Observational studies, however, have indicated that as we migrate from one country to another, our chances of being diagnosed with most chronic illnesses are determined not by the country we come from but by the country we migrate to (1�4). In addition, studies with identical twins have suggested that genes are not the source of most chronic illnesses. For instance, the concordance between identical twins for breast cancer was found to be only 20% (5). Instead of our genes, our lifestyle and environment account for 90�95% of our most chronic illnesses.

Cancer continues to be a worldwide killer, despite the enormous amount of research and rapid developments seen during the past decade. According to recent statistics, cancer accounts for about 23% of the total deaths in the USA and is the second most common cause of death after heart disease (6). Death rates for heart disease, however, have been steeply decreasing in both older and younger populations in the USA from 1975 through 2002. In contrast, no appreciable differences in death rates for cancer have been observed in the United States (6).

By 2020, the world population is expected to have increased to 7.5 billion; of this number, approximately 15 million new cancer cases will be diagnosed, and 12 million cancer patients will die (7). These trends of cancer incidence and death rates again remind us of Dr. John Bailer�s May 1985 judgment of the US national cancer program as a �qualified failure,� a judgment made 14 years after President Nixon�s official declaration of the �War on Cancer.� Even after an additional quarter century of extensive research, researchers are still trying to determine whether cancer is preventable and are asking �If it is preventable, why are we losing the war on cancer?� In this review, we attempt to answer this question by analyzing the potential risk factors of cancer and explore our options for modulating these risk factors.

Cancer is caused by both internal factors (such as inherited mutations, hormones, and immune conditions) and environmental/acquired factors (such as tobacco, diet, radiation, and infectious organisms; Fig. 1). The link between diet and cancer is revealed by the large variation in rates of specific cancers in various countries and by the observed changes in the incidence of cancer in migrating. For example, Asians have been shown to have a 25 times lower incidence of prostate cancer and a ten times lower incidence of breast cancer than do residents of Western countries, and the rates for these cancers increase substantially after Asians migrate to the West (http://www.dietandcancerreportorg/?p=ER).

The importance of lifestyle factors in the development of cancer was also shown in studies of monozygotic twins (8). Only 5�10% of all cancers are due to an inherited gene defect. Various cancers that have been linked to genetic defects are shown in Fig. 2. Although all cancers are a result of multiple mutations (9, 10), these mutations are due to interaction with the environment (11, 12).

These observations indicate that most cancers are not of hereditary origin and that lifestyle factors, such as dietary habits, smoking, alcohol consumption, and infections, have a profound influence on their development (13). Although the hereditary factors cannot be modified, the lifestyle and environmental factors are potentially modifiable. The lesser hereditary influence of cancer and the modifiable nature of the environmental factors point to the preventability of cancer. The important lifestyle factors that affect the incidence and mortality of cancer include tobacco, alcohol, diet, obesity, infectious agents, environmental pollutants, and radiation.

RISK FACTORS OF CANCER: Tobacco

Smoking was identified in 1964 as the primary cause of lung cancer in the US Surgeon General�s Advisory Commission Report (http://profiles.nlm.nih.gov/NN/Views/Alpha Chron/date/10006/05/01/2008), and ever since, efforts have been ongoing to reduce tobacco use. Tobacco use increases the risk of developing at least 14 types of cancer (Fig. 3). In addition, it accounts for about 25�30% of all deaths from cancer and 87% of deaths from lung cancer. Compared with nonsmokers, male smokers are 23 times and female smokers 17 times more likely to develop lung cancer. (http://www. cancer.org/docroot/STT/content/STT_1x_Cancer_Facts_and_ Figures_2008.asp accessed on 05/01/2008)

The carcinogenic effects of active smoking are well documented; the U. S. Environmental Protection Agency, for example, in 1993 classified environmental tobacco smoke (from passive smoking) as a known (Group A) human lung carcinogen (http://cfpub2.epa.gov/ncea/cfm/recordisplay.cfm?deid=2835 accessed on 05/01/2008). Tobacco contains at least 50 carcinogens. For example, one tobacco metabolite, benzopyrenediol epoxide, has a direct etiologic association with lung cancer (14). Among all developed countries considered in total, the prevalence of smoking has been slowly declining; however, in the developing countries where 85% of the world�s population resides, the prevalence of smoking is increasing. According to studies of recent trends in tobacco usage, developing countries will consume 71% of the world�s tobacco by 2010, with 80% increased usage projected for East Asia (http://www.fao.org/DOCREP/006/Y4956E/Y4956E00. HTM accessed on 01/11/08). The use of accelerated tobacco- control programs, with an emphasis in areas where usage is increasing, will be the only way to reduce the rates of tobacco-related cancer mortality.

How smoking contributes to cancer is not fully understood. We do know that smoking can alter a large number of cell- signaling pathways. Results from studies in our group have established a link between cigarette smoke and inflammation. Specifically, we showed that tobacco smoke can induce activation of NF-?B, an inflammatory marker (15,16). Thus, anti- inflammatory agents that can suppress NF-?B activation may have potential applications against cigarette smoke.

We also showed that curcumin, derived from the dietary spice turmeric, can block the NF-?B induced by cigarette smoke (15). In addition to curcumin, we discovered that several natural phytochemicals also inhibit the NF-?B induced by various carcinogens (17). Thus, the carcinogenic effects of tobacco appear to be reduced by these dietary agents. A more detailed discussion of dietary agents that can block inflammation and thereby provide chemopreventive effects is presented in the following section.

Alcohol

The first report of the association between alcohol and an increased risk of esophageal cancer was published in 1910 (18). Since then, a number of studies have revealed that chronic alcohol consumption is a risk factor for cancers of the upper aerodigestive tract, including cancers of the oral cavity, pharynx, hypopharynx, larynx, and esophagus (18�21), as well as for cancers of the liver, pancreas, mouth, and breast (Fig. 3). Williams and Horn (22), for example, reported an increased risk of breast cancer due to alcohol. In addition, a collaborative group who studied hormonal factors in breast cancer published their findings from a reanalysis of more than 80% of individual epidemiological studies that had been conducted worldwide on the association between alcohol and breast cancer risk in women. Their analysis showed a 7.1% increase in relative risk of breast cancer for each additional 10 g/day intake of alcohol (23). In another study, Longnecker et al., (24) showed that 4% of all newly diagnosed cases of breast cancer in the USA are due to alcohol use. In addition to it being a risk factor for breast cancer, heavy intake of alcohol (more than 50�70 g/day) is a well-established risk factor for liver (25) and colorectal (26,27) cancers.

There is also evidence of a synergistic effect between heavy alcohol ingestion and hepatitis C virus (HCV) or hepatitis B virus (HBV), which presumably increases the risk of hepatocellular carcinoma (HCC) by more actively promoting cirrhosis. For example, Donato et al. (28) reported that among alcohol drinkers, HCC risk increased linearly with a daily intake of more than 60 g. However, with the concomitant presence of HCV infection, the risk of HCC was two times greater than that observed with alcohol use alone (i.e., a positive synergistic effect). The relationship between alcohol and inflammation has also been well established, especially in terms of alcohol-induced inflammation of the liver.

How alcohol contributes to carcinogenesis is not fully understood but ethanol may play a role. Study findings suggest that ethanol is not a carcinogen but is a cocarcinogen (29). Specifically, when ethanol is metabolized, acetaldehyde and free radicals are generated; free radicals are believed to be predominantly responsible for alcohol-associated carcinogenesis through their binding to DNA and proteins, which destroys folate and results in secondary hyperproliferation. Other mechanisms by which alcohol stimulates carcinogenesis include the induction of cytochrome P-4502E1, which is associated with enhanced production of free radicals and enhanced activation of various procarcinogens present in alcoholic beverages; a change in metabolism and in the distribution of carcinogens, in association with tobacco smoke and diet; alterations in cell-cycle behavior such as cell-cycle duration leading to hyperproliferation; nutritional deficiencies, for example, of methyl, vitamin E, folate, pyridoxal phosphate, zinc, and selenium; and alterations of the immune system. Tissue injury, such as that occurring with cirrhosis of the liver, is a major prerequisite to HCC. In addition, alcohol can activate the NF-?B proinflammatory pathway (30), which can also contribute to tumorigenesis (31). Furthermore, it has been shown that benzopyrene, a cigarette smoke carcinogen, can penetrate the esophagus when combined with ethanol (32). Thus anti-inflammatory agents may be effective for the treatment of alcohol-induced toxicity.

In the upper aerodigestive tract, 25�68% of cancers are attributable to alcohol, and up to 80% of these tumors can be prevented by abstaining from alcohol and smoking (33). Globally, the attributable fraction of cancer deaths due to alcohol drinking is reported to be 3.5% (34). The number of deaths from cancers known to be related to alcohol consumption in the USA could be as low as 6% (as in Utah) or as high as 28% (as in Puerto Rico). These numbers vary from country to country, and in France have approached 20% in males (18).

Diet

In 1981, Doll and Peto (21) estimated that approximately 30�35% of cancer deaths in the USA were linked to diet (Fig. 4). The extent to which diet contributes to cancer deaths varies a great deal, according to the type of cancer (35). For example, diet is linked to cancer deaths in as many as 70% of colorectal cancer cases. How diet contributes to cancer is not fully understood. Most carcinogens that are ingested, such as nitrates, nitrosamines, pesticides, and dioxins, come from food or food additives or from cooking.

Heavy consumption of red meat is a risk factor for several cancers, especially for those of the gastrointestinal tract, but also for colorectal (36�38), prostate (39), bladder (40), breast (41), gastric (42), pancreatic, and oral (43) cancers. Although a study by Dosil-Diaz et al., (44) showed that meat consumption reduced the risk of lung cancer, such consumption is commonly regarded as a risk for cancer for the following reasons. The heterocyclic amines produced during the cooking of meat are carcinogens. Charcoal cooking and/or smoke curing of meat produces harmful carbon compounds such as pyrolysates and amino acids, which have a strong cancerous effect. For instance, PhIP (2-amino-1- methyl-6-phenyl-imidazo[4,5-b]pyridine) is the most abundant mutagen by mass in cooked beef and is responsible for ~20% of the total mutagenicity found in fried beef. Daily intake of PhIP among Americans is estimated to be 280� 460 ng/day per person (45).

Nitrites and nitrates are used in meat because they bind to myoglobin, inhibiting botulinum exotoxin production; however, they are powerful carcinogens (46). Long-term exposure to food additives such as nitrite preservatives and azo dyes has been associated with the induction of carcinogenesis (47). Furthermore, bisphenol from plastic food containers can migrate into food and may increase the risk of breast (48) and prostate (49) cancers. Ingestion of arsenic may increase the risk of bladder, kidney, liver, and lung cancers (50). Saturated fatty acids, trans fatty acids, and refined sugars and flour present in most foods have also been associated with various cancers. Several food carcinogens have been shown to activate inflammatory pathways.

Obesity

According to an American Cancer Society study (51), obesity has been associated with increased mortality from cancers of the colon, breast (in postmenopausal women), endometrium, kidneys (renal cell), esophagus (adenocarcinoma), gastric cardia, pancreas, prostate, gallbladder, and liver (Fig. 5). Findings from this study suggest that of all deaths from cancer in the United States, 14% in men and 20% in women are attributable to excess weight or obesity. Increased modernization and a Westernized diet and lifestyle have been associated with an increased prevalence of overweight people in many developing countries (52).

Studies have shown that the common denominators between obesity and cancer include neurochemicals; hormones such as insulin like growth factor 1 (IGF-1), insulin, leptin; sex steroids; adiposity; insulin resistance; and inflammation (53).

Involvement of signaling pathways such as the IGF/ insulin/Akt signaling pathway, the leptin/JAK/STAT pathway, and other inflammatory cascades have also been linked with both obesity and cancer (53). For instance, hyperglycemia, has been shown to activate NF-?B (54), which could link obesity with cancer. Also known to activate NF-?B are several cytokines produced by adipocytes, such as leptin, tumor necrosis factor (TNF), and interleukin-1 (IL-1) (55). Energy balance and carcinogenesis has been closely linked (53). However, whether inhibitors of these signaling cascades can reduce obesity-related cancer risk remains unanswered. Because of the involvement of multiple signaling pathways, a potential multitargeting agent will likely be needed to reduce obesity-related cancer risk.

Infectious Agents

Worldwide, an estimated 17.8% of neoplasms are associated with infections; this percentage ranges from less than 10% in high-income countries to 25% in African countries (56, 57). Viruses account for most infection-caused cancers (Fig. 6). Human papillomavirus, Epstein Barr virus, Kaposi�s sarcoma- associated herpes virus, human T-lymphotropic virus 1, HIV, HBV, and HCV are associated with risks for cervical cancer, anogenital cancer, skin cancer, nasopharyngeal cancer, Bur- kitt�s lymphoma, Hodgkin�s lymphoma, Kaposi�s sarcoma, adult T-cell leukemia, B-cell lymphoma, and liver cancer.

In Western developed countries, human papillomavirus and HBV are the most frequently encountered oncogenic DNA viruses. Human papillomavirus is directly mutagenic by inducing the viral genes E6 and E7 (58), whereas HBV is believed to be indirectly mutagenic by generating reactive oxygen species through chronic inflammation (59�61). Human T-lymphotropic virus is directly mutagenic, whereas HCV (like HBV) is believed to produce oxidative stress in infected cells and thus to act indirectly through chronic inflammation (62, 63). However, other microorganisms, including selected parasites such as Opisthorchis viverrini or Schistosoma haematobium and bacteria such as Helicobacter pylori, may also be involved, acting as cofactors and/or carcinogens (64).

The mechanisms by which infectious agents promote cancer are becoming increasingly evident. Infection-related inflammation is the major risk factor for cancer, and almost all viruses linked to cancer have been shown to activate the inflammatory marker, NF-?B (65). Similarly, components of Helicobacter pylori have been shown to activate NF-?B (66). Thus, agents that can block chronic inflammation should be effective in treating these conditions.

Environmental Pollution

Environmental pollution has been linked to various cancers (Fig. 7). It includes outdoor air pollution by carbon particles associated with polycyclic aromatic hydrocarbons (PAHs); indoor air pollution by environmental tobacco smoke, formaldehyde, and volatile organic compounds such as benzene and 1,3-butadiene (which may particularly affect children); food pollution by food additives and by carcinogenic contaminants such as nitrates, pesticides, dioxins, and other organochlorines; carcinogenic metals and metalloids; pharmaceutical medicines; and cosmetics (64).

Numerous outdoor air pollutants such as PAHs increase the risk of cancers, especially lung cancer. PAHs can adhere to fine carbon particles in the atmosphere and thus penetrate our bodies primarily through breathing. Long-term exposure to PAH-containing air in polluted cities was found to increase the risk of lung cancer deaths. Aside from PAHs and other fine carbon particles, another environmental pollutant, nitric oxide, was found to increase the risk of lung cancer in a European population of nonsmokers. Other studies have shown that nitric oxide can induce lung cancer and promote metastasis. The increased risk of childhood leukemia associated with exposure to motor vehicle exhaust was also reported (64).

Indoor air pollutants such as volatile organic compounds and pesticides increase the risk of childhood leukemia and lymphoma, and children as well as adults exposed to pesticides have increased risk of brain tumors, Wilm�s tumors, Ewing�s sarcoma, and germ cell tumors. In utero exposure to environmental organic pollutants was found to increase the risk for testicular cancer. In addition, dioxan, an environmental pollutant from incinerators, was found to increase the risk of sarcoma and lymphoma.

Long-term exposure to chlorinated drinking water has been associated with increased risk of cancer. Nitrates, in drinking water, can transform to mutagenic N-nitroso compounds, which increase the risk of lymphoma, leukemia, colorectal cancer, and bladder cancer (64).

Radiation

Up to 10% of total cancer cases may be induced by radiation (64), both ionizing and nonionizing, typically from radioactive substances and ultraviolet (UV), pulsed electro- magnetic fields. Cancers induced by radiation include some types of leukemia, lymphoma, thyroid cancers, skin cancers, sarcomas, lung and breast carcinomas. One of the best examples of increased risk of cancer after exposure to radiation is the increased incidence of total malignancies observed in Sweden after exposure to radioactive fallout from the Chernobyl nuclear power plant. Radon and radon decay products in the home and/or at workplaces (such as mines) are the most common sources of exposure to ionizing radiation. The presence of radioactive nuclei from radon, radium, and uranium was found to increase the risk of gastric cancer in rats. Another source of radiation exposure is x-rays used in medical settings for diagnostic or therapeutic purposes. In fact, the risk of breast cancer from x-rays is highest among girls exposed to chest irradiation at puberty, a time of intense breast development. Other factors associated with radiation-induced cancers in humans are patient age and physiological state, synergistic interactions between radiation and carcinogens, and genetic susceptibility toward radiation.

Nonionizing radiation derived primarily from sunlight includes UV rays, which are carcinogenic to humans. Exposure to UV radiation is a major risk for various types of skin cancers including basal cell carcinoma, squamous cell carcinoma, and melanoma. Along with UV exposure from sunlight, UV exposure from sunbeds for cosmetic tanning may account for the growing incidence of melanoma. Depletion of the ozone layer in the stratosphere can augment the dose-intensity of UVB and UVC, which can further increase the incidence of skin cancer.

Low-frequency electromagnetic fields can cause clasto- genic DNA damage. The sources of electromagnetic field exposure are high-voltage power lines, transformers, electric train engines, and more generally, all types of electrical equipments. An increased risk of cancers such as childhood leukemia, brain tumors and breast cancer has been attributed to electromagnetic field exposure. For instance, children living within 200 m of high-voltage power lines have a relative risk of leukemia of 69%, whereas those living between 200 and 600 m from these power lines have a relative risk of 23%. In addition, a recent meta-analysis of all available epidemi- ologic data showed that daily prolonged use of mobile phones for 10 years or more showed a consistent pattern of an increased risk of brain tumors (64).

PREVENTION OF CANCER

The fact that only 5�10% of all cancer cases are due to genetic defects and that the remaining 90�95% are due to environment and lifestyle provides major opportunities for preventing cancer. Because tobacco, diet, infection, obesity, and other factors contribute approximately 25�30%, 30�35%, 15�20%, 10�20%, and 10�15%, respectively, to the incidence of all cancer deaths in the USA, it is clear how we can prevent cancer. Almost 90% of patients diagnosed with lung cancer are cigarette smokers; and cigarette smoking combined with alcohol intake can synergistically contribute to tumorigenesis. Similarly, smokeless tobacco is responsible for 400,000 cases (4% of all cancers) of oral cancer worldwide. Thus avoidance of tobacco products and minimization of alcohol consumption would likely have a major effect on cancer incidence.

Infection by various bacteria and viruses (Fig. 6) is another very prominent cause of various cancers. Vaccines for cervical cancer and HCC should help prevent some of these cancers, and a cleaner environment and modified lifestyle behavior would be even more helpful in preventing infection- caused cancers.

The first FDA approved chemopreventive agent was tamoxifen, for reducing the risk of breast cancer. This agent was found to reduce the breast cancer incidence by 50% in women at high risk. With tamoxifen, there is an increased risk of serious side effects such as uterine cancer, blood clots, ocular disturbances, hypercalcemia, and stroke (http://www.fda.gov/ cder/foi/appletter/1998/17970s40.pdf). Recently it has been shown that a osteoporosis drug raloxifene is as effective as tamoxifen in preventing estrogen-receptor-positive, invasive breast cancer but had fewer side effects than tamoxifen. Though it is better than tamoxifen with respect to side effects, it can cause blood clots and stroke. Other potential side effects of raloxifene include hot flashes, leg cramps, swelling of the legs and feet, flu-like symptoms, joint pain, and sweating (http://www.fda.gov/bbs/topics/NEWS/2007/NEW01698.html).

The second chemopreventive agent to reach to clinic was finasteride, for prostate cancer, which was found to reduce incidence by 25% in men at high risk. The recognized side effects of this agent include erectile dysfunction, lowered sexual desire, impotence and gynecomastia (http://www. cancer.org/docroot/cri/content/cri_2_4_2x_can_prostate_can cer_be_prevented_36.asp). Celecoxib, a COX-2 inhibitor is another approved agent for prevention of familial adenomatous polyposis (FAP). However, the chemopreventive benefit of celecoxib is at the cost of its serious cardiovascular harm (http://www.fda.gov/cder/drug/infopage/cox2/NSAIDdecision Memo.pdf).

The serious side effects of the FDA approved chemopreventive drugs is an issue of particular concern when considering long-term administration of a drug to healthy people who may or may not develop cancer. This clearly indicates the need for agents, which are safe and efficacious in preventing cancer. Diet derived natural products will be potential candidates for this purpose. Diet, obesity, and metabolic syndrome are very much linked to various cancers and may account for as much as 30� 35% of cancer deaths, indicating that a reasonably good fraction of cancer deaths can be prevented by modifying the diet. Extensive research has revealed that a diet consisting of fruits, vegetables, spices, and grains has the potential to prevent cancer (Fig. 8). The specific substances in these dietary foods that are responsible for preventing cancer and the mechanisms by which they achieve this have also been examined extensively. Various phytochemicals have been identified in fruits, vegetables, spices, and grains that exhibit chemopreventive potential (Fig. 9), and numerous studies have shown that a proper diet can help protect against cancer (46, 67�69). Below is a description of selected dietary agents and diet-derived phytochemicals that have been studied extensively to determine their role in cancer prevention.

Fruits & Vegetables

The protective role of fruits and vegetables against cancers that occur in various anatomical sites is now well supported (46,69). In 1966, Wattenberg (70) proposed for the first time that the regular consumption of certain constituents in fruits and vegetables might provide protection from cancer. Doll and Peto (21) showed that 75�80% of cancer cases diagnosed in the USA in 1981 might have been prevented by lifestyle changes. According to a 1997 estimate, approximately 30�40% of cancer cases worldwide were preventable by feasible dietary means (http://www.dietandcancerreportorg/?p=ER). Several studies have addressed the cancer chemopreventive effects of the active components derived from fruits and vegetables.

More than 25,000 different phytochemicals have been identified that may have potential against various cancers. These phytochemicals have advantages because they are safe and usually target multiple cell-signaling pathways (71). Major chemopreventive compounds identified from fruits and vegetables includes carotenoids, vitamins, resveratrol, quercetin, silymarin, sulphoraphane and indole-3-carbinol.

Carotenoids

Various natural carotenoids present in fruits and vegetables were reported to have anti-inflammatory and anticarcinogenic activity. Lycopene is one of the main carotenoids in the regional Mediterranean diet and can account for 50% of the carotenoids in human serum. Lycopene is present in fruits, including watermelon, apricots, pink guava, grapefruit, rosehip, and tomatoes. A wide variety of processed tomato- based products account for more than 85% of dietary lycopene. The anticancer activity of lycopene has been demonstrated in both in vitro and in vivo tumor models as well as in humans. The proposed mechanisms for the anticancer effect of lycopene involve ROS scavenging, up- regulation of detoxification systems, interference with cell proliferation, induction of gap-junctional communication, inhibition of cell-cycle progression, and modulation of signal transduction pathways. Other carotenoids reported to have anticancer activity include beta-carotene, alpha-carotene, lutein, zeaxanthin, beta-cryptoxanthin, fucoxanthin, astaxanthin, capsanthin, crocetin, and phytoene (72).

Resveratrol

The stilbene resveratrol has been found in fruits such as grapes, peanuts, and berries. Resveratrol exhibits anticancer properties against a wide variety of tumors, including lymphoid and myeloid cancers, multiple myeloma, and cancers of the breast, prostate, stomach, colon, and pancreas. The growth-inhibitory effects of resveratrol are mediated through cell-cycle arrest; induction of apoptosis via Fas/ CD95, p53, ceramide activation, tubulin polymerization, mitochondrial and adenylyl cyclase pathways; up-regulation of p21 p53 and Bax; down-regulation of survivin, cyclin D1, cyclin E, Bcl-2, Bcl-xL, and cellular inhibitor of apoptosis proteins; activation of caspases; suppression of nitric oxide synthase; suppression of transcription factors such as NF-?B, AP-1, and early growth response-1; inhibition of cyclooxyge- nase-2 (COX-2) and lipoxygenase; suppression of adhesion molecules; and inhibition of angiogenesis, invasion, and metastasis. Limited data in humans have revealed that resver- atrol is pharmacologically safe. As a nutraceutical, resveratrol is commercially available in the USA and Europe in 50 ?g to 60 mg doses. Currently, structural analogues of resveratrol with improved bioavailability are being pursued as potential chemo- preventive and therapeutic agents for cancer (73).

Quercetin

The flavone quercetin (3,3?,4?,5,7-pentahydroxyflavone), one of the major dietary flavonoids, is found in a broad range of fruits, vegetables, and beverages such as tea and wine, with a daily intake in Western countries of 25�30 mg. The antioxidant, anti-inflammatory, antiproliferative, and apoptotic effects of the molecule have been largely analyzed in cell culture models, and it is known to block NF-?B activation. In animal models, quercetin has been shown to inhibit inflammation and prevent colon and lung cancer. A phase 1 clinical trial indicated that the molecule can be safely administered and that its plasma levels are sufficient to inhibit lymphocyte tyrosine kinase activity. Consumption of quercetin in onions and apples was found to be inversely associated with lung cancer risk in Hawaii. The effect of onions was particularly strong against squamous cell carcinoma. In another study, an increased plasma level of quercetin after a meal of onions was accompanied by increased resistance to strand breakage in lymphocytic DNA and decreased levels of some oxidative metabolites in the urine (74).

Silymarin

The flavonoid silymarin (silybin, isosilybin, silychristin, silydianin, and taxifolin) is commonly found in the dried fruit of the milk thistle plant Silybum marianum. Although silymarin�s role as an antioxidant and hepatoprotective agent is well known, its role as an anticancer agent is just emerging. The anti-inflammatory effects of silymarin are mediated through suppression of NF-?B-regulated gene products, in- cluding COX-2, lipoxygenase (LOX), inducible NO synthase, TNF, and IL-1. Numerous studies have indicated that silymarin is a chemopreventive agent in vivo against various carcinogens/tumor promoters, including UV light, 7,12-dime- thylbenz(a)anthracene (DMBA), phorbol 12-myristate 13-acetate, and others. Silymarin has also been shown to sensitize tumors to chemotherapeutic agents through down- regulation of the MDR protein and other mechanisms. It binds to both estrogen and androgen receptors and down- regulates prostate specific antigen. In addition to its chemo- preventive effects, silymarin exhibits activity against tumors (e.g., prostate and ovary) in rodents. Various clinical trials have indicated that silymarin is bioavailable and pharmaco- logically safe. Studies are now in progress to demonstrate the clinical efficacy of silymarin against various cancers (75).

Indole-3-Carbinol

The flavonoid indole-3-carbinol (I3C) is present in vegetables such as cabbage, broccoli, brussels sprout, cauli- flower, and daikon artichoke. The hydrolysis product of I3C metabolizes to a variety of products, including the dimer 3,3?- diindolylmethane. Both I3C and 3,3?-diindolylmethane exert a variety of biological and biochemical effects, most of which appear to occur because I3C modulates several nuclear transcription factors. I3C induces phase 1 and phase 2 enzymes that metabolize carcinogens, including estrogens. I3C has also been found to be effective in treating some cases of recurrent respiratory papillomatosis and may have other clinical uses (76).

Sulforaphane

Sulforaphane (SFN) is an isothiothiocyanate found in cruciferous vegetables such as broccoli. Its chemopreventive effects have been established in both in vitro and in vivo studies. The mechanisms of action of SFN include inhibition of phase 1 enzymes, induction of phase 2 enzymes to detoxify carcinogens, cell-cycle arrest, induction of apoptosis, inhibi- tion of histone deacetylase, modulation of the MAPK pathway, inhibition of NF-?B, and production of ROS. Preclinical and clinical studies of this compound have suggested its chemopreventive effects at several stages of carcinogenesis. In a clinical trial, SFN was given to eight healthy women an hour before they underwent elective reduction mammoplasty. Induction in NAD(P)H/quinone oxidoreductase and heme oxygenase-1 was observed in the breast tissue of all patients, indicating the anticancer effect of SFN (77).

Teas & Spices

Spices are used all over the world to add flavor, taste, and nutritional value to food. A growing body of research has demonstrated that phytochemicals such as catechins (green tea), curcumin (turmeric), diallyldisulfide (garlic), thymoquinone (black cumin) capsaicin (red chili), gingerol (ginger), anethole (licorice), diosgenin (fenugreek) and eugenol (clove, cinnamon) possess therapeutic and preventive potential against cancers of various anatomical origins. Other phytochemicals with this potential include ellagic acid (clove), ferulic acid (fennel, mustard, sesame), apigenin (coriander, parsley), betulinic acid (rosemary), kaempferol (clove, fenugreek), sesamin (sesame), piperine (pepper), limonene (rose- mary), and gambogic acid (kokum). Below is a description of some important phytochemicals associated with cancer.

Catechins

More than 3,000 studies have shown that catechins derived from green and black teas have potential against various cancers. A limited amount of data are also available from green tea polyphenol chemoprevention trials. Phase 1 trials of healthy volunteers have defined the basic biodistribution patterns, pharmacokinetic parameters, and preliminary safety profiles for short-term oral administration of various green tea preparations. The consumption of green tea appears to be relatively safe. Among patients with established premalignant conditions, green tea derivatives have shown potential efficacy against cervical, prostate, and hepatic malignancies without inducing major toxic effects. One novel study determined that even persons with solid tumors could safely consume up to 1 g of green tea solids, the equivalent of approximately 900 ml of green tea, three times daily. This observation supports the use of green tea for both cancer prevention and treatment (78).

Curcumin

Curcumin is one of the most extensively studied com- pounds isolated from dietary sources for inhibition of inflammation and cancer chemoprevention, as indicated by almost 3000 published studies. Studies from our laboratory showed that curcumin inhibited NF-?B and NF-?B-regulated gene expression in various cancer cell lines. In vitro and in vivo studies showed that this phytochemical inhibited inflammation and carcinogenesis in animal models, including breast, esophageal, stomach, and colon cancer models. Other studies showed that curcumin inhibited ulcerative proctitis and Crohn�s disease, and one showed that curcumin inhibited ulcerative colitis in humans. Another study evaluated the effect of a combination of curcumin and piperine in patients with tropical pancreatitis. One study conducted in patients with familial adenomatous polyposis showed that curcumin has a potential role in inhibiting this condition. In that study, all five patients were treated with curcumin and quercetin for a mean of 6 months and had a decreased polyp number (60.4%) and size (50.9%) from baseline with minimal adverse effects and no laboratory-determined abnormalities.

The pharmacodynamic and pharmacokinetic effects of oral Curcuma extract in patients with colorectal cancer have also been studied. In a study of patients with advanced colorectal cancer refractory to standard chemotherapies, 15 patients received Curcuma extract daily for up to 4 months. Results showed that oral Curcuma extract was well tolerated, and dose-limiting toxic effects were not observed. Another study showed that in patients with advanced colorectal cancer, a daily dose of 3.6 g of curcumin engendered a 62% decrease in inducible prostaglandin E2 production on day 1 and a 57% decrease on day 29 in blood samples taken 1 h after dose administration.

An early clinical trial with 62 cancer patients with external cancerous lesions at various sites (breast, 37; vulva, 4; oral, 7; skin, 7; and others, 11) reported reductions in the sense of smell (90% of patients), itching (almost all patients), lesion size and pain (10% of patients), and exudates (70% of patients) after topical application of an ointment containing curcumin. In a phase 1 clinical trial, a daily dose of 8,000 mg of curcumin taken by mouth for 3 months resulted in histologic improvement of precancerous lesions in patients with uterine cervical intraepithelial neoplasm (one of four patients), intestinal metaplasia (one of six patients), bladder cancer (one of two patients), and oral leukoplakia (two of seven patients).

Results from another study conducted by our group showed that curcumin inhibited constitutive activation of NF- ?B, COX-2, and STAT3 in peripheral blood mononuclear cells from the 29 multiple myeloma patients enrolled in this study. Curcumin was given in doses of 2, 4, 8, or 12 g/day orally. Treatment with curcumin was well tolerated with no adverse events. Of the 29 patients, 12 underwent treatment for 12 weeks and 5 completed 1 year of treatment with stable disease. Other studies from our group showed that curcumin inhibited pancreatic cancer. Curcumin down-regulated the expression of NF-?B, COX-2, and phosphorylated STAT3 in peripheral blood mononuclear cells from patients (most of whom had baseline levels considerably higher than those found in healthy volunteers). These studies showed that curcumin is a potent anti-inflammatory and chemopreventive agent. A detailed description of curcumin and its anticancer properties can be found in one of our recent reviews (79).

Diallyldisulfide

Diallyldisulfide, isolated from garlic, inhibits the growth and proliferation of a number of cancer cell lines including colon, breast, glioblastoma, melanoma, and neuroblastoma cell lines. Recent studies showed that this compound induces apoptosis in Colo 320 DM human colon cancer cells by inhibiting COX-2, NF-?B, and ERK-2. It has been shown to inhibit a number of cancers including dimethylhydrazine-induced colon cancer, benzo[a]pyrene-induced neoplasia, and glutathione S-transferase activity in mice; benzo[a]pyrene-induced skin carcinogenesis in mice; N-nitrosomethylbenzylamine-induced esophageal cancer in rats; N-nitrosodiethylamine-induced forestomach neoplasia in female A/J mice; aristolochic acid-induced forestomach carcinogenesis in rats; diethylnitrosamine-induced glutathione S-transferase positive foci in rat liver; 2-amino- 3-methylimidazo[4,5-f]quinoline-induced hepatocarcinogen- esis in rats; and diethylnitrosamine-induced liver foci and hepatocellular adenomas in C3H mice. Diallyldisulfide has also been shown to inhibit mutagenesis or tumorigenesis induced by vinyl carbamate and N-nitrosodimethylamine; aflatoxin B1-induced and N-nitrosodiethylamine-induced liver preneoplastic foci in rats; arylamine N-acetyltransfer- ase activity and 2-aminofluorene-DNA adducts in human promyelocytic leukemia cells; DMBA-induced mouse skin tumors; N-nitrosomethylbenzylamine-induced mutation in rat esophagus; and diethylstilbesterol-induced DNA ad- ducts in the breasts of female ACI rats.

Diallyldisulfide is believed to bring about an anticarcino- genic effect through a number of mechanisms, such as scavenging of radicals; increasing gluathione levels; increasing the activities of enzymes such as glutathione S-transferase and catalase; inhibiting cytochrome p4502E1 and DNA repair mechanisms; and preventing chromosomal damage (80).

Thymoquinone

The chemotherapeutic and chemoprotective agents from black cumin include thymoquinone (TQ), dithymoquinone (DTQ), and thymohydroquinone, which are present in the oil of this seed. TQ has antineoplastic activity against various tumor cells. DTQ also contributes to the chemotherapeutic effects of Nigella sativa. In vitro study results indicated that DTQ and TQ are equally cytotoxic to several parental cell lines and to their corresponding multidrug-resistant human tumor cell lines. TQ induces apoptosis by p53-dependent and p53-independent pathways in cancer cell lines. It also induces cell-cycle arrest and modulates the levels of inflammatory mediators. To date, the chemotherapeutic potential of TQ has not been tested, but numerous studies have shown its promising anticancer effects in animal models. TQ suppresses carcinogen-induced forestomach and skin tumor formation in mice and acts as a chemopreventive agent at the early stage of skin tumorigenesis. Moreover, the combination of TQ and clinically used anticancer drugs has been shown to improve the drug�s therapeutic index, prevents nontumor tissues from sustaining chemotherapy-induced damage, and enhances the antitumor activity of drugs such as cisplatin and ifosfamide. A very recent report from our own group established that TQ affects the NF-?B signaling pathway by suppressing NF-?B and NF-?B-regulated gene products (81).

Capsaicin

The phenolic compound capsaicin (t8-methyl-N-vanillyl- 6-nonenamide), a component of red chili, has been extensively studied. Although capsaicin has been suspected to be a carcinogen, a considerable amount of evidence suggests that it has chemopreventive effects. The antioxidant, anti-inflammatory, and antitumor properties of capsaicin have been established in both in vitro and in vivo systems. For example, showed that capsaicin can suppress the TPA-stimulated activation of NF-?B and AP-1 in cultured HL-60 cells. In addition, capsaicin inhibited the constitutive activation of NF-?B in malignant melanoma cells. Furthermore, capsaicin strongly suppressed the TPA-stimulated activation of NF-?B and the epidermal activation of AP-1 in mice. Another proposed mechanism of action of capsaicin is its interaction with xenobiotic metaboliz- ing enzymes, involved in the activation and detoxification of various chemical carcinogens and mutagens. Metabolism of capsaicin by hepatic enzymes produces reactive phenoxy radical intermediates capable of binding to the active sites of enzymes and tissue macromolecules.

Capsaicin can inhibit platelet aggregation and suppress calcium-ionophore�stimulated proinflammatory responses, such as the generation of superoxide anion, phospholipase A2 activity, and membrane lipid peroxidation in macro- phages. It acts as an antioxidant in various organs of laboratory animals. Anti-inflammatory properties of capsaicin against carcinogen-induced inflammation have also been reported in rats and mice. Capsaicin has exerted protective effects against ethanol-induced gastric mucosal injury, hem- orrhagic erosion, lipid peroxidation, and myeloperoxidase activity in rats that was associated with suppression of COX- 2. While lacking intrinsic tumor-promoting activity, capsaicin inhibited TPA-promoted mouse skin papillomagenesis (82).

Gingerol

Gingerol, a phenolic substance mainly present in the spice ginger (Zingiber officinale Roscoe), has diverse pharmacologic effects including antioxidant, antiapoptotic, and anti-inflammatory effects. Gingerol has been shown to have anticancer and chemopreventive properties, and the proposed mechanisms of action include the inhibition of COX-2 expression by blocking of the p38 MAPK�NF-?B signaling pathway. A detailed report on the cancer-preventive ability of gingerol was presented in a recent review by Shukla and Singh (83).

Anethole

Anethole, the principal active component of the spice fennel, has shown anticancer activity. In 1995, Al-Harbi et al. (84) studied the antitumor activity of anethole against Ehrlich ascites carcinoma induced in a tumor model in mice. The study revealed that anethole increased survival time, reduced tumor weight, and reduced the volume and body weight of the EAT-bearing mice. It also produced a significant cytotoxic effect in the EAT cells in the paw, reduced the levels of nucleic acids and MDA, and increased NP-SH concentrations.

The histopathological changes observed after treatment with anethole were comparable to those after treatment with the standard cytotoxic drug cyclophosphamide. The frequency of micronuclei occurrence and the ratio of polychromatic erythrocytes to normochromatic erythrocytes showed anethole to be mitodepressive and nonclastogenic in the femoral cells of mice. In 1996, Sen et al., (85) studied the NF-?B inhibitory activity of a derivative of anethole and anetholdithiolthione. Their study results showed that anethole inhibited H2O2, phorbol myristate acetate or TNF alpha induced NF-?B activation in human jurkat T-cells (86) studied the anticarcino- genic activity of anethole trithione against DMBA induced in a rat mammary cancer model. The study results showed that this phytochemical inhibited mammary tumor growth in a dose- dependent manner.

Nakagawa and Suzuki (87) studied the metabolism and mechanism of action of trans-anethole (anethole) and the estrogenlike activity of the compound and its metabolites in freshly isolated rat hepatocytes and cultured MCF-7 human breast cancer cells. The results suggested that the biotransformation of anethole induces a cytotoxic effect at higher concentrations in rat hepatocytes and an estrogenic effect at lower concentrations in MCF-7 cells on the basis of the concentrations of the hydroxylated intermediate, 4OHPB. Results from preclinical studies have suggested that the organosulfur compound anethole dithiolethione may be an effective chemopreventive agent against lung cancer. Lam et al, (88) conducted a phase 2b trial of anethole dithiolethione in smokers with bronchial dysplasia. The results of this clinical trial suggested that anethole dithiolethione is a potentially efficacious chemopreventive agent against lung cancer.

Diosgenin

Diosgenin, a steroidal saponin present in fenugreek, has been shown to suppress inflammation, inhibit proliferation, and induce apoptosis in various tumor cells. Research during the past decade has shown that diosgenin suppresses prolif- eration and induces apoptosis in a wide variety of cancer cells lines. Antiproliferative effects of diosgenin are mediated through cell-cycle arrest, disruption of Ca2+ homeostasis, activation of p53, release of apoptosis-inducing factor, and modulation of caspase-3 activity. Diosgenin also inhibits azoxymethane-induced aberrant colon crypt foci, has been shown to inhibit intestinal inflammation, and modulates the activity of LOX and COX-2. Diosgenin has also been shown to bind to the chemokine receptor CXCR3, which mediates inflammatory responses. Results from our own laboratory have shown that diosgenin inhibits osteoclastogenesis, cell invasion, and cell proliferation through Akt down-regulation, I?B kinase activation, and NF-?B-regulated gene expression (89).

Eugenol

Eugenol is one of the active components of cloves. Studies conducted by Ghosh et al. (90) showed that eugenol suppressed the proliferation of melanoma cells. In a B16 xenograft study, eugenol treatment produced a significant tumor growth delay, an almost 40% decrease in tumor size, and a 19% increase in the median time to end point. Of more importance, 50% of the animals in the control group died of metastatic growth, whereas none in the eugenol treatment group showed any signs of cell invasion or metastasis. In 1994, Sukumaran et al. (91) showed that eugenol DMBA induced skin tumors in mice. The same study showed that eugenol inhibited superoxide formation and lipid peroxidation and the radical scavenging activity that may be responsible for its chemopreventive action. Studies conducted by Imaida et al. (92) showed that eugenol enhanced the development of 1,2- dimethylhydrazine-induced hyperplasia and papillomas in the forestomach but decreased the incidence of 1-methyl-1-nitro- sourea-induced kidney nephroblastomas in F344 male rats.

Another study conducted by Pisano et al. (93) demonstrated that eugenol and related biphenyl (S)-6,6?-dibromo-dehydrodieugenol elicit specific antiproliferative activity on neuroectodermal tumor cells, partially triggering apoptosis. In 2003, Kim et al. (94) showed that eugenol suppresses COX-2 mRNA expression (one of the main genes implicated in the processes of inflammation and carcinogenesis) in HT-29 cells and lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Another study by Deigner et al. (95) showed that 1?-hydroxyeugenol is a good inhibitor of 5-lipoxygenase and Cu(2+)-mediated low-density lipoprotein oxidation. The studies by Rompelberg et al. (96) showed that in vivo treatment of rats with eugenol reduced the mutagenicity of benzopyrene in the Salmonella typhimurium mutagenicity assay, whereas in vitro treatment of cultured cells with eugenol increased the genotoxicity of benzopyrene.

Wholegrain Foods

The major wholegrain foods are wheat, rice, and maize; the minor ones are barley, sorghum, millet, rye, and oats. Grains form the dietary staple for most cultures, but most are eaten as refined-grain products in Westernized countries (97). Whole grains contain chemopreventive antioxidants such as vitamin E, tocotrienols, phenolic acids, lignans, and phytic acid. The antioxidant content of whole grains is less than that of some berries but is greater than that of common fruits or vegetables (98). The refining process concentrates the carbo- hydrate and reduces the amount of other macronutrients, vitamins, and minerals because the outer layers are removed. In fact, all nutrients with potential preventive actions against cancer are reduced. For example, vitamin E is reduced by as much as 92% (99).

Wholegrain intake was found to reduce the risk of several cancers including those of the oral cavity, pharynx, esophagus, gallbladder, larynx, bowel, colorectum, upper digestive tract, breasts, liver, endometrium, ovaries, prostate gland, bladder, kidneys, and thyroid gland, as well as lymphomas, leukemias, and myeloma (100,101). Intake of wholegrain foods in these studies reduced the risk of cancers by 30�70% (102).

How do whole grains reduce the risk of cancer? Several potential mechanisms have been described. For instance, insoluble fibers, a major constituent of whole grains, can reduce the risk of bowel cancer (103). Additionally, insoluble fiber undergoes fermentation, thus producing short-chain fatty acids such as butyrate, which is an important suppressor of tumor formation (104). Whole grains also mediate favorable glucose response, which is protective against breast and colon cancers (105). Also, several phytochemicals from grains and pulses were reported to have chemopreventive action against a wide variety of cancers. For example, isoflavones (including daidzein, genistein, and equol) are nonsteroidal diphenolic com- pounds that are found in leguminous plants and have antiproliferative activities. Findings from several, but not all, studies have shown significant correlations between an isoflavone-rich soy-based diet and reduced incidence of cancer or mortality from cancer in humans. Our laboratory has shown that tocotrienols, but not tocopherols, can suppress NF-?B activation induced by most carcinogens, thus leading to suppression of various genes linked with proliferation, survival, invasion, and angiogenesis of tumors (106).

Observational studies have suggested that a diet rich in soy isoflavones (such as the typical Asian diet) is one of the most significant contributing factors for the lower observed incidence and mortality of prostate cancers in Asia. On the basis of findings about diet and of urinary excretion levels associated with daidzein, genistein, and equol in Japanese subjects compared with findings in American or European subjects, the isoflavonoids in soy products were proposed to be the agents responsible for reduced cancer risk. In addition to its effect on breast cancer, genistein and related isoflavones also inhibit cell growth or the development of chemically induced cancers in the stomach, bladder, lung, prostate, and blood (107).

Vitamins

Although controversial, the role of vitamins in cancer chemoprevention is being evaluated increasingly. Fruits and vegetables are the primary dietary sources of vitamins except for vitamin D. Vitamins, especially vitamins C, D, and E, are reported to have cancer chemopreventive activity without apparent toxicity.

Epidemiologic study findings suggest that the anticancer/ chemopreventive effects of vitamin C against various types of cancers correlate with its antioxidant activities and with the inhibition of inflammation and gap junction intercellular communication. Findings from a recent epidemiologic study showed that a high vitamin C concentration in plasma had an inverse relationship with cancer-related mortality. In 1997, expert panels at the World Cancer Research Fund and the American Institute for Cancer Research estimated that vitamin C can reduce the risk of cancers of the stomach, mouth, pharynx, esophagus, lung, pancreas, and cervix (108).

The protective effects of vitamin D result from its role as a nuclear transcription factor that regulates cell growth, differentiation, apoptosis, and a wide range of cellular mechanisms central to the development of cancer (109).

Exercise/Physical Activity

There is extensive evidence suggesting that regular physical exercise may reduce the incidence of various cancers. A sedentary lifestyle has been associated with most chronic illnesses. Physical inactivity has been linked with increased risk of cancer of the breast, colon, prostate, and pancreas and of melanoma (110). The increased risk of breast cancer among sedentary women that has been shown to be due to lack of exercise has been associated with a higher serum concentration of estradiol, lower concentration of hormone- binding globulin, larger fat masses, and higher serum insulin levels. Physical inactivity can also increase the risk of colon cancer (most likely because of an increase in GI transit time, thereby increasing the duration of contact with potential carcinogens), increase the circulating levels of insulin (pro- mote proliferation of colonic epithelial cells), alter prosta- glandin levels, depress the immune function, and modify bile acid metabolism. Additionally, men with a low level of physical activity and women with a larger body mass index were more likely to have a Ki-ras mutation in their tumors, which occurs in 30�50% of colon cancers. A reduction of almost 50% in the incidence of colon cancer was observed among those with the highest levels of physical activity (111). Similarly, higher blood testosterone and IGF-1 levels and suppressed immunity due to lack of exercise may increase the incidence of prostate cancer. One study indicated that sedentary men had a 56% and women a 72% higher incidence of melanoma than did those exercising 5�7 days per week (112).

Caloric Restrictions

Fasting is a type of caloric restriction (CR) that is prescribed in most cultures. Perhaps one of the first reports that CR can influence cancer incidence was published in 1940 on the formation of skin tumors and hepatoma in mice (113, 114). Since then, several reports on this subject have been published (115, 116). Dietary restriction, especially CR, is a major modifier in experimental carcinogenesis and is known to significantly decrease the incidence of neoplasms. Gross and Dreyfuss reported that a 36% restriction in caloric intake dramatically decreased radiation-induced solid tumors and/or leukemias (117, 118). Yoshida et al. (119) also showed that CR reduces the incidence of myeloid leukemia induced by a single treatment with whole-body irradiation in mice.

How CR reduces the incidence of cancer is not fully understood. CR in rodents decreases the levels of plasma glucose and IGF-1 and postpones or attenuates cancer and inflammation without irreversible adverse effects (120). Most of the studies done on the effect of CR in rodents are long- term; however, that is not possible in humans, who routinely practice transient CR. The effect that transient CR has on cancer in humans is unclear.

Conclusions

On the basis of the studies described above, we propose a unifying hypothesis that all lifestyle factors that cause cancer (carcinogenic agents) and all agents that prevent cancer (chemopreventive agents) are linked through chronic inflammation (Fig. 10). The fact that chronic inflammation is closely linked to the tumorigenic pathway is evident from numerous lines of evidence.

First, inflammatory markers such as cytokines (such as TNF, IL-1, IL-6, and chemokines), enzymes (such as COX-2, 5-LOX, and matrix metalloproteinase-9 [MMP-9]), and adhesion molecules (such as intercellular adhesion molecule 1, endothelium leukocyte adhesion molecule 1, and vascular cell adhesion molecule 1) have been closely linked with tumorigenesis. Second, all of these inflammatory gene products have been shown to be regulated by the nuclear transcription factor, NF-?B. Third, NF-?B has been shown to control the expression of other gene products linked with tumorigenesis such as tumor cell survival or antiapoptosis (Bcl-2, Bcl-xL, IAP-1, IAP-2, XIAP, survivin, cFLIP, and TRAF-1), proliferation (such as c-myc and cyclin D1), invasion (MMP-9), and angiogenesis (vascular endothelial growth factor). Fourth, in most cancers, chronic inflammation precedes tumorigenesis.

Fifth, most carcinogens and other risk factors for cancer, including cigarette smoke, obesity, alcohol, hyperglycemia, infectious agents, sunlight, stress, food carcinogens, and environmental pollutants, have been shown to activate NF- ?B. Sixth, constitutive NF-?B activation has been encountered in most types of cancers. Seventh, most chemotherapeutic agents and ?-radiation, used for the treatment of cancers, lead to activation of NF-?B. Eighth, activation of NF-?B has been linked with chemoresistance and radioresistance. Ninth, sup- pression of NF-?B inhibits the proliferation of tumors, leads to apoptosis, inhibits invasion, and suppresses angiogenesis. Tenth, polymorphisms of TNF, IL-1, IL-6, and cyclin D1 genes encountered in various cancers are all regulated by NF-?B. Also, mutations in genes encoding for inhibitors of NF-?B have been found in certain cancers. Eleventh, almost all chemopreventive agents described above have been shown to suppress NF-?B activation. In summary, this review outlines the preventability of cancer based on the major risk factors for cancer. The percentage of cancer-related deaths attributable to diet and tobacco is as high as 60�70% worldwide.

ACKNOWLEDGEMENT

This research was supported by The Clayton Foundation for Research (to B.B.A.).

References:

1. L. N. Kolonel, D. Altshuler, and B. E. Henderson. The
multiethnic cohort study: exploring genes, lifestyle and cancer
risk. Nat. Rev. Cancer. 4:519�27 (2004) doi:10.1038/nrc1389.
2. J. K. Wiencke. Impact of race/ethnicity on molecular pathways
in human cancer. Nat. Rev. Cancer. 4:79�84 (2004) doi:10.1038/
nrc1257.
3. R. G. Ziegler, R. N. Hoover, M. C. Pike, A. Hildesheim, A. M.
Nomura, D. W. West, A. H. Wu-Williams, L. N. Kolonel, P. L.
Horn-Ross, J. F. Rosenthal, and M. B. Hyer. Migration patterns
and breast cancer risk in Asian-American women. J. Natl.
Cancer Inst. 85:1819�27 (1993) doi:10.1093/jnci/85.22.1819.
4. W. Haenszel and M. Kurihara. Studies of Japanese migrants. I.
Mortality from cancer and other diseases among Japanese in
the United States. J. Natl. Cancer Inst. 40:43�68 (1968).
5. A. S. Hamilton and T. M. Mack. Puberty and genetic
susceptibility to breast cancer in a case-control study in twins.
N. Engl. J. Med. 348:2313�22 (2003) doi:10.1056/NEJ
Moa021293.
6. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun.
Cancer statistics, 2007. CA Cancer J. Clin. 57:43�66 (2007).
7. F. Brayand, and B. Moller. Predicting the future burden of
cancer. Nat. Rev. Cancer. 6:63�74 (2006) doi:10.1038/nrc1781.
8. P. Lichtenstein, N. V. Holm, P. K. Verkasalo, A. Iliadou, J.
Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, and K.
Hemminki. Environmental and heritable factors in the causation
of cancer�analyses of cohorts of twins from Sweden,
Denmark, and Finland. N. Engl. J. Med. 343:78�85 (2000)
doi:10.1056/NEJM200007133430201.
9. K. R. Loeb, and L. A. Loeb. Significance of multiple mutations
in cancer. Carcinogenesis. 21:379�85 (2000) doi:10.1093/carcin/
21.3.379.
10. W. C. Hahn, and R. A. Weinberg. Modelling the molecular
circuitry of cancer. Nat. Rev. Cancer. 2:331�41 (2002) doi:
10.1038/nrc795.
11. L. A. Mucci, S. Wedren, R. M. Tamimi, D. Trichopoulos, and H.
O. Adami. The role of gene-environment interaction in the
aetiology of human cancer: examples from cancers of the large
bowel, lung and breast. J. Intern. Med. 249:477�93 (2001)
doi:10.1046/j.1365-2796.2001.00839.x.
12. K. Czene, and K. Hemminki. Kidney cancer in the Swedish
Family Cancer Database: familial risks and second primary
malignancies. Kidney Int. 61:1806�13 (2002) doi:10.1046/j.1523-
1755.2002.00304.x.
13. P. Irigaray, J. A. Newby, R. Clapp, L. Hardell, V. Howard, L.
Montagnier, S. Epstein, and D. Belpomme. Lifestyle-related
factors and environmental agents causing cancer: an overview.
Biomed. Pharmacother. 61:640�58 (2007) doi:10.1016/j.bio
pha.2007.10.006.
14. M. F. Denissenko, A. Pao, M. Tang, and G. P. Pfeifer.
Preferential formation of benzo[a]pyrene adducts at lung
cancer mutational hotspots in P53. Science. 274:430�2 (1996)
doi:10.1126/science.274.5286.430.
15. R. J. Anto, A. Mukhopadhyay, S. Shishodia, C. G. Gairola, and
B. B. Aggarwal. Cigarette smoke condensate activates nuclear
transcription factor-kappaB through phosphorylation and degradation
of IkappaB(alpha): correlation with induction of
cyclooxygenase-2. Carcinogenesis. 23:1511�8 (2002) doi:
10.1093/carcin/23.9.1511.
16. S. Shishodiaand, and B. B. Aggarwal. Cyclooxygenase (COX)-2
inhibitor celecoxib abrogates activation of cigarette smokeinduced
nuclear factor (NF)-kappaB by suppressing activation
of IkappaBalpha kinase in human non-small cell lung carcinoma:
correlation with suppression of cyclin D1, COX-2, and
matrix metalloproteinase-9. Cancer Res. 64:5004�12 (2004)
doi:10.1158/0008-5472.CAN-04-0206.
17. H. Ichikawa, Y. Nakamura, Y. Kashiwada, and B. B. Aggarwal.
Anticancer drugs designed by mother nature: ancient drugs but
modern targets. Curr Pharm Des. 13:3400�16 (2007)
doi:10.2174/138161207782360500.
18. A. J. Tuyns. Epidemiology of alcohol and cancer. Cancer Res.
39:2840�3 (1979).
19. H. Maier, E. Sennewald, G. F. Heller, and H. Weidauer.
Chronic alcohol consumption�the key risk factor for pharyngeal
cancer. Otolaryngol. Head Neck Surg. 110:168�73 (1994).
20. H. K. Seitz, F. Stickel, and N. Homann. Pathogenetic mechanisms
of upper aerodigestive tract cancer in alcoholics. Int. J.
Cancer. 108:483�7 (2004) doi:10.1002/ijc.11600.
21. R. Doll, and R. Peto. The causes of cancer: quantitative
estimates of avoidable risks of cancer in the United States
today. J. Natl. Cancer Inst. 66:1191�308 (1981).
22. R. R. Williams, and J. W. Horm. Association of cancer sites
with tobacco and alcohol consumption and socioeconomic
status of patients: interview study from the Third National
Cancer Survey. J. Natl. Cancer Inst. 58:525�47 (1977).
23. N. Hamajima et al. Alcohol, tobacco and breast cancer�
collaborative reanalysis of individual data from 53 epidemiological
studies, including 58,515 women with breast cancer and
95,067 women without the disease. Br. J. Cancer. 87:1234�45
(2002) doi:10.1038/sj.bjc.6600596.
24. M. P. Longnecker, P. A. Newcomb, R. Mittendorf, E. R.
Greenberg, R. W. Clapp, G. F. Bogdan, J. Baron, B. MacMahon,
and W. C. Willett. Risk of breast cancer in relation to lifetime
alcohol consumption. J. Natl. Cancer Inst. 87:923�9 (1995)
doi:10.1093/jnci/87.12.923.
25. F. Stickel, D. Schuppan, E. G. Hahn, and H. K. Seitz.
Cocarcinogenic effects of alcohol in hepatocarcinogenesis.
Gut. 51:132�9 (2002) doi:10.1136/gut.51.1.132.
26. H. K. Seitz, G. Poschl, and U. A. Simanowski. Alcohol and
cancer. Recent Dev Alcohol. 14:67�95 (1998) doi:10.1007/0-306-
47148-5_4.
27. H. K. Seitz, S. Matsuzaki, A. Yokoyama, N. Homann, S.
Vakevainen, and X. D. Wang. Alcohol and cancer. Alcohol
Clin. Exp. Res. 25:137S�143S (2001).
28. F. Donato, U. Gelatti, R. M. Limina, and G. Fattovich.
Southern Europe as an example of interaction between various
environmental factors: a systematic review of the epidemiologicevidence. Oncogene. 25:3756�70 (2006) doi:10.1038/sj. onc.1209557.29. G. Poschl, and H. K. Seitz. Alcohol and cancer. Alcohol
Alcohol. 39:155�65 (2004) doi:10.1093/alcalc/agh057.
30. G. Szabo, P. Mandrekar, S. Oak, and J. Mayerle. Effect of
ethanol on inflammatory responses. Implications for pancreatitis.
Pancreatology. 7:115�23 (2007) doi:10.1159/000104236.
31. B. B. Aggarwal. Nuclear factor-kappaB: the enemy within.
Cancer Cell. 6:203�208 (2004) doi:10.1016/j.ccr.2004.09.003.
32. M. Kuratsune, S. Kohchi, and A. Horie. Carcinogenesis in the
esophagus. I. Penetration of benzo(a) pyrene and other hydrocarbons
into the esophageal mucosa. Gann. 56:177�87 (1965).
33. C. La Vecchia, A. Tavani, S. Franceschi, F. Levi, G. Corrao,
and E. Negri. Epidemiology and prevention of oral cancer. Oral
Oncol. 33:302�312 (1997).
34. P. Boffetta, M. Hashibe, C. La Vecchia, W. Zatonski, and J.
Rehm. The burden of cancer attributable to alcohol drinking.
Int. J. Cancer. 119:884�887 (2006) doi:10.1002/ijc.21903.
35. W. C. Willett. Diet and cancer. Oncologist. 5:393�404 (2000)
doi:10.1634/theoncologist.5-5-393.
36. S. A. Bingham, R. Hughes, and A. J. Cross. Effect of white
versus red meat on endogenous N-nitrosation in the human
colon and further evidence of a dose response. J. Nutr.
132:3522S�3525S (2002).
37. A. Chao, M. J. Thun, C. J. Connell, M. L. McCullough, E. J.
Jacobs, W. D. Flanders, C. Rodriguez, R. Sinha, and E. E.
Calle. Meat consumption and risk of colorectal cancer. JAMA.
293:172�182 (2005) doi:10.1001/jama.293.2.172.
38. N. Hogg. Red meat and colon cancer: heme proteins and nitrite
in the gut. A commentary on diet-induced endogenous formation
of nitroso compounds in the GI tract. Free Radic. Biol. Med.
43:1037�1039 (2007) doi:10.1016/j.freeradbiomed.2007.07.006.
39. C. Rodriguez, M. L. McCullough, A. M. Mondul, E. J. Jacobs,
A. Chao, A. V. Patel, M. J. Thun, and E. E. Calle. Meat
consumption among Black and White men and risk of prostate
cancer in the Cancer Prevention Study II Nutrition Cohort.
Cancer Epidemiol. Biomarkers Prev. 15:211�216 (2006)
doi:10.1158/1055-9965.EPI-05-0614.
40. R. Garcia-Closas, M. Garcia-Closas, M. Kogevinas, N. Malats,
D. Silverman, C. Serra, A. Tardon, A. Carrato, G. CastanoVinyals,
M. Dosemeci, L. Moore, N. Rothman, and R. Sinha.
Food, nutrient and heterocyclic amine intake and the risk of
bladder cancer. Eur. J. Cancer. 43:1731�1740 (2007) doi:10.1016/
j.ejca.2007.05.007.
41. A. Tappel. Heme of consumed red meat can act as a catalyst of
oxidative damage and could initiate colon, breast and prostate
cancers, heart disease and other diseases. Med. Hypotheses.
68:562�4 (2007) doi:10.1016/j.mehy.2006.08.025.
42. L. H. O’Hanlon. High meat consumption linked to gastriccancer
risk. Lancet Oncol. 7:287 (2006) doi:10.1016/S1470-2045
(06)70638-6.
43. T. N. Toporcov, J. L. Antunes, and M. R. Tavares. Fat food
habitual intake and risk of oral cancer. Oral Oncol. 40:925�931
(2004) doi:10.1016/j.oraloncology.2004.04.007.
44. O. Dosil-Diaz, A. Ruano-Ravina, J. J. Gestal-Otero, and J. M.
Barros-Dios. Meat and fish consumption and risk of lung
cancer: A case-control study in Galicia, Spain. Cancer Lett.
252:115�122 (2007) doi:10.1016/j.canlet.2006.12.008.
45. S. N. Lauber, and N. J. Gooderham. The cooked meat derived
genotoxic carcinogen 2-amino-3-methylimidazo[4,5-b]pyridine
has potent hormone-like activity: mechanistic support for a role
in breast cancer. Cancer Res. 67:9597�0602 (2007) doi:10.1158/
0008�5472.CAN-07-1661.
46. D. Divisi, S. Di Tommaso, S. Salvemini, M. Garramone, and R.
Crisci. Diet and cancer. Acta Biomed. 77:118�123 (2006).
47. Y. F. Sasaki, S. Kawaguchi, A. Kamaya, M. Ohshita, K.
Kabasawa, K. Iwama, K. Taniguchi, and S. Tsuda. The comet
assay with 8 mouse organs: results with 39 currently used food
additives. Mutat. Res. 519:103�119 (2002).
48. M. Durando, L. Kass, J. Piva, C. Sonnenschein, A. M. Soto, E.
H. Luque, and M. Munoz-de-Toro. Prenatal bisphenol A
exposure induces preneoplastic lesions in the mammary gland
in Wistar rats. Environ. Health Perspect. 115:80�6 (2007).
49. S. M. Ho, W. Y. Tang, J. Belmonte de Frausto, and G. S.
Prins. Developmental exposure to estradiol and bisphenol A
increases susceptibility to prostate carcinogenesis and epigenetically
regulates phosphodiesterase type 4 variant 4.
Cancer Res. 66:5624�32 (2006) doi:10.1158/0008-5472.CAN-06-
0516.
50. A. Szymanska-Chabowska, J. Antonowicz-Juchniewicz, and R.
Andrzejak. Some aspects of arsenic toxicity and carcinogenicity
in living organism with special regard to its influence on
cardiovascular system, blood and bone marrow. Int. J. Occup.
Med. Environ. Health. 15:101�116 (2002).
51. E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J.
Thun. Overweight, obesity, and mortality from cancer in a
prospectively studied cohort of U.S. adults. N Engl J Med.
348:1625�1638 (2003) doi:10.1056/NEJMoa021423.
52. A. Drewnowski, and B. M. Popkin. The nutrition transition:
new trends in the global diet. Nutr. Rev. 55:31�43 (1997).
53. S. D. Hursting, L. M. Lashinger, L. H. Colbert, C. J. Rogers, K. W.
Wheatley, N. P. Nunez, S. Mahabir, J. C. Barrett, M. R. Forman,
and S. N. Perkins. Energy balance and carcinogenesis: underlying
pathways and targets for intervention. Curr. Cancer Drug Targets.
7:484�491 (2007) doi:10.2174/156800907781386623.
54. A. Nareika, Y. B. Im, B. A. Game, E. H. Slate, J. J. Sanders,
S. D. London, M. F. Lopes-Virella, and Y. Huang. High glucose
enhances lipopolysaccharide-stimulated CD14 expression in
U937 mononuclear cells by increasing nuclear factor kappaB
and AP-1 activities. J. Endocrinol. 196:45�55 (2008) doi:10.
1677/JOE-07-0145.
55. C. H. Tang, Y. C. Chiu, T. W. Tan, R. S. Yang, and W. M. Fu.
Adiponectin enhances IL-6 production in human synovial
fibroblast via an AdipoR1 receptor, AMPK, p38, and NFkappa
B pathway. J. Immunol. 179:5483�5492 (2007).
56. P. Pisani, D. M. Parkin, N. Munoz, and J. Ferlay. Cancer and
infection: estimates of the attributable fraction in 1990. Cancer
Epidemiol. Biomarkers Prev. 6:387�400 (1997).
57. D. M. Parkin. The global health burden of infection-associated
cancers in the year 2002. Int. J. Cancer. 118:3030�3044 (2006)
doi:10.1002/ijc.21731.
58. S. Song, H. C. Pitot, and P. F. Lambert. The human
papillomavirus type 16 E6 gene alone is sufficient to induce
carcinomas in transgenic animals. J. Virol. 73:5887�5893 (1999).
59. B. S. Blumberg, B. Larouze, W. T. London, B. Werner, J. E.
Hesser, I. Millman, G. Saimot, and M. Payet. The relation of
infection with the hepatitis B agent to primary hepatic carcinoma.
Am. J. Pathol. 81:669�682 (1975).
60. T. M. Hagen, S. Huang, J. Curnutte, P. Fowler, V. Martinez, C.
M. Wehr, B. N. Ames, and F. V. Chisari. Extensive oxidative
DNA damage in hepatocytes of transgenic mice with chronic
active hepatitis destined to develop hepatocellular carcinoma.
Proc. Natl. Acad. Sci. U S A. 91:12808�12812 (1994)
doi:10.1073/pnas.91.26.12808.
61. A. L. Jackson, and L. A. Loeb. The contribution of
endogenous sources of DNA damage to the multiple mutations
in cancer. Mutat. Res. 477:7�21 (2001) doi:10.1016/S0027-
5107(01)00091-4.
62. N. De Maria, A. Colantoni, S. Fagiuoli, G. J. Liu, B. K. Rogers,
F. Farinati, D. H. Van Thiel, and R. A. Floyd. Association
between reactive oxygen species and disease activity in chronic
hepatitis C. Free Radic. Biol. Med. 21:291�5 (1996) doi:10.1016/
0891�5849(96)00044-5.
63. K. Koike, T. Tsutsumi, H. Fujie, Y. Shintani, and M. Kyoji.
Molecular mechanism of viral hepatocarcinogenesis. Oncology.
62(Suppl 1):29�37 (2002) doi:10.1159/000048273.
64. D. Belpomme, P. Irigaray, L. Hardell, R. Clapp, L. Montagnier,
S. Epstein, and A. J. Sasco. The multitude and diversity of
environmental carcinogens. Environ. Res. 105:414�429 (2007)
doi:10.1016/j.envres.2007.07.002.
65. Y. S. Guan, Q. He, M. Q. Wang, and P. Li. Nuclear factor kappa
B and hepatitis viruses. Expert Opin. Ther. Targets. 12:265�280
(2008) doi:10.1517/14728222.12.3.265.
66. S. Takayama, H. Takahashi, Y. Matsuo, Y. Okada, and T.
Manabe. Effects of Helicobacter pylori infection on human
pancreatic cancer cell line. Hepatogastroenterology. 54:2387�
2391 (2007).
67. K. A. Steinmetz, and J. D. Potter. Vegetables, fruit, and cancer
prevention: a review. J. Am. Diet Assoc. 96:1027�1039 (1996)
doi:10.1016/S0002�8223(96)00273-8.68. P. Greenwald. Lifestyle and medical approaches to cancer
prevention. Recent Results Cancer Res. 166:1�15 (2005).
69. H. Vainio, and E. Weiderpass. Fruit and vegetables in cancer
prevention. Nutr. Cancer. 54:111�42 (2006) doi:10.1207/
s15327914nc5401_13.
70. L. W. Wattenberg. Chemoprophylaxis of carcinogenesis: a
review. Cancer Res. 26:1520�1526 (1966).
71. B. B. Aggarwal, and S. Shishodia. Molecular targets of dietary
agents for prevention and therapy of cancer. Biochem. Pharmacol.
71:1397�1421 (2006) doi:10.1016/j.bcp.2006.02.009.
72. H. Nishino, M. Murakosh, T. Ii, M. Takemura, M. Kuchide, M.
Kanazawa, X. Y. Mou, S. Wada, M. Masuda, Y. Ohsaka, S.
Yogosawa, Y. Satomi, and K. Jinno. Carotenoids in cancer
chemoprevention. Cancer Metastasis Rev. 21:257�264 (2002)
doi:10.1023/A:1021206826750.
73. K. B. Harikumar, and B. B. Aggarwal. Resveratrol: A multitargeted
agent for age-associated chronic diseases. Cell Cycle.
7:1020�1037 (2008).
74. G. L. Russo. Ins and outs of dietary phytochemicals in cancer
chemoprevention. Biochem. Pharmacol. 74:533�544 (2007)
doi:10.1016/j.bcp.2007.02.014.
75. R. Agarwal, C. Agarwal, H. Ichikawa, R. P. Singh, and B. B.
Aggarwal. Anticancer potential of silymarin: from bench to bed
side. Anticancer Res. 26:4457�98 (2006).
76. E. G. Rogan. The natural chemopreventive compound indole3-carbinol:
state of the science. In Vivo. 20:221�228 (2006).
77. N. Juge, R. F. Mithen, and M. Traka. Molecular basis for
chemoprevention by sulforaphane: a comprehensive review.
Cell Mol Life Sci. 64:1105�27 (2007) doi:10.1007/s00018-007-
6484-5.
78. L. Chen, and H. Y. Zhang. Cancer preventive mechanisms of
the green tea polyphenol (?)-epigallocatechin-3-gallate. Molecules.
12:946�957 (2007).
79. P. Anand, C. Sundaram, S. Jhurani, A. B. Kunnumakkara, and
B. B. Aggarwal. Curcumin and cancer: An “old-age” disease
with an “age-old” solution. Cancer Lett. in press (2008).
80. F. Khanum, K. R. Anilakumar, and K. R. Viswanathan.
Anticarcinogenic properties of garlic: a review. Crit. Rev. Food
Sci. Nutr. 44:479�488 (2004) doi:10.1080/10408690490886700.
81. G. Sethi, K. S. Ahn and B. B. Aggarwal. Targeting NF-kB
activation pathway by thymoquinone: Role in suppression of
antiapoptotic gene products and enhancement of apoptosis. Mole
Cancer Res. in press (2008).
82. Y. J. Surh. Anti-tumor promoting potential of selected spice
ingredients with antioxidative and anti-inflammatory activities:
a short review. Food Chem. Toxicol. 40:1091�1097 (2002)
doi:10.1016/S0278-6915(02)00037-6.
83. Y. Shukla, and M. Singh. Cancer preventive properties of
ginger: a brief review. Food Chem. Toxicol. 45:683�690 (2007)
doi:10.1016/j.fct.2006.11.002.
84. M. M. al-Harbi, S. Qureshi, M. Raza, M. M. Ahmed, A. B.
Giangreco, and A. H. Shah. Influence of anethole treatment on
the tumour induced by Ehrlich ascites carcinoma cells in paw of
Swiss albino mice. Eur. J. Cancer Prev. 4:307�318 (1995)
doi:10.1097/00008469-199508000-00006.
85. C. K. Sen, K. E. Traber, and L. Packer. Inhibition of NF-kappa
B activation in human T-cell lines by anetholdithiolthione.
Biochem. Biophys. Res. Commun. 218:148�53 (1996)
doi:10.1006/bbrc.1996.0026.
86. R. A. Lubet, V. E. Steele, I. Eto, M. M. Juliana, G. J. Kelloff, and
C. J. Grubbs. Chemopreventive efficacy of anethole trithione, Nacetyl-L-cysteine,
miconazole and phenethylisothiocyanate in the
DMBA-induced rat mammary cancer model. Int. J. Cancer.
72:95�101 (1997) doi:10.1002/(SICI)1097-0215(19970703)
72:1<95::AID-IJC14>3.0.CO;2-9.
87. Y. Nakagawa, and T. Suzuki. Cytotoxic and xenoestrogenic
effects via biotransformation of trans-anethole on isolated rat
hepatocytes and cultured MCF-7 human breast cancer cells.
Biochem. Pharmacol. 66:63�73 (2003) doi:10.1016/S0006-2952
(03)00208-9.
88. S. Lam, C. MacAulay, J. C. Le Riche, Y. Dyachkova, A.
Coldman, M. Guillaud, E. Hawk, M. O. Christen, and A. F.
Gazdar. A randomized phase IIb trial of anethole dithiolethione
in smokers with bronchial dysplasia. J. Natl. Cancer Inst.
94:1001�1009 (2002).
89. S. Shishodia, and B. B. Aggarwal. Diosgenin inhibits osteoclastogenesis,
invasion, and proliferation through the downregulation
of Akt, I kappa B kinase activation and NF-kappa B-regulated
gene expression. Oncogene. 25:1463�1473 (2006) doi:10.1038/sj.
onc.1209194.
90. R. Ghosh, N. Nadiminty, J. E. Fitzpatrick, W. L. Alworth, T. J.
Slaga, and A. P. Kumar. Eugenol causes melanoma growth
suppression through inhibition of E2F1 transcriptional activity.
J. Biol. Chem. 280:5812�5819 (2005) doi:10.1074/jbc.
M411429200.
91. K. Sukumaran, M. C. Unnikrishnan, and R. Kuttan. Inhibition
of tumour promotion in mice by eugenol. Indian J. Physiol.
Pharmacol. 38:306�308 (1994).
92. K. Imaida, M. Hirose, S. Yamaguchi, S. Takahashi, and N. Ito.
Effects of naturally occurring antioxidants on combined 1,2-
dimethylhydrazine- and 1-methyl-1-nitrosourea-initiated carcinogenesis
in F344 male rats. Cancer Lett. 55:53�59 (1990)
doi:10.1016/0304-3835(90)90065-6.
93. M. Pisano, G. Pagnan, M. Loi, M. E. Mura, M. G. Tilocca, G.
Palmieri, D. Fabbri, M. A. Dettori, G. Delogu, M. Ponzoni, and
C. Rozzo. Antiproliferative and pro-apoptotic activity of
eugenol-related biphenyls on malignant melanoma cells. Mol
Cancer. 6:8 (2007) doi:10.1186/1476-4598-6-8.
94. S. S. Kim, O. J. Oh, H. Y. Min, E. J. Park, Y. Kim, H. J. Park, Y.
Nam Han, and S. K. Lee. Eugenol suppresses cyclooxygenase-2
expression in lipopolysaccharide-stimulated mouse macrophage
RAW264.7 cells. Life Sci. 73:337�348 (2003) doi:10.1016/S0024�
3205(03)00288-1.
95. H. P. Deigner, G. Wolf, U. Ohlenmacher, and J. Reichling. 1�-
Hydroxyeugenol- and coniferyl alcohol derivatives as effective
inhibitors of 5-lipoxygenase and Cu(2+)-mediated low density
lipoprotein oxidation. Evidence for a dual mechanism. Arzneimittelforschung.
44:956�961 (1994).
96. C. J. Rompelberg, M. J. Steenwinkel, J. G. van Asten, J. H. van
Delft, R. A. Baan, and H. Verhagen. Effect of eugenol on the
mutagenicity of benzo[a]pyrene and the formation of benzo[a]
pyrene-DNA adducts in the lambda-lacZ-transgenic mouse.
Mutat. Res. 369:87�96 (1996) doi:10.1016/S0165-1218(96)90052-X.
97. D. P. Richardson. The grain, the wholegrain and nothing but
the grain: the science behind wholegrain and the reduced risk of
heart disease and cancer. Nutr. Bull. 25:353�360 (2000)
doi:10.1046/j.1467-3010.2000.00083.x.
98. H. E. Miller, F. Rigelhof, L. Marquart, A. Prakash, and M.
Kanter. Antioxidant content of whole grain breakfast cereals,
fruits and vegetables. J. Am. Coll. Nutr. 19:312S�319S (2000).
99. J. L. Slavin, D. Jacobs, and L. Marquart. Grain processing and
nutrition. Crit. Rev. Food Sci. Nutr. 40:309�326 (2000)
doi:10.1080/10408690091189176.
100. L. Chatenoud, A. Tavani, C. La Vecchia, D. R. Jacobs, Jr, E. Negri,
F. Levi, and S. Franceschi. Whole grain food intake and cancer risk.
Int. J. Cancer. 77:24�8 (1998) doi:10.1002/(SICI)1097-0215
(19980703)77:1<24::AID-IJC5>3.0.CO;2-1.
101. D. R. Jacobs, Jr, L. Marquart, J. Slavin, and L. H. Kushi.
Whole-grain intake and cancer: an expanded review and metaanalysis.
Nutr. Cancer. 30:85�96 (1998).
102. L. Marquart, K. L. Wiemer, J. M. Jones, and B. Jacob. Whole
grains health claims in the USA and other efforts to increase
whole-grain consumption. Proc. Nutr. Soc. 62:151�160 (2003)
doi:10.1079/PNS2003242.
103. M. Eastwood, and D. Kritchevsky. Dietary fiber: how did we
get where we are? Annu. Rev. Nutr. 25:1�8 (2005) doi:10.1146/
annurev.nutr.25.121304.131658.
104. A. McIntyre, P. R. Gibson, and G. P. Young. Butyrate
production from dietary fibre and protection against large
bowel cancer in a rat model. Gut. 34:386�391 (1993)
doi:10.1136/gut.34.3.386.
105. J. L. Slavin, D. Jacobs, L. Marquart, and K. Wiemer. The role of
whole grains in disease prevention. J. Am. Diet Assoc. 101:780�
5 (2001) doi:10.1016/S0002-8223(01)00194-8.
106. K. S. Ahn, G. Sethi, K. Krishnan, and B. B. Aggarwal. Gammatocotrienol
inhibits nuclear factor-kappaB signaling pathway
through inhibition of receptor-interacting protein and TAK1
leading to suppression of antiapoptotic gene products and
potentiation of apoptosis. J. Biol. Chem. 282:809�820 (2007)
doi:10.1074/jbc.M610028200.107. F. H. Sarkar, S. Adsule, S. Padhye, S. Kulkarni, and Y. Li. The
role of genistein and synthetic derivatives of isoflavone in
cancer prevention and therapy. Mini Rev. Med. Chem. 6:401�
407 (2006) doi:10.2174/138955706776361439.
108. K. W. Lee, H. J. Lee, Y. J. Surh, and C. Y. Lee. Vitamin C and
cancer chemoprevention: reappraisal. Am. J. Clin. Nutr.
78:1074�1078 (2003).
109. B. A. Ingraham, B. Bragdon, and A. Nohe. Molecular basis of
the potential of vitamin D to prevent cancer. Curr. Med. Res.
Opin. 24:139�149 (2008) doi:10.1185/030079907X253519.
110. F. W. Booth, M. V. Chakravarthy, S. E. Gordon, and E. E.
Spangenburg. Waging war on physical inactivity: using modern
molecular ammunition against an ancient enemy. J. Appl.
Physiol. 93:3�30 (2002).
111. G. A. Colditz, C. C. Cannuscio, and A. L. Frazier. Physical
activity and reduced risk of colon cancer: implications for
prevention. Cancer Causes Control. 8:649�67 (1997)
doi:10.1023/A:1018458700185.
112. A. R. Shors, C. Solomon, A. McTiernan, and E. White.
Melanoma risk in relation to height, weight, and exercise
(United States). Cancer Causes Control. 12:599�606 (2001)
doi:10.1023/A:1011211615524.
113. A. Tannenbaum, and H. Silverstone. The initiation and growth
of tumors. Introduction. I. Effects of underfeeding. Am. J.
Cancer. 38:335�350 (1940).
114. S. D. Hursting, J. A. Lavigne, D. Berrigan, S. N. Perkins, and J. C.
Barrett. Calorie restriction, aging, and cancer prevention: mechanisms
of action and applicability to humans. Annu. Rev. Med.
54:131�152 (2003) doi:10.1146/annurev.med.54.101601.152156.
115. M. H. Ross, and G. Bras. Lasting influence of early caloric
restriction on prevalence of neoplasms in the rat. J. Natl. Cancer
Inst. 47:1095�1113 (1971).
116. D. Albanes. Total calories, body weight, and tumor incidence in
mice. Cancer Res. 47:1987�92 (1987).
117. L. Gross, and Y. Dreyfuss. Reduction in the incidence of
radiation-induced tumors in rats after restriction of food intake.
Proc. Natl. Acad. Sci. U S A. 81:7596�7598 (1984) doi:10.1073/
pnas.81.23.7596.
118. L. Gross, and Y. Dreyfuss. Prevention of spontaneous and
radiation-induced tumors in rats by reduction of food intake.
Proc. Natl. Acad. Sci. U S A. 87:6795�6797 (1990) doi:10.1073/
pnas.87.17.6795.
119. K. Yoshida, T. Inoue, K. Nojima, Y. Hirabayashi, and T. Sado.
Calorie restriction reduces the incidence of myeloid leukemia
induced by a single whole-body radiation in C3H/He mice.
Proc. Natl. Acad. Sci. U S A. 94:2615�2619 (1997) doi:10.1073/
pnas.94.6.2615.
120. V. D. Longo, and C. E. Finch. Evolutionary medicine: From
dwarf model systems to healthy centenarians? Science.
299:1342�1346 (2003) doi:10.1126/science.1077991

blank
Close Accordion
Clinical Evaluation and Treatment for Inflammatory Bowel Disease

Clinical Evaluation and Treatment for Inflammatory Bowel Disease

Inflammatory Bowel Disease: The gastrointestinal mucosal barrier is an effective and powerful defense and repair mechanism, which allows for the proper absorption of energy, nutrients and water when we eat. The functioning of the digestive system with its balanced gut microbiota depends on the function of the mucosal barrier. The intestinal barrier has to be permeable to allow the passage of nutrients, however, when this permeability increases beyond what is necessary, it can lead to a variety of issues, in some instances, even causing disease.

 

What’s the connection between intestinal permeability and IBD?

 

Intestinal barrier dysfunction has been determined in a variety of gastrointestinal diseases, or GI diseases, such as inflammatory bowel disease, or IBD. It has now become more accepted that proper gastrointestinal mucosal barrier function plays a major role in the pathophysiology of inflammatory bowel disease. However, further understanding as well as research data is required to determine treatment and therapy options for such gastrointestinal diseases, particularly IBD.

Clinical Evaluation of Intestinal Permeability in Inflammatory Bowel Disease

 

Changes to intestinal permeability generally manifest early in the development of intestinal inflammation due to Crohn’s disease and other gastrointestinal diseases. Several risk factors, including the conditions themselves, may even exacerbate intestinal inflammation through increased intestinal permeability. According to recent research studies, nonsteroidal anti-inflammatory drugs, or NSAIDs, and stress can also induce symptoms of inflammation through increased gastrointestinal, or GI, mucosal permeability and the release of corticotropin-released factors. Additionally, changes to intestinal permeability can determine a patient’s risk of relapsing Crohn’s disease. Patients who’ve had an altered lactulose/mannitol test, or L/M test, are often 8 times more at risk of relapsing, even when asymptomatic and results demonstrate normal biochemical indices.

 

The lactulose/mannitol test is specifically used to evaluate small intestinal permeability by measuring urinary excretion after oral administration of these sugars. Lactulose�is a large sized oligosaccharide that generally doesn’t carry out paracellular transport and can be adsorbed in the instance of leaky intercellular junctions while mannitol is a smaller molecule that can freely move across the intestinal epithelium. Both probes are equally affected by gastrointestinal dilution, motility, bacterial degradation, and renal function; consequently, the ratio allows for the correction of possible confounding factors. The lactulose/mannitol test is utilized in clinical practice because of its noninvasiveness, its high sensitivity in detecting active inflammatory bowel disease, or IBD, and its ability to distinguish functional versus organic GI disease, or gastrointestinal disease. An altered L/M test has been reported in approximately 50 percent of patients with Crohn’s disease. Other sugars have also been routinely used to evaluate the upper gastrointestinal tract, for instance, sucrose which has been degraded by duodenal sucrase, may indicate the permeability of the stomach and the proximal duodenum. Accordingly, multisugar tests have been developed, with the latest inclusion of sucralose, which can be barely absorbed through the human intestine, allowing a functional assessment of the entire gastrointestinal tract, extending its use for ulcerative colitis as well.

 

Other functional tests, such as 51Cr-EDTA or the Ussing chambers, have demonstrated great precision in diagnosing gastrointestinal disease, however, their invasiveness and complex detection methods make their use impossible in humans. Whereas promising results have been demonstrated by novel imaging techniques, particularly confocal laser endomicroscopy. This endoscopic technique allows an in vivo evaluation of the epithelial lining and vasculature with the use of intravenous fluorescein as a molecular contrast agent, which generally doesn’t carry out paracellular transport. Confocal laser endomicroscopy is currently widely utilized to identify and classify gastrointestinal tumors but it has also been used in nonneoplastic conditions, such as celiac disease, collagenous colitis, and irritable bowel syndrome, or IBS. Discovering cellular and subcellular changes, such as cell shedding, is possible through this procedure, which makes it a highly effective technique for the imaging of intestinal barrier dysfunction in inflammatory bowel disease, or IBD. Confocal laser endomicroscopy demonstrated increased density of mucosal gaps after cell shedding in the small intestine of patients with Crohn’s disease as well as in macroscopically normal duodenum in both Crohn’s disease and ulcerative colitis. These alterations could represent impairment of intestinal permeability possibly predicting subsequent clinical relapse. Recently, confocal laser endomicroscopy has been utilized in patients with ulcerative colitis, demonstrating that the occurrence of crypt architectural abnormalities may predict disease relapse in patients with noticeable endoscopic remission, as seen on Figure 1.

 

Confocal Laser Endomicroscopy Images Figure 2

Figure 1: Confocal laser endomicroscopy images from a healthy subject (a) and an ulcerative colitis (UC) patient with inactive disease (b). UC patients display increased crypt diameter, intercryptic distance, and perivascular fluorescence.

 

Intestinal Permeability Treatment for Inflammatory Bowel Disease

 

Agents routinely used in the therapeutic armamentarium of inflammatory bowel disease, or IBD, may cause and maintain mucosal remission not only for their immunomodulating effect, but also through the recovery of epithelial integrity and permeability, as was demonstrated for anti-TNF-? drugs and medications in Crohn’s disease. Since similar effects are obtained using elemental diets for Crohn’s disease, raising interest is based on dietary strategies with the use of immunomodulatory nutrients and probiotics.

 

Western diets, with its high content of fat and refined sugars, is a risk factor for the growth of Crohn’s disease, where they’re believed to induce a low-grade inflammation through gut dysbiosis and increased intestinal permeability. Furthermore, there is increasing concern about the use of industrial food additives towards promoting immune-related diseases. A recent research study demonstrated how additives can increase intestinal permeability by interfering with the tight junctions, or TJs, increasing the passage of immunogenic antigens. In addition, certain fatty acids, such as propionate, acetate, butyrate, omega-3, and conjugated linoleic acid, amino acids, such as glutamine, arginine, tryptophan, and citrulline, and oligoelements, which are essential for intestinal surface integrity, when supplemented to experimental subjects with gastrointestinal diseases, GI diseases, can decrease inflammation and restore gastrointestinal mucosal permeability. However, their therapeutic effectiveness, especially in inflammatory bowel disease, remains debatable: butyrate, zinc, and probiotics have the strongest evidence in this aspect.

 

Butyrate is a short chain fatty acid produced by intestinal microbial fermentation of dietary fibers, which in experimental versions, stimulate mucus production and expression of tight junctions, or TJs, in vitro but a broader selection of action is anticipated. It’s essential for the overall homeostasis of enterocytes that its lack, measured as faecal concentrations, has been taken as an indirect indicator of altered intestinal barrier function. In clinical practice topical butyrate had demonstrated effectiveness in refractory distal ulcerative colitis. Other fatty acids with similar properties have also been proposed as an adjuvant treatment in inflammatory bowel disease, namely, omega-3 and phosphatidylcholine, but their usage in clinical practice remains limited. Zinc is a trace element essential for cell turnover and repair systems. Inflammatory conditions and malnutrition have been known to be risk factors for zinc deficiency and many research studies demonstrated the effectiveness of its supplementation during acute diarrhoea and experimental colitis. Oral zinc treatment may restore intestinal permeability in patients with Crohn’s disease, perhaps through its capacity to regulate tight junctions, or TJs, both in the small and the large intestines.

 

The reason for the use of probiotics in inflammatory bowel disease is for the above mentioned dysbiosis that characterizes these GI diseases, or gastrointestinal diseases. Several trials have tested the effectiveness of various species of probiotics in inflammatory bowel disease, or IBD, with contradicting results. Those which have demonstrated to be effective are Escherichia coli Nissle 1917, Bifidobacterium, Lactobacillus rhamnosus GG, or the multispecies VSL#3, which consists of eight unique probiotics. Nevertheless, their use remains confined to ulcerative colitis and are frequently aimed at maintaining remission rather than treating the active disease, as emphasized by the meta evaluation by Jonkers et al.. The mechanisms of their effect in ulcerative colitis have yet to be fully understood but likely, together with direct anti-inflammatory effects, they can restore the intestinal barrier and decrease intestinal permeability, regulating tight junction, or TJ, proteins. The favorable effect of probiotics in pouchitis seems to be about the improvement of gastrointestinal mucosal barrier function. Another potential mechanism of action is the recovery of butyrate-producing bacteria: patients with ulcerative colitis have decreased bacterial species like Faecalibacterium prausnitzii, but supplementation with butyrate-producing species or probiotics together with preformed butyrate demonstrated effectiveness in experimental models.

 

Finally, vitamin D can also be involved to preserve intestinal barrier function. Polymorphisms of its own receptor have been related to the development of inflammatory bowel disease, or IBD. While the expression of vitamin D receptor on intestinal epithelium prevents inflammation-induced apoptosis, its removal contributes to faulty autophagy that boosts experimental colitis. But, additional data and clinical trials are needed to rationalize vitamin D use in inflammatory bowel disease management.

 

Conclusion

 

The impairment of intestinal barrier function is just one of the critical events in the pathogenesis of inflammatory bowel disease, or IBD. Whether it precedes and predisposes disease development remains under analysis, particularly in Crohn’s disease, but it perpetuates and enriches chronic mucosal inflammation by increasing paracellular transport of luminal pathogens. Novel imaging and functional techniques allow us to assess intestinal permeability in vivo and help identify patients at risk of relapse guiding therapeutic management. Manipulation of intestinal permeability is a fascinating therapeutic approach but more research on its effectiveness and safety are required before nutritional immune-modulators may be utilized in clinical practice. Information referenced from the National Center for Biotechnology Information (NCBI) and the National University of Health Sciences. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

By Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

ADDITIONAL TOPIC: EXTRA EXTRA: Treating Back Pain

 

 

Nutritional Strategies For Skeletal And Cardiovascular Health

Nutritional Strategies For Skeletal And Cardiovascular Health

Nutritional Strategies:� Hard Bones, Soft Arteries, Rather Than Vice Versa

ABSTRACT

nutritional strategiesNutritional Strategies: The focus of this paper is to explore better strategies for optimizing bone strength and reducing risk of fracture, while at the same time decreasing risk of cardiovascular disease. The majority of Americans do not consume the current recommended dietary allowance for calcium, and the lifetime risk of osteoporosis is about 50%. However, traditional mono-nutrient calcium supplements may not be ideal. We comprehensively and systematically reviewed the scientific literature in order to determine the optimal dietary nutritional strategies and nutritional supplements for long- term skeletal health and cardiovascular health. To summarize, the following steps may be helpful for building strong bones while maintaining soft and supple arteries: (1) calcium is best obtained from dietary sources rather than supplements; (2) ensure that adequate animal protein intake is coupled with calcium intake of 1000 mg/day; (3) maintain vitamin D levels in the normal range; (4) increase intake of fruits and vegetables to alkalinize the system and promote bone health; (5) concomitantly increase potassium consumption while reducing sodium intake; (6) consider increasing the intake of foods rich in vitamins K1 and K2; (7) consider including bones in the diet; they are a rich source of calcium-hydroxyapatite and many other nutrients needed for building bone.

INTRODUCTION: Nutritional Strategies

Calcium: General Physiology Andepidemiology

Calcium is the most ubiquitous mineral in the human body. An average-sized adult body contains approximately 1000 to 1200 g of calcium, which is predominately incorporated into bones and teeth in the form of calcium-hydroxyapatite (Ca10(PO4)6(OH)2) crystals. The remainder circulates throughout the blood and soft tissues, and plays fundamental roles in cell conduction, muscle function, hormone regulation, vitamin (Vit) K-dependent pathways, and cardiac and blood vessel function.1

Some studies indicate only 30% of the US population consumes the Recommended

Dietary Allowance of calcium, which is 1000� 1200 mg daily.1 Furthermore, humans absorb only about 30% of calcium from foods depend- ing on the specific source.1 The body will demineralize its own skeletal system to maintain serum calcium levels in situations where dietary calcium is insufficient and/or absorption is decreased, and/or excretion is increased.2

Osteopenia/Osteoporosis:�An Epidemic

Starting at about age 50 years, postmenopausal women lose about 0.7�2% of their bone mass each year, while men over age 50 years lose 0.5�0.7% yearly. Between ages 45 and 75years, women, on average, lose 30% of their bone mass, whereas men lose 15%.

According to the US Surgeon General�s Report, 1 in 2 Americans over age 50 years is expected to have or to be at risk of develop- ing osteoporosis.3 Osteoporosis causes 8.9 million fractures annually, with an estimated cumulative cost of incident fractures predicted at US$474 billion over the next�20 years in the USA.3�6 Among adult women over age 45 years, osteoporosis accounts for more days spent in hospital than many other diseases such as diabetes, myocardial infarction (MI), chronic obstructive airway disease and breast cancer.3 Fragility fractures are the primary cause of hospitalization and/or death for US adults ? age 65 years and older; and 44% of nursing home admissions are due to fractures.3

A Mayo Clinic study reported that compared to 30 years ago, forearm fractures have risen more than 32% in boys and 56% in girls. The authors concluded that dietary changes, including insufficient calcium and excess phosphate, were significantly associated with increased fractures.7 Public health approaches are crucial to prevent symptomatic bone disease, but widespread pharmacological prophylaxis is prohibitively expensive and carries potential serious adverse effects.

Cardiovascular Disease & Bone Mineral Disease: A Calcium Nexus

Strong epidemiological associations exist between decreased bone mineral density (BMD) and increased risk of both cardiovascular (CV) disease and CV death.8 For example, individuals with osteoporosis have a higher risk of coronary artery disease, and vice versa. This problem will be magnified if the therapies for osteoporosis (eg, calcium supplements) independently increase risk of MI.

Issues With Dairy As Primary Source Of Calcium

Dairy foods and beverages account for about 70% of all dietary calcium intake among Americans. Dozens of epidemiological and randomized controlled trials in adults and children have used dairy products as the principal source of calcium, and have credited dairy intake with preventive benefits on study end points including bone mass, fractures and osteoporosis. A recent meta-analysis of over 270 000 people showed a strong trend for dairy intake protecting against hip fracture; the relative risk (RR) of hip fracture per daily glass of milk was 0.91, 95% CI 0.81 to 1.01.9

In many industrialized nations, milk is often the most cost-effective strategy for achieving recommended levels of calcium intake at a population level. Yet, legitimate concerns exist regarding potential deleterious effects of chronic dairy intake on health.10�16 Dairy foods, on an evolutionary time scale, are relative �new-comers� to the hominin diet.17 Domestication of cattle, sheep and goats first occurred approximately 11 000�10 000 years Before Present.17 Furthermore, it appears that an estimated 65% of the worldwide population expresses the phenotype of lactase non-persistence.18

Consumption of cow�s milk has been inconsistently associated with cataracts, ovarian and prostate cancers, and Parkinson�s disease, and it has been implicated in certain autoimmune diseases, such as type 1 diabetes and multiple sclerosis. Overall, the evidence for dairy-induced human disease appears to be most consistent for prostate cancer and for type 1 diabetes.19

A recent study of over 106 000 adults followed for 20 years showed that drinking three or more glasses of milk per day was associated with increased risks for bone fracture and higher mortality rates compared with drink- ing not more than one glass of milk per day.20 By contrast, for the women in that study, each daily serving of cheese and/or other fermented milk products such as yogurt was associated with a 10�15% decrease in the rates of mortality and hip fractures (p<0.001). However, this was an observational study with inherent limitations such as residual confounding and reverse causation, and thus, firm conclusions cannot be drawn from the data.

The sugar in milk, lactose, is broken down in the gastrointestinal tract to d-galactose and d-glucose. d-Galactose has been found to increase inflammation and oxidation in adult humans, and in adult animals this sugar triggers accelerated aging, neurodegeneration, and a shortened life span.20

Thus, cow�s milk, though rich in many nutrients, including calcium, has issues that render it less than ideal as a dietary staple for many adults. On the contrary, fermented dairy foods, such as yogurt and cheese, appear to be safer than milk, possibly because the most or all of d-galactose has been metabolized by bacteria.20

Plant-Based Dietary Sources Of Calcium & Protein: Effects On Bone Health

nutritional strategiesMost vegetarians, especially vegans, appear to absorb less calcium because of the oxalic and phytic acid contained in many plant, grain and legume products.1 Indeed, several studies have reported that risks of bone fracture are higher in vegans�likely due, at least in part, to their lower dietary calcium intake, and/or poor absorption of this key mineral (table 1).21

Dietary Protein, Calcium And Bone Health

Evolutionary evidence suggests that preagricultural diets were net base-yielding, and contributed to the robust�bone health generally seen among hunter-gatherers.10 17�By contrast, processed foods displace base-yielding fruits�and vegetables, thereby shifting to a net acid-yielding diet.2 22�24

Increased protein intake can raise levels of insulin-like growth factor 1, which is anabolic, and contributes to bone building. Experts currently agree that diets moderate in protein (?1.0�1.5 g/kg/day) are associated with normal calcium metabolism, and do not adversely alter bone metabolism; however, at lower protein intakes (<0.8 g/kg/day), intestinal calcium absorption is reduced and levels of parathyroid hormone rise, causing the mobilization of calcium from bone.25 26

 

A growing body of evidence indicates that diets higher in animal protein associate with greater bone mass and fewer fractures, particularly if the calcium intake is also sufficient (approximately 1000 mg of calcium/day) (figure 1).26�28 Thus, a diet providing ample dietary calcium, along with alkalizing nutrients, such as fruits and vegetables, and possibly also alkaline mineral waters, may create a milieu where moderate intake of animal protein contributes favorably to bone health. Additionally, intake of protein plus calcium with Vitamin D may reduce fracture rates through mechanisms independent of bone density.29

nutritional strategies

Magnesium

nutritional strategiesMaintaining replete magnesium status may reduce risk for the metabolic syndrome, diabetes, hypertension and MI.30 Circumstantial and experimental evidence has also implicated magnesium deficiency in osteoporosis.31�34 Optimal dietary magnesium intake is about 7�10 mg/ kg/day, preferably in the context of a net base-yielding diet, since a net acid-yielding diet increases excretion of both magnesium and calcium (table 2).

Potassium/Sodium Ratio Affects Calcium Metabolism

A potassium/sodium ratio of 1.0 or higher is associated with a 50% lower risk of CVD and total mortality com- pared with a ratio under 1.0.35 Reducing excessive sodium intake is also associated with resultant decreased urinary calcium excretion, which may help to prevent against bone demineralization.36 The average potassium content (about 2600 mg/day) of the typical US diet is substantially lower than its sodium content (about 3300 mg/day).35 Approximately 77% of dietary sodium chloride is consumed in the form of processed foods. By contrast, potassium is naturally abundant in many unprocessed foods, especially vegetables, fruits, tubers, nuts, legumes, fish and seafood. In fact, a high potassium/sodium ratio is a reliable marker for high intake of plant foods and lower intake of processed foods.35 High dietary sodium intake has been associated with endothelial damage, arterial stiffness, decreased nitric�oxide production and increased levels of transforming growth factor ?; whereas, high potassium dietary intake can counteract these effects.35 36

Evidence indicates that the lowest CV event rates occur in the moderate sodium excretion and high potassium excretion groups.37 Thus, it appears that a moderate sodium diet (2800�3300 mg/day) in conjunction with a high potassium intake (>3000 mg/day) might confer the optimal CV benefits for the general population.37

Vitamin K & Bone Health

Emerging evidence suggests that Vitamin K may confer protective effects for both the skeletal and CV systems. Vitamin K operates in the context of other fat-soluble vitamins, such as A and D, all of which are involved in maintenance of serum calcium concentration, along with the manipulation of materials leading to bone morphogenesis and maintenance of bone tissue.38 Specifically, the oxidation of Vitamin K results in activation/carboxylation of matrix Gla protein (MGP) which is partially responsible for mineralizing bone.39

Also, Vit K is required for the activation (?-carboxylation) of osteocalcin; the inactivated form, or per cent of undercaboxylated-osteocalcin (%ucOC), has been found to be a sensitive indicator of Vitamin K nutrition status.38 In cross-sectional and prospective analyses, elevated %ucOC, which occurs when Vitamin K status is low, is a marker of increased risk for hip fracture in the elderly.38

Several large observational studies appear to support the benefits of Vitamin K on bone health.38 A meta-analysis concluded that while supplementation with phytonadione (Vitamin K1) improved bone health, Vitamin K2 was even more effective in this regard.40 This large and statistically rigorous meta-analysis concluded that high Vitamin K2 levels were associated with reduced vertebral fractures by approximately 60% (95% CI 0.25% to 0.65%), hip fractures by 77% (95% CI 0.12% to 0.47%), and all non- vertebral fractures by approximately 81% (95% CI 0.11% to 0.35%). Moreover, the benefit of Vitamin K on bone may not be due to its ability to increase BMD, but rather to its effects at increasing bone strength.41

Vitamin K Benefits In CV Health

Mounting evidence suggests vascular calcification whether in the coronary or peripheral arteries is a powerful predictor of CV morbidity and all-cause mortal- ity.42 Prevention of vascular calcification is therefore important as an early intervention to potentially improve long-term CV prognosis.

A major calcification inhibitory factor, is a Vitamin K-dependent protein synthesized by vascular smooth muscle cells.42 Increased

nutritional strategiesVitamin K2 intake has been associated with decreased arterial calcium deposition and the ability to reverse vascular calcification in animal models. Vitamin K2 prevents pathological calcification in soft tissues via the carboxylation of protective MGP. The undercarboxylated (inactive) species of MGP is formed during inadequate Vitamin K status, or as a result of Vitamin K�antagonists.42 Low Vitamin K status is associated with increased vascular calcifications, and can be improved by effective Vitamin K supplementation (table 3).43 44 In two different randomized, double-blind controlled trials, supplemental Vitamin K has been shown to significantly delay both the development of coronary artery calcification and the deterioration of arterial elasticity.45 46

Dietary Vitamin K exists as two major forms: phylloquinone (K1) and menaquinones (MK-n). K1, the predominant dietary form of Vitamin K, is abundant in dark-green leafy vegetables and seeds. The main dietary sources for MK-n in Western populations are fermented foods, especially natto, cheese and curds (mainly MK-8 and MK-9).47

Calcium Supplementation & Bone Health

A recent large meta-analysis of 26 randomized controlled trials reported that calcium supplements lowered the risk of any fracture by a modest but statistically significant 11% (n=58 573; RR 0.89, 95% CI 0.81 to 0.96).48 Even so, the authors concluded that the evidence for calcium supplements on bone health was weak and inconsistent.

Other large meta-analyses found that calcium supplementation was most effective for preventing hip fractures when it was combined with Vitamin D.49�51 Indeed Vitamin D plays a major role in intestinal calcium absorption and bone health (figure 2).52 Additionally, calcium absorption is, in part, dependent on adequate stomach acid, and both these parameters tend to decrease with age. Drugs that markedly reduce stomach acid, such as proton pump inhibitors, have been shown to reduce calcium absorption and increase risk of osteoporosis and fractures.53

nutritional strategies

A large meta-analysis focusing on calcium intake and fracture risk found that in women (seven prospective cohort studies=170 991 women, 2954 hip fractures), there was no association between total calcium intake and hip fracture risk (pooled RR per 300 mg total=1.01; 95% CI 0.97 to 1.05).50 In men (five prospective cohort studies= 68 606 men, 214 hip fractures), the pooled RR per 300 mg of calcium daily was 0.92 (95% CI 0.82 to 1.03).

Monosupplementation with calcium, especially using the most commonly prescribed formulations (calcium carbonate and calcium citrate) might drive down the absorption of phosphate, thereby contributing to bone demineralization secondary to abnormal calcium to phosphate ratios.54 The recently updated US Preventive Services Task Force (USPSTF) has stated that there is insufficient evidence that calcium and Vitamin D prevent fractures in premenopausal women or in men who have not experienced a prior fracture. Indeed, the USPSTF now recommends against daily calcium supplementation for primary prevention of fragility fractures; stating, �the balance of benefits and harms cannot be determined�.55

Calcium Supplementation & Arterial Health

The Women�s Health Initiative, a 7-year, placebo- controlled randomized trial involving 36 282 participants, found that calcium supplementation with Vitamin D�(1000 mg/400 IU daily) had a neutral effect on coronary risk and cerebrovascular risk.56 By contrast, some subsequent publications have reported data challenging the CV safety of calcium supplementation.57�60

One meta-analysis of placebo-controlled trials involving 28 000 participants reported that a daily calcium supplement was associated with an increased risk of MI (HR 1.24, 95% CI 1.07 to 1.45, p=0.004).58 A prospective study of 388229 men and women with a 12-year follow-up showed that calcium supplementation was associated with elevated risk of heart disease death in men, but not in women.61 Yet, only one randomized controlled trial of calcium supplementation using adverse cardiac events as the primary end point has been published. In that study, daily supplementation using 1200 mg of calcium carbonate did not increase the risk of CV death or hospitalization for 1460 women (mean age 75 years).62

nutritional strategies

In a prospective cohort study with a mean follow-up of 19 years, both�high and low dietary calcium intakes were associated with increased CV disease and higher all-cause mortality (figure 3).51 Importantly, a low dietary calcium intake with or without calcium supplementation is also associated with higher CV morbidity and mortality rates.51

Other possible mechanisms that have linked calcium supplements with CV disease include coronary artery calcification, impaired vasodilation, increased arterial stiffness, and hypercoagulability.51 66

Nutritional Strategies: Food As The Ideal Source Of Calcium

The traditional focus in nutritional strategies based on supplementation of single isolated nutrients may be especially mis- guided in the case of calcium and bone health. A diet supplemented with calcium as a mononutrient pill is not ideal for promoting bone health, and may instead accelerate arterial plaque growth and vascular calcification, and increase risk of MI. Food-based solutions place evidence-based emphasis on finding the admixture of foods that balance the acid�base status of the body, and that most favorably impact the body�s calcium metabolism and bone health.

A plant-rich, grain-free diet alters the acid�base status so as to be slightly alkaline, which is conducive for bone health. However, plants are relatively poor sources of calcium compared to animal sources such as dairy pro- ducts and animal bones. We suspect that milk, though an excellent source of bioavailable calcium, has potential adverse health effects for some individuals. Additionally, 65% of the world�s population show some decrease in lactase activity during adulthood. Importantly, fermented dairy has been linked to favorable outcomes for bone health and mortality risk.

Benefits Of Consuming Bones Or Bone Meal

Ethnographic and anthropological studies indicate that adult human hunter-gatherers consumed most of their calcium in the form of bones from animals, such as small and large mammals, birds, fish and reptiles.67 68 Indeed through millions of years of evolution, we are genetically adapted to consume a large proportion of our dietary calcium from bones, where calcium is absorbed along with a matrix of nutrients including magnesium, phosphorus, strontium, zinc, iron, copper, collagen protein, aminoglycans and osteocalcin�all of which also support robust bone formation.68 69 Theoretically, including animal bones (sardines, salmon, soft chicken bones, bone broths, etc) may be an effective dietary strategy to ensure adequate calcium intake and to optimize long-term bone health.

Mineral supplements made from bone meal, when taken with food, theoretically might provide a more practical means to ensure

nutritional strategiesadequate calcium intake without predisposing to CVD risk. Ingestion of micro- crystalline hydroxyapatite (the form of calcium found in bone) produces less of an acute spike in blood calcium levels compared to soluble calcium salts typically used in standard supplements, and thus may be less likely to increase vascular calcification and coronary risk.65 Hydroxyapatite also stimulates bone osteoblast cells and contains virtually all the essential building blocks needed to construct bone tissue. In a small placebo- controlled randomized trial, women who took 1000 mg of calcium in the form of hydroxyapatite in conjunction with oral Vitamin D showed a significant increase in bone thickness, whereas those who took 1000 mg of a standard calcium carbonate supplement did not (figure 4).70 Another double-blind placebo-controlled study found�that supplementing with hydroxyapatite and Vitamin D3 significantly improved serological markers of bone health.15

In theory, the addition of Vitamin K2 and magnesium to an organic bone meal supplement might further enhance its effectiveness and reduce the risk of soft tissue calcification. However, the quantity and quality of the experimental data testing the effects of Vitamin D and calcium on bone health dwarfs the data for bone meal supplementation. Much larger randomized trials will be needed to firmly establish the safety and effectiveness of bone meal as well as Vitamin K and magnesium as supplements for building bone without increasing vascular calcification.

Conclusion: Nutritional Strategies

It is becoming increasingly clear that the fundamental unit for nutrition is the food (eg, milk, nuts, eggs), not the nutrient (eg, calcium, saturated fat, cholesterol). A nutrient perceived as beneficial, such as calcium, may be unhealthy if the parent food, say milk, contains other nutrients, such as galactose, that on the balance might stimulate adverse effects in the body. In theory, consuming calcium-rich foods such as bones, fermented dairy (eg, unsweetened yogurt, kefir, cheese), leafy greens, almonds, and chia seeds may be an effective strategy for improving both calcium intake and long-term health.

James H O�Keefe,1 Nathaniel Bergman,2 Pedro Carrera-Bastos,3 Mae?lan Fontes-Villalba,3 James J DiNicolantonio,1 Loren Cordain4

 

Twitter Follow Maela?n Fontes-Villalba at @maelanfontes

Contributors NB, PC-B and MF-V assisted with the gathering and review of the data; JD, LC and JHO reviewed the data; NB, PC-B, MF-V, JD, LC and JHO assisted in the concept and design of the manuscript. JHO, NB and PC-B wrote, rewrote and finalised the manuscript.

Funding This manuscript received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. This paper was not commissioned.

Competing interests JHO is Chief Medical Officer and has an ownership interest in CardioTabs, a nutraceutical company that markets products containing vitamins and minerals.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non- commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http:// creativecommons.org/licenses/by-nc/4.0/

References:

1. Ross AC, Taylor CL, Yaktine AL, del Valle HB, eds. Dietary
Reference Intakes for Calcium and Vitamin D. Washington DC: The
National Academies Press, 2011:349. http://www.ncbi.nlm.nih.gov/
books/NBK56070/
2. Frassetto L, Morris RC Jr, Sellmeyer DE, et al. Diet, evolution and
aging�the pathophysiologic effects of the post-agricultural inversion
of the potassium-to-sodium and base-to-chloride ratios in the human
diet. Eur J Nutr 2001;40:200�13.
3. Surgeons AAoO. The burden of musculoskeletal diseases in the
United States: prevalence, societal and economic cost. Rosemont,
IL: Amer Academy of Orthopaedic, 2008.
4. Johnell O, Kanis JA. An estimate of the worldwide prevalence and
disability associated with osteoporotic fractures. Osteoporos Int
2006;17:1726�33.
5. Facts and Statistics. http://www.iofbonehealth.org/facts-statistics.
Secondary Facts and Statistics. http://www.iofbonehealth.org/
facts-statistics. 2013. http://www.iofbonehealth.org/facts-statistics
6. Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and
economic burden of osteoporosis-related fractures in the United
States, 2005�2025. J Bone Miner Res 2007;22:465�75.
7. Khosla S, Melton LJ III, Dekutoski MB, et al. Incidence of childhood
distal forearm fractures over 30 years: a population-based study.
JAMA 2003;290:1479�85.
8. Choi SH, An JH, Lim S, et al. Lower bone mineral density is
associated with higher coronary calcification and coronary plaque
burdens by multidetector row coronary computed tomography
in pre- and postmenopausal women. Clin Endocrinol
2009;71:644�51.
9. Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, et al. Milk intake
and risk of hip fracture in men and women: a meta-analysis of
prospective cohort studies. J Bone Miner Res 2011;26:833�9.
10. Carrera-Bastos P, Fontes-Villaba M, O�Keefe JH, et al. The western
diet and lifestyle and diseases of civilization. Res Rep Clin Cardio
2011;2011:15�35.
11. Winer S, Astsaturov I, Cheung RK, et al. T cells of multiple sclerosis
patients target a common environmental peptide that causes
encephalitis in mice. J Immunol 2001;166:4751�6.
12. Artaud-Wild SM, Connor SL, Sexton G, et al. Differences in coronary
mortality can be explained by differences in cholesterol and
saturated fat intakes in 40 countries but not in France and Finland.
A paradox. Circulation 1993;88:2771�9.
13. Segall JJ. Plausibility of dietary lactose as a coronary risk factor.
J Nutr Enviro Med 2002;12:217�29.
14. Cordain L, Toohey L, Smith MJ, et al. Modulation of immune
function by dietary lectins in rheumatoid arthritis. Br J Nutr
2000;83:207�17.
15. Disilvestro RA, Crawford B, Zhang W, et al. Effects of micronutrient
supplementation plus resistance exercise training on bone
metabolism markers in young adult woman. J Nutr Enviro Med
2007;16:16�25.
16. Sandler RB, Slemenda CW, LaPorte RE, et al. Postmenopausal
bone density and milk consumption in childhood and adolescence.
Am J Clin Nutr 1985;42:270�4.
17. Cordain L, Eaton SB, Sebastian A, et al. Origins and evolution of the
Western diet: health implications for the 21st century. Am J Clin Nutr
2005;81:341�54.
18. Ingram CJ, Mulcare CA, Itan Y, et al. Lactose digestion and the
evolutionary genetics of lactase persistence. Hum Genet
2009;124:579�91.
19. Melnik BC, John SM, Carrera-Bastos P, et al. The impact of cow�s
milk-mediated mTORC1-signaling in the initiation and progression of
prostate cancer. Nutr Metab 2012;9:74.
20. Michaelsson K, Wolk A, Langenskiold S, et al. Milk intake and risk of
mortality and fractures in women and men: cohort studies. BMJ
2014;349:g6015.
21. Appleby P, Roddam A, Allen N, et al. Comparative fracture risk in
vegetarians and nonvegetarians in EPIC-Oxford. Eur J Clin Nutr
2007;61:1400�6.
22. Sebastian A, Harris ST, Ottaway JH, et al. Improved mineral balance
and skeletal metabolism in postmenopausal women treated with
potassium bicarbonate. N Engl J Med 1994;330:1776�81.
23. Bushinsky DA. Metabolic alkalosis decreases bone calcium efflux by
suppressing osteoclasts and stimulating osteoblasts. Am J Physiol
1996;271(1 Pt 2):F216�22.
24. Sebastian A, Frassetto LA, Sellmeyer DE, et al. Estimation of
the net acid load of the diet of ancestral preagricultural Homo
sapiens and their hominid ancestors. Am J Clin Nutr
2002;76:1308�16.
25. Kerstetter JE, O�Brien KO, Insogna KL. Dietary protein, calcium
metabolism, and skeletal homeostasis revisited. Am J Clin Nutr
2003;78(3 Suppl):584S�92S.
26. Heaney RP, Layman DK. Amount and type of protein influences
bone health. Am J Clin Nutr 2008;87:1567S�70S.
27. Hannan MT, Tucker KL, Dawson-Hughes B, et al. Effect of dietary
protein on bone loss in elderly men and women: the Framingham
Osteoporosis Study. J Bone Miner Res 2000;15:2504�12.
28. Sahni S, Cupples LA, McLean RR, et al. Protective effect of high
protein and calcium intake on the risk of hip fracture in the
Framingham offspring cohort. J Bone Miner Res 2010;25:
2770�6.
29. Rabenda V, Bruyere O, Reginster JY. Relationship between bone
mineral density changes and risk of fractures among patients
receiving calcium with or without vitamin D supplementation:
a meta-regression. Osteoporos Int 2011;22:893�901.
30. He K, Liu K, Daviglus ML, et al. Magnesium intake and incidence of
metabolic syndrome among young adults. Circulation
2006;113:1675�82.
31. Lakshmanan FL, Rao RB, Kim WW, et al. Magnesium intakes,
balances, and blood levels of adults consuming self-selected diets.
Am J Clin Nutr 1984;40(6 Suppl):1380�9.
32. Greger JL, Baligar P, Abernathy RP, et al. Calcium, magnesium,
phosphorus, copper, and manganese balance in adolescent
females. Am J Clin Nutr 1978;31:117�21.
33. Gullestad L, Nes M, Ronneberg R, et al. Magnesium status in
healthy free-living elderly Norwegians. J Am Coll Nutr
1994;13:45�50.
34. Sojka JE, Weaver CM. Magnesium supplementation and
osteoporosis. Nutr Rev 1995;53:71�4.
35. Yang Q, Liu T, Kuklina EV, et al. Sodium and potassium intake and
mortality among US adults: prospective data from the Third National
Health and Nutrition Examination Survey. Arch Intern Med
2011;171:1183�91.
36. Lin PH, Ginty F, Appel LJ, et al. The DASH diet and sodium
reduction improve markers of bone turnover and calcium metabolism
in adults. J Nutr 2003;133:3130�6.
37. O�Donnell MJ, Yusuf S, Mente A, et al. Urinary sodium and
potassium excretion and risk of cardiovascular events. JAMA
2011;306:2229�38.
38. Booth SL. Roles for vitamin K beyond coagulation. Annu Rev Nutr
2009;29:89�110.
39. Kanellakis S, Moschonis G, Tenta R, et al. Changes in parameters
of bone metabolism in postmenopausal women following a
12-month intervention period using dairy products enriched with
calcium, vitamin D, and phylloquinone (vitamin K(1)) or
menaquinone-7 (vitamin K (2)): the Postmenopausal Health Study II.
Calcif Tissue Int 2012;90:251�62.
40. Cockayne S, Adamson J, Lanham-New S, et al. Vitamin K and the
prevention of fractures: systematic review and meta-analysis of
randomized controlled trials. Arch Intern Med 2006;166:1256�61.
41. Knapen MH, Schurgers LJ, Vermeer C. Vitamin K2 supplementation
improves hip bone geometry and bone strength indices in
postmenopausal women. Osteoporos Int 2007;18:963�72.
42. Beulens JW, Bots ML, Atsma F, et al. High dietary menaquinone
intake is associated with reduced coronary calcification.
Atherosclerosis 2009;203:489�93.
43. Rennenberg RJ, de Leeuw PW, Kessels AG, et al. Calcium scores
and matrix Gla protein levels: association with vitamin K status. Eur
J Clin Invest 2010;40:344�9.
44. Schurgers LJ, Barreto DV, Barreto FC, et al. The circulating inactive
form of matrix gla protein is a surrogate marker for vascular
calcification in chronic kidney disease: a preliminary report. Clin J
Am Soc Nephrol 2010;5:568�75.45. Shea MK, O�Donnell CJ, Hoffmann U, et al. Vitamin K
supplementation and progression of coronary artery calcium in older
men and women. Am J Clin Nutr 2009;89:1799�807.
46. Braam LA, Hoeks AP, Brouns F, et al. Beneficial effects of vitamins
D and K on the elastic properties of the vessel wall in
postmenopausal women: a follow-up study. Thromb Haemost
2004;91:373�80.
47. McCann JC, Ames BN. Vitamin K, an example of triage theory: is
micronutrient inadequacy linked to diseases of aging? Am J Clin
Nutr 2009;90:889�907.
48. Bolland MJ, Leung W, Tai V, et al. Calcium intake and risk of
fracture: systematic review. BMJ 2015;351:h4580.
49. Tang BM, Eslick GD, Nowson C, et al. Use of calcium or calcium in
combination with vitamin D supplementation to prevent fractures and
bone loss in people aged 50 years and older: a meta-analysis.
Lancet 2007;370:657�66.
50. Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, et al. Calcium
intake and hip fracture risk in men and women: a meta-analysis of
prospective cohort studies and randomized controlled trials. Am J
Clin Nutr 2007;86:1780�90.
51. Michaelsson K, Melhus H, Warensjo Lemming E, et al. Long term
calcium intake and rates of all cause and cardiovascular mortality:
community based prospective longitudinal cohort study. BMJ
2013;346:f228.
52. Christakos S. Recent advances in our understanding of
1,25-dihydroxyvitamin D(3) regulation of intestinal calcium
absorption. Arch Biochem Biophys 2012;523:73�6.
53. Khalili H, Huang ES, Jacobson BC, et al. Use of proton pump
inhibitors and risk of hip fracture in relation to dietary and lifestyle
factors: a prospective cohort study. BMJ 2012;344:e372.
54. Heaney RP, Nordin BE. Calcium effects on phosphorus absorption:
implications for the prevention and co-therapy of osteoporosis. J Am
Coll Nutr 2002;21:239�44.
55. Moyer VA. Vitamin D and calcium supplementation to prevent
fractures in adults: U.S. Preventive Services Task Force
recommendation statement. Ann Intern Med 2013;158:691�6.
56. Hsia J, Heiss G, Ren H, et al. Calcium/vitamin D supplementation
and cardiovascular events. Circulation 2007;115:846�54.
57. Bolland MJ, Barber PA, Doughty RN, et al. Vascular events in
healthy older women receiving calcium supplementation:
randomised controlled trial. BMJ 2008;336:262�6.
58. Bolland MJ, Wang TK, van Pelt NC, et al. Abdominal aortic
calcification on vertebral morphometry images predicts incident
myocardial infarction. J Bone Miner Res 2010;25:505�12.
59. Reid IR, Bolland MJ, Grey A. Does calcium supplementation
increase cardiovascular risk? Clin Endocrinol 2010;73:689�95.
60. Pentti K, Tuppurainen MT, Honkanen R, et al. Use of calcium
supplements and the risk of coronary heart disease in 52�
62-year-old women: The Kuopio Osteoporosis Risk Factor and
Prevention Study. Maturitas 2009;63:73�8.
61. Xiao Q, Murphy RA, Houston DK, et al. Dietary and supplemental
calcium intake and cardiovascular disease mortality: The National
Institutes of Health-AARP diet and health study. JAMA Intern Med
2013;173:639�46.
62. Lewis JR, Calver J, Zhu K, et al. Calcium supplementation and the
risks of atherosclerotic vascular disease in older women: results of a
5-year RCT and a 4.5-year follow-up. J Bone Miner Res
2011;26:35�41.
63. Reid IR, Bolland MJ, Avenell A, et al. Cardiovascular effects of
calcium supplementation. Osteoporos Int 2011;22:1649�58.
64. Karp HJ, Ketola ME, Lamberg-Allardt CJ. Acute effects of calcium
carbonate, calcium citrate and potassium citrate on markers of
calcium and bone metabolism in young women. Br J Nutr
2009;102:1341�7.
65. Tucker LA, Nokes N, Adams T. Effect of a dietary supplement on hip
and spine BMD: a randomized, double-blind, placebo-controlled trial:
1515: board #5 May 30 2:00 PM�3:30 PM. Med Sci Sports Exer
2007;39:S230.
66. West SL, Swan VJ, Jamal SA. Effects of calcium on cardiovascular
events in patients with kidney disease and in a healthy population.
Clin J Am Soc Nephrol 2010;5(Suppl 1):S41�7.
67. Reinhard KJ, Ambler JR, Szuter CR. Hunter-gatherer use of small
animal food resources: coprolite evidence. J Osteoarch
2007;17:416�28.
68. Vieugue J, Salanova L, Regert M, et al. The consumption of bone
powder in the early neolithic societies of Southeastern Europe:
evidence of a diet stress? Cambridge Archaeological J
2015;02:495�511.
69. Schulman RC, Weiss AJ, Mechanick JI. Nutrition, bone, and aging:
an integrative physiology approach. Curr Osteoporos Rep
2011;9:184�95.
70. Epstein O, Kato Y, Dick R, et al. Vitamin D, hydroxyapatite, and
calcium gluconate in treatment of cortical bone thinning in
postmenopausal women with primary biliary cirrhosis. Am J Clin
Nutr 1982;36:426�30.
71. Bischoff-Ferrari HA, Kiel DP, Dawson-Hughes B, et al. Dietary
calcium and serum 25-hydroxyvitamin D status in relation to
BMD among U.S. adults. J Bone Miner Res 2009;24:935�42.

blank
Close Accordion
Inflammatory Bowel Disease and Intestinal Permeability

Inflammatory Bowel Disease and Intestinal Permeability

The pathogenesis of inflammatory bowel disease, or IBD, suggests that interrupted interactions between the gastrointestinal tract, or GI tract, and the gut microbiota can often be the cause behind the development of the disease. A damaged or unhealthy gastric mucosal barrier may result in increased intestinal permeability which can cause an immunological reaction and result in symptoms of inflammation. Individuals diagnosed with inflammatory bowel disease present several defects in the many specialized components of mucosal barrier function, from the mucous coating makeup to the adhesion molecules that regulate paracellular permeability. These alterations may represent a primary dysfunction in Crohn’s disease, but they may also cause chronic mucosal inflammation in ulcerative colitis.

 

How does inflammatory bowel disease affect intestinal permeability?

 

In clinical practice as well as experimental testings, many research studies have reported that changes in intestinal permeability can predict the development of inflammatory bowel disease, or IBD. Functional evaluations, such as the sugar absorption test or the novel imaging technique using confocal laser endomicroscopy, allow an in vivo assessment of intestinal barrier integrity. Antitumor necrosis factor-? (TNF-?) therapy reduces mucosal inflammation and soothes intestinal permeability from IBD patients. Butyrate, zinc, and some probiotics also ameliorate mucosal barrier dysfunction but their use is still limited and further research is required before suggesting permeability manipulation as a therapeutic goal in inflammatory bowel disease.

 

The gut plays a major role in food digestion and absorption of nutrients as well as in maintaining the overall homeostasis. It is estimated that the entire bacterial count in our entire body exceeds ten times the entire amount of individual cells in it, with more than one million species found in the gastrointestinal tract. The gut microbiota, whose genome includes 100 times more genes in relation to the entire human genome, also plays an important role in nutrition, energy metabolism, host defense, and immune system development. However, modified microbiota has been connected to, not just gastrointestinal disorders, but also to the pathogenesis of systemic conditions, such as obesity and metabolic syndrome. Therefore, the expression “mucosal barrier” seems to properly highlight the critical role of the gut and its interaction with microbiota: it is not a static shield but an active apparatus with specialized components. According to Bischoff et al. “permeability” is described as a functional feature of this barrier which allows the coexistence of bacteria required by our organism and prevents luminal penetration of macromolecules and pathogens. Altered intestinal permeability was documented during several diseases, including, acute pancreatitis, multiple organ failure, major surgery, and severe trauma, and may also explain the high incidence of Gram-negative sepsis and related mortality in critically ill patients. Furthermore, perturbation of the complex mechanism of permeability has been connected to the development of irritable bowel syndrome and steatohepatitis, or NASH.

 

The pathogenesis of inflammatory bowel disease, or IBD, remains unclear but it most likely is multifactorial and driven by an exaggerated immune response towards the gastrointestinal microbiome in a genetically susceptible host. Increasing evidence suggests that intestinal permeability may be critical and some authors even considered inflammatory bowel disease, or IBD, as a disease, primarily caused by intestinal barrier dysfunction.

 

Intestinal Barrier Dysfunction in Inflammatory Bowel Disease

 

The main component of the mucosal barrier is represented by the intestinal epithelium, which is made up of one layer of various subtypes of cells, including the enterocytes, goblet cells, Paneth cells, and enteroendocrine cells, as well as immune cells, such as intraepithelial lymphocytes and dendritic cells, as seen on Figure 1. The regulation of paracellular permeability of ions and tiny molecules is provided by three kinds of junctional complexes: the tight junctions, or TJs, adherence junctions, and desmosomes.

 

Components of the mucosal barrier in a healthy gut and inflammatory bowel disease.

Figure 1

 

Individuals with IBD present enhanced paracellular permeability with TJ abnormalities, according to several research studies. These are complex multiprotein structures with an extracellular portion, a transmembrane domain and an intracellular association with the cytoskeleton, referenced from Figure 1. A decreased expression and redistribution of the components, such as occludins, claudins, and junctional adhesion molecules, abbreviated as JAM, have all been demonstrated in IBD, where a current experiment found that eliminating claudin-7 can cause colonic inflammation. In addition, tumour necrosis factor-? (TNF-?), one of the main factors behind IBD inflammation, may regulate the transcription of TJ proteins whereas its antagonists, anti-TNF-?, can ameliorate intestinal permeability. However, TNF-? may contribute to altered intestinal permeability as well, inducing apoptosis of enterocytes, increasing their rate of shedding and preventing the redistribution of TJs which should seal the remaining gaps.

 

Goblet cells are specialized in the secretion of mucus that covers the surface of the intestinal epithelium. Mucus is made up of carbohydrates, proteins, lipids, and a high amount of water while it also has antimicrobial properties because of antimicrobial peptides, mainly defensins produced by Paneth cells, and secretory IgA. Individuals with ulcerative colitis demonstrate a lesser variety of goblet cells, a reduced thickness of the mucus layer, and an altered mucus composition regarding mucins, phosphatidylcholine, and glycosylation. Moreover, modified Paneth cell distribution and function has been reported in IBD: these cells are typically limited to the small intestines, within the crypts of Lieberk�hn, but in IBD, metaplastic Paneth cells may be found in colonic mucosa, together with subsequent secretion of defensins also from the large intestine. The role of Paneth cells may differ in the two disease phenotypes because the expression of defensins is caused by colonic inflammation in UC but is reduced in patients with colonic Crohn’s disease, or CD. The decreased Paneth cell antimicrobial function might be a main pathogenic component in Crohn’s disease, or CD, particularly ileal CD, although the greater secretion of defensins in UC could be a physiological response to mucosal damage.

 

Etiology of Intestinal Permeability in Inflammatory Bowel Disease

 

Whether mucosal barrier dysfunction is a result of the inflammatory response or a primary defect that prompts mucosal inflammation, still remains under debate. However, several research studies suggest that altered intestinal permeability may be an early event in Crohn’s disease pathogenesis. Increased paracellular permeability was found in patients with quiescent IBD and was connected to intestinal symptoms even when endoscopic activity was absent. Furthermore, an ex vivo study with Ussing chambers on colonic biopsies from CD patients revealed a spatially uniform increase in transepithelial conductivity regardless of the presence of minimal mucosal erosions. This finding was attributed to the downregulation of TJ proteins. Lastly, animal models of CD, particularly, IL-10 knockout mice and SAMP1/YitFc mice, also declared that increased permeability can be determined before the onset of mucosal inflammation.

 

Genes involved in intestinal barrier homeostasis have also been associated with IBD susceptibility, demonstrating a genetic predisposition that’s further supported by the observation that up to 40 percent of first-degree relatives of CD patients have altered small intestinal permeability, with a significant connection to familial CD and NOD2/CARD15 variations. This gene, which is involved in bacterial recognition, regulates both innate and adaptive immune responses and is the main susceptibility locus for the development of Crohn’s disease. Other research studies have not found a correlation between permeability and hereditary polymorphisms but it’s noteworthy they’ve mostly involved sporadic CD instances. However, environmental factors are also principal contributors in determining mucosal permeability because permeability is raised even in a percentage of CD spouses. Additionally, a recent research highlighted the value of age and smoking status rather than genotype in family. There is only one reported instance of CD development predicted by an abnormal permeability test in a healthy relative.

 

Independently from being genetically determined or caused by environmental factors, intestinal permeability leads to the disruption of the physiological equilibrium between mucosal barrier and luminal challenge which cannot be properly counteracted by inherent resistance of IBD patients, which on the opposite reacts with an underactive immune trigger. As a matter of fact, many defects in bacterial recognition and processing have been documented in CD patients taking certain genetic polymorphisms, mainly of pattern-recognition receptors, such as NOD2/CARD15 and genes involved in autophagy, like ATG16L1 and IRGM. In intestinal mucosa, the absence of feedback between mutated NOD2/CARD15 expression and gut luminal microbiota may result in the breakdown of tolerance. Interestingly, a recent research study by Nighot et al. revealed that autophagy is also involved with the regulation of the TJs by degradation of a pore-forming claudin, connecting autophagy with permeability.

 

Finally, intestinal microbiota may become altered in IBD, especially in its relative diversity and composition. This could represent a consequence of chronic mucosal inflammation however, the influence of host genotype in shaping microbial community cannot be missed in CD and NOD2/CARD15 genotype has been shown to influence the composition of gut microbiota in humans. This dysbiosis can further exacerbate permeability dysfunction from the reduction of the symbiotic connection between the microbiota and the mucosal barrier integrity. Information referenced from the National Center for Biotechnology Information (NCBI) and the National University of Health Sciences. The scope of our information is limited to chiropractic and spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us at 915-850-0900 .

 

By Dr. Alex Jimenez

 

Green-Call-Now-Button-24H-150x150-2-3.png

 

Clinical Application of Neuromuscular Techniques: Assessment and Treatment of Hip Flexors � Rectus Femoris, Iliopsoas

 

Patient lies supine with buttocks (coccyx) as close to end of table as possible, non-tested leg in flexion at hip and knee, held by patient or by having sole of foot of non-tested side placed against the lateral chest wall of the practitioner. Full flexion of the hip helps to maintain the pelvis in full rotation with the lumbar spine flat, which is essential if the test is to be meaningful and stress on the spine is to be avoided.

 

Notes on Psoas

 

  • Lewit (1985b) mentions that in many ways the psoas behaves as if it were an internal organ. Tension in the psoas may be secondary to kidney disease, and one of its frequent clinical manifestations, when in spasm, is that it reproduces the pain of gall-bladder disease (often after the organ has been removed).
  • The definitive signs of psoas problems are not difficult to note, according to Harrison Fryette (1954). He maintains that the distortions produced in inflammation and/or spasm in the psoas are characteristic and cannot be produced by other dysfunction. The origin of the psoas is from 12th thoracic to (and including) the 4th lumbar, but not the 5th lumbar. The insertion is into the lesser trochanter of the femur, and thus, when psoas spasm exists unilaterally, the patient is drawn forwards and sidebent to the involved side. The ilium on the side will rotate backwards on the sacrum, and the thigh will be everted. When both muscles are involved the patient is drawn forward, with the lumbar curve locked in flexion. This is the characteristic reversed lumbar spine. Chronic bilateral psoas contraction creates either a reversed lumbar curve if the erector spinae of the low back are weak, or an increased lordosis if they are hypertonic.
  • Lewit says, �Psoas spasm causes abdominal pain, flexion of the hip and typical antalgesic (stooped) posture. Problems in psoas can profoundly influence thoraco-lumbar stability.�
  • The 5th lumbar is not involved directly with psoas, but great mechanical stress is placed upon it when the other lumbar vertebrae are fixed in either a kyphotic or an increased lordotic state. In unilateral psoas spasms, a rotary stress is noted at the level of 5th lumbar. The main mechanical involvement is, however, usually at the lumbodorsal junction. Attempts to treat the resulting pain (frequently located in the region of the 5th lumbar and sacroiliac) by attention to these areas will be of little use. Attention to the muscular component should be a primary focus, ideally using MET.
  • Bogduk (Bogduk et al 1992, Bogduk 1997) provides evidence that psoas plays only a small role in the action of the spine, and states that it �uses the lumbar spine as a base from which to act on the hip�. He goes on to discuss just how much pressure derives from psoas compression on discs: �Psoas potentially exerts massive compression loads on the lower lumbar discs � upon maximum contraction, in an activity such as sit-ups, the two psoas muscles can be expected to exert a compression on the L5�S1 disc equal to about 100 kg of weight.�
  • There exists in all muscles a vital reciprocal agonist�antagonist relationship which is of primary importance in determining their tone and healthy function. Psoas�rectus abdominis have such a relationship and this has important postural implications (see notes on lower crossed syndrome in Ch. 2).
  • Observation of the abdomen �falling back� rather than mounding when the patient flexes indicates normal psoas function. Similarly, if the patient, when lying supine, flexes knees and �drags� the heels towards the buttocks (keeping them together), the abdomen should remain flat or fall back. If the abdomen mounds or the small of the back arches, psoas is incompetent.
  • If the supine patient raises both legs into the air and the belly mounds it shows that the recti and psoas are out of balance. Psoas should be able to raise the legs to at least 30� without any help from the abdominal muscles.
  • Psoas fibres merge with (become �consolidated� with) the diaphragm and it therefore influences respiratory function directly (as does quadratus lumborum).
  • Basmajian (1974) informs us that the psoas is the most important of all postural muscles. If it is hypertonic and the abdominals are weak and exercise is prescribed to tone these weak abdominals (such as curl-ups with the dorsum of the foot stabilised), then a disastrous negative effect will ensue in which, far from toning the abdominals, increase of tone in psoas will result, due to the sequence created by the dorsum of the foot being used as a point of support. When this occurs (dorsiflexion), the gait cycle is mimicked and there is a sequence of activation of tibialis anticus, rectus femoris and psoas. If, on the other hand, the feet could be plantarflexed during curl-up exercises, then the opposite chain is activated (triceps surae, hamstrings and gluteals) inhibiting psoas and allowing toning of the abdominals.
  • When treating, it is sometimes useful to assess changes in psoas length by periodic comparison of apparent arm length. Patient lies supine, arms extended above head, palms together so that length can be compared. A shortness will commonly be observed in the arm on the side of the shortened psoas, and this should normalise after successful treatment (there may of course be other reasons for apparent difference in arm length, and this method provides an indication only of changes in psoas length).

 

If the thigh of the tested leg fails to lie in a horizontal position in which it is parallel to the floor/table, then the indication is that iliopsoas is short. If the lower leg of the tested side fails to achieve an almost 90� angle with the thigh, vertical to the floor, then shortness of the rectus femoris muscle is indicated (Fig. 4.6B). If this is not clearly noted, application of light pressure towards the floor on the lower third of the thigh will produce a compensatory extension of the lower leg only when rectus femoris is short. A slight degree (10�15�) of hip extension should be possible in this position, by pushing downwards on the thigh, without knee extension occurring. This can subsequently be checked by seeing whether or not the heel on that side can easily flex to touch the buttock of the prone patient (if rectus is short heel will not easily reach the buttock). If effort is required to achieve 10� of hip extension, this confirms iliopsoas shortening on that side. If both psoas and rectus are short, rectus should be treated first. If the thigh hangs down below a parallel position, this indicates a degree of laxity in iliopsoas (Fig. 4.6C). A further cause of failure of the thigh to rest parallel to the floor can be due to shortness of tensor fascia lata. If this structure is short (a further test proves it, see later in this chapter) then there should be an obvious groove apparent on the lateral thigh and the patella, and sometimes the whole lower leg will deviate laterally. A further indication of short psoas is seen if the prone patient�s hip is observed to remain in flexion. In this position passive flexion of the knee will result in compensatory lumbar lordosis and increased hip flexion if rectus femoris is also short. (See also functional assessment method for psoas in Ch. 5 and notes on psoas in Box 4.4.)

 

Figure 4.6A

 

Figure 4.6A Test position for shortness of hip flexors. Note that the hip on the non-tested side must be fully flexed to produce full pelvic rotation. The position shown is normal.

 

Figure 4.6B

 

Figure 4.6B In the test position, if the thigh is elevated (i.e. not parallel with the table) probable psoas shortness is indicated. The inability of the lower leg to hang more or less vertically towards the floor indicates probable rectus femoris shortness (TFL shortness can produce a similar effect).

 

Figure 4.6C

 

Figure 4.6C The fall of the thigh below the horizontal indicates hypotonic psoas status. Rectus femoris is once again seen to be short, while the relative external rotation of the lower leg (see angle of foot) hints at probable shortened TFL involvement.

 

Mitchell�s Strength Test

 

Before using MET methods to normalise a short psoas, Mitchell recommends that you have the patient at the end of the table, both legs hanging down and feet turned in so that they can rest on your lateral calf areas as you stand facing the patient. The patient should press firmly against your calves with her feet as you rest your hands on her thighs and she attempts to lift you from the floor. In this way you assess the relative strength of one leg�s effort, as against the other. Judge which psoas is weaker or stronger than the other. If a psoas has tested short (as in the test described earlier in this chapter) and also tests strong in this test, then it is suitable for MET treatment, according to Mitchell. If it tests short and weak, then other factors such as tight erector spinae muscles should be treated first until psoas tests strong and short, at which time MET should be applied to start the lengthening process. It is worth recalling Norris�s (1999) advice that a slowly performed isotonic eccentric exercise will normally strengthen a weak postural muscle. (Psoas is classified as postural, and a mobiliser, depending on the model being used. Richardson et al (1999) describe psoas as �an exception� to their deep/superficial rule since, �it is designed to act exclusively on the hip�. There is therefore universal agreement that psoas will shorten in response to stress.) NOTE: It has been found to be clinically useful to suggest that before treating a shortened psoas, any shortness in rectus femoris on that side should first be treated.

 

MET Treatment for Shortness of Rectus Femoris

 

Patient lies prone, ideally with a cushion under the abdomen to help avoid hyperlordosis. The practitioner stands on the side of the table of the affected leg so that he can stabilise the patient�s pelvis (hand covering sacral area) during the treatment, using the cephalad hand. The affected leg is flexed at hip and knee. The practitioner can either hold the lower leg at the ankle (as in Fig. 4.7), or the upper leg can be cradled so that the hand curls under the lower thigh and is able to palpate for bind, just above the knee, with the practitioner�s upper arm offering resistance to the lower leg. Either of these holds allows flexion of the knee to the barrier, perceived either as increasing effort, or as palpated bind. If rectus femoris is short, then the patient�s heel will not easily be able to touch the buttock (Fig. 4.7).

 

Figure 4.7

 

Figure 4.7 MET treatment of left rectus femoris muscle. Note the practitioner�s right hand stabilises the sacrum and pelvis to prevent undue stress during the stretching phase of the treatment. Once the restriction barrier has been established (how close can the heel get to the buttock before the barrier is noted?) the decision will have been made as to whether to treat this as an acute problem (from the barrier), or as a chronic problem (short of the barrier). Appropriate degrees of resisted isometric effort are then introduced. For an acute problem a mild 15% of MVC (maximum voluntary contraction), or a longer, stronger (up to 25% of MVC) effort for a chronic problem, is used as the patient tries to both straighten the leg and take the thigh towards the table (this activates both ends of rectus). Appropriate breathing instructions should be given (see notes on breathing earlier in this chapter, Box 4.2).

 

The contraction is followed, on an exhalation, by taking of the muscle to, or stretching through, the new barrier, by taking the heel towards the buttock with the patient�s help. Remember to increase slight hip extension before the next contraction (using a cushion to support the thigh) as this removes slack from the cephalad end of rectus femoris. Repeat once or twice using agonists or antagonists. Once a reasonable degree of increased range has been gained in rectus femoris it is appropriate to treat psoas, if this has tested as short.

 

MET Treatment of Psoas

 

Method (a) (Fig. 4.8) Psoas can be treated in the prone position described for rectus above, in which case the stretch following the patient�s isometric effort to bring the thigh to the table against resistance would be concentrated on extension of the thigh, either to the new barrier of resistance if acute or past the barrier, placing stretch on psoas, if chronic.

 

Figure 4.8

 

Figure 4.8 MET treatment of psoas with stabilising contact on ischial tuberosity as described by Greenman (1996). The patient is prone with a pillow under the abdomen to reduce the lumbar curve. The practitioner stands on the side opposite the side of psoas to be treated, with the table-side hand supporting the thigh. The non-table-side hand is placed so that the heel of that hand is on the sacrum, applying pressure towards the floor, to maintain pelvic stability (see also Fig. 4.11A). The fingers of that hand are placed so that the middle, ring and small fingers are on one side of L2/3 segment and the index finger on the other. This allows these fingers to sense a forwards (anteriorly directed) �tug� of the vertebrae when psoas is stretched past its barrier. (An alternative hand position is offered by Greenman (1996) who suggests that the stabilising contact on the pelvis should apply pressure towards the table, on the ischial tuberosity, as thigh extension is introduced.

 

The author agrees that this is a more comfortable contact than the sacrum. However, it fails to allow access to palpation of the lumbar spine during the procedure.) The practitioner eases the thigh (knee is flexed) off the table surface and senses for ease of movement into extension of the hip. If there is a strong sense of resistance there should be an almost simultaneous awareness of the palpated vertebral segment moving anteriorly. It should � if psoas is normal � be possible to achieve approximately 10� of hip extension before that barrier is reached, without force. Greenman (1996) suggests that �Normally the knee can be lifted 6 inches [15 cm] off the table. If less, tightness and shortness of psoas is present.� Having identified the barrier, the practitioner either works from this (in an acute setting) or short of it (in a chronic setting) as the patient is asked to bring the thigh towards the table against resistance, using 15�25% of their maximal voluntary contraction potential, for 7�10 seconds. Following release of the effort (with appropriate breathing assistance if warranted), the thigh is eased to its new barrier if acute, or past that barrier, into stretch (with patient�s assistance, �gently push your foot towards the ceiling�). If stretch is introduced, this is held for not less than 10 seconds and ideally up to 30 seconds. It is important that as stretch is introduced no hyperextension occurs of the lumbar spine. Pressure from the heel of hand on the sacrum can usually ensure that spinal stability is maintained. The process is then repeated.

 

Method (b) (Fig. 4.9A) Grieve�s method involves using the supine test position, in which the patient lies with the buttocks at the very end of the table, non-treated leg fully flexed at hip and knee and either held in that state by the patient, or by placement of the patient�s foot against the practitioner�s lateral chest wall. The leg on the affected side is allowed to hang freely with the medioplantar aspect resting on the practitioner�s far knee or shin.

 

Figure 4.9A

 

Figure 4.9A MET treatment of psoas using Grieve�s method, in which there is placement of the patient�s foot, inverted, against the practitioner�s thigh. This allows a more precise focus of contraction into psoas when the hip is flexed against resistance.

 

Figure 4.9B

 

Figure 4.9B Psoas treatment variation, with the leg held straight and the pelvis stabilised. The practitioner stands sideways on to the patient, at the foot of the table, with both hands holding the thigh of the extended leg. The practitioner�s far leg should be flexed slightly at the knee so that the patient�s foot can rest as described. This is used as a contact which, with the hands, resists the attempt of the patient to externally rotate the leg and, at the same time, flex the hip. The practitioner resists both efforts, and an isometric contraction of the psoas and associated muscles therefore takes place. This combination of forces focuses the contraction effort into psoas very precisely. Appropriate breathing instructions should be given (see notes on breathing, Box 4.2). If the condition is acute, the treatment of the patient�s leg commences from the restriction barrier, whereas if the condition is chronic, the leg is elevated into a somewhat more flexed position. After the isometric contraction, using an appropriate degree of effort (i.e. is this acute or chronic?), the thigh should, on an exhalation, either be taken to the new restriction barrier, without force (acute), or through that barrier with slight, painless pressure towards the floor on the anterior aspect of the thigh (chronic), and held there for 10�30 seconds (see Fig 4.10B; see also variation Fig. 4.9B). Repeat until no further gain is achieved.

 

Method (c) (Figs. 4.10A, B) This method is appropriate for chronic psoas problems only. The supine test position is used in which the patient lies with the buttocks at the very end of the table, nontreated leg fully flexed at hip and knee and either held in that state by the patient (Fig 4.10A), or by the practitioner�s hand (Fig 4.7B), or by placement of the patient�s foot against the practitioner�s lateral chest wall. The leg on the affected side is allowed to hang freely. The practitioner resists (for 7�10 seconds) a light attempt of the patient to flex the hip. Appropriate breathing instructions should be given (see notes on breathing, Box 4.2). After the isometric contraction, using an appropriate degree of effort, the thigh should, on an exhalation, be taken very slightly beyond the restriction barrier, with a light degree of painless pressure towards the floor, and held there for 10�30 seconds (Fig. 4.10B). Repeat until no further gain is achieved.

 

Figure 4.10A

 

Figure 4.10A MET treatment involves the patient�s effort to flex the hip against resistance.

 

 

Figure 4.10B Stretch of psoas, which follows the isometric contraction (Fig. 4.10A) and is achieved by means of gravity plus additional practitioner effort.

 

Self-Treatment of Psoas

 

Method (a) Lewit suggests self-treatment in a position as above in which the patient lies close to the end of a bed (Fig 4.10A without the practitioner) with one leg fully flexed at the hip and knee and held in this position throughout, while the other leg is allowed to reach the limit of its stretch, as gravity pulls it towards the floor. The patient then lifts this leg slightly (say 2 cm) to contract psoas, holding this for 7�10 seconds, before slowly allowing the leg to ease towards the floor. This stretch position is held for a further 30 seconds, and the process is repeated three to five times. The counterpressure in this effort is achieved by gravity.

 

Method (b) Patient kneels on leg on side to be self-stretched so that the knee is behind the trunk, which remains vertical throughout. The non-treated side leg is placed anteriorly, knee flexed to 90�, foot flat on floor. The patient maintains a slight lumbar lordosis throughout the procedure as she lightly contracts psoas by drawing the treated side knee anteriorly (i.e. flexing the hip) without actually moving it. Resistance to this isometric movement is provided by the knee contact with the (carpeted) floor. After 7�10 seconds the patient releases this effort, and while maintaining a lumbar lordosis and vertical trunk, eases her pelvis and trunk anteriorly to initiate a sense of stretch on the anterior thigh and hip area. This is maintained for not less than 30 seconds before a further movement anteriorly of the pelvis and trunk introduces additional psoas stretch (see also Fig. 4.11B).

 

Figure 4.11A

 

Figure 4.11A Alternative prone treatment position, not described in text (see also Fig. 4.8). B Psoas self-stretch, not described in text.

 

Dr. Alex Jimenez offers an additional assessment and treatment of the hip flexors as a part of a referenced clinical application of neuromuscular techniques by Leon Chaitow and Judith Walker DeLany.

 

Additional Topics: Wellness

 

Overall health and wellness are essential towards maintaining the proper mental and physical balance in the body. From eating a balanced nutrition as well as exercising and participating in physical activities, to sleeping a healthy amount of time on a regular basis, following the best health and wellness tips can ultimately help maintain overall well-being. Eating plenty of fruits and vegetables can go a long way towards helping people become healthy.

 

blog picture of cartoon paperboy big news

 

ADDITIONAL TOPIC: EXTRA EXTRA: Treating Back Pain

 

 

Mastodon